
Non-deterministic Lazy

it �-calculus VS it �-caculus

Carolina Lavatelli

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

�

RIMS Kyoto University

LIENS - 93 - 15

September 1993

Non-deterministic lazy �-calculus vs �-calculus

Carolina Lavatelli

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

45, rue d'Ulm - 75230 Paris Cedex 05 - France

email:lavatel@dmi.ens.fr

September 1993

Abstract

We pursue the study of the embedding of the �-calculus into the �-calculus. Various

lambda calculi with parallel and convergence testing facilities are examined and their

expressiveness compared; �

j

-a lazy calculus augmented with a non-deterministic choice

operator and a convergence testing combinator, emerges as a suitable language to be

encoded in �. Through the use of closures for variables and abstractions, the process of

substitution in �

j

is managed in a semi-explicit way. The semantics associated to both �

j

and � are based on contextual testing preorders. We de�ne an encoding of �

j

into �; we

prove that it is adequate with respect to those semantics. However, the encoding is not

fully-adequate; standard examples show that � is still more discriminating than �

j

.

1 Introduction.

Many attempts have been made in view of approaching the understanding of functions and

concurrent processes, all of them issuing or originated in enrichements of the traditional sup-

port calculi, �-calculus and CCS-like systems, which aim at breaking both the rigid structure

of process algebra and the intrinsically sequential nature of �-calculus. Striking examples are

the
-calculus [3, 2] and the Calculus of Higher-order Communicating Systems (CHOCS) [16],

allowing any kind of entity to be passed in a communication, and the �-calculus of Milner, Par-

row and Walker [10], based on the communication of access to processes rather than processes

themselves. In relation with �, we can also mention its generalization to a higher-order calculus

HO� [17] and its asynchronous variants [6, 8]. One of the appealing features of those calculi

is that they embed lazy and eager versions of pure �-calculus, thus enabling a comparison of

expressiveness.

In this paper we pursue the study of the embedding of the lazy �-calculus into the �-calculus.

Let us recall some terminology about Abramsky's lazy �-calculus [1]. It consists of the following

syntax for terms

M ::= x j�x:M j (MM)

together with an evaluation mechanism, formalized by a convergence predicate +, which allows

to perform �-contractions of the form

(�x:M)N !M [N=x]

at the outermost level of terms or on subterms in function position. Values are closed abstrac-

tions;M + K means that the termM evaluates toK (or has the valueK or converges toK); we

write M + when the value is inessential and M * to denote divergence. Throughout the paper,

I will stand for the identity function �x:x. Terms are usually seen as operationally equivalent if

1

they belong to the equivalence '

B

induced by the following applicative bisimulation preorder:

For two closed �-terms L and M ,

(1) L v

B

M i� for all sequences

~

N of closed terms (L

~

N) +) (M

~

N) + :

On the other hand, �-calculus is an extension of CCS based upon the communication of

channel names and the dynamic creation of fresh names. The standard notions of strong and

weak bisimulation, denoted � and �

w

respectively, are adapted.

Undoubtedly, one can say that the embedding of lazy �-calculus into � casts some light on

the descriptive power of this calculus. Milner [11] presents the embedding through a syntax-

directed translation of �-terms into �-processes, called [[]]. The main result is an adequacy

result involving �

w

and '

B

: For all closed �-terms M and N ,

(2) [[M]] �

w

[[N]])M '

B

N :

It is worth noticing that all the aforementioned embeddings enjoy an adequacy result of this

kind. Furthermore, the converse of (2) is not true. That is, �-calculus is strictly more discrim-

inating than lazy �-calculus (a similar result holds when considering call-by-value �-calculus).

The sources of non-full-adequacy of the encoding are manifold; some of them must be found in

a certain lack of expressiveness of the lazy �-calculus; others follow from somehow inevitable

design decisions taken in the de�nition of [[]]. Examples of the �rst kind are built up with the

aid of convergence and parallel convergence testing combinators C and P respectively. While

they are non-de�nable in the lazy �-calculus, there are processes that behave as them. There-

fore, some well-known �-terms (see Ong [14]) are applicative bisimilar while their corresponding

processes are not weakly bisimilar.

One of the purposes of this paper is, in a �rst half, to describe and compare lambda calculi

for which the �rst kind of counter-examples to full-adequacy are disallowed. That is, calculi

with enough descriptive features to permit the de�nition of C and P, so more suitable to be

encoded into � than the pure �-calculus. Recall that these combinators satisfy the following

clauses:

�

M +) CM + I and M *) CM *

(M + or N +)) PMN + I and (M * and N *)) PMN *

and observe that in the presence of P, C is de�nable as �x:Pxx. However, the calculus obtained

by adding P to the lazy �-calculus is not quite appealing in itself, at least from a programming

language point of view.

Following the lines of the work on (strict) parallel functions by Boudol [4, 5], our approach

consists in separating convergence testing from parallelism. We will show how the former facility

can be modeled also by new forms of abstractions, namely value abstractions �

v

x:M and strict

abstractions �

s

x:M . Their meaning being the following: The evaluation of (�

v

x:M)N asks for

the convergence of N to a value K before contracting it to M [K=x]; that of (�

s

x:M)N asks

too for N + K but then evolves to M [N=x]. In fact, we prove that, in the presence of the lazy

abstraction, C, �

v

x:M and �

s

x:M are mutually de�nable. For example, �

v

x:M = �x:(Cx)M

and C = �

v

x:I .

As for the introduction of parallelism, two major apparently di�erent options arise: one

of them is to add a new operator k with interleaving semantics, the other is to add the non-

deterministic internal choice �. An evaluation of M k N consists in the concurrent evaluation

of M and N . An evaluation of M � N is an evaluation of M or an evaluation of N .

The �rst point to stress is that from the point of view of convergence those parallel calculi

are equivalent. Note that the combination of C with k or with � gives P: It can be de�ned

either as �x:�y:(Cx k Cy) or as �x:�y:(Cx �Cy). Moreover, the simultaneous addition of C

and k or of C and � to the lazy �-calculus is safe, i.e. the calculi have a context lemma. This

is equally true if we take the strict abstraction instead of C, but the symmetry is broken if we

consider the value abstraction. Indeed, one cannot safely mix� with call-by-value applications.

Therefore, all this extended �-calculi -except the last one, are appropriate to be embedded into

2

�. For many technical reasons the best one is that calculus -called �

j

as in [4], which put

together � and C, besides lazy application.

A central issue (pointed out in [11]) is to �nd an extension of the �-calculus as discriminating

as the �-calculus, a step toward which is given by Sangiorgi in [18]. The approach consists in

augmenting the lazy �-calculus with a non-deterministic operator] such that]M acts either

as M or as
 (the paradigmatic divergent term (�x:xx)(�x:xx)), and in de�ning an extended

notion of applicative bisimulation '

]

for this new calculus: M '

]

N i� there is a symmetric

binary relation R on closed �

]

-terms such that the two statements below hold:

- If M

?

! �x:M

0

then N

?

! �x:N

0

and 8 closed L 2 �

]

: M

0

[R=x]RN

0

[R=x]

- If M

?

!M

0

then N

?

! N

0

and M

0

RN

0

The result is that, on closed pure �-terms, �

]

has the same discriminatory power than �,

i.e. for any M;N 2 � [[M]]�

w

[[N]] i� M '

]

N .

It should be stressed that one cannot get a similar result if, instead of considering such

modi�ed version of applicative bisimulation, one keeps the standard contextual semantics. As

we show in this paper, non-determinacy is not the only extra-feature of � with respect to � if

this calculus is provided with Morris's testing equivalence.

Let us be a little more precise. Contexts are built up as terms, possibly with a hole [] as a

subterm; C[M] stands for the term built up as the context C and where M replaces the hole.

Morris's equivalence '

�

is then induced by the following testing preorder:

(3) M v

�

N i� 8 context C closing M and N : C[M] +) C[N] + :

In what regards �-calculus, besides the standard operational semantics given in terms of a

labeled transition system, used to de�ne the notion of bisimulation, a reduction semantics can

be associated to it following the Chemical Abstract Machine approach [2]; we leave the formal

de�nition for section 3 of the paper (see also [11].) We should only retain here that convergence

means the ability to communicate with the environment, after zero or more reduction steps.

Hence, one can deal with a contextual preorder of the form

(4) P v

�

Q i� 8 context C : C[P] +) C[Q] + :

In the second half of the paper we give an encoding of �

j

into �, and prove the following

adequacy result:

(5) [[M]] v

�

[[N]]) M v

�

N

We give for �

j

a presentation involving a semi-explicit manipulation of substitutions; ab-

stractions and variables are now closures of the form < �x:M; � > and < x; � > respectively,

where � is a substitution composed of entries like [N=y] or it is empty ("). Without entering

in the details, the �-contraction is now written as

< �x:M; � > N !M [N=x]� ;

and the following new kind of contraction is added for getting the value of variables:

< x; [M=x]� >!M :

The structural rule associated to it is

If < x; � >! M then < x; [N=y]� >!M :

Finally, we specify the meaning of applying a substitution to a term, M�, through an

equality relation =

s

that essentially distributes � to the subterms ofM and that at the variable

level makes the following:

< x; � > � =

s

< x; � � � >

� � � =

s

�

3

([N=y]�) � � =

s

[N�=y](� � �)

The encoding of �

j

follows that of [11] for lazy �. We extend it by representing substitutions

as contexts where the terms are placed. The proof of (5) follows from what is called the

computational adequacy property, namely

M + , [[M]] + :

This in turn is shown by combining the following two fundamental properties:

� The substitution process of the lambda calculus is properly mapped by the encoding. If

A;M are terms of �

j

such that A =

s

M� then the translations of A and M� can do

exactly the same actions: [[A]] � [[M�]].

� Correctness of [[]] w.r.t. the reduction rules of �

j

: A reduction sequence fromM in �

j

is

mapped, up to strong bisimilarity, to a reduction sequence from [[M]] in �.

Let us come back to the question of non-full-adequacy. When we commented on the em-

bedding of lazy � by Milner, we mentioned counter-examples to the converse of (2) owning to

the shape of the encoding. They serve also to prove that our encoding of �

j

does not have

the full-adequacy property. In general, every encoding of the �-calculus is de�ned so as to

re
ect �-contractions properly. The way a translation performs the substitution process is

highly dependent on the kind of substitution provided by the process calculus. For example,

the encoding of � into CHOCS [16] just sends the argument [[N]] to the body of the abstraction

[[M]]. Within the �-calculus the substitution process is much more elementary; channel names

can be substituted by channel names and nothing else. This leads to a non-atomic description

of the �-calculus substitution process. Indeed, the solution is to store substitution entries as

resources and see a free variable as a process which searches for its actual value and consumes

a resource in order to get it. Therefore, to perform a substitution in the encoded calculus, at

least as many resources as free occurrences of the variable must be present. Hence, �-contexts

with less resources than occurrences of variables allows to do partial substitutions, a feature

without counter-part in the �-calculus, and thus to allow to separate the translations of some

indistinguishable pair of �-terms.

The organization of the paper is the following: In the next section we discuss a number

of enriched lazy �-calculi, with parallelism and convergence testing facilities. In section 2.3

we �x the presentation of �

j

. The �-calculus (syntax, reduction and transition systems) is

presented in section 3. In section 4 we de�ne the encoding [[]] and we state a few properties to

be used later and in section 5 we show that the substitution process of the �-calculus is properly

performed in the encoded calculus. Both the correctness of [[]] w.r.t. the set of reduction rules

of �

j

and the computational adequacy of [[]] are shown in section 6, which ends with the proof

of adequacy. Further remarks are put together in section 7.

2 Lambda Calculi and Parallel Lambda Calculi.

In this section we present a variant of the lazy �

j

-calculus for parallel functions de�ned by

Boudol in [4] which includes, besides variables and abstractions treated as closures, an internal

choice operator �, and a convergence testing combinator C. A large part of the section is

devoted to motivate the choice of �

j

. We �rst �x some terminology.

A lambda calculus consists of a syntax of terms together with a notion of reduction to

observables, or values, by means of a predicate + . We read M + V as "M converges to

(or has) the value V ". We use M + when V is inessential and M * to denote divergence.

We call � the set of terms, and K that of values, ranged over by A;B;M;N;L and J;K; V;W

respectively, unless stated otherwise. Contexts are built up as terms possibly with a hole [] as

a subterm; they are usually denoted by C, D, E. We use the standard notation C[M] to stand

for the term constructed as C and where M replaces the hole. Symbols +, � and K will be

decorated depending on the calculus.

4

Our starting point is Abramsky's pure lazy lambda calculus � [1]. We keep for it the

undecorated symbols �, K and +. Its syntax is given by the grammar:

(�) M ::= x j�x:M j (MM)

with x a variable taken from a denumerable set V ar. The sets fv(M) and bv(M) of free and

bound variables ofM are de�ned are usual. Terms and contexts are said to be closed whenever

they do not contain free variables.

The set K of values is simply the set of abstractions. The meaning of +, de�ned on closed

terms, is the following:

�x:M + �x:M

M + �x:M

0

M

0

[N=x] + L

MN + L

In what regards its discriminatory power, this calculus is too poor to be translated into

the �-calculus in a fully-adequate way. We have argued in the introduction that an important

source of non-full-adequacy of the encoding can be eliminated by extending the calculus with

a parallel convergence testing combinator P, the combinator of convergence testing C being

therefore de�nable: C = �x:Pxx. However, the enriched calculus is not quite appealing in

itself, except for the fact that it has a fully-abstract model [1]. It furnishes a limited kind of

parallelism, rather unnatural from a programming language point of view.

More expressive languages (also with fully-abstract models associated to them) are �

j

and

�

nv

j

, obtained by Boudol in [4, 5]. Combinators P and C are de�nable in �

j

and �

nv

j

. The

construction of those calculi is based on the separation of parallelism from convergence testing.

In the rest of the section we study the underlying \control mechanisms" and compare the

languages. At the end of the discussion we summarize the de�nition of �

j

.

2.1 Convergence Testing.

De�ne an augmented language �

c

with �

c

= � [fCg and K

c

= K [fCg. Following [14], the

convergence predicate +

c

is given by adding the following clauses to those of the lazy � calculus

(where + is replaced by +

c

):

C+

c

C

M+

c

C N+

c

(MN)+

c

I

What kind of control mechanism should be added to the lazy � calculus to allow a \natural"

representation of C? The answer comes from the observation that CM acts much like a strict

application (i.e. it asks for the convergence of the argument). In a call-by-value setting, C

would be simply �x:I, an abstraction independent of its argument which, after application to

a value, behaves like I. However, to keep within the calculus lazy and value applications, we

are compelled to associate to each of them a distinguished form of abstraction. To this end,

let us introduce a new calculus �

v

with two constructors for abstractions, � and �

v

. A lazy

application has the form of (�x:M)N and evaluates to M [N=x] whatever N is. The shape of

a value application is (�

v

x:M)N ; it asks for the convergence of N , say to an observable K, to

evaluate then to M [K=x]. We de�ne:

(�

v

) M ::= x j�x:M j�

v

x:M j (MM)

(K

v

) K ::= �x:M j�

v

x:M

We add the following rules to those of the lazy � calculus (considered with +

v

at the place

of +):

�

v

x:M+

v

�

v

x:M

M+

v

�

v

x:M

0

N+

v

N

0

M

0

[N

0

=x]+

v

L

MN+

v

L

5

Calculi �

c

and �

v

are closely related: each calculus can be translated into the other while

preserving the convergence property. We note ()

v

c

: �

c

! �

v

and ()

c

v

: �

v

! �

c

those

translations. As we have already remarked, we take (C)

v

c

= �

v

x:I. For the translation of

�

v

x:M , we set (�

v

x:M)

c

v

= �x:(Cx)(M)

c

v

. The rest is identical for both translations; using ()

to denote them, we de�ne:

(x) = x

(�x:M) = �x:(M)

(MN) = (M) (N)

Remark 2.1 The translation from �

v

to �

c

is related to that from the eager � calculus to �

c

by Ong [15], which directly codes application as MN = CN (MN).

Proposition 2.2 (Mutual simulation of call-by-value and convergence testing)

1. For any M 2 �

c

, M+

c

, (M)

v

c

+

v

2. For any M 2 �

v

, M+

v

, (M)

c

v

+

c

Proof. The proof of property (1) follows by induction on the length of the derivationsM+

c

and

(M)

v

c

+

v

with the help of (M [N=x])

v

c

= (M)

v

c

[(N)

v

c

=x]. We sketch here the proof of (M)

v

c

+

v

)

M+

c

. To this end, we show more precise implications

(1a) (M)

v

c

+

v

�x:M

0

)M+

c

�x:M

00

and (M

00

)

v

c

= M

0

(1b) (M)

v

c

+

v

�

v

x:M

0

)M+

c

C and M

0

= I

The base case is immediate. Assume (M)

v

c

+

v

K in k > 0 steps. Therefore, (M)

v

c

= (M

1

M

2

)

v

c

for some M

1

and M

2

. Two cases arise, depending on the last rule applied.

(lazy application): (M

1

)

v

c

+

v

�x:M

0

1

and M

0

1

[(M

2

)

v

c

=x]+

v

K, both deductions of length less

than k.

By i.h. M

1

+

c

�x:N

0

1

and (N

0

1

)

v

c

= M

0

1

. On the other hand, (N

0

1

[M

2

=x])

v

c

= (N

0

1

)

v

c

[(M

2

)

v

c

=x]

= M

0

1

[(M

2

)

v

c

=x]. Therefore, if K = �x:M

0

, (1a) holds for N

0

1

[M

2

=x] by i.h.. That is,

N

0

1

[M

2

=x]+

c

�x:M

00

and (M

00

)

v

c

= M

0

. So, (1a) holds for M = (M

1

M

2

) too. If instead

K = �

v

x:M

0

, case (1b) holds for N

0

1

[M

2

=x] and so does for M .

(value application): (M

1

)

v

c

+

v

�

v

x:M

0

1

, (M

2

)

v

c

+

v

M

0

2

and M

0

1

[M

0

2

=x]+

v

K , all deductions

of length less than k.

By i.h. M

1

+

c

C ,M

2

+

c

andM

0

1

= I. Thence, M

0

1

[M

0

2

=x] can only converge to I, so K = I.

Moreover, M = M

1

M

2

+

c

I. That means case (1a) holds, with M

0

= M

00

= x.

We leave the rather technical proof of property (2) for the appendix. It essentially extends

that of [15] to our case. �

Even if both translations allow a simulation of convergence in the target calculus, �

c

and �

v

are not completely symmetric. Notice that, from a proof of (�x:(Cx)M)N+

c

, which supposes

N + and M [N=x] + (taking for simplicityM;N 2 �), we must be able to construct a proof of

(�

v

x:M)N +

v

. That is, a proof of M [N

0

=x] + with N + N

0

. The question is: why does

M [N=x] + and N + N

0

) (M [N

0

=x]) +

hold? This is clearly because a term converges (in the sense of +, +

c

and +

v

) at most to one

value. Therefore, if the convergence of N is used in the proof of (M [N=x]) +, it is N

0

which is

used.

This shows that if �

c

and �

v

are both augmented with the same new operators, de�ning

languages �

0

c

and �

0

v

, the simulation of +

0

v

by +

0

c

is not necessarily preserved since the at most

6

one value for each term property can be lost in �

0

c

. In particular, if a non-deterministic operator

were added to the calculi, the following would hold:

M +

0

v

6, (M)

c

0

v

+

0

c

The fragility of �

v

with regard to the addition of new operators will be con�rmed at the end

of 2.2 where we show that �

v

cannot incorporate non-determinism safely.

Remark also that to simulate the proof of CN +

c

, for N 2 �, we are lead to prove

(�

v

x:I)N+

v

but that not all the premises of the value-application rule are relevant. It does

not matter which is the value of N since for all N

0

we have I[N

0

=x]+

v

. This suggests the

introduction of another calculus, with a strict application instead of a value one. De�ne �

s

by

(�

s

) M ::= x j�x:M j�

s

x:M j (MM)

(K

s

) K ::= �x:M j�

s

x:M

�x:M+

s

�x:M �

s

x:M+

s

�

s

x:M

M+

s

�x:M

0

M

0

[N=x]+

s

L

MN+

s

L

M+

s

�

s

x:M

0

N+

s

M

0

[N=x]+

s

L

MN+

s

L

This notion of strict abstraction is exactly what is needed to simulate C and vice versa in

the sense that all the hypothesis to prove the convergence of a term in one calculus are used to

prove the convergence of the translated term in the other calculus. Moreover, �

s

accepts the

incorporation of non-determinism in an accurate way. De�ne translations ()

s

c

: �

c

! �

s

and

()

c

s

: �

s

! �

c

by (C)

s

c

= �

s

x:I and (�

s

x:M)

c

s

= �x:(Cx)(M)

c

s

; the other constructions remain

unchanged. A proposition similar to 2.2 holds for them, this time with a straightforward proof:

Proposition 2.3

1. For any M 2 �

c

, M+

c

, (M)

s

c

+

s

2. For any M 2 �

s

, M+

s

, (M)

c

s

+

c

2.2 Parallel Functions.

We review here two ways of introducing parallel facilities in � following [4, 5], and discuss their

integration with convergence testing, strict application and value application.

The �rst way of gaining a form of parallelism is by means of a parallel composition operator

k provided with an interleaving semantics. That is, the evaluation of (M k N) initiates two

concurrent sub-computations, one for each component, and this term has a value as soon as

one of its components does.

The other form is by adding to the calculus an operator � representing non-determinism.

An evaluation of M � N will be either an evaluation of M or an evaluation of N . These

extended calculi, apparently quite di�erent, are equivalent from the convergence point of view.

Let us �rst introduce them and then sketch this point.

Call �

�

the following lazy �-calculus extended with �:

(�

�

) M ::= x j�x:M j (MM) j (M � N)

The set of values, K

�

, is simply the set of abstractions. The convergence predicate +

�

is

then de�ned by adding the following rules to those for the lazy � calculus (considering that +

�

is at the place of +):

7

M+

�

K

(M �N)+

�

K

N+

�

K

(M � N)+

�

K

Call �

p

the following lazy �-calculus extended with k:

(�

p

) M ::= x j�x:M j (MM) j (M k N)

(K

p

) K ::= �x:M j (K kM) j (M k K)

The convergence predicate +

p

is de�ned by joining the following rules to those for the lazy

� calculus (with +

p

at the place of +):

M+

p

K

(M k N)+

p

(K k N)

N+

p

J

(M k N)+

p

(M k J)

M+

p

K N+

p

J

(M k N)+

p

(K k J)

M+

p

(M

0

kM

1

) (M

0

N kM

1

N)+

p

K

MN+

p

K

It should be stressed that the introduction of k or � in the lazy � calculus changes radically

the notion of convergence. Within �

p

a value does not longer coincide with a normal form; if

N converges, (M k N) will do even if an in�nite computation issues from M . Moreover, since

a value can be reached at any stage of the evaluation (and not necessarily at the end), a term

can have many values. Similarly, although the values of �

�

are always normal forms, a term

of that language can also have many of them due to the non-deterministic character of �; in

particular, (M � N) has all values of M and N .

What is the relation between k and �? With the aim of giving some intuitive meaning to

�

�

, Boudol says that \a terminated computation yields only a part of the result. If we were able

to join the parts, concurrently evaluated, then we would get the whole result.". This is precisely

what k enables to do. Therefore, considering

(�

?

) M ::= x j�x:M j (MM) j (M ? N)

to stand both for �

�

and �

p

depending on context and taking two convergence predicates +

?

p

and +

?

�

on �

?

de�ned as +

p

and +

�

, replacing k and � by ? respectively, one can show

for any M 2 �

?

, M +

?

p

, M +

?

�

Just remark that M +

?

p

K if and only if K = (: : : ? �x:N ? : : :). A proof of M +

?

p

K ,

M +

?

�

�x:N follows by a case analysis on the last rule applied for stating the convergence of

M in each system.

To achieve the discriminatory power of the lazy � calculus augmented with P, we must

enlarge either �

p

or �

�

with some \convergence testing facility" in the style of the calculi

given in the previous section. The language we have chosen is the result of combining �

�

and

�

c

, called �

j

[4]. The parallel convergence testing combinator is de�nable in this language:

P = �x:jlambday:(Cx �Cy). It would be equally good to consider �

s

together with �

�

. On

the contrary and despite the mutual simulation of �

c

, �

s

and �

v

, the value application is not

\compatible" with the non-deterministic choice. That is, the \context lemma" (which states

that a functional interpretation is possible) does not hold. Consider the calculus obtained by

adding value abstractions to �

�

, denoted �

v

�

. The context lemma for it says that:

M v

A

N) M v

v

�

N

8

where v

A

(called applicative preorder) is Morris's preorder but de�ned upon the applicative

tests given by the following grammar:

A ::= [] j�x:A j (AM) with M a closed term

The following example by G. Boudol [7] shows that �

v

�

does not satisfy this property. To this

end, take the following terms M and N , where K = �

v

x�

v

y:x and F = �

v

x�

v

y:y:

M = �

v

z:(K � F) N = (�

v

z:K) � (�

v

z:F)

Notice that while M is a value, N is not. One has M '

A

N (it is enough to see that

8k 8V

1

: : :V

k

:MV

1

: : :V

k

+

v

�

, NV

1

: : :V

k

+

v

�

). Instead, we can built up a non-applicative

context C such that C[M] +

v

�

but C[N] *

v

�

. De�ne:

�

0

= (��) where � = �x:xx

n+1

= �

v

x:

n

C = (�

v

x:((x

1

2

1

)(x

1

1

2

1

))) []

Remark that (

2

1

) +

v

�

and

2

(

2

1

) +

v

�

while (

1

1

) *

v

�

and

1

(

2

1

) *

v

�

. Therefore:

C[M] +

v

�

, (M

1

2

1

)(M

1

1

2

1

) +

v

�

, ((K � F)

1

2

1

)((K � F)

1

1

2

1

) +

v

�

To make this hold, we take K for the �rst instance of (K�F) and F for the second one: after a

few reduction steps we get

2

(

2

1

) +

v

�

. As for C[N], the �rst step consists in �nding a value

for N , that is in choosing either its right or its left component to substitute the hole. But neither

C[�

v

z:K] nor C[�

v

z:F] converges: In the �rst case we get

2

(

1

1

) *

v

�

and

1

(

2

1

) *

v

�

in

the second one. So C[N] *

v

�

.

As pointed out in the previous section, using

(C)

c

v

= (�x:(Cx)((x

1

2

1

)(x

1

1

2

1

)))[]

the problem does not arise since x is substituted by the whole term N . The problem does not

arise either with k at the place of � but for a di�erent reason: namely that (�

v

z:K) k (�

v

z:F)

is a value. In conclusion, except �

v

and �

�

, any combination of �

c

, �

v

and �

s

with �

�

and �

p

are safe; we could show a context lemma for them.

2.3 The �

j

Calculus.

The �

j

calculus de�ned in [4] is essentially the union of �

c

and �

�

. In this work we con-

sider a presentation of �

j

involving \semi-explicit" substitutions; abstractions and variables

are given as closures - that is pairs made up of functional values or variables and substitutions,

whereas terms as M� with � a substitution do not belong to the syntax. This choice entails a

modi�cation of the notion of evaluation relevant to the adequacy of the encoding.

2.3.1 Syntax.

The syntax of terms and values of �

j

are given by the following grammars:

(�

j

) M ::=< U; � > j (MM) j (M �M) jC

U ::= x j�x:M

(�

j

) � ::= " j [M=x]�

(K

j

) K ::=< �x:M; � > jC

where x stands for a variable taken from a denumerable set V ar and � denotes a substitution,

possibly empty ("). The components [M=x] of a substitution are called substitution entries. If �

contains a substitution entry [M=x] then x 2 V ar(�). The image of a variable by a substitution,

�(x), is given by:

9

"(x) = x ([M=y]�)(x) =

�

M if y = x

�(x) otherwise

From now on, closures < �x:M; � > are called abstractions and U is said to be the body of

the closure < U; � >. We use I to denote the identity < �x:x; � >.

The set fv(M) of free variables of a term M is de�ned as follows:

fv(< x; " >) = fxg

fv(< x; [M=y]� >) = fv(< x; � >)

fv(< x; [M=x]� >) = fv(M)

fv(< �x:M; � >) = fy = 9z: z 2 fv(M) � fxg & y 2 fv(�(z))g

fv(C) = ;

fv(MN) = fv(M) [fv(N)

fv(M �N) = fv(M) [fv(N)

All variables occurring in M that are not free are bound (the set of them is called bv(M)).

A term M is closed if fv(M) = ;.

An outer procedure is supposed to exist for dealing with the operations of application of a

substitution to a term and composition of substitutions. The meaning of these operations is

given by the following clauses:

(" � �) =

s

�

([N=x]�) � � =

s

[N�=x](� � �)

< x; � > � =

s

< x; (� � �) >

C� =

s

C

< �x:M; � > � =

s

< �x:M; (� � �) >

(MN)� =

s

(M� N�)

(M � N)� =

s

(M� � N�)

We call �

ej

the extension of �

j

with terms of the form M�.

(�

ej

) M ::=< U; � > jM� j (MM) j (M �M) jC

U ::= x j�x:M

(�

ej

) � ::= " j [M=x]� j (� � �)

The next two statements are easy to prove:

8� 2 �

ej

: 9!� 2 �

j

: � =

s

�

8M 2 �

ej

: 9!N 2 �

j

: M =

s

N

We will say that � denotes �, and that M denotes N , respectively.

2.3.2 Evaluation and Reduction.

Two deductive systems are introduced, de�ning the convergence predicate +

j

and a (transitive)

reduction relation ! between terms, such that:

M + K i� M ! K

10

C+

j

C < �x:M;� > +

j

< �x:M;� >

M+

j

C N+

j

(MN)+

j

I

M+

j

< �x:M

0

; � > M

0

[N=x]�+

j

L

MN+

j

L

M+

j

K

< x; [M=x]� > +

j

K

< x;� > +

j

K

< x; [M=y]� > +

j

K

M+

j

K

(M �N)+

j

K

N+

j

K

(M �N)+

j

K

(�) < �x:M;� > N !M [N=x]�

(Fetch) < x; [M=x]� >!M

(ChL) (M �N)!M

(ChR) (M �N)! N

(Pop) If < x;� >! N then < x; [M=y]� >! N

(App) If M !M

0

then (MN)! (M

0

N)

(Obs) If N ! K then CN ! I

(Trans) If M ! L and L! N then M ! N

Remark 2.4 The relation ! is not a one-step reduction relation (the transitivity rule is part

of the system), as it would be if instead of (Obs) and (Trans) we had taken the standard rules

for dealing with C, namely

CC! I

C < �x:M; � >! I

If N ! N

0

then (CN)! (CN

0

)

The rules (Fetch) and (Pop) and the equality < x; � > � =

s

< x; (� � �) > describing the

behavior of substitutions are new with respect to the de�nitions of ! and =

s

given in [5]. In

both presentations of the calculus substitutions act as ordered environments: the value of a

variable x in an environment � = [M

1

=y

1

] : : : [M

n

=y

n

]" is taken to be the �rst M

i

, from left to

right, for which x = y

i

. This is de�ned in [5] at the metalevel by the equation x� =

s

�(x).

Finally, let us de�ne the contextual semantics of the language �

j

. A �

j

-context is built up

as a �

j

-term, possibly with a hole [] in it. The syntax is given by:

C ::= [] j < x; � > j < �x:C; � > j (CC) j (C �C) jC

Remark that the constant [] is not allowed within substitutions.

The operational equivalence of terms '

�

is the congruence induced by Morris's testing

preorder:

M v

�

L i� 8 C closing M and L, C[M]+

j

) C[L]+

j

11

Convention 2.5 Hereafter, we work with closures of �

j

involving only acceptable substitutions.

A substitution � = [H

1

=y

1

] : : : [H

n

=y

n

]" is acceptable if 8i; j: y

j

62 fv(H

i

).

Condition of acceptability on substitutions does not a�ect the expressiveness of closures.

For any given arbitrary closure < V; � >, a new one < V

0

; �

0

> is always de�nable with �

0

an acceptable substitution. Substitution �

0

is obtained by renaming substitutions entries in �

with fresh variables (i.e. appearing nowhere in the closure); V

0

is the result of applying that

renaming to the free variables of V . The meaning of the original closure is not modi�ed since

variables in the body of a closure use at most one entry of the substitution. This restriction,

used in section 5, is essential to guarantee that substitutions are correctly performed within

the encoded calculus.

3 The � calculus.

The �-calculus of [10] (or more accurately the mini-� calculus of [11]), is de�ned upon the

following syntax of processes:

(�) P ::= 0 jxz:P jx(y):P j (P jP) j !P j (�y)P

where x, y, z are taken from a denumerable set N of channel names.

The �-contexts are de�ned as follows:

C ::= [] j0 jxz:C jx(y):C j (CjC) j !C j (�y)C

We call N the set of overlined channel names and we use n to range over N [N . The

bar operator on names is idempotent, that is, n = n. We say that x is the output name of

the process xz:P and that x(y)P has x as input name. The other constructions, j, ! and (�y),

correspond to parallel composition, replication and restriction on y. Both the input pre�x x(y)

and the restriction (�y) are binders of y. We do not give the formal de�nitions of the sets bn(P)

and fn(P) of bound and free names of P respectively, which are as usual. The notation n(P)

stands for the set of all names occurring in P . In most of the cases we abbreviate xz:0 and

x(y):0 as xz and x(y) respectively. Hereafter, \process" and \term" are used interchangeably.

The reduction system for this calculus is described following the chemical abstract machine

(CHAM) philosophy [2]. Processes are interpreted as solutions (multisets) containing molecules

(components of the process). The notation for solutions is fjm

1

; : : : ;m

k

jg. The machine

consists of a few general laws of computation and two kinds of rules between solutions: the

irreversible and the structural ones. There is only one irreversible rule 7! - also called reaction

rule - which accounts for communication, and several structural rules, called
, concerning the

meaning of the operators. For simplicity we omit the most external fj ; jg in the formulation

of the rules.

x(y):P;xz:Q 7! P [z=y]jQ ((�x)P jQ)
 (�x)(P jQ) if x 62 fn(Q)

P jQ
 P;Q (�x)P
 (�y)P [y=x] if y 62 fn(P)

!P
 P; !P (�x)P
 P if x 62 fn(P)

(�x)P
 (�x)fjP jg (�x)(�y)P
 (�y)(�x)P

0
 ;

The general laws say that we can make computations within sub-solutions of a solution

(under restrictions in our case: remark that the sole constructor for which the semantics creates

12

a sub-solution is (�x)) and also that a computation issued from a solution S

1

can be reproduced

on a larger solution S

1

] S

2

, where] is the multiset union. The process of substitution is left

unspeci�ed but it is supposed to accomplish all necessary �-conversions of names.

As an example, let P be the process x(z)zb j (�a)(xa jx(y)yr). Then

fjP jg

?

 fj x(z)zb; (�a)fjxa; x(y)yr jg jg

7! fj x(z)zb; (�a)fj ar jg jg

?

 fj x(z)zb j (�a)ar jg

And also

fjP jg

?

 fj (�a)fjx(z)zb; xa; x(y)yr jg jg

7! fj (�a)fj ab; x(y)yr jg jg

?

 fj (�a)ab jx(y)yr jg

As every solution has a process associated with it, 7! and
 will be freely used as relations

on processes. We say that the term P reduces to Q, PBQ in notation, whenever P

?

7!

?

 Q.

In the sequel � will stand for

?

.

The criterion of convergence is the ability of accepting a communication with the environ-

ment, an input or an output, possibly after some reductions. Immediate convergence # n for

n 2 N [N is de�ned as follows:

x(y):P # x

xz:P # x

P # n)

8

<

:

(P jQ) # n

(QjP) # n

!P # n

P # n & n 6= y) (�y)P # n

We use P + (Q;n) as an abbreviated form of P

?

B Q & Q # n. The convergence predicate

+

�

and the operational preorder v

�

are given by:

P +

�

,

def

9Q 9n 2 N [N : P + (Q;n)

P v

�

Q ,

def

8 �-context C :C[P] +

�

) C[Q] +

�

The congruence induced by v

�

is called '

�

. Note that if P '

�

Q and Q +

�

then P +

�

, and

also that if PBQ and Q +

�

, then P +

�

.

We proceed to de�ne a labeled transition system for the �-calculus following [13], leading

to a notion of strong bisimulation which proves to be a congruence. The notation employed is

the standard one, we use � to denote the labels of the system, which can be: the bound input

x(y), the free or the bound output, xz and x(w), or the silent transition � . The sets n(�),

fn(�) and bn(�) are de�ned as for terms.

Let S and S

0

be two solutions, we say that S

�

!S

0

holds if and only if one of the following

cases applies:

� = x(y) and

�

S � (�~u)fjx(y)P; : : : jg

S

0

� (�~u)fjP; : : : jg

if x 62 ~u and y occurs only in P

� = xz and

�

S � (�~u)fjxz:P; : : : jg

S

0

� (�~u)fjP; : : : jg

if x; z 62 ~u

� = x(z) and

�

S � (�~u)fjxz:P; : : : jg

S

0

� (�

~

u

0

)fjP; : : : jg

if x 62 ~u, z 2 ~u and

~

u

0

= ~u� z

� = � if SBS

0

13

A relation R between solutions is a strong bisimulation if (S; T) 2 R implies that

� whenever S

�

!S

0

and � is � , xz or x(y), for some T

0

, T

�

!T

0

and (S

0

; T

0

) 2 R

� whenever S

x(y)

! S

0

, for some T

0

, T

x(y)

! T

0

and for all w, (S

0

[w=y]; T

0

[w=y]) 2 R

Two solutions S and T are said strongly bisimilar, written S � T , if (S; T) is in some

strong bisimulation R. Pairs of expressions S and T such that S � T are called bisimulation

equivalences. We will also use the notion of strong bisimulation up to � which asks only for

(S

0

; T

0

) 2� R �. Strong bisimulations up to � are more
exible and are enough for proving

strong bisimilarity: If (S; T) is in some strong bisimulation R up to �, then S � T . For a full

account of these notions we refer to [9].

Due to the straightforward correspondence between processes and solutions, we will often

talk about labeled transitions issued from terms and about bisimulation equivalences made up

of terms. The relation between � and '

�

is the following:

Proposition 3.1 For every pair of processes P , Q,

1. fjP jg � fjQ jg) P '

�

Q

2. P '

�

Q 6) fjP jg � fjQ jg

Proof.

1. Assume fjP jg � fjQ jg and C[P] +

�

. A straightforward structural induction on C allows

to conclude that C[Q] +

�

holds.

- Base Case (C = []): Recall that P +

�

, 9P

0

; n : P

?

B P

0

n and also that P

?

B P

0

,

fjP jg

?

B fjP

0

jg. Since fjP jg � fjQ jg, 9Q

0

: fjQ jg

?

B fjQ

0

jg & fjP

0

jg � fjQ

0

jg. In

the case of n 2 N , P

0

� (�~u)(n(y)P

0

jP

1

) (or simply P

0

� (�~u)n(y):P

0

) with n 62 ~u; hence,

fjP

0

jg

n(y)

! . If n 2 N then P

0

� (�~u)(ny:P

0

jP

1

) (or simply P

0

� (�~u)ny:P

0

). Therefore,

either fjP

0

jg

n(y)

! or fjP

0

jg

ny

! depending on whether y 2 ~u or not.

-Inductive Case: Follows directly from the fact that ' is a congruence and from the

inductive hypothesis.

2. The following simple counter-example of the implication makes P and Q di�er in the

number of silent transitions they can perform:

P = (�x)(x(y):x(z):u(t):0 j (�y)(�z)xy:xz:0)

Q = (�x)(x(y):u(t):0 j (�y)xy:0)

�

Let us call SORT (P) the ability of process P to communicate with the environment. That

is,

SORT (P) = fn 2 N [N = P # ng

A process P is said stable i� one of the following conditions holds:

� P = uz:Q or P = u(x):Q or

� P = (�z)Q or P =!Q with Q a stable process, or

� P = QjR with Q and R stable processes and SORT (Q) \ SORT (R) = ;

Proposition 3.2 Let P be a stable process.

1. 6 9n: fn; ng � SORT (P)

14

2. 6 9P

0

: PBP

0

Proof.

1. By a straightforward structural induction on P .

2. By structural induction on P . For output, input and restriction processes the proposition

is immediate. For the case of parallel composition, the condition on the sorts inhibits

communication. For P =!Q, with Q stable, assume that some P

0

exists such that PBP

0

.

That means: Some Q

0

exists such that

- either QBQ

0

and !Q
(Qj!Q)B(Q

0

j!Q)

- or (QjQ)BQ

0

, Q

0

resulting from a communication between the two copies of Q, and

!Q
(QjQj!Q)B(Q

0

j!Q)

The �rst possibility contradicts the i.h. since Q is stable. The second one supposes

the existence of some pair n; n belonging to SORT (Q), thus contradicting (1) of this

proposition.

�

The next proposition establishes su�cient syntactic conditions for the de�nition of a garbage

collection procedure acting on solutions (or terms) to be used in the proofs of preservation of

the reduction rules through the encoding. We take it as belonging to the structural rules
.

Proposition 3.3 Let P be stable and SORT (P) = ;. Then (P j Q) � Q for every Q.

Proof. The relation R de�ned below is a strong bisimulation:

R = f(S; T) = S = (P jQ)&T = Q&P is stable &SORT (P) = ;g

Assume (S; T) 2 R and S

�

!S

0

. By de�nition, S = (P jQ) and T = Q. Whatever � is, it can

only be performed on Q: Labeled actions xy, x(y) and x(y) are not allowed on P because of

the emptiness of SORT (P); silent actions are not allowed either because of proposition 3.2(2)

on stable processes. In consequence:

9Q

0

: Q

�

!Q

0

& S

0

= (P jQ

0

) & T

0

= Q

0

We have immediately that (S

0

; T

0

) 2 R, thus �nishing the proof, for � equal to xy, to x(y)

or to � . For � = x(y), we have to check: 8w: (S

0

[w=y]; T

0

[w=y]) 2 R. This holds due

to the side-condition imposed on input transitions; in our case it means that y 62 n(P), so

S

0

[w=y] = (P jQ

0

[w=y]) and T

0

= Q

0

[w=y]. �

4 The encoding.

The encoding of �

j

into � is a function [[�]] : (�

j

� N) [� ! � following the lines of that

given in [11] for the lazy lambda calculus. It is built up with the aim of providing terms of the

target calculus suitable to mimic the reduction behavior of terms within the source calculus.

To this end, the presence of a channel accompanying the �-term is crucial. In the �-calculi, the

�-rule speci�es the communication of an argument with an abstraction just by juxtaposition;

in the �-calculus this communication is achieved through a channel along which [[M]] receives

its next argument.

An encoding of �

j

supposes an encoding of substitutions �. Since substitutions act as

environments, we have chosen to encode them as contexts where the terms are placed. In

particular, the hole-context [] stands for the empty substitution ". The notation adopted is the

following: [[�]] denotes a context, with one and only one hole in it, and in [[�]](P), the hole is

replaced by P .

15

The translation of closures consists in placing the abstraction or variable in the context of

the substitution:

[[< V; � >]]u = [[�]]([[V]]u)

Clearly, the encoding of substitution entries [H=x] (also called x := H) and that of variables

x are mutually related; [H=x] will be represented as a resource of the form x(w)[[H]]w while

[[x]]u = xu outputs to the environment a continuation u. The encoding of < x; [H=x]" >

consists then in the parallel composition of x(w)[[H]]w and xu, so it can behave like [[H]]u after

a reduction step.

However, the process (xu j x(w)[[H]]w j x(w)[[J]]w) is not an appropriate translation of

[[< x; [H=x][J=x]" >]]u because it can reduce to [[H]]u as well as to [[J]]u. To overcome this prob-

lem, input names of substitution entries are made private in a nested fashion which re
ects the

order of entries, from left to right, in the whole substitution. Thence, � = [H

1

=y

1

] : : : [H

n

=y

n

]"

is mapped to

(�y

n

)((�y

n�1

)(: : : (�y

1

)([] j [[y

1

:= H

1

]]) : : : j [[y

n�1

:= H

n�1

]]) j [[y

n

:= H

n

]])

With this representation, the access to [[J]]u in (�x)((�x)(xu j [[x := H]]) j [[x := J]]) is inhibited

because x in xu is bound by the nearest (�x). That is, the whole process is �-convertible to

(�x)((�y)(yu j [[y := H]]) j [[x := J]]) with y new.

There is yet another point to consider: the non-linear nature of �-terms. Remark that if M

has several free occurrences of x, the resource [[x := H]] must be available for each one of them

in the translation of M [x=H]". We are led to replicate the substitution entries, that is:

[[x := H]] =!x(w)[[H]]w

Let us proceed with the encoding of abstractions and applications. Abstractions are mapped

to input processes which hide the translated bodies thus preserving the notion of value since

input guards are blocking.

The encoding of �x:M is just that proposed by Milner [11]. As he explains, the process

[[�x:M]]u receives along u the port name, say z, on which its �rst argument N will be waiting

for a communication. Next it inputs the channel through which M [N=z] can communicate with

another potential argument.

[[�x:M]]u = u(x):u(v)[[M]]v

In a complementary fashion, to simulate the �-rule (�x:M)N ! M [N=x], the argument

sends to the function �rst a private name z, to substitute x, on which N is available, and

then the access name w for the next argument of [[(�x:M)N]]w. The substitution [N=z] is

not actually performed but rather the body of the abstraction is placed in an environment

(�z)([]j[[z := N]]). Thus every instance of z can consume a copy of the argument (recall that

[[z := N]] is a replication of the resource z(w)[[N]]w).

[[MN]]w = (�u)([[M]]u j push(N)uw) where

push(N)uw = (�z)(uz:uw j [[z := N]]) z 62 fv(N)

For the convergence testing combinator we take the de�nition given in [11]:

[[C]]u = u(x):u(v):(�w)xw:(�y)wy:[[I]]v

In words, it says that [[CN]]u behaves �rst like an ordinary application, (remark that [[C]]u

begins as abstractions do) and then performs successively the following steps:

� it accesses to a copy of N through the private name given for x (the guard xw is con-

sumed), thus putting [[N]]w in execution (with w a private name);

� it waits then for the convergence of N , that is, waits for an input process of the form

w(y) : : :;

16

� in such case, it can consume the output guard wy leaving the place for [[I]]v.

The translation of the non-deterministic choice is very simple; it forces to make a choice

between M and N before any other action:

[[M �N]]u = (�v)(vu j v(w)[[M]]w j v(w)[[N]]w)

To sum up, the complete de�nition of the encoding function is:

[[< V; � >]]u = [[�]]([[V]]u)

[["]] = []

[[[M=x]�]] = [[�]]((�x)([] j [[x :=M]]))

[[x]]u = xu

[[�x:M]]u = u(x)u(v)[[M]]u

[[MN]]w = (�u)([[M]]u j push(N)uw)

push(N)uw = (�z)(uz:uw j [[z := N]]) z 62 fv(N)

[[x :=M]] =!x(w)[[M]]w

[[M �N]]u = (�v)(vu j v(w)[[M]]w j v(w)[[N]]w)

[[C]]u = u(x):u(v):(�w)xw:(�y)wy:[[I]]v

Two essential features of the encoding, used in the proof of adequacy (sections 5 and 6), are

the following:

Proposition 4.1 For every closed term M ,

1. M 2 K , [[M]]u # u.

2. [[M]]u

?

B P

�

! and � 6= � then � = u(v).

Proof.

1. By a simple inspection of the de�nition of [[]].

2. By a straightforward induction on M , we can show that for every P , [[M]]u

?

B P implies

fn(P) = fug [fv(M) and SORT (P) � fug [fv(M). As a corollary we have that for

every closed M and P ,

[[M]]u

?

B P) fn(P) = fug & SORT (P) � fug (1)

To illustrate the kind of reasoning we must do, let us examine the case of closures. Assume

M =< �x:M

0

; � >. Note that for � = [H

1

=y

1

] : : : [H

n

=y

n

] the acceptability condition on

�, 8i; j : y

j

62 fv(H

i

), implies fn([[�]](Q)) =

S

n

i=1

fv(H

i

) [(fn(Q)=fy

1

; : : : ; y

n

g). So,

fn([[�]]([[�x:M

0

]]u)) =

n

[

i=1

fv(H

i

) [(fn([[�x:M

0

]]u)=fy

1

; : : : ; y

n

g)

17

A simple computation on the de�nition of [[�x:M

0

]]u, and i.h. onM

0

give us fn([[�x:M

0

]]u) =

fug[fv(�x:M

0

). Replacing equals by equals in the previous formula for fn([[�]]([[�x:M

0

]]u))

we obtain

fn([[�]]([[�x:M

0

]]u)) =

n

[

i=1

fv(H

i

) [fug [(fv(�x:M

0

)=fy

1

; : : : ; y

n

g)

SORT ([[M]]u) = SORT ([[�x:M

0

]]u)=fy

1

; : : : ; y

n

; y

1

; : : : ; y

n

g

= (fug � fug [fv(M)

Assume that [[M]]u

?

B P

�

! holds. Since by (1) there is no r such that r 2 SORT (P), �

is di�erent from an output transition. Then, it can only be an input transition on some

channel w, with w 2 SORT (P). As M is closed w = u.

�

Finally, note that without the acceptability condition on substitutions, the encoding of

substitutions would not be safe. It makes use of replication, a construction that represents quite

well persistent features, while substitution in �-calculus is not actually persistent but performed

as many times as needed, after what it vanishes. The encoding of acceptable substitutions

reproduces this behavior in the following way:

Proposition 4.2 Let [M=x]� be an acceptable substitution.

[[x[M=x]�]]B [[�]]((�x)([[M]]u j [[x :=M]])) � [[M]]u

Proof. Due to the acceptability hypothesis, x does not belong to the free variables of M so the

binding only concerns [[x :=M]] and the following holds:

[[�]]((�x)([[M]]u j [[x :=M]])) � [[�]]([[M]]u j (�x)[[x :=M]])

Applying the law for reduce the scope of a private name repeatedly for all the entries of �, we

have:

[[�]]((�x)([[M]]u j [[x :=M]])) � ([[M]]u j [[�]]((�x)[[x :=M]])) � [[M]]u

�

5 Substitutions in the encoded calculus.

We focus on the process of substitution, de�ned in terms of the equalities =

s

we gave in section

2.3. As a �rst step towards the preservation of the reduction rules by [[]], we aim at showing

that substitutions are properly performed in the encoded calculus. To this end, we extend the

de�nition of [[]] to �

ej

thus covering terms of the form M� and composition of substitutions

� � �. The new clauses are the following:

[[M�]]u = [[�]]([[M]]u)

[[� � �]] = [[�]]([[�]])

Recall that M� 2 �

ej

denotes the term of �

j

, say A, where � has been distributed to the

components of M , according to =

s

. Moreover, � 2 �

ej

denotes some well-de�ned substitution

� 2 �

j

. Within the �-calculus, ([[M�]]u; [[M�]]u) and ([[M�]]u; [[A]]u) are bisimulation equiv-

alences for any term M 2 �

j

. The proof uses the following properties (�) and (��) and the

auxiliary bisimulation equivalences listed below (whose proofs are sketched in the appendix).

(�) If [H=x]� is acceptable then (N [H=x]")� = N ([H=x]�)

(��) [[(M�)�]]u = [[M (� � �)]]u

18

B1 (�x)(P jQj!x(w):F) � (�x)(P j!x(w):F)j(�x)(Qj!x(w)F) if x occurs in P , Q, F only as

output name.

Shown in [12], this bisimilarity enables the distribution of substitution-like processes.

B2 (�x)(v(z):P j!x(w):F)� (�x)v(z

0

):(P [z

0

=z]j!x(w):F) if v 6= x and z

0

is a new name.

B3 (�x)(!v(z):P j!x(w):F)� (�x)!v(z

0

):(P [z

0

=z]j!x(w):F) whenever v 6= x and z

0

is a new name.

B4 (�x)r(z):P � r(z

0

):(�x)P [z

0

=z] if r 6= x and z

0

is a new name.

B5 (�x)!z(w):([[N]]wj[[x := H]]) � !(�x)z(w):([[N]]wj[[x := H]] whenever z 6= x.

Theorem 5.1 Let M 2 �

ej

and � 2 �

ej

.

(I) If M� =

s

A with A 2 �

j

, then [[M�]]u � [[A]]u.

(II) If � =

s

� with � 2 �

j

, then 8M 2 �

ej

: [[M�]]u � [[M�]]u.

Proof.

(I) To prove this proposition, we prove that the relation �

s

made up of the following pairs is

a strong bisimulation up to � :

1 : ([[(MN)�]]u ; [[(M�N�)]]u)

2 : ([[(M � N)�]]u ; [[(M� �N�)]]u)

3 : ([[< �x:M; � > �]]u ; [[< �x:M; � � � >]]u)

4 : ([[C�]]u ; [[C]]u)

5 : ([[< x; � > �]]u ; [[< x; � � � >]]u)

1: Two cases can arise, depending on whether � is a composed substitution or not.

(a) Assume � = [H=x]:::". We show the proposition by induction on �. If � = " the proposition

is immediate. Also is [["]](push(N)wu) � push(N")wu. Consider that � = [H=x]�. The

inductive hypothesis says that ([[(MN)�]]u ; [[(M�N�)]]u) and [[�]](push(N)wu) � push(N�)wu

hold for any pair of terms M;N belonging to �

ej

.

Let us �rst show [[�]](push(N)wu) � push(N�)wu. One has, for r and v fresh names:

(�x)(push(N)wu j [[x := H]]) = (�x)((�z)(wz:wuj[[z := N]]) j [[x := H]])

� (�z)(�x)(wz:wuj[[z := N]]j[[x := H]])

by (B1) � (�z)((�x)(wz:wuj[[x := H]]) j (�x)([[z := N]]j[[x := H]]))

� (�z)(wz:wu j (�x)([[z := N]]j[[x := H]]))

by (B3) � (�z)(wz:wu j (�x)!z(r):([[N]]rj[[x := H]]))

by (B5) � (�z)(wz:wu j !(�x)z(r):([[N]]rj[[x := H]]))

by (B4) � (�z)(wz:wu j !z(v):(�x)([[N]]vj[[x := H]]))

= (�z)(wz:wu j !z(v):[[N [H=x]"]]v)

= push(N [H=x]")wu

Therefore:

[[�]](push(N)wu) = [[�]]((�x)(push(N)wu j [[x := H]]))

� [[�]](push(N [H=x]")wu)

by i.h. � push((N [H=x]")�)wu)

= (�z)(wz:wuj!z(r):[[(N [H=x]")�]]r)

by (�) = (�z)(wz:wuj!z(r):[[�]]([[N]]r))

= push(N�)wu

The proof of 1 is then as follows:

19

[[(MN)�]]u = [[�]]((�x)((�w)([[M]]wjpush(N)wu) j [[x := H]]))

� [[�]]((�w)(�x)([[M]]wjpush(N)wuj[[x := H]]))

by (B1) � [[�]]((�w)((�x)([[M]]wj[[x := H]]) j (�x)(push(N)wuj[[x := H]])))

= [[�]]((�w)([[M [H=x]"]]w j (�x)(push(N)wuj[[x := H]])))

� [[�]]((�w)([[M [H=x]"]]w j push(N [H=x]")wu))

= [[�]]([[M [H=x]"N [H=x]"]]u)

by i.h. � [[(M [H=x]")� (N [H=x]")�]]u

by (�) = [[M�N�]]u

(b) � = � � �. The proof is by induction on the number n of occurrences of � in �, and uses the

result shown in (a) for substitutions not made up of compositions. One has, in general:

[[(MN)(� � �)]]u = [[� � �]]([[MN]]u) = ([[�]]([[�]])([[MN]]u) = [[�]]([[�]]([[MN]]u))

If n = 1, using (a) twice, once for � and once for �, and then property (��), we obtain:

[[�]]([[�]]([[MN]]u)) � [[(M�)� (N�)�]]u � [[M�N�]]u

If n > 1 owing to � non empty (or to � non empty but not both), i.h. together with (a)

allow to conclude the theorem. If both substitutions are compositions, it holds by a double

application of the inductive hypothesis.

For the remaining bisimulation equivalences, we detail only the proof for substitutions of

the form [H=x]". The extension to [H=x]� and the way of dealing with composed substitutions

are similar to those for the application case.

2:

[[(M � N)�]]u = (�x)((�v)(vujv(w):[[M]]wjv(w):[[N]]w)j[[x := H]])

� (�v)(�x)(vujv(w):[[M]]wjv(w):[[N]]wj[[x := H]])

by (B1) � (�v)((�x)(vuj[[x := H]]) j

(�x)(v(w):[[M]]wj[[x := H]]) j (�x)(v(w)[[N]]wj[[x := H]]))

� (�v)(vu j (�x)(v(w):[[M]]wj[[x := H]]) j (�x)(v(w):[[N]]wj[[x := H]]))

by (B2) � (�v)(vu j (�x)v(w):([[M]]wj[[x := H]]) j (�x)v(w):([[N]]wj[[x := H]]))

by (B4) � (�v)(vu j v(w):(�x)([[M]]wj[[x := H]]) j v(w):(�x)([[N]]wj[[x := H]]))

= (�v)(vu j v(w):[[M�]]w j v(w):[[N�]])

= [[(M� �N�)]]u

3: The following holds as a consequence of the de�nition of [[� � �]]:

[[< �x:M; � > �]]u = [[�]]([[�]]([[�x:M]]u)) = ([[�]]([[�]]))([[�x:M]]u) = [[< �x:M; � � � >]]u

4: Since fv(C) = ;, one has:

[[C�]]u = (�x)([[C]]uj[[x := H]]) � [[C]]u

5: Similar to case 3.

(II) This property follows as a corollary of [[M (" � �)]]u � [[M�]]u and [[M ([H=y]� � �)]]u �

[[M [H�=x](� � �)]]uwhenever [H=y]� and � are acceptable substitutions. The former equivalence

is evident; we show the second one by structural induction on M . Call � = " � � and � =

[H�=x](� � �).

� Base case: M =< x; " >. Two cases can happen: If x 6= y then it is easy to see the

following:

[[< x; [H=y]� � � >]]u � [[< x; � � � >]]u � [[< x; [L=y](� � �) >]]u

for any term L such that fv(L) \ V ar(�; �) = ;; by the acceptability hypothesis, this

holds in particular for L = H�.

20

If x = y we have:

[[< x; [H=x]� � � >]]u � [[< x; [H�=x]" >]]u � [[< x; [H�=x]� >]]u

for any acceptable � such that fv(H�) \ V ar(�) = ;. By the acceptability of [H=y]� and

�, this holds for � = � � �.

� Inductive cases: We sketch the proof for M =< �x:N; >. The proof of the other cases

is straightforward using the i.h.and (I). We have, using (I):

[[M�]]u � [[< �x:N; � � >]]u = [[� �]](u(x):u(v):[[N]]v)

Applying bisimulation equivalences B2 and B4, property (��) and i.h., the following holds:

[[M�]]u � u(x

0

):u(v

0

):[[(N [x

0

=x])(� �)]]v

0

) �

u(x

0

):u(v

0

):[[((N [x

0

=x]))[H�=x](� � �)]]v

0

� u(x

0

):u(v

0

):[[(N [x

0

=x])(� �)]]v

0

�

[[� �]](u(x

0

):u(v

0

):[[N [x

0

=x]]]v

0

) � [[�]]([[< �x:N; >]]u) = [[M�]]u

�

6 Adequacy of the encoding.

The adequacy of the encoding,

(Ad) : [[M]]p v

�

[[N]]p)M v

�

N;

follows essentially from its computational adequacy, that is, M+

j

, [[M]]u+

�

. We state �rst

how [[]] re
ects the complete set of reduction rules of �

j

.

It is worth noticing that some reductions within �

j

do not correspond in the �-calculus

to a sequence of B reductions since the substitution indicated by the rule (�) is not actually

performed in an encoded term. However, as we proved in the last section, [[M�]] and the term

where the substitution is performed can do exactly the same actions (i.e. they are strongly

bisimilar). Thus, one can show the following correctness result which entails the only if half of

the computational adequacy property:

Lemma 6.1 If L

1

! L

2

then [[L

1

]]u

?

B � [[L

2

]]u for any channel u.

Proof. By case analysis on the last rule applied in the deduction of L

1

! L

2

. All the substitu-

tions used here are acceptable.

(�) L

1

=< �x:M; � > N !M [N=x]� =

s

L

2

. Assume (fxg [V ar(�)) \ fv(N) = ;.

[[(< �x:M; � >)N]]w = (�u)([[�]]([[�x:M]]u)jpush(N)uw)

V ar(�) \ fv(N) = ; � (�u)([[�]]([[�x:M]]ujpush(N)uw))

for z 62 fv(MN) = (�u)([[�]](u(x):u(v):[[M]]v j (�z)(uz:uw j [[z := N]]))

B (�u)([[�]]((�z)(u(v):[[M]]v[z=x] j uw j [[z := N]])))

x 62 fv(N) � (�u)([[�]]((�x)(u(v):[[M]]v j uw j [[x := N]])))

B [[�]]((�x)([[M]]w j [[x := N]])

= [[M [N=x]�]]w

by theorem 5.1 � [[L

2

]]w

(Fetch) L

1

=< x; [L

2

=x]� >! L

2

[[< x; [L

2

=x]� >]]u = [[�]]((�x)(xuj[[x := L

2

]]))

B [[�]]((�x)([[L

2

]]uj[[x := L

2

]]))

by 4.2, since [L

2

=x]� is acceptable � [[L

2

]]u

21

(ChL) L

1

= (L

2

� N)! L

2

[[(L

2

� N)]]u = (�v)(vu j v(w):[[L

2

]]w j v(w):[[N]]w)

B (�v)([[L

2

]]u j v(w):[[N]]w)

� [[L

2

]]u j (�v)v(w):[[N]]w

by proposition 3.3 � [[L

2

]]u

(ChR) As before.

(Pop) L

1

=< x; [M=y]� >! L

2

with < x; � >! L

2

[[< x; [N=y]� >]]u = [[�]]((�y)([[x]]uj[[y := N]]))

x 6= y and proposition 3.3 � [[�]]([[x]]u)

by i.h. B [[L

2

]]u

(App) L

1

= (MN)! (M

0

N) = L

2

with M !M

0

[[MN]]u = (�w)([[M]]w j (�z)(wz:wu j [[z := N]])

by i.h.

?

B � (�w)([[M

0

]]w j (�z)(wz:wu j [[z := N]]) = [[M

0

N]]u

(Obs) L

1

= CN ! I = L

2

with N ! V

[[CN]]u = (�w)(w(x):w(v):(�r)xr:(�y)ry:[[I]]v j (�z)(wz:wu j [[z := N]]))

?

B (�z)((�r)(zr:(�y)ry:[[I]]u) j [[z := N]])

B (�z)(�r)([[N]]r j (�y)ry:[[I]]u j [[z := N]])

by i.h.

?

B � (�z)(�r)([[V]]r j (�y)ry:[[I]]u j [[z := N]])

B [[I]]u j (�z)[[z := N]] j (�r)(�y):::

by proposition 3.3 � [[I]]u

(Trans) L

1

! L

2

with L

1

! L and L! L

2

By transitivity of B and �.

�

Theorem 6.2 (Computational Adequacy)

For every closed M 2 �

j

, M+

j

, [[M]]u+

�

.

Proof.

Case) : Suppose that M+

j

K for some value K, that is, M ! K. One has [[M]]u

?

B � [[K]]u

as a direct application of lemma 6.1. It is easy to see that steps of B can always be moved

to the beginning of the reduction, thus giving [[M]]u

?

B� [[K]]u. As we have remarked in 4.1,

[[K]]u # u, so [[M]]u+

�

.

Case (: Based on the remark 4.1, we show the following re�ned version of the statement:

8 closed M : 8P : [[M]]u

?

B P

u(v)

! implies

1. either P � [[< �x:A; � >]]u and M !< �x:A; � > or

2. P � [[C]]u and M ! C.

In the sequel,

n

B will stand for a reduction of length n. Assume that [[M]]u

n

B P

u(v)

! . The

proof follows by induction on n.

Case n = 0. Straightforward, as we have remarked in 4.1(1).

Case n = k + 1. By case analysis on the structure of M :

22

� M =< x; � >. Since the reduction starting from [[M]]u is non-empty, the reduction from

[[M]] has the shape

[[M]]uB[[M

0

]]u

k

B P

with M

0

such that [M

0

=x] is the �rst, in a left to right order, substitution entry for x in

�. Applying i.h. to the reduction from [[M

0

]]u, one gets

1. either P � [[< �x:A; � >]]u and M

0

!< �x:A; � >, or

2. P � [[C]]u and M

0

! C.

Since M =< x; � >! M

0

holds using (Pop) and (Fetch), the result can be extended to

M .

� M = M

1

M

2

. Consider the expanded form (�r)([[M

1

]]r j push(M

2

)ru) of [[M]]u. In order

to bring u to the surface, push(M

2

)ru must be consumed; so, the reduction from [[M]]u

can be split as follows:

(�r)([[M

1

]]r j push(M

2

)ru)

n

1

B (�r)(R j push(M

2

)ru) = S

n

2

B P

where n = n

1

+ n

2

, n

1

� 0 and [[M

1

]]r

n

1

B R

r(v)

! . By i.h. one has

{ either S � [[< �x:B; � > M

2

]]u with M

1

!< �x:B; � >, or

{ S � [[CM

2

]]u with M

1

! C.

If the �rst case holds, there exists P

0

u(v)

! such that

S � [[< �x:B; � > M

2

]]u

n

2

B P

0

� P

Furthermore, the reduction from [[< �xB; � > M

2

]]u can only begin with a simulation of

the �-rule. Let M

0

2 �

j

be such that M

0

=

s

B[M

2

=x]�; lemma 6.1 allows to say

[[< �x:B; � > M

2

]]u

+

B � [[M

0

]]u

n

3

B P

0

Note that n

3

< n. So i.h. on the reduction from [[M

0

]]u yields

1. either P � P

0

� [[< �x:A; � >]]u and M ! (< �x:B; � >)M

2

! M

0

!< �x:A; � >,

or

2. P � P

0

� [[C]]u and M ! (< �x:B; � >)M

2

! M

0

! C holds.

If instead we are in the second case, for some P

0

u(v)

! one has

S � [[CM

2

]]u

n

2

B P

0

� P

Moreover, the reduction from [[CM

2

]]u must be of the following shape:

[[CM

2

]]u

n

4

B (�z)(�r)(T j (�y)ry:[[I]]u j [[z :=M

2

]])

+

B P

0

u(v)

!

To allow an input transition on u, [[M

2

]]r

+

B T

r(v)

! . So inductive hypothesis says that

P � P

0

� [[I]]u. Finally, M ! (CM

2

)! I since by i.h.

{ either T � [[< �x:L; >]]r and M

2

!< �x:L; >, or

{ T � [[C]]r and M

2

! C holds.

23

� M = (M

1

� M

2

). The encoding of M forces any reduction from [[M]]u to chose �rst the

branch it wants to pursue, that is,

[[M]]uB[[M

i

]]u

+

B P

for i = 1 or i = 2. The theorem holds by a direct application of i.h. to M

i

and the fact

that M !M

i

using (ChR) or (ChL).

�

Proposition 6.3 For every pair of �-terms M and N , if [[M]]p v

�

[[N]]p then [[C[M]]]p v

�

[[C[N]]]p for every �-context C.

Proof. The compositional de�nition of the translation guarantees that for any �-context C,

there is a �-context D and a channel name u such that [[C[M]]]p = D[[[M]]u]. Assume

E[[[C[M]]]p]+

�

, for E a �-context. Therefore E[D[[[M]]u]]+

�

. From the hypothesis we have

E[D[[[N]]u]]+

�

, so E[[[C[N]]]p]+

�

.

�

Finally, one has (Ad) as a direct combination of 6.2 and 6.3:

Theorem 6.4 (Adequacy)

For every pair of �-terms M and N , if [[M]]p v

�

[[N]]p then M v

�

N .

Proof. Consider C such that C[M]+

j

. By theorem 6.2 one has [[C[M]]]p+

�

, and by propo-

sition 6.3, [[C[M]]]p v

�

[[C[N]]]p. Hence, [[C[N]]]p+

�

and, using theorem 6.2 again, C[N]+

j

holds.

�

7 Further Remarks.

Let us clarify some points remarked in the previous sections. Concerning the converse of

(Ad), we mentioned in the introduction a counter-example which exploits the fact that partial

substitutions can be described in the encoded calculus. One of the �-contexts C that separates

[[x(�y:xy)]]u from [[xx]]u, while x(�y:xy) v

�

xx, is

C = (�x)([]jx(w):[[I]]w)

since we have

C[[[M]]u]B(�x)([[I]]wjpush(x)wu)

?

B (�x)[[x]]u *

�

C[[[N]]u]B(�x)([[I]]wjpush(�y:xy)wu)

?

B (�x)[[�y:xy]]u # u

A natural question is how does �x:x(�y:xy) 6'

]

�x:xx? This is simply because taking

L =]I in the �rst clause of the de�nition of '

]

one should be able to show �y:(]I)y '

]

]I;

since]I reduces to
 - which will never became an abstraction, this does not hold.

In section 2 we remarked that the rules of ! for dealing with C were not the usual ones.

It should be clear that, keeping [[]] unchanged, the rule

If N ! N

0

then (CN)! (CN

0

)

does not correspond, in the encoded version, to a sequence of B reductions, thus breaking the

correctness result 6.1. To allow an evaluation of [[N]]w, [[CN]]u must consume some guards of

C. Therefore it cannot end in a term of the form [[CN

0

]]u.

Also calculi involving k were put aside owing to the properties of the encodings they induce.

At �rst sight, (M k N) can be encoded as ([[M]]u j [[N]]u), but this results problematic in

24

the following two aspects. Observe that taken this encoding, the rule of distribution of the

argument (M k N)L! (ML k NL) does not have associated, within the �-calculus, a sequence

of reductions, but rather the strong bisimulation equivalence (M k N)L � (ML k NL).

Certainly, one can modify the reduction system to �t the encoding by adding rules of the style

(< �x:M; � >k N)L ! M [L=x]� k (NL). A more relevant property of this encoding is the

following: [[�x:(M k N)]]u can be distinguished from [[�x:M k �x:N]]u while �x:(M k N) '

�

�x:M k �x:N . That is, the � calculus allows to count the number of parallel compositions in

a term. Hence, additional counter-examples to the converse of adequacy arise.

Another point to stress is that the notion of reduction B of the �-calculus seems to be

more generous than needed. We mean by this that restricting communication to act on private

names would not a�ect our proofs. The new formulation of 7! to consider would be

(�~v)fj :::; x(y):R

0

; xz:T; ::: jg* (�~v)fj :::; R

0

[z=y]; T; ::: jg with x 2 ~v

Acknowledgments.

I am greatly indebted to G�erard Boudol for introducing me to the issues addressed in this

paper; this work could have not been done without his suggestions and help. I would like to

thank him and Pierre-Louis Curien for carefully reading several drafts of this paper and for

their useful comments.

References

[1] S. Abramsky . The Lazy Lambda Calculus. In Research Topics in Functional Program-

ming, ed. D. Turner, Addison Wesley. 1989.

[2] G. Berry, G. Boudol. The Chemical Abstract Machine. TCS 96(1). 1992.

[3] G. Boudol . Towards a lambda-calculus for concurrent and communicating sys-

tems. In TAPSOFT 1989, LNCS 351. 1989

[4] G. Boudol.A Lambda-Calculus for Parallel Functions. Rapport de Recherche INRIA

1231. 1990.

[5] G. Boudol. Lambda-Calculi for (strict) Parallel Functions. Rapport de Recherche

INRIA 1387. 1991. To appear in Information and Computation.

[6] G. Boudol. Asynchrony and the �-calculus. Rapport de Recherche INRIA 1702. 1992.

[7] G. Boudol. Private communication. 1993.

[8] K. Honda, M. Tokoro. On Asynchronous Communication Semantics. LNCS 612.

1992.

[9] R. Milner. Communication and Concurrency. Prentice Hall. 1989.

[10] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes, Parts I and II.

Information and Computation, 100. 1992.

[11] R. Milner. Functions as Processes. Math. Struct. in Computer Science, 2. 1992.

[12] R. Milner. The polyadic �-calculus: a tutorial. Technical Report ECS-LFCS 91-180,

Edimbourg University. 1991.

[13] R. Milner, J. Parrow, D.Walker.Modal Logics for Mobile Processes. Technical Report

ECS-LFCS 91-136, Edimbourg University. 1991.

25

[14] C.-H. Luke Ong. Fully Abstract Models of the Lazy Lambda Calculus. In Proceed-

ings of the 29th Conference on Foundations of Computer Science. The Computer Science

Press. 1988.

[15] C.-H. Luke Ong. The Lazy Lambda Calculus/ An Investigation into the Founda-

tions of Functional Programming. PhD Thesis, Imperial College. 1988.

[16] B. Thomsen. A Calculus of Higher-order Communicating Systems. Proceedings of

the 16th Annual Symposium on Principles of Programming Languages. 1989.

[17] D. Sangiorgi. Expressing Mobility in Process Algebras: First Order and Higher

Order Paradigms.PhD. Thesis, Department of Computer Science, Edinburgh University.

1993.

[18] D. Sangiorgi. The Lazy Lambda Calculus in a Concurrency Scenario. Proceedings

of LICS 1992.

Appendix A

In this appendix we tackle the proof of 2.2(2), which says that convergence in the language �

v

can be simulated in �

c

. Let us recall the translation

(x)

c

v

= x

(�x:M)

c

v

= �x:(M)

c

v

(�

v

x:M)

c

v

= �x:(Cx)(M)

c

v

(MN)

c

v

= (M)

c

v

(N)

c

v

The statement to show is:

For any M 2 �

v

; M+

v

, (M)

c

v

+

c

Our proof is adapted from that of [15] given for the simulation of the eager lambda calculus

into �

c

. We �rst introduce some few auxiliary notions and state various results; for proofs not

given here we refer to [15].

De�ne two reduction relations, !

v

on �

v

and !

c

on �

c

, as follows:

(�) (�x:M)N!

v

M [N=x]

(�

v

) If K 2 K

v

then (�

v

x:M)K!

v

M [K=x]

(Arg) If N!

v

N

0

then (�

v

x:M)N!

v

(�

v

x:M)N

0

(App) If M!

v

M

0

then (MN)!

v

(M

0

N)

(�) (�x:M)N!

c

M [N=x]

(C1) CC!

c

I

(C2) C(�x:M)!

c

I

(C3) If M!

c

M

0

then CM!

c

CM

0

(App) If M!

c

M

0

then (MN)!

c

(M

0

N)

Straightforward inductive arguments allow to show:

For M 2 Lv; M+

v

K ,M

?

!

v

K

For M 2 Lc; M+

c

K ,M

?

!

c

K

The third reduction relation we need,!

�c

: �

c

! �

c

, enables the use of (�), (C1) and (C2)

in any �

c

-context, that is in function position, in argument position and under abstraction. For

any !

�c

-reduction sequence there is a standard reduction sequence composed of a sequence of

!

c

-reductions followed by a sequence of !

�c

-reductions contracting redexes in a left to right

fashion.

26

De�nition 7.1 Let us call lazy contexts those de�ned by the following grammar:

Q ::= (CQ)N j(QN)j[]

De�nition 7.2 (see 4.4.3.13 in [15])

Let M 2 �

c

. An in�nite !

�c

-reduction

M = M

0

!

�c

M

1

!

�c

:::!

�c

M

i

!

�c

:::

is quasi-lazy if there is an in�nite collection of indexes < n

1

; :::; n

i

; ::: > such that for every

i, n

i

< n

i+1

and M

n

i

�1

!

�c

M

n

i

is a !

c

-reduction.

Remark 7.3 Let M 2 �

c

. If M has an in�nite quasi-lazy reduction then, for any lazy context

Q, Q[M] has an in�nite quasi-lazy reduction.

Proposition 7.4 (see 4.4.3.18 in [15])

Let M 2 �

c

. M has an in�nite quasi-lazy reduction if and only if M *

c

.

The next step consists in the introduction of a new reduction relation on �

c

, !

o

, which

simulates!

v

step-wise. The corresponding rules are just the translation of those de�ning !

v

:

(1) If M 6= (Cx)M

0

then (�x:M)N!

o

M [N=x]

(2) If N 2 K

c

then (�x:(Cx)M)N!

o

M [N=x]

(3) If N!

o

N

0

then (�x:(Cx)M)N!

o

(�x:(Cx)M)N

0

(4) If M!

o

M

0

then (MN)!

o

(M

0

N)

Proposition 7.5 For M;N 2 �

c

, M!

o

N)M

?

!

�c

N .

Proof. The statement is shown by induction on the length l of the derivation M!

o

N . When

l = 1, if the rule applied was (1) then M!

�c

N just using the (�)-rule. If it was (2), then

M = (�x:(Cx)M)N!

�c

(CN)(M [N=x])!

�c

I(M [N=x])!

�c

M [N=x] = N

When l > 1, the statement follows by a direct combination of i.h. and the fact that !

�c

-

reductions can be performed anywhere in a term. �

By structural induction on the shape of M one can show

(M)

c

v

[(N)

c

v

=x] = (M [N=x])

c

v

A straightforward induction on the last rule applied together with the previous property allows

to prove the simulation of !

v

by !

o

:

Proposition 7.6 For M;N 2 �

v

, M!

v

N , (M)

c

v

!

o

(N)

c

v

.

The determinacy of !

o

follows as a corollary. Let us introduce some notation:

Notation 7.7 We use �

o

for denoting the terms of �

c

which have the shape of translated

�

v

-terms. That is, L 2 �

o

i� (M)

c

v

= L 2 �

c

for some M 2 �

v

.

For M 2 �

o

, M means that M has a �nite !

o

-reduction ending in an irreducible term.

Otherwise, M"

o

. To name reduction steps we use a decoration like this one: M

�

!

o

M

0

. If the

rule used is relevant, we write its name above the arrow.

Note that if MN then N is an abstraction; the other value of �

c

, C, is only used applied

to arguments. The next lemma is fundamental in the proof of 2.2(2).

Lemma 7.8 Let M 2 �

o

. If M"

o

then M has an in�nite quasi-lazy reduction.

27

Proof. Assume M 2 �

o

and M"

o

, that is

M = M

0

�

1

!

o

M

1

�

2

!

o

M

2

: : :

�

n

!

o

M

n

�

n+1

!

o

: : :

One of the following cases hold:

A. An unbounded number of reductions �

i

use rule (1) or (2).

B. 9N � 1 8i � N �

i

uses (3) as the last rule.

C. 9N � 1 8i � N �

i

uses (4) as the last rule.

Suppose case A does not hold and that N is the least n such that 8i � n: �

i

uses (3) or

(4) as the last rule.

� If �

N

uses (3) then M

N

= (�x:(Cx)M

0

)L where L is not an abstraction; for otherwise

�

N+1

would use rule (2), contradicting the assumption. Therefore, (3) is the only can-

didate for �

N+1

, with premise L!

o

L

0

. For the same reason as before L

0

cannot be an

abstraction. Applying this argument inductively yields case B (L does not converge).

� Suppose �

N

uses (4). Then M

N

= (M

1

M

2

). If M

1

"

o

it should be clear that case C

holds. If not, then M

1

�x:M

0

1

with M

0

1

= (Cx)M

00

1

. The case M

0

1

6= (Cx)M

00

1

is inhibited

for otherwise rule (1) would be applicable. Moreover, M

2

is not an abstraction so case B

holds.

If case A holds, then M has an in�nite quasi-lazy reduction using proposition 7.4. We will

consider the other cases. To this end, de�ne the contexts D

xL

and E

L

as follows:

D

xL

= (�x:(Cx)L)[] E

L

= ([]L)

and let F , G, H range over D

xL

and E

L

. Cases B andC can be put together in the following

way:

M

?

!

o

F [R

0

]!

o

F [R

1

]!

o

: : :!

o

F [R

m

]!

o

: : :

Every deduction F [R

i

]!

o

F [R

i+1

] consists in �nitely many uses of rules (3) and (4) and one

use of rule (1) or (2). That is, some n

i

� 0, G

i

1

; : : :G

i

n

i

, S

i

, S

0

i

exist such that S

i

!

o

S

0

i

using

either rule (1) or rule (2) and

R

i

= G

i

1

[G

i

2

[::[G

i

n

i

[S

i

]]::]]

R

i+1

= G

i

1

[G

i

2

[::[G

i

n

i

[S

0

1

]]::]]

We abbreviate G

i

1

[::[G

i

n

i

[::]]::] as G

i

1

::G

i

n

i

[::]. Since R

i

"

o

holds for any i, there is a largest

k

i

, called the nesting level of R

i

, with 1 � k

i

� n

i

such that

R

i

= G

i

1

::G

i

k

i

[X

i

] where X

i

"

o

The next step consists in proving an auxiliary property, namely that

(�) If X

i

"

o

according to A then R

i

"

o

has an in�nite quasi-lazy reduction

We show (�) by induction on k

i

. If k

i

= 0 then R

i

"

o

according to A, so it has an in�nite

quasi-lazy reduction. For k

i

� 1, by induction hypothesis, G

2

::G

k

i

[X

i

] has an in�nite quasi-lazy

reduction, say G

2

::G

k

i

[X

i

]!

�c

Y

1

::!

�c

Y

j

!

�c

::. If G

1

= (�x:(Cx)L)[], the following reduction

is in�nite and quasi-lazy :

R

i

= (�x:(Cx)L)(G

2

::G

k

i

[X

i

])!

c

(CG

2

::G

k

i

[X

i

])(L[G

2

::G

k

i

[X

i

]=x])!

�c

(CY

1

)(L[G

2

::G

k

i

[X

i

]=x]):::!

�c

(CY

j

)(L[G

2

::G

k

i

[X

i

]=x])!

�c

:::

Otherwise G

1

= []L, in which case the next one is an in�nite quasi-lazy reduction

R

i

= (G

2

::G

k

i

[X

i

])L!

�c

(Y

1

L):::!

�c

(Y

j

L)!

�c

:::

The reduction fromM can be of two forms:

28

1. 8i : k

i

= 0. That means, 8i : R

i

"

o

according to A. We will show it for i = 0. Suppose R

0

"

o

according to B or C. Then, for some �nite N , either R

N

= D

xL

[L

0

] or R

N

= E

L

[L

0

],

with L

0

"

o

. So k

N

� 1 which contradicts the hypothesis. Therefore, using (�), F [R

0

] has

an in�nite quasi-lazy reduction. So M does.

2. 9i : k

i

> 0. De�ne < m

0

; : : :m

i

; :: > to be a sequence of subscripts verifying:

� m

0

is the least j for which k

j

> 0

� 8i : k

m

i

< k

m

i+1

& 8z 2 [m

i

;m

i+1

� 1] : k

z

= k

m

i

Hereafter, p

i

stands for k

m

i

and we forget about superscripts in contexts G. We distin-

guish two cases:

(a) The sequence of indexes associated to M is �nite. That is, there is a largest �nite N

such that 8j > p

N

: k

j

= p

N

. In other words, 8j > p

N

: R

j

= G

1

::G

p

N

[X

j

]. As in (1), it

is easy to see that X

m

N

"

o

according to A, for otherwise the nesting level of R

m

N

would

be greater than p

N

. Therefore, property (�) says that FG

1

::G

p

N

[X

m

N

] has an in�nite

quasi-lazy reduction. So M does.

(b) The sequence of indexes associated to M is in�nite. That is,

M

?

!

o

F [G

1

::G

p

0

[X

m

0

]]

?

!

o

F [G

1

::G

p

0

G

p

0

+1

::G

p

1

[X

m

1

]]:::

?

!

o

F [G

1

::G

p

0

::G

p

i

G

p

i

+1

::G

p

i+1

[X

m

i+1

]]

?

!

o

:::

where X

m

i

"

o

and X

m

i

+

!

o

G

p

i

+1

::G

p

i+1

[X

m

i+1

] for every i.

Note that reductions starting from X

m

i

are non-empty. Suppose there is some j for

which X

m

j

= G

p

j

+1

::G

p

j+1

[X

m

j+1

]. Then R

m

j

= G

1

::G

p

j

G

p

j

+1

::G

p

j+1

[X

m

j+1

] and since

p

j+1

> p

j

this means that the nesting level of R

m

j

is greater than p

j

= k

m

j

which is

absurd.

We will built up an in�nite quasi-lazy reduction starting fromM of the form

(IQL) M

?

!

o

Q

0

[X

0

] : : :

?

!

�c

Q

0

::Q

i

[X

i

]

?

!

�c

:::

for lazy contexts Q

0

; : : :Q

i

:::. To this end, de�ne l = k

i+1

� k

i

and H

1

= G

k

i

+1

: : :

H

l

= G

k

i+1

.

The following holds by a straightforward induction on l:

(��) H

1

: : :H

l

[X]

?

!

c

Q[X]

We sketch the inductive case. Suppose l > 1 and Q

0

is the lazy context associated to

H

2

: : :H

l

[X]

� either

H

1

: : :H

l

[X] = (�y:(Cy)N)[])H

2

: : :H

l

[X]!

c

(C(H

2

: : :H

l

[X]))(N [(H

2

: : :H

l

[X])=y]);

in which case, Q = (CQ

0

)(N [(H

2

: : :H

l

[X])=y]) is a lazy context,

� or H

1

: : :H

l

[X] = (H

2

: : :H

l

[X])N . so Q = (Q

0

N) is a lazy context, which �nishes

the proof.

We show, by case analysis on the shape of X

m

i

, that, for some lazy context Q

i+1

,

X

m

i

?

!

�c

Q

i+1

with at least one lazy reduction step. Hence, (IQL) is an in�nite quasi-lazy

reduction just by remark 7.3.

29

(a) If X

m

i

= (�x:(Cx)L)K with K a value, the determinacy of !

o

implies,

X

m

i

(2)

!

o

L[K=x]

?

!

o

G

p

i

+1

::G

p

i+1

[X

m

i+1

]

Hence, using proposition 7.4 and property (��), one has the following reduction, with

at least three lazy reduction steps:

X

m

i

(�)

!

c

(CK)(L[K=x])

(C2)

!

c

I(L[K=x])

(�)

!

c

L[K=x]

?

!

�c

G

p

i

+1

::G

p

i+1

[X

m

i+1

]

?

!

c

Q

i+1

(b) If X

m

i

= (�x:L)N with L 6= (Cx)L

0

, a reasoning similar to that of (a) yields a

reduction from X

m

i

having in this case at least one lazy step.

(c) If X

m

i

= (�x:(Cx)L)N with N di�erent from a value then the following holds, with

K the value of N :

X

m

i

?

!

o

(�x:(Cx)L)K

+

!

o

G

p

i

+1

::G

p

i+1

[X

m

i+1

]

Therefore, case (a) applies. Note that N cannot diverge for otherwise X

i

would be

N .

(d) If X

m

i

= (N

1

N

2

) with N

1

di�erent from a value then it must be N

1

for otherwise

X

m

i

would be N

1

. Thus, for K the value of N

1

, one has

X

m

i

?

!

o

(KN

2

)

+

!

o

G

p

i

+1

::G

p

i+1

[X

m

i+1

]

The syntactic shape of (KN) corresponds either to case (a) or to case (b) so the

reasoning given there is applicable.

�

Proof of proposition 2.2(2): Let M be a closed term of �

v

and suppose M+

v

K. Then

M

?

!

v

K and, by proposition 7.6, we have (M)

c

v

?

!

o

(K)

c

v

. Using 7.5, (M)

c

v

?

!

�c

(K)

c

v

. So,

(M)

c

v

+

c

by the standardization theorem for !

�c

[15].

Suppose that M *

v

. Therefore, M"

o

and, by lemma 7.8, M has an in�nite quasi-lazy

reduction. Applying 7.4 we conclude that M *

c

. �

Appendix B

In this appendix we give some indications about the proofs of B1 to B5, stated in section 5.

Two auxiliary bisimulation equivalences are needed:

C1 !P �!P j!P

C2 (�x)(P j!z(w)(Qj[[x := H]])j[[x := H]]) � (�x)(P j[x := H)j(�x)!z(w)(Qj[[x := H]]) if P and

Q contain x only as an output name.

The relation R de�ned as follows is a bisimulation up to � (using C1):

� ((�x)(P j!z(w)(Qj[[x := H]])j[[x := H]]) ; (�x)(P j[x := H)j(�x)!z(w)(Qj[[x := H]])) 2

R, if P;Q satisfy the conditions required above.

� (A;B) 2 R

1

) (A;B) 2 R , where R

1

is the bisimulation used in proving B1.

� (A;B) 2 R) ((�y)A ; (�y)B) 2 R .

� (A;B) 2 R) (U jA ; U jB) 2 R for every U .

30

� (A;B) 2 R and (B;C) 2 R) (A;C) 2 R .

Therefore, we have

B1 Shown in [13].

B2,B3 Direct proofs.

B4 The relation R built out of the pairs

� ((�x)(!v(z)P j !x(w)F) ; (�x)!v(z

0

)(P [z

0

=z] j !x(w)F))

� ((�x)(S j !x(w)F j !v(z)P j !x(w)F) ; (�x)(S j !x(w)F j !v(z

0

)(P [z

0

=z] j !x(w)F)))

where v 6= x and z

0

is a new name is a bisimulation up to � (using C1).

B5 The relation R whose pairs are of the form

� ((�x)!z(w)([[N]]wj[[x := H]]) ; !(�x)z(w)([[N]]wj[[x := H]])

� ((Qj(�x)!z(w)([[N]]wj[[x := H]])) ; (Qj!(�x)z(w)([[N]]wj[[x := H]]))

is a bisimulation up to � (using C2).

31

