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Abstract

The Constraint Logic Programming systems which have been implemented include various higher-

order predicates for optimization. In CLP(FD) systems, several optimization predicates, such as

minimize(G(X),f(X)), minimize-maximum(G(X),[f1(X),...,fn(X)]), are implemented by using branch

and bound algorithms. In CLP(R) systems, the Simplex algorithm used for satis�ability checks can also

be used for linear optimization through the predicate rmin(f(X))which adds to the constraints on X the

ones de�ning the space where the linear term f(X) is minimized. These optimization constructs do not

belong however to the formal CLP scheme of Ja�ar and Lassez, and they lack a declarative semantics.

In this paper we propose a general de�nition for optimization predicates, for which one can provide both

a logical and a �xpoint semantics based on Kunen-Fitting's semantics of negation. We show that the

branch and bound algorithm can be derived as a re�nement of the implementation of the semantics using

CSLDNF-resolution, and that the branch and bound algorithm can be lifted to a full �rst-order setting

with constructive negation.

1 Introduction

The Constraint Logic Programming systems which have been implemented include various higher-order

predicates for optimization. In CLP(FD) systems as CHIP, de�ned over �nite domains, several optimization

predicates, such as minimize(G(X),f(X)), or minimize-maximum(G(X),[f1(X),...,fn(X)]), are imple-

mented with branch and bound algorithms [8]. In CLP(R) systems, de�ned over real numbers, the Sim-

plex algorithm used for satis�ability checks can also be used for linear optimization through the predicate

rmin(f(X)) which adds to the constraints on X the ones de�ning the space where the linear term f(X) is

minimized. These optimization constructs do not belong however to the formal CLP scheme of Ja�ar and

Lassez [5], and they lack a declarative semantics.

The �rst problem to solve is the dependence of the result on the ordering of the goals. In many systems

indeed the constraints on the variables appearing in the optimization goal are passed to the optimization

process, producing the following problematical behavior:

p(X) :- X>=0.

? X>=1 , minimize(p(X),X).

X=1

? minimize(p(X),X) , X>=1.

no

Clearly the optimization process should be localized to the goal given as argument, and the other constraints

inherited from the other goals should not change the optimality condition. Therefore the correct answer in

the previous example is no. If X = 1 was the intended answer, one should write:



? minimize((X>=1,p(X)),X).

X=1

With this provision one can give a declarative reading to CLP programs containing optimization predi-

cates. We show that Kunen's three-valued semantics of logic programs with negation is all we need to do so,

and that optimization predicates can thus be treated as higher-order constraints. After reviewing complete-

ness results in the CLP scheme, we show that the well-known branch and bound algorithm can be derived

as a re�nement of the implementation of the semantics using CSLDNF-resolution, and that the branch and

bound algorithm can be lifted to a full �rst-order setting with constructive negation.

2 The declarative semantics of optimization predicates

De�nition 1 Let (A;�) be a totally ordered structure. The minimization higher-order predicate

min(G(X;Y ); [X]; f(X;Y ))

is de�ned as a notation for the formula:

G(X;Y ) ^ 8Z (G(X;Z) � f(X;Z) 6< f(X;Y ))

An optimization constraint logic program (OCLP) (resp. goal) is a CLP program (resp. goal) which may

contain occurrences of the minimization predicate in rules bodies (resp. in goals).

The second argument to the predicate min is a possibly empty list of \protected" variables, [X]. Only

the variables of the goal, away from X, are a�ected by the optimality condition.

As is well known, general �rst-order formulas can be normalized [6]. An OCLP program P can be

transformed into an equivalent normal CLP program containing negations, by replacing each occurrence of

the atom

min(G(X;Y ); [X]; f(X;Y ))

by the conjunction of atoms

G(X;Y );:p(X;Y )

where p is a new predicate symbol, and by adding to the program the rule:

p(X;Y ) f(X;Z) < f(X;Y )jG(X;Z):

In the following, P denotes the normal CLP program obtained by repeatedly applying this transformation

to P , and P

�

denotes the Clark's completion [6] of P (without Clark's equality axioms as symbols are

interpreted in A).

De�nition 2 The semantics of an OCLP program P is the set of 3-valued consequences of P

�

^ th(A). A

correct answer to an OCLP query G and a program P is a set of constraints c such that

P

�

^ th(A) j=

3

8(c! G) ^ 9(c)

Going back to the example of the introduction, we can check that the correct answer to

X � 1;min(p(X); [ ]; X)

is no, that X � 1 is a correct answer to

X � 1;min(p(X); [X]; X);

and that X = 1 is the correct answer to the goal

min(X � 1jp(X); [ ]; X):
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In general the answers of an OCLP query are non ground, and can be arbitrary sets of constraints. Consid-

ering the rule

p(X;Y ) 0 � X;X � Y:

X = Y is a correct answer to the query

min(p(X;Y ); [ ]; Y �X):

The de�nition of OCLP programs does not exclude recursion though optimization predicates. A similar

problem is discussed in [1] and [2] where the strati�ed semantics of aggregates are generalized using the

well-founded and stable model semantics of logic programs. In the context of OCLP programs, the natural

theory to apply is Fitting-Kunen's 3-valued semantics, which does not coincide with strati�ed and well-

founded semantics. From a practical point of view one can notice that de�nite OCLP programs usually

don't contain recursion through optimization. In general however, we have:

Proposition 1 Any normal logic program is equivalent to a de�nite OCLP program.

Proof: Let us consider the OCLP program over the natural numbers obtained from the normal logic

program by replacing each negative literal :p(X) by max(q(X; y); [X]; y) where q is a new predicate symbol,

and by adding the rules

q(X; 0):

q(X; y) p(X):

We have 9X9y max(q(X; y); [X]; y) i� 9X9y8z q(X; y) ^ :(q(X; z) ^ z > y)

i� 9X9y (y = 0 ^ :p(X)) _ (p(X) ^ 8z:(�(X; z) ^ z > y))

i� 9X9y y = 0 ^ :p(X)

i� 9X:p(X). []

3 Completeness results

The completeness result of SLDNF-resolution w.r.t. to the three-valued semantics of logic programs [4] relies

on the properties of the �nite powers of Fitting's operator �

A

P

. These properties generalize to normal CLP

programs:

Theorem 1 [3] [7] Let A be a structure and P a normal CLP program. Then the following are equivalent:

� �

A

P

" n(cjG) = t for some �nite n,

� th(A) ^ P

�

j=

3

8(c! G) ^ 9(c)

In this way Stuckey [7] proved the completeness of CSLDCN-resolution (i.e. constraint SLD-resolution

with constructive negation) for normal CLP programs. CSLDCN-resolution is based on the CSLD inference

rule for positive goals, and on the CSLDCN inference rule for negative goals:

CSLD

 cjA

1

; :::; A

i

; :::; A

n

th(A) j= 9(c

0

)

 c

0

jA

1

; :::; A

i�1

; B

1

; :::; B

m

; A

i+1

; :::; A

n

where c

0

= c ^A

i

= B, (B  B

1

; :::; B

m

) 2 P .

CSLDCN

 cjA

1

; :::;:A

i

; :::; A

n

th(A) j= 9(c

0

)

 c

0

jA

1

; :::; A

i�1

; A

i+1

; :::; A

n

where c

0

= c ^ :9

�

(c

1

) ^ :::^ :9

�

(c

n

) (the existential closure being over variables not in c),

and fc ^ c

1

; :::; c^ c

n

g are the successful derivations of the goal  c ^A

i

.

Theorem 2 [7] Let P be a normal OCLP program over a structure A.

If th(A) ^ P

�

j=

3

8(c ! G) ^ 9(c) then the CSLDCN-derivation tree for (cjG) contains successful

derivations with constraints c

1

; :::; c

n

; such that A j= c � 9

�

c

1

_ :::_ 9

�

c

n

.

If th(A) ^ P

�

j=

3

8(c! :G)^ 9(c) then the CSLDCN-derivation tree for (cjG) is �nitely failed.

In particular the completeness of CSLDNF-resolution (i.e. constraint SLD-resolution with negation by

failure) follows under the non-
oundering assumption.
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4 The branch and bound algorithm as negation by failure

In this section we study the application of the optimization predicate over a goal G(X;Y ), such that all the

successful CSLD-derivations of G(X;Y ) instanciate the argumentsX and Y to some values. This is typically

the case of optimization in CLP(FD), where enumeration is mixed with constraint propagation in order to

palliates the incompleteness of the constraint solvers [8].

Under these assumptions, it is clear that the negative goals introduced by the optimization predicates

(in G(X;Y );:p(X;Y )) never 
ounder. Thus CSLDNF-resolution is complete w.r.t. the (3-valued) semantics

of such OCLP programs. For simplicity, let us consider the goal

e(X)jmin(G(X); [ ]; f(X));

and its CSLDNF-derivation tree.
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e

e

e

e(X) j G(X);:p(X)

j not p(X)j not p(X)

[] fail

success

Success

f(Y)<f(X) j G(Y) f(Y)<f(X) j G(Y)

c0

c0,

cn

cn,

c j

For the moment let us consider the search for only one successful derivation of the optimization goal,

not all successful derivations. Under the normal left-right order traversal of the tree, when a successful

derivation is obtained for e(X)jG(X) with constraint c

i

, then c

i

j:p(X) remains to be shown, and for this,

another derivation tree is developed for the goal c

i

; f(Y ) < f(X)jG(Y ). If this subtree is �nitely failed then

we obtain a successful derivation for the optimization goal. Otherwise if the derivation subtree contains a

successful derivation, then it is a failure for the optimization goal, and the successful subderivation is lost.

Therefore a derivation subtree for G is developed for each successful derivation of e(X)jG(X).

The well-known branch and bound algorithms can be presented as optimized versions of CSLDNF-

resolution procedures, that exploit the successful derivations found in the refutation of the optimality of a

solution. In the backtracking version of the branch and bound algorithm (BB), a single derivation tree for G

is developed. When a successful derivation is found (under the left-right order traversal), the corresponding
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solution X

i

is memorized, and the search by backtracking continues with the additional constraint f(X) <

f(X

i

). The additional constraint is used to prune the search space and explore only a portion of the derivation

tree:
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fail

[]

XnX0 Xn-1

[] []. . .

. . .

e(X),(f(X)<f(Xi)) j G(X)

In the BB algorithm, the last memorized solution, X

n

, is a solution to:

min(e(X)jG(X); [ ]; f(X))

To show that X

n

is indeed a solution to

e(X)jmin(G(X); [ ]; f(X))

it su�ces to check that the goal

e(X); f(X) < f(X

n

)jG(X)

fails. If it is not the case, then the goal e(X)jmin(G(X); [ ]; f(X)) must fail. The gain in e�ciency over

CSLDNF-resolution is obvious as only two derivation trees are thus developed in this way.

Therefore two algorithms are possible for �nding the answers to the goal

e(X)jmin(G(X); [ ]; f(X))

depending whether the branch and bound algorithm is applied initially to e(X)jG(X) or to G(X):

Algorithm 1 BB algorithm with environment constraints.

1. compute one solution X

n

to min(e(X)jG(X); [ ]; f(X)) by using BB algorithm,

2. check by CSLDNF-resolution that e(X); f(X) < f(X

n

)jG(X) admits no solution, otherwise fail,

3. return X

n

, or if all solutions are needed, return the answers to e(X); f(X) = f(X

n

)jG(X) computed

by CSLDNF-resolution.

Algorithm 2 BB algorithm without environment constraints.

1. compute one solution X

n

to min(G(X); [ ]; f(X)) by using BB algorithm,

2. return the solutions to e(X); f(X) = f(X

n

)jG(X) computed by CSLDNF-resolution.
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In actual CLP(FD) systems with optimization predicates, algorithm 1 without step 2 is generally im-

plemented, hence the di�culties mentioned in the introduction concerning the declarative semantics and the

possibility to treat optimization predicates as higher-order constraints. Algorithm 2 does not use the con-

straints inherited from the environment to prune the search space for �nding the optimal cost of a solution

(step 1). Note however that, under termination assumptions, step 1 in algorithm 2 can be done at compile

time.

Note also that other versions than the backtracking version of the branch and bound algorithm can be

preferred for implementation in a CLP system. In the iterative version of the branch and bound algorithm,

once a successful derivation for G(X) is found, the corresponding solution X

0

is memorized, and another

derivation tree is developed for f(X) < f(X

0

) j G(X). When the derivation tree is �nitely failed, the last

memorized solution is optimal.
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[]

X0

G(X) . . .

. . .

f(X)<f(Xn-1) j G(X)

[]

Xn

f(X)<f(Xn) j G(X)

fail

When heuristic search techniques are used in combination with constraint propagation, the iterative

version of the branch and bound algorithm makes it possible to change the order in which goals are selected,

according to the new constraints added and to the heuristic. For this reason the iterative version can be

practically more e�cient.

5 The branch and bound algorithm lifted to the full �rst-order

setting with constructive negation

CSDLCN-resolution provides a complete procedure for general OCLP programs without the non-
oundering

assumption. Let us consider the goalmin(G(X); [ ]; f(X)): On a successful derivation ofG(X) with constraint

c

i

(X), constructive negation for the remaining goal

c

i

(X) j :p(X)

consists in developing a complete derivation tree for

c

i

(X); f(Y ) < f(X) j G(Y )

If c

i

(X) ^ d

0

(X;Y ); :::; c

i

(X) ^ d

k

(X;Y ) are the constraints associated to the successful derivations of this

tree, then the negative goal is successful if the constraint

8Y c

i

(X) ^:d

0

(X;Y ) ^ :::^ :d

k

(X;Y )

is satis�able

1

.

Therefore a complete derivation tree for G is developed for each successful derivation of G(X) not

satisfying that condition:

1

Note that if the structure is admissible [7] this condition is equivalent to a conjunction of existentiallyquanti�ed disjunctions

of conjunctions of admissible constraints.
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S

G(X) , not p(X)

j not p(X)j not p(X)

Success

f(Y)<f(X) j G(Y) f(Y)<f(X) j G(Y)

c0(X)

c0(X),

cn(X)

cn(X),

do(X,Y) dk(X,Y) eo(X,Y) el(X,Y)

Now the transformations described in the previous section can be applied in a similar fashion here in

order to generalize the branch and bound algorithm to a full �rst-order setting. For instance the iterative

version of the generalized branch and bound algorithm consists in �nding a successful derivation for G(X),

say with constraint c

0

(X), then iterate �nding a successful derivation for the goal

:9X

0

(c

0

(X

0

) ^ f(X

0

) � f(X))jG(X)

which is equivalent to

(8X

0

c

0

(X

0

) � f(X) < f(X

0

))jG(X):

Note that as the structure is a total order, the constraint (8X

0

c

0

(X

0

) � f(X) < f(X

0

)) is equivalent

to the constraint without universal quanti�er f(X) < k

0

where k

0

= min

c

0

(X

0

)

f(X

0

), when it exists. In

particular in CLP(R), linear programming algorithms permit to decide e�ciently the constraints involved in

that restricted form of constructive negation, without having to rely on the admissibility of the structure R

result [7] which is based on generally unpractical quanti�er elimination techniques.

The derivation trees developed in the iterative �rst-order branch and bound procedure are thus the

followings:
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G(X) . . .

. . .

f(X)<f(Xn-1)) j G(X)

8 Xn-1 (cn-1(Xn-1)� 8 Xn (cn(Xn)�

f(X)<f(Xn)) j G(X)

failc0(x0) j [] j []cn(Xn)

The procedure stops when the derivation tree is �nitely failed, in which case the last memorized solution,

say c

i

(X), is such that

P

�

^ th(A) j=

3

8X c

i

(X) � G(X)

P

�

^ th(A) j=

3

:9Y (8X c

i

(X) � f(Y ) < f(X))jG(Y )

that is

P

�

^ th(A) j=

3

8Y G(Y ) � (9X c

i

(X) ^ f(Y ) 6< f(X))

hence

c

i

(X) ^ 8Y :(c

i

(Y ) ^ f(Y ) < f(X))

is satis�able, and is an optimal solution.

In this way both algorithms 1 and 2 of the previous section can be generalized to a full �rst-order setting:

Algorithm 3 CLP-BB procedure with environment constraints.

1. compute one answer constraint c

n

(X); to min(e(X)jG(X); [ ]; f(X)) by using BB algorithm,

2. check by CSLDNF-resolution that e(X); c

n

(X

n

); f(X) < f(X

n

)jG(X) admits no successful derivation,

otherwise fail,

3. return c

n

(X), or if all solutions are needed, return the answers to e(X); c

n

(X

n

); f(X) = f(X

n

)jG(X)

computed by CSLDNF-resolution.

Algorithm 4 CLP-BB procedure without environment constraints.

1. compute one answer constraint c

n

(X) to min(G(X); [ ]; f(X)) by using BB algorithm,

2. return the solutions to e(X); c

n

(X

n

); f(X) = f(X

n

)jG(X) computed by CSLDNF-resolution.

6 Conclusion

Optimization higher-order predicates in CLP systems can be given a logical semantics based on the three-

valued consequences of logic programs with negation. We have shown that the well-known branch and bound

algorithms can be presented in this framework as speci�c optimizations of CSLDNF-resolution procedures.

Applying the same optimizations to CSLDCN-resolution, which is based on constructive negation, we ob-

tained a powerful generalization of the branch and bound algorithms to a full �rst-order setting, including

linear programming as a deterministic particular case.
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