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Abstract

A distance d on a �nite set V is hypercube embeddable if it can be isometrically

embedded into the hypercube f0; 1g

m

for some m � 1, i.e., if the elements i 2 V can

be labeled by sets A

i

in such a way that d(i; j) = jA

i

4A

j

j for all i; j 2 V . Testing

whether a distance d is hypercube embeddable is an NP-complete problem, even if d is

assumed to take its values in f2; 3; 4; 6g ([Chv80]). On the other hand, the hypercube

embeddability problem is polynomial when restricted to the class of distances with

values in f1; 2; 3g ([Avi90]). Let x; y be positive integers such that exactly two of

x; y; x+y are odd. We show that, for �xed x; y, the hypercube embeddability problem

remains polynomial for the class of distances with values in fx; y; x+ yg.

1 Introduction

Let V := f1; : : : ; ng be a �nite set. A function d : V � V �! R

+

is a distance on V if d

is symmetric, i.e., d(i; j) = d(j; i) for all i; j 2 V , and d(i; i) = 0 for all i 2 V . A distance

d is a semimetric if it satis�es the following triangle inequality

d(j; k) � d(i; j)+ d(i; k) (1)

for all distinct i; j; k 2 V . If d(i; j) = 0 holds only for i = j, then d is a metric.

A distance d is said to be hypercube embeddable if d can be isometrically embedded

into some hypercube f0; 1g

m

for some m � 1. Equivalently, d is hypercube embeddable if

one can label the points i 2 V by sets A

i

in such a way that

d(i; j) = jA

i

4A

j

j for all i; j 2 V: (2)
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Any labeling of the points of V by sets A

i

satisfying (2) is called an h-labeling of d.

It is easy to see that every hypercube embeddable distance is a semimetric. Also, a

semimetric is hypercube embeddable if and only if the metric formed by contracting the

points at zero distance to single points is hypercube embeddable. Hence, we can assume

to deal with integral distances taking nonzero values on distinct pairs of points.

The following problem is called the hypercube embeddability problem.

Given a distance d on n points, test whether d is hypercube embeddable.

This problem has been long studied and has many applications, in particular, for binary

adressing in telecommunication networks (see [GP71]). When restricted to the class (ii)

below of path metrics of graphs, this is the problem of embedding graphs isometrically into

the hypercube. It can be checked in polynomial time whether a given graph is an isometric

subgraph of a hypercube ([Djo73]). On the other hand, it is NP-complete to decide whether

a given graph is a subgraph (not necessarly isometric) of a hypercube ([APP85, KVC86]);

in fact, it is NP-hard to compute the minimum dimension of a hypercube in which a

tree can be embedded as a subgraph ([WC90]). The (isometric) hypercube embeddability

problem is NP-complete for general distances; actually, it remains NP-complete when

restricted to the following class (i) of distances ([Chv80]):

(i) distances having one point at distance 3 from all other points with the distances between

those points belonging to f2; 4; 6g.

The hypercube embeddability problem is also NP-complete for the class of distances with

values in f2; 4; 6; 8g ([Avi93]). However, several classes of metrics are known for which the

hypercube embeddability problem is polynomial. This is the case, in particular, for the

following classes of distances:

(ii) path metrics of graphs ([Djo73]),

(iii) distances with values 1,2 ([AD80]),

(iv) distances with values 2,4 and with one point at distance 2 from all other points

([Chv80]),

(v) distances with values 1,2,3 ([Avi90]),

(vi) distances d on a set V such that d(i; j) = 2 for all (i; j) 2 (S�S)[ (T �T ), for some

partition of V as V = S [ T ([DL91a]).

Note that the metrics from (ii) � (vi), either have some inner structure (they arise

from graphs in (ii)), or have some restriction on the values that they can take (it is easily

observed that a metric from (vi) takes at most four distinct values).

In this paper, we consider the following classes (vii) and (viii) of distances:

(vii) distances with values x; y, where x; y are positive integers such that exactly one of

them is odd,
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(viii) distances with values x; y; x+ y, where x; y are positive integers such that exactly

two of x; y; x+ y are odd.

Hence, the class (vii) contains (iii) as subcase x = 1; y = 2, and the class (viii) contains

(v) as subcase x = 1; y = 2.

Our main result is that, for �xed x; y, the hypercube embeddability problem is polyno-

mial over each of the classes (vii) and (viii). We refer to the results from Propositions 3.4,

3.5, 4.2, 5.1, 6.1, and 6.2, for the corresponding characterizations of hypercube embed-

dability.

However, we have no characterization for the classes of hypercube embeddable dis-

tances that take two or three values, all of them even. Indeed, our technique of proof

relies strongly on the existence of some odd values, and on the fact that their number is

small (less than or equal to 2). For instance, the complexity of the hypercube embeddabil-

ity problem for the class of distances with values in f2; 4; 6g is not known. We show in

Figure 1 an example of a distance d with values in f2; 4; 6g, which is hypercube embedable

(an h-labeling is shown in Figure 1), but such that the distance obtained by adding a

new point at distance 3 from the other points is not hypercube embeddable (to see it,

check that d admits no h-labeling where all labels are sets of cardinality 3). Hence, the

NP-completeness result for the class (i) has no immediate implication for the complexity

of the hypercube embeddability problem for f2; 4; 6g-valued distances.

Still, the class (iv), which consists of distances with values 2,4, can be tested in poly-

nomial time ([Chv80]). We recall below the proof, which relies on a connection between

hypercube embeddable distances and intersection patterns.

Figure 1

A symmetric function a : V � V �! is called an intersection pattern if there exist

n sets A

1

; : : : ; A

n

such that
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a(i; j) = jA

i

\ A

j

j (3)

for all i; j 2 V .

Let d be a distance on V [ fn+ 1g and let a denote the symmetric function on V de�ned

by

(

a(i; i) = d(i; n+ 1) for all i 2 V;

a(i; j) = (d(i; n+ 1) + d(j; n+ 1)� d(i; j))=2 for all i 6= j 2 V:

(4)

Then, one can verify that d is hypercube embeddable if and only if a is an intersection

pattern ([Dez73a]). (Note that one can use the same sets A

1

; : : : ; A

n

for the labeling of d

and the representation of a as (3) if one chooses A

n+1

= ;.)

Let d be a distance from the class (iv) and let a be its transform by (4). Then, a

ii

= 2

for all i 2 V and a

ij

= 0; 1 for all distinct i; j 2 V . It is easy to see that such a is an

intersection pattern if and only if the graph on V whose edges are the pairs ij for which

a(i; j) = 1 is a line-graph. As line-graphs can be recognized in polynomial time ([Bei70]),

the class (iii) can be tested in polynomial time for hypercube embeddability.

In the same way, testing whether a symmetric function a with a(i; i) = 3 for all i 2 V

is an intersection pattern, is an NP-complete problem or, equivalently, the hypercube

embeddability problem is NP-complete for the class (i) of distances ([Chv80]).

2 Preliminaries

We group in this section several observations on hypercube embeddings.

Let d be a distance on V = f1; : : : ; ng. If A

1

; : : : ; A

n

is an h-labeling of d, then

d(i; j) + d(i; k) + d(j; k) = 2(jA

i

j+ jA

j

j+ jA

k

j � jA

i

\ A

j

j � jA

i

\ A

k

j � jA

j

\ A

k

j) holds

for all i; j; k 2 V . This imples the following result.

Claim 2.1 ([Dez61]) If d is hypercube embeddable, then d satis�es the following even

condition:

d(i; j)+ d(i; k) + d(j; k) is an even integer for all i; j; k 2 V: (5)

Claim 2.2 If A

1

; : : : ; A

n

is an h-labeling of d and, for some distinct i; j; k 2 V , d(j; k) =

d(i; j) + d(i; k), then A

j

\A

k

� A

i

� A

j

[A

k

.
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Clearly, if A

1

; : : : ; A

n

is an h-labeling of d andA is an arbitrary set, then A

1

4A; : : :; A

n

4A

is also an h-labeling of d. Also, permuting the elements of

S

1�i�n

A

i

yields another h-

labeling of d. Two h-labelings of d are said to be equivalent if they di�er by the above

operations. If d has a unique (up to equivalence) h-labeling, then d is said to be rigid.

Suppose we are trying to construct an h-labeling of d. We can always supose that one

of the points of V , say the point n, is labeled by ;. Then, d is hypercube embeddable if

and only if we can �nd n� 1 sets A

1

; : : : ; A

n�1

such that

(

jA

i

j = d(i; n) for all 1 � i � n� 1;

jA

i

\ A

j

j = (d(i; n) + d(j; n)� d(i; j))=2 for all 1 � i < j � n� 1:

Therefore, we are looking for a collection of n � 1 sets satisfying some conditions on the

cardinalities of the sets and of their pairwise intersections.

The following set families will play an important role here. Let A be a family of

subsets of V = f1; : : : ; ng. Then, A is called a (h; k;n)-intersecting system if jAj = h

for all A 2 A and jA \ A

0

j = k for all distinct A;A

0

2 A. Moreover, if there exists a set

K of cardinality k such that A \ A

0

= K for all distinct A;A

0

2 A, then A is called a

�-system with kernel K and parameters (h; k;n). Clearly, jAj �

n�k

h�k

holds for such

a �-system. When we do not want to specify the size n of the groundset, we speak of a

(h; k)-intersecting system or of a �-system with parameters (h; k). Let f(h; k;n) denote

the maximum cardinality of a (h; k;n)-intersecting system.

It is known that every (h; k)-intersecting system A whose cardinality jAj is large with

respect to h (namely, jAj � h

2

� h+ 2) is necessarly a �-system ([Dez74]). In particular,

if A is a (2t; t)-intersecting system with jAj � t

2

+ t+2, then A is a �-system ([Dez73b]).

Let 2t11

n

denote the distance on V de�ned by d(i; j) = 2t for all i 6= j 2 V . If we

label one point of V by ;, then the h-labelings of 2t11

n

are exactly the (2t; t)-intersecting

systems of cardinality n � 1. Therefore, the above result can be reformulated as follows.

For more information on the variety of hypercube embeddings of the equidistant metric

2t11

n

, see [DL93].

Claim 2.3 ([Dez73b]) If n � t

2

+ t + 3, then the distance 2t11

n

is rigid, i.e., its unique

h-labeling (up to equivalence) consists of n pairwise disjoint sets each of cardinality t; this

labeling is called the star-labeling.

A natural weakening of the notion of hypercube embeddability is that of `

1

-embeddability.

A distance d on V is said to be `

1

-embeddable if there exist n vectors u

i

2 R

m

(m � 1)

for i 2 V such that d(i; j) =k u

i

� v

j

k

1

, where k u k

1

=

P

1�h�m

ju

h

j for u 2 R

m

. Testing

whether a given distance on n points is `

1

-embeddable is also NP-complete ([Kar85]). It is
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interesting to note that hypercube and `

1

-embeddable distances can be expressed in terms

of cut semimetrics.

Given a subset S � V , the cut semimetric d

S

is de�ned by d

S

(i; j) = 1 if (i; j) 2 S�T

and d(i; j) = 0 if (i; j) 2 S

2

[ T

2

. Given a distance d on V , then d is `

1

-embeddable

(resp. hypercube embeddable) if and only if d =

P

S�V

�

S

d

S

for some nonnegative (resp.

nonnegative integer) scalars �

S

([AD82]). Therefore, for d integral, d is `

1

-embeddable if

and only if �d is hypercube embeddable for some scalar �.

Hence, the set of `

1

-embeddable distances on n points forms a cone. This cone is

called the cut cone; it has been extensively studied in the literature (see, e.g., [DL92] and

references there). Each of the valid inequalities for this cone yields a necessary condition

for hypercube embeddability; many valid inequalities for the cut cone are known (see, e.g.,

[DL91b] for a survey). In particular, all `

1

-embeddable distances satisfy the hypermetric

inequalities de�ned below (introduced in [Dez61]).

The hypermetric condition. If d is hypercube embeddable, then

X

i;j2V

b

i

b

j

d(i; j)� 0 (6)

for all integers b

i

; i 2 V; such that

P

i2V

b

i

= 1. The inequality (6) with b

i

integer for

i 2 V and

P

i2V

b

i

= 1 is called a hypermetric inequality. A distance d is said to

be hypermetric if it satis�es all hypermetric inequalities. If jb

i

j = 1 for all i 2 V and

P

i2V

jb

i

j = k, then the inequality (6) is called a k-gonal inequality. For instance, the

3-gonal inequalities are the triangle inequalities (1) and the 5-gonal inequalities are of the

form

d(i

1

; i

2

) + d(i

1

; i

3

) + d(i

2

; i

3

) + d(i

4

; i

5

)�

X

h=1;2;3

k=4;5

d(i

h

; i

k

) � 0

for i

1

; i

2

; i

3

; i

4

; i

5

2 V .

We consider here the following classes of distances, where a; b are positive integers.

(a) d takes the two values 2a,b (b odd);

(b) d takes the three values a; b; a+ b (a; b odd);

(c) d takes the three values 2a; b; b+ 2a (b odd).

We show that, for �xed a; b, each of these classes can be tested in polynomial time for

hypercube embeddability.

Our proof goes as follows. Suppose that d is a distance on V , jV j = n, from one of the

classes (a)� (c).
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If n is bounded by a function of a and b, then one can test directly whether d is

hypercube embeddable, for instance, by brute force enumeration.

Suppose now that n is large with respect to a and b, namely, n � 2n(a; b)� 1, where

n(a; b) = a

2

+a+3 for the cases (a); (c), and n(a; b) = (

a+b

2

)

2

+

a+b

2

+3 for the case (b). Then,

we are able to characterize the hypercube embeddable distances on n � 2n(a; b)�1 points

by a set of conditions which can be checked in time polynomial in n; see Proposition 3.4

for the case (a), Proposition 4.2 for the case (b), and Propositions 5.1 and 6.1 for the case

(c). We use as basic tools the following facts.

By the even condition (5), the set of pairs ij for which d(i; j) is odd is a complete

bipartite graph, i.e., V is partitioned into V = S [ T with, for instance, jSj � jT j, d(i; j)

even for (i; j) 2 S

2

[ T

2

, and d(i; j) odd if (i; j) 2 S � T .

By Claim 2.3, the projection of d on S � S is rigid since jSj � n(a; b). This forces the

points of S to be labeled by the star-labeling (or an equivalent of it) in any h-labeling of

d.

In the cases (b); (c), one of the values taken by d is the sum of the other two. This will

give us more information on a possible h-labeling of d, by applying Claim 2.2.

For the case (c), we must distinguish two subcases, depending whether b < 2a or

2a < b. These two cases have a quite di�erent behaviour, as we shall see from the proof.

The subcase b < 2a contains the instance a = b = 1, which was considered in [Avi90];

actualy, it can be treated in essentially the same way as the special instance a = b = 1.

3 Distances with values 2a; b (b odd)

Let a; b be two positive integers with b odd. Let d be a distance on V which takes the two

values 2a; b. We can assume that b � a (else, d is not a semimetric). If d is hypercube

embeddable, then V is partitioned into V = S[T with, for instance, jSj � jT j, d(i; j) = 2a

if (i; j) 2 S

2

[ T

2

, and d(i; j) = b if (i; j) 2 S � T (by (5)). Suppose that we label a node

j

0

2 T by ;.

Then, an h-labeling of d exists if and only if there exist two set families A and B with

jAj = jSj, jBj = jT j � 1, and satisfying

8

>

<

>

:

A is a (b; b� a)-intersecting system;

B is a (2a; a)-intersecting system;

jA \ Bj = a for all A 2 A; B 2 B:

(7)

(Indeed, label the points of S by the members of A and the points of T n fj

0

g by the

members of B.)
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Note that, if B = ; and A is a �-system with parameters (b; b� a), then they satisfy

relation (7). In other words, d is hypercube embeddable if jT j = 1 � jSj. This is the

distance shown in Figure 2.

The distance from Figure 3 (i.e., the case jSj = jT j = 2) is also hypercube embeddable.

(Indeed, label the two nodes of T by ; and A[A

0

, and the two nodes of S by A

0

[A and

A

0

[ A

0

, where A

0

; A; A

0

are disjoint sets of respective cardinalities b� a; a; a.)

Figure 2 Figure 3 Figure 4

Claim 3.1 Let A;B be set families satisfying (7). If B 6= ; and A is a �-system, then

jAj �

a

2a�b

+ 1.

Proof. Let A

0

, jA

0

j = b � a, denote the kernel of the �-system A. Let B 2 B and

set � = jB \ A

0

j � b � a. Then, jB \ (A n A

0

)j = a � � for all A 2 A. Hence,

2a = jBj � �+ jAj(a��) = ajAj��(jAj�1) � ajAj�(b�a)(jAj�1) = (2a�b)jAj+b�a;

which implies that jAj �

3a�b

2a�b

=

a

2a�b

+ 1.

Claim 3.2 (i) If b � 2a, then d is hypercube embeddable.

(ii) If b < 2a and 2 � jT j � jSj �

a

2a�b

+ 1, then d is hypercube embeddable.

(iii) If b < 2a and d is hypercube embeddable, then min(jT j; jSj � 1) � b

b

2a�b

c (else, d

violates a (2b

b

2a�b

c + 3)-gonal inequality).

Proof. For (i); (ii), we show how to construct some families A, B satisfying (7) and with

jAj = jSj, jBj = jT j�1. In both cases, we take for A a �-system with parameters (b; b�a)

and kernel A

0

, jA

0

j = b� a.

In case (i), as b � 2a, we can �nd a subset B

0

of A

0

with jB

0

j = a. Then, we take for B a

�-system with parameters (2a; a) and kernel B

0

such that (A nA

0

) \ (B nB

0

) = ; for all

A 2 A, B 2 B.

In case (ii), we have that a � (s � 1)(2a � b) (setting s := jSj), i.e., for each A 2 A,

we can �nd s � 1 disjoint subsets A

(1)

; : : : ; A

(s�1)

, of A n A

0

, each of cardinality 2a � b.

Note that x := b� a+ s(2a� b) � 2a. Let X

(1)

; : : : ; X

(s�1)

be disjoint sets of cardinality

2a � x, disjoint from

S

A2A

A. Given A

1

2 A, we set B := fB

(1)

; : : : ; B

(s�1)

g, where, for

1 � j � s� 1, B

(j)

= A

0

[A

(1)

1

[

S

A2AnfA

1

g

A

(j)

[X

(j)

. Then, A, B satisfy (7).
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(iii) Set k := min(jT j; jSj�1). Suppose, for contradiction, that k � b

b

2a�b

c+1. Set b

i

= 1

for k+ 1 points of S, b

i

= �1 for k points of T , and b

i

= 0 for the remaining points of V .

Then,

P

i;j2V

b

i

b

j

d(i; j) = 2k(k(2a� b)� b) > 0. Hence, d violates a (2b

b

2a�b

c + 3)-gonal

inequality, contradicting the fact that d satis�es the hypermetric condition.

Claim 3.3 Suppose jSj � a

2

+ a+3 and jT j � 2. Then, d is hypercube embeddable if and

only if b � 2a.

Proof. If b � 2a, then d is hypercube embeddable by Claim 3.2 (i). Conversely, if

d is hypercube embeddable then, by Claim 2.3, the collection A is a �-system. Hence,

jAj �

a

2a�b

+ 1, by Claim 3.1, contradicting the assumption jSj = jAj � a

2

+ a+ 3.

So, we have the following results.

Proposition 3.4 Let a � b be positive integers with b odd. Let d be a distance on n points

taking the values 2a and b. Suppose that d satis�es the even condition (5). If b � 2a, then

d is hypercube embeddable. In particular, if n � 2a

2

+2a+5, then d is hypercube embedable

if and only if b � 2a or d is the distance from Figure 2.

Proposition 3.5 Let a � b be positive integers with b odd and b <

4

3

a. Let d be a distance

taking the values 2a and b. Suppose that d satis�es the even condition (5). The following

assertions are equivalent.

(i) d is hypercube embeddable.

(ii) d satis�es the 5-gonal inequality (i.e., d does not contain as substructure the distance

from Figure 4).

(iii) d is one of the distances from Figures 2 and 3.

Proposition 3.5 follows from Claim 3.2 (iii) after noting that b

b

2a�b

c = 1 if b <

4

3

a.

4 Distances with values a; b; a+ b (a,b odd)

Let a; b be positive odd integers with a < b. Let d be a distance on V taking the values

a; b; a+ b. If d is hypercube embeddable, then V = S [ T , S \ T = ;, with d(i; j) = a+ b

for (i; j) 2 S

2

[ T

2

and d(i; j) 2 fa; bg for (i; j) 2 S � T . Moreover, the pairs ij with

d(i; j) = a form a matching, by the triangle inequality (1).

Claim 4.1 If there are at least two pairs at distance a, then jSj = jT j = 2 (else, d would

violate the 5-gonal inequality).
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Proof. Let i; i

0

2 S, j; j

0

2 T such that d(i; j) = d(i

0

; j

0

) = a and suppose, for contradic-

tion, that there exist another point k. Set b

i

= b

i

0

= b

k

= 1, b

j

= b

j

0

= �1, and b

h

= 0

for the remaining points. Then,

P

i;j2V

b

i

b

j

d(i; j) = 4a > 0, contradicting the fact that d

satis�es the 5-gonal inequalities.

From now on, we can suppose that there is exactly one pair (i

0

; j

0

) at distance a, where

i

0

2 S, j

0

2 T .

We can suppose that j

0

is labeled by ; and, then, i

0

should be labeled by a set A

0

of

cardinality a. Therefore, an h-labeling of d exists if and only if there exist two (b;

b�a

2

)-

intersecting systems A and B disjoint from A

0

such that jAj = jSj � 1, jBj = jT j � 1, and

jA \Bj =

a+b

2

for all A 2 A and B 2 B. (Label the points of S n fi

o

g by the members of

A and the points of T n fj

0

g by A

0

[B where B 2 B.)

Such set families A and B can be constructed, for instance, if jSj = jT j = 2, or

jT j = 1 � jSj, implying that d is hypercube embeddable in these cases.

This is obvious for the case jT j = jSj = 2. If T = fj

0

g, then we can take for A a

�-system with parameters (b;

b�a

2

).

But, in general, we do not know about the existence of the families A and B. Note

that, if jT j � 2, i.e., B 6= ;, then we can take for A a �-system only if jAj = jSj � 1 �

b

a

.

Indeed, let A

1

, jA

1

j =

b�a

2

, denote the kernel of A and let B 2 B, then jB \ (A nA

1

)j � a

for all A 2 A, implying that b = jBj � ajAj, i.e., jAj �

b

a

.

Let us assume that d is a distance on n � 2(

a+b

2

)

2

+ a + b + 5 and jSj � jT j. Then,

jSj � (

a+b

2

)

2

+

a+b

2

+ 3 and, thus, by Claim 2.3, the points of S must be labeled by the

star-labeling in any h-labeling of d. It is easy to see that this implies that A is a �-sytem.

Therefore, if jT j � 2, then jSj �

b

a

+1, contradicting the above assumption on jSj. Hence,

jT j = 1 in which case we saw above that d is indeed hypercube embeddable.

So, we have shown the following result.

Proposition 4.2 Let a < b be odd integers and let d be a distance on n � 2(

a+b

2

)

2

+a+b+5

points taking the values a; b; a+ b. Suppose that d satis�es the even condition (5). Then,

d is hypercube embeddable if and only if d is the distance from Figure 5.

Figure 5



Hypercube embedding of distances with few values 11

In the general case, hypercube embeddability depends on the existence of two (b;

b�a

2

)-

intersecting systems A and B satisfying the \transversality" condition jA \ Bj =

b+a

2

for

all A 2 A and B 2 B. Using the hypermetric condition, we can give an upper bound on

min(jBj � 1; jAj � 2) (if jBj � jAj).

Claim 4.3 Suppose that jT j � jSj and min(jT j; jSj � 1) � 2. Then, min(jT j; jSj � 1) �

b

b

a

c � 1 (else, d violates the (2b

b

a

c+ 1)-gonal inequality).

Proof. Set k := min(jT j; jSj�1) and suppose, for contradiction, that k � b

b

a

c. Set b

i

= 1

for k+1 points of S including i

0

, b

i

= �1 for k points of T including j

0

, and b

i

= 0 for the

remaining points. Then,

P

i;j2V

b

i

b

j

d(i; j) = 2(k � 1)(a(k + 1)� b) > 0. This contradicts

the fact that d satis�es the (2b

b

a

c+ 1)-gonal inequality.

In particular, if b < 2a, then min(jT j� 1; jSj) = 1, in which case d is indeed hypercube

embeddable. Therefore,

Proposition 4.4 Let a; b be odd integers such that a < b < 2a. Let d be a distance

taking the values a; b; a+ b. Then, d is hypercube embeddable if and only if d is one of the

distances from Figures 5 and 6.

Figure 6

5 Distances with values 2a; b; 2a+ b (b odd, 2a < b)

Let a; b be positive integers such that b is odd and 2a < b. Let d be a distance on n points

that takes the values 2a; b and 2a+ b. We assume that d satis�es the even condition (5),

i.e., V is partitioned into V = S[T with d(i; j) = 2a for (i; j) 2 S

2

[T

2

, d(i; j) 2 fb; b+2ag

for (i; j) 2 S � T , and jT j � jSj.

Set I = fj 2 T : d(i; j) = b+ 2a for all i 2 Sg, U = fj 2 T : d(i; j) = b for all i 2 Sg,

andM = T nI[U . For j 2 T , setN

b

(j) = fi 2 S : d(i; j) = bg and call jN

b

(j)j the valency

of j. Two distinct elements j; j

0

2M are said to be twins (resp. pseudotwins, symmet-

ric) if N

b

(j) = N

b

(j

0

) (resp. jN

b

(j)4N

b

(j

0

)j = 1, jN

b

(j)nN

b

(j

0

)j = jN

b

(j

0

) n N

b

(j)j = 1).

A subset M

0

�M is a twin class (resp. a symmetric class) if any two distinct elements

of M

0

are twins (resp. symmetric).



12 M. Laurent

We recall that f(2a; a; a + b) denotes the maximum cardinality of a (2a; a; a + b)-

intersecting system.

We show the following result.

Proposition 5.1 With the notation above, suppose d is a distance on n � 2a

2

+ 2a+ 5

points. Then, d is hypercube embeddable if and only if (i) or (ii) holds.

(i) M = ; and jU j �

b

a

if jI j � 2, jU j � f(2a; a; a+ b) if jI j = 1.

(ii) M = T and any two elements of T are twins, pseudotwins or symmetric. Moreover,

- either jN

b

(j)j = v for all j 2 T for some 1 � v �

b

a

+ 1 and T is a twin class or a

symmetric class,

- or jN

b

(j)j 2 fv; v + 1g for all j 2 T for some 1 � v �

b

a

. Set T

0

= fj 2 T : jN

b

(j)j = vg

and T

00

= T n T

0

. Then, either jT

0

j = 1, T

00

is a symmetric class, or T

00

is a twin class

with jT

00

j �

b

a

� v+ 1); or T

0

is a twin class with jT

0

j � 2 and T

00

is a symmetric class; or

T

0

is a symmetric class with jT

0

j = 2 and T

00

is a twin class with jT

00

j �

b

a

� v + 1.

Consider the distance d from Figure 7. It is interesting to note that, if jSj � a

2

+a+3,

then d is hypercube embeddable if and only if jU j � f(2a; a; a+ b), i.e., there exists a

(2a; a; a+ b)-intersecting system of cardinality jU j.

Figure 7

In the remaining of this section, we give the proof of Proposition 5.1. As n � 2n

2

+2a+5

and jSj � jT j, the points of S should be labeled by the star-labeling (or an equivalent of

it) in any h-labeling of d. So, we can suppose that the points i 2 S are labeled by sets A

i

,

where the A

i

's are pairwise disjoint sets of cardinality a. Set A =

S

i2S

A

i

.

The next Claim 5.2 establishes Proposition 5.1 (i).

Claim 5.2 Assume that M = ;, i.e., I; U 6= ;. Then, d is hypercube embeddable if and

only if jU j �

b

a

if jI j � 2, and jU j � f(2a; a; a+ b) if jI j = 1.



Hypercube embedding of distances with few values 13

Proof. We show that the following assertions (a)� (c) are equivalent.

(a) d is hypercube embeddable,

(b) the projection of d on fi; i

0

g [ T , where i; i

0

are distinct elements of S, is hypercube

embeddable,

(c) jU j �

b

a

if jI j � 2, and jU j � f(2a; a; a+ b) if jI j = 1.

(a) =) (b) holds obviously. We show (c) =) (a). LetX be a set of cardinality a+b disjoint

from A. Suppose �rst that jI j = 1. By assumption, we can �nd a (2a; a; a+b)-intersecting

system B on X with cardinality jU j. Label the element of I by X and the elements j 2 U

by the sets B4X for B 2 B. This gives an h-labeling of d. Suppose now that jI j � 2. As

jU j �

b

a

, we can construct a �-system B on X with parameters (2a; b; a+b) and jBj = jU j.

Let B

1

denote the kernel of B, let j

0

2 I , and let C

j

, j 2 I n fj

0

g, be pairwise disjoint sets

of cardinality a disjoint from X . Label the elements of U by the sets B4X for B 2 B,

label j

0

by X and the elements j 2 I n fj

0

g by the sets X4(B

1

[ C

j

). This gives an

h-labeling of d.

(b) =) (c) Consider an h-labeling of the projection of d on fi; i

0

g [ T in which a given

element j

0

2 I is labeled by ;. Denote by A;A

0

, C

j

(j 2 I n fj

0

g), and B

k

(k 2 U) the sets

labeling i; i

0

, j 2 I n fj

0

g, k 2 U , respectively. Then, jAj = jA

0

j = b+ 2a, jA\A

0

j = b+ a,

and both B = fB

k

: k 2 Ug and C = fC

j

: j 2 I n fj

0

gg are (2a; a)-intersecting systems.

Moreover, b = jB

k

4Aj, implying that B

k

� A. Hence, B

k

� A \ A

0

for all k 2 U , i.e.,

B is a (2a; a; a+ b)-intersecting system, which implies that jBj = jU j � f(2a; a; a+ b).

Suppose that jI j � 2 and let j 2 I n fj

0

g. Then, b+2a = jC

j

4Aj, i.e., jA\C

j

j = a. Also,

2a = jB

k

4C

j

j, i.e., B

k

\ C

j

j = a. Therefore, B

k

\ C

j

= A \ C

j

� B

k

for all k 2 U . This

shows that B is a �-system, implying that jBj = jU j �

b

a

.

From now on, we assume that M 6= ;.

Claim 5.3 Let j 2M . Then, v := jN

b

(j)j �

b

a

+1 and j should be labeled by

S

i2N

b

(j)

A

i

[ X

j

,

where X

j

is a set disjoint from A with jX

j

j = b� va+ a. We call X

j

the residual label

of j.

Proof. Denote by B the set labeling a given point j 2 M . Let i; i

0

2 S such that

d(i; j) = b and d(i

0

; j) = b+ 2a. Then, b = jB4A

i

j, i.e., jBj = b� a + 2jB \ A

i

j � b+ a

since jB \ A

i

j � a. Also, b+ 2a = jB4A

i

0

j, i.e., jBj = b+ a+ 2jB \A

i

0

j � b+ a. Hence,

jBj = b + a, A

i

� B for all i 2 N

b

(j), and A

i

0

\ B = ; for all i 2 S nN

b

(j). Therefore,

B =

S

i2N

b

(j)

A

i

[X

j

, where jX

j

j = b� va+ a, implying that v �

b

a

+ 1.
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Claim 5.4 Let j; j

0

be distinct elements of M . Then, either N

b

(j) = N

b

(j

0

) (j; j

0

are

twins), or N

b

(j) � N

b

(j

0

) with jN

b

(j

0

)nN

b

(j)j = 1 (j; j

0

are pseudotwins), or jN

b

(j) n N

b

(j

0

)j =

jN

b

(j

0

) nN

b

(j)j = 1 (j; j

0

are symmetric).

Proof. Suppose that N

b

(j) � N

b

(j

0

) and j; j

0

have respective valencies v; v

0

with v < v

0

.

By Claim 5.3, j; j

0

have residual labels X

j

; X

j

0
, with jX

j

j = b� va+a, jX

j

0
j = b� v

0

a+a.

Then, 2a = d(j; j

0

) = jX

j

4X

j

0

j + (v

0

� v)a, implying that jX

j

\ X

j

0

j = b � va. Hence,

jX

j

0

nX

j

j = a(v � v

0

+ 1) � 0, which implies that v

0

= v + 1, i.e., j; j

0

are pseudotwins.

Suppose now that N

b

(j) 6� N

b

(j

0

) and N

b

(j

0

) 6� N

b

(j). Suppose that we can �nd distinct

elements i; i

0

2 N

b

(j) n N

b

(j

0

) and let i

00

2 N

b

(j

0

) nN

b

(j). Set b

i

= b

i

0

= b

j

0

= 1, b

i

00

=

b

j

= �1, and b

h

= 0 for the remaining elements. Then,

P

h;h

0

2V

b

h

b

h

0

d(h; h

0

) = 4a > 0.

Hence, d violates the 5-gonal inequality, contradicting the hypermetric condition. This

shows that jN

b

(j)4N

b

(j

0

)j = 2, i.e., j; j

0

are symmetric.

Note that any two symmetric elements j; j

0

2M should receive the same residual label,

i.e., X

j

= X

j

0
. Hence, the relation \j; j

0

are symmetric" is an equivalence relation on M .

Claim 5.5 If M 6= ;, then I = U = ;.

Proof. Let j 2 M with valency v and let k 2 I [ U be labeled by a set C. Then,

2a = d(j; k) = jC4(

S

i2N

b

(j)

A

i

[ X

j

)j �

P

i2N

b

(j)

jC4A

i

j � vb > 2av, since d(i; k) =

jA

i

4Cj 2 fb; b+ 2ag and b > 2a. We obtain a contradiction. Hence, I = U = ;.

By Claim 5.5, T = M and, by Claim 5.4, either all elements j 2 T have the same

valency v (1 � v �

b

a

+ 1), or they have valency v or v + 1 (1 � v �

b

a

). Set T

0

= fj 2 T :

jN

b

(j)j = vg and T

00

= T n T

0

. Then, each of T

0

, T

00

is a symmetric class or a twin class.

Suppose �rst that all elements of T have the same valency v. Then, d is hypercube

embeddable. Indeed, if T is a twin class, we can choose for the residual labels X

j

, j 2 T ,

the members of a �-system with parameters (b�va+a; b�va). If T is a symmetric class,

take all the residual labels of j 2 T equal to a given set X of cardinality b� va+ a. This

provides in both cases an h-labeling of d.

Suppose now that the elements of T have two possible valencies v and v + 1.

Claim 5.6 (i) If jT

0

j = 1, then d is hypercube embeddable if and only if T

00

is a symmetric

class, or T

00

is a twin class with jT

00

j �

b

a

� v + 1.

(ii) If jT

0

j � 2 and T

0

is a twin class, then d is hypercube embeddable if and only if T

00

is

a symmetric class.

(iii) If jT

0

j � 2 and T

0

is a symmetric class, then d is hypercube embeddable if and only if

jT

0

j = 2 and T

00

is a twin class with jT

00

j �

b

a

� v + 1.
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Proof. (i) Let T

0

= fj

0

g. If T

00

is a symmetric class, then d is hyeprcube embeddable.

Indeed, let X be a set disjoint fromA with jX j = b�va+a and let Y � X with jY j = b�va.

Take X as residual label for j

0

and Y as residual label for all the elements of T

00

. Suppose

now that T

00

is a twin class. Let X denote the residual label of j

0

and let X

k

denote the

residual label of k 2 T

00

. Then, X

k

� X , jX

k

j = b� va, jX j = b� va+ a, jX

k

4X

k

0

j = 2a

for k 6= k

0

2 T

00

. Set Y

k

= X nX

k

for k 2 T

00

. Then, the Y

k

's are pairwise disjoint subsets

of X of cardinality a. This implies that jT

00

j �

b

a

� v + 1. Conversely, if T

00

is a twin class

with jT

00

j �

b

a

� v + 1, then d is hypercube embeddable (take the residual labels in the

way indicated above).

(ii) Since T

0

is a twin class the residual labels X

j

, j 2 T

0

, form a (b � va + a; b � va)-

intersecting system. Let k 2 T

00

with residual label X

k

and j 2 T

0

. Then, 2a = d(j; k) =

jX

j

4X

k

j+a, fromwhich we deduce thatX

k

� X

j

. As jT

0

j � 2, we have thatX

k

= X

j

\X

j

0

for j 6= j

0

2 T

0

. Hence, T

00

is a symmetric class. Then, d is indeed hypercube embeddable.

Indeed, let X be a set disjoint from A with jX j = b � va. Take the residual labels of

the elements of T

00

all equal to X and take for the residual labels of the elements of T

0

a

�-system with kernel X and parameters (b� va+ a; b� va).

(iii) Since T

0

is a symmetric class, all the elements of T

0

have the same residual label X ,

jX j = b � va + a. For j 6= j

0

2 T

0

, k 2 T

00

, we have that N

b

(k) = N

b

(j) [N

b

(j

0

), which

implies that jT

0

j = 2 and that T

00

is a twin class. If jT

00

j � 2, then all residual labels X

k

,

k 2 T

00

, are contained in X , from which we deduce as in case (i) that jT

00

j �

b

a

� v + 1.

Conversely, if jT

0

j = 2, jT

00

j �

b

a

� v + 1, T

0

is a symmetric class, and T

00

is a twin class,

then d is hypercube embeddable. Indeed, let X be the residual label of both elements of

T

0

and let X

k

= X nY

k

be the residual labels of k 2 T

00

, where the Y

k

's are disjoint subsets

of X of cardinality a.

This concludes the proof of Proposition 5.1.

6 Distances with values b; 2a; b+ 2a (b odd, b < 2a)

Let a; b be positive integers with b odd and b < 2a. Let d be a distance on V , jV j = n,

that takes the values b; 2a and b+ 2a. We show the following result.

Proposition 6.1 Let a; b be positive integers with b odd and b < 2a. Let d be a distance

on n � 2a

2

+ 2a + 5 points that takes the values b; 2a; b+ 2a. Suppose that d satis�es

the even condition (5) and the triangle inequality (1). Then, the following assertions are

equivalent.

(i) d is hypercube embeddable.
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(ii) d does not contain as substructure any of the distances from Figures 8-15.

In particular, if b < a, then d is always hypercube embeddable. (In Figures 8-15, a plain

edge represents distance 2a+ b, a dotted edge distance b and no edge means distance 2a.)

Figure 8

Figure 9 Figure 10

Figure 11 Figure 12 Figure 13

Figure 14

Figure 15

Proof. For the implication (i) =) (ii), we check that none of the distances from Fig-

ures 8-15 is hypercube embeddable.

Indeed, the distances from Figures 8-14 violate the hypermetric condition (thus, they

are not `

1

-embeddable). The numbers assigned to the nodes in Figures 8-14 indicate a

choice of integers b

i

's for which the hypermetric inequality (6) is violated. For instance, for
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the distance from Figure 8, we have that

P

i;j2V

b

i

b

j

d(i; j) = 4a(2a(2a� b)� b) � 4a > 0

since 2a� b � 1.

The distance from Figure 15 is not hypercube embeddable by Corollary 3.3.

We now show the implication (ii) =) (i). As d satis�es the even condition, V is

partitioned into S [ T with jSj � jT j, d(i; j) = 2a for (i; j) 2 S

2

[ T

2

, d(i; j) 2 fb; b+ 2ag

for (i; j) 2 S � T . Set s = jSj. For j 2 T , set N

b

(j) = fi 2 S : d(i; j) = bg. For

v 2 f0; 1; 2; : : : ; s � 1; sg, set T

v

= fj 2 T : jN

b

(j)j = vg. We group below several

observations on the sets T

v

.

(i) T

s�1

= ; (since d does not contain the con�guration from Figure 8).

(ii) jT

s

j � 1 (since d does not contain the con�guration from Figure 15).

(iii) All T

v

are empty except maybe T

0

; T

1

; T

2

; T

s

(indeed, jN

b

(j)j � 2 or jN

b

(j)j � s � 1

for all j 2 T , since d does not contain the substructure from Figure 9).

(iv) At most one of T

0

and T

2

is not empty (since d does not contain the substructure

from �gure 10).

(v) If jT

1

j � 2, then

(v1) either all N

b

(j), j 2 T

1

, are equal,

(v2) or all N

b

(j), j 2 T

1

, are distinct

(since d does not contain the substructure from Figure 11).

(vi) If j 6= j

0

2 T

2

, then jN

b

(j) \N

b

(j

0

)j = 1 (use Figures 11 and 12).

(vii) If j 2 T

1

and j

0

2 T

2

, then N

b

(j) \N

b

(j

0

) 6= ; (by Figure 11).

(viii) If b < a, then T

2

= T

s

= ; (by the triangle inequality).

We now show how to construct an h-labeling of d. Let A

i

, i 2 S, be disjoint sets of

cardinality a. Set A = [

i2S

A

i

. Label the elements of S by the A

i

's.

Suppose �rst that b < a. Then, by (viii), d(i

1

; j

1

) = : : : = d(i

r

; j

r

) = b for some

i

1

; : : : ; i

r

2 S, j

1

; : : : ; j

r

2 T , 1 � r � jT j. Let X , B

j

(j 2 T n fj

1

; : : : ; j

r

g), be disjoints

sets, disjoint from A, and with jX j = b, jB

j

j = a. Label j

1

; : : : ; j

r

by A

i

1

[X; : : : ; A

i

r

[X ,

respectively, and j 2 T n fj

1

; : : : ; j

r

g by X [B

j

. This gives an h-labeling of d.

We now suppose that b � a. Let X be a set disjoint from A with jX j = b� a.

- If T

s

6= ;, T

s

= fxg (by (i)), then label x by X .

- Label each element j 2 T

2

by

S

i2N

b

(j)

A

i

[ X (this gives already an h-labeling of the

projection of d on S [ T

s

[ T

2

(by (vi))).

- Suppose that all N

b

(j), j 2 T

1

, are equal to, say, fi

0

g, as in (v1). Let Y

j

, j 2 T

1

, be

disjoint sets, disjoint from A and X , and with cardinality a. Label j 2 T

1

by A

i

0

[X [Y

j

.

If all N

b

(j), j 2 T

1

, are distinct, as in (v2), then label j 2 T

1

by

S

i2N

b

(j)

A

i

[X [Y , where

Y is a set disjoint from A and X with jY j = a.

(In both cases, we have obtained an h-labeling of the projection of d on S [ T

s

[ T

2

[ T

1
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(by (vii)).)

- Suppose that T

0

6= ;. Then, T

2

= ; by (iv). Let Z

k

, k 2 T

0

, be disjoint sets, disjoint

from all the sets constructed so far, with cardinality a.

If we are in case (v1), then jT

1

j � 1 or (jT

1

j � 2 and jT

0

j = 1). (Indeed, if jT

1

j; jT

2

j � 2,

then d contains the substructure from Figure 14 and, if jT

1

j � 3, jT

0

j = 1, then we have

the substructure from Figure 13.) If jT

1

j = 1, T

1

= fjg, label k 2 T

0

by X [ Y

j

[ Z

k

. If

jT

1

j = 2, T

1

= fj; j

0

g, then label the unique element k 2 T

0

by X [ Y

j

[ Y

j

0

.

Else, we are in case (v2). Then, label k 2 T

0

by X [ Y [ Z

k

.

In both cases, we have constructed an h-labeling of d.

Observe that the exclusion of the distance from Figure 15 is used only for showing that

jT

s

j � 1, i.e., that at most one point is at distance b from all points of S. Consider the

distance d

s

on s + 2 points which has the same con�guration as in Figure 15 but with s

nodes on the top level instead of a

2

+ a+ 3. Let s

2

(a; b) denote the largest integer s such

that d

s

is hypercube embeddable. Then, Proposition 6.1 remains valid if we exclude the

distance d

s

2

(a;b)+1

instead of excluding the distance d

a

2

+a+3

from Figure 15. Note that

2 �

a

2a�b

+ 1 � s

2

(a; b) � a

2

+ a + 2, with s

2

(a; b) = 2 if b <

4

3

a (use Claim 3.2). So, we

have the following result.

Proposition 6.2 Let a; b be positive integers with b odd and b <

4

3

a. Let d be a distance

on n � 2a

2

+ 2a + 5 points that takes the values b; 2a; b+ 2a. Suppose that d satis�es

the even condition (5) and the triangle inequality (1). Then, the following assertions are

equivalent.

(i) d is hypercube embeddable.

(ii) d is `

1

-embeddable.

(iii) d is hypermetric.

(iv) d does not contain as substructure any of the distances from Figures 4 and 8-14.

Note that Proposition 6.2 is a direct extension of the result given in [Avi90] for the

subcase a = b = 1.
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