
Concurrent Constraint Automata

Laurent Fribourg Marcos Veloso Peixoto

email: fribourg@dmi.ens.fr veloso@dmi.ens.fr

Laboratoire d`Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

45, rue d'Ulm, 75005 Paris - France

LIENS 93-10

May 1993

Abstract

We address the problem of the speci�cation and the proof of properties of concurrent systems

which manipulate an unbounded number of data. We propose an approach based on an extended

notion of automata, called \Concurrent Constraint Automata (CCA)". A CCA is an automaton

with constraints and synchronous communication. By automata with constraints, we mean a state

machine whose actions and states contain parameters that take their value in the set of natural

numbers.

With each transition is associated an arithmetic constraint that must be satis�ed by the the action

and states parameters for enabling the transition. The synchronous communication is realized by

means of a handshaking mechanism: two actions are executed simultaneously, their parameters

being equalized. Each CCA will be represented as a logic program with arithmetic constraints.

Using bottom-up evaluation techniques, we will show that, for a certain class of constraints, the

language inclusion problem is decidable: given two CCA AUT

1

and AUT

2

, it is possible to say

whether or not all the sequences of actions accepted by AUT

1

are accepted by AUT

2

. We show

how to apply this decidability result to prove properties of concurrent systems which manipulate

an unbounded number of data. Such properties cannot be proved (and not even speci�ed) within

the framework of �nite-state systems, such as CCS or CSP. On the other hand, we are not able to

address temporal issues, such as liveness or safety, within our framework. Our method can thus

be seen as complementary to the standard methods (e.g., model checking, bisimulation) that are

used for proving properties of concurrent systems.

0

1 Introduction

We are concerned with the problem of specifying concurrent systems and proving properties of

these speci�cations. One approach is to use process algebras, such as CCS [13] or CSP [9]. A

second approach is to use concurrent logic programming languages, such as Concurrent Prolog

[19] , or more generally concurrent constraint programming languages [18]. We propose here

another approach based on the notion of Concurrent Constraint Automata (CCA).

A CCA is an automaton with constraints and synchronous communication. By automata with

constraints, we mean a state machine whose actions and states are parameterized. The pa-

rameters take their values on the domain of constraints, viz. arithmetic. With each transition

is associated a constraint that must be satis�ed by the the action and states parameters for

enabling the transition. The synchronous communication is realized by means of a handshaking

mechanism: two actions are executed simultaneously, their parameters being equalized. Each

CCA will be represented as a logic program with arithmetic constraints. Using bottom-up eval-

uation techniques, we will show that, for a certain class of constraints, the language inclusion

problem is decidable: given two CCA AUT

1

and AUT

2

, it is possible to say whether or not all

the sequences of actions accepted by AUT

1

are accepted by AUT

2

.

CCA bear resemblance to concurrent constraint programming and to process algebras. As in

concurrent constraint programming, the communication is done by exchanging information that

takes its value over the domain constraint. An essential di�erence is that the communication is

done here synchronously by parameter passing, and not asynchronously through independent

update and query operations (see [1]). As process algebras, CCA are extended forms of �nite-

state machines. In contrast to transition systems, CCA contain parameters which are de�ned

over an in�nite domain. On the other hand the semantics that we consider here for CCA

are those used for automata (language equivalence), which are stronger than those used for

process algebras (observational equivalence) and cannot capture temporal notions such as safety

or liveness.

The plan of the paper is as follows:

In sections 2 and 3 we present some basic de�nitions and explain how to represent automata

by logic programs. In section 4 we de�ne generalized automata with arithmetic constraints. In

section 5 we de�ne the operations of intersection, shu�e product and completion of generalized

automata. Section 6 describes a method to solve the inclusion language problem. In section

7 we show that any generalized automaton is "equivalent\ to a deterministic automaton. In

section 8 we de�ne the operation of parallel composition of automata and we give an example

of application of automata operations, for specifying and proving properties of the alternating

bit protocol.

2 Automata

In this section, we recall some basic notions.

De�nition .1 Let � be a �nite set of actions and � a �nite set of states. An automaton is a

quadruple < �; s

0

;�;�>, where:

1

1. s

0

2 � is the initial state of the process

2. � is a subset of � � �� �

The fact that a triple (s

i

; a

k

; s

j

) belongs to � means that a transition from state s

i

to state s

j

can take place, executing action a

k

. This transition is denoted by s

i

a

k

7�! s

j

.

Our automata do not have an explicit set of �nal states. Any state is considered as �nal.

Let us assume that � contains r distinct actions, i.e. � = fa

1

; : : : ; a

r

g and that � contains

v + 1 distinct states, i.e. � = fs

0

; : : : ; s

v

g.

Given an automaton AUT = < �; s

0

;�;� >, the language recognized by AUT is de�ned by:

Rec(AUT) = f [a

k

1

; a

k

2

; : : : ; a

k

q

] = 9i

1

; : : : ; i

q

2 f0; : : : ; vg such that

s

0

a

k

1

7�! s

i

1

a

k

2

7�! : : :

a

k

q

7�! s

i

q

g

Example 1

Let us consider the automaton AUT

0

represented in �gure 1, with initial state s

0

.

0
s

1
s

a
1

a
2

Figure 1: Automaton AUT

0

We have:

Rec(AUT

0

) = f [] g [f [a

1

] g [f [a

1

; a

2

] g [f [a

1

; a

2

; a

1

] g [f [a

1

; a

2

; a

1

; a

2

] g [

f [a

1

; a

2

; a

1

; a

2

; a

1

] g [: : :

3 Logic Programs

Given an automaton, we want to �nd a logic program such that any sequence of actions rec-

ognized by the automaton corresponds to an answer for a certain goal, and vice-versa.

The construction of such a program is quite straightforward (see, e.g. [20]). Given an automa-

ton AUT =< �; s

0

;�;� >, the program �

AUT

is de�ned, using the binary predicate aut, as

follows:

aut([]; S)

n

aut([a

k

jL]; s

i

) aut(L; s

j

);

o

for all i; j; k such that (s

i

; a

k

; s

j

) 2 �

2

It is easy to see that given a list l of actions, the goal aut(l; s

0

) succeeds in �

AUT

i�

l 2 Rec(AUT).

As we will see later, for the application of our proof method, it is desirable that the initial state

appears in the base rule and not in the goal. Using magic sets techniques (see [2]; cf. [15]), we

transform the program �

AUT

into a program �

0

AUT

of the form:

aut

0

([]; s

0

)

n

aut

0

([a

k

jL]; s

j

) aut

0

(L; s

i

);

o

for all i; j; k such that (s

i

; a

k

; s

j

) 2 �

The goal aut

0

(l; S) succeeds in �

0

AUT

i� aut(l

rev

; s

0

) succeeds in �

AUT

(i.e. i� l

rev

2 Rec(AUT)). The expression l

rev

denotes the reverse list of l.

Example 2

Let us consider the automaton AUT

0

of example 1. This process can be represented by

the program �

0

AUT

0

:

aut

0

0

([]; s

0

)

aut

0

0

([a

1

jL]; s

1

) aut

0

0

(L; s

0

)

aut

0

0

([a

2

jL]; s

1

) aut

0

0

(L; s

0

)

The goal aut

0

0

([a

2

; a

1

; a

2

; a

1

]; S) succeeds in �

0

AUT

0

, which means that [a

2

; a

1

; a

2

; a

1

]

rev

(i.e. [a

1

; a

2

; a

1

; a

2

]) is a sequence of actions recognized by AUT

0

.

4 Generalized Automata with Arithmetic Constraints

In this section we generalize the notion of automata: both actions and states will contain

arithmetic parameters and transitions between states will be enabled only if certain arithmetic

constraints on these parameters are satis�ed.

The letters M , N and P (with possible subscripts or primes) will denote vectors of arithmetic

variables. The letter M will be used as an argument of actions, while N and P will be used

as arguments of states. The letters m, n and p will denote arithmetic values of the variables

M , N and P , respectively. The letter l will denote a ground list of actions of the form

[a

k

1

(m

1

); a

k

2

(m

2

); : : : ; a

k

q

(m

q

)]. We can assume, without any loss of generality, that all state

parameters have the same arity.

De�nition .2 Let � be a set of (parameterized) states and let � be a set of (parameterized)

actions. A generalized automaton with arithmetic constraints is a quadruple < �; s

0

;�;

b

� >,

where:

1. s

0

2 � is the initial state of the process

2.

b

� is a set of quadruples < s

i

; a

k

; s

j

; cond

i;k;j

>, where s

i

2 �, s

j

2 �, a

k

2 � and

cond

i;k;j

is an arithmetic relation.

3

The quadruple < s

i

; a

k

; s

j

; cond

i;k;j

> will be abbreviated as �

i;k;j

.

Informally, the fact that a quadruple < s

i

; a

k

; s

j

; cond

i;k;j

> is in

b

�means that a transition from

state s

i

(N) to state s

j

(P) executing action a

k

(M) is enabled when constraint cond

i;k;j

(N;M; P)

is satis�ed. This transition is represented by the diagram of �gure 2. The parameters M , N

and P are \local" variables to the transition.

a (M)
k

i,k,j
i

s (N)
j

s (P)
cond (N, M , P)

Figure 2: Transition diagram

Given a generalized automaton AUT = < �; s

0

;�;

b

� >, the language recognized by AUT is:

Rec(AUT) = f [a

k

1

(M

1

); a

k

2

(M

2

); : : : ; a

k

q

(M

q

)] = 9i

1

; : : : ; i

q

2 f 0; : : : ; v g such that

�

0;k

1

;i

1

; �

i

1

;k

2

;i

2

; : : : ; �

i

q�1

;k

q

;i

q

2

b

� and

9 N

0

; N

1

; : : : ; N

q

(cond

0;k

1

;i

1

(N

0

; M

1

; N

1

) ^ : : : ^ cond

i

q�1

;k

q

;i

q

(N

q�1

; M

q

; N

q

)) holdsg

With the generalized automaton AUT , we associate the following logic program �

AUT

:

aut([]; s

0

(N))

n

aut([a

k

(M)jL]; s

j

(P)) cond

i;k;j

(N;M; P); aut(L; s

i

(N))

o

for all i; j; k such that �

i;k;j

2

b

�

The domain of interpretation of the variables M , N and P of the program is the set of natural

numbers. The expression cond

i;k;j

(N;M; P) denotes an arithmetic constraint (see [10]).

Given a list l of actions, say [a

k

1

(m

1

); : : : ; a

k

q

(m

q

)] , it can be seen that the goal aut(l; S)

succeeds in �

AUT

i� the reverse list [a

k

q

(m

q

); : : : ; a

k

1

(m

1

)] belongs to Rec(AUT).

In the following, a generalized automaton AUT will be characterized by its associated logic

program �

AUT

. We will also depict an automaton by its transition diagram. In order to

account for the mechanism of \state" uni�cation, we will represent a transitions �

i;k;j

followed

by a transition �

i;k

0

;j

0
by:

j

a (M)
k

a (M)

i

i
s (N)

i cond (N , M , N)cond (N , M , N)
k’

k’

j
s (N)

j

i,k,j

’

’

j j’j,k’,j’

s (N)
j’j’

Figure 3: Composition of the transitions �

i;k;j

and �

i;k

0

;j

0

Note that an automata diagram (see, e.g., �gure 4) cannot account for the mechanism of

variable renaming that should take place whenever a state is reached for the second time

within a path.

4

Example 3

Let AUT

1

be the automaton represented by the program �

AUT

1

:

aut

1

([]; s

0

(N))

aut

1

([a

1

(M)jL]; s

1

(P)) M = N; aut

1

(L; s

0

(N))

aut

1

([a

2

(M)jL]; s

0

(P)) M = P; aut

1

(L; s

1

(N))

The recognized language is:

Rec(AUT

1

) = f [] g [f [a

1

(M)] g [f [a

1

(M); a

2

(M

0

)] g [

f [a

1

(M); a

2

(M

0

); a

1

(M

0

)] g [f [a

1

(M); a

2

(M

0

); a

1

(M

0

); a

2

(M

00

)] g [: : :

This automaton depicted on �gure 4. (Note thatN

0

, N

1

,M

1

andM

2

are \local" variables

to each transition.)

s (N)
0 0 1 1

s (N)

M = N, cond:a(M)

M = N, cond:

01 1

2

1

a(M)
2 2 0

Figure 4: Automaton AUT

1

The goal aut

1

([a

2

(5); a

1

(7); a

2

(7); a

2

(3)], for example, succeeds in �

AUT

1

, which means

that [a

2

(3); a

2

(7); a

1

(7); a

2

(5)] 2 Rec(AUT

1

).

5 Automata Basic Operations

In this section, we extend the classical operations of intersection and shu�e product (see, e.g.,

[5]) to generalized automata. We also de�ne an operation of completion of automata.

Let AUT and AUT

0

be two generalized automata de�ned respectively by < �; s

0

;�;

b

� > and

< �

0

; s

0

0

;�

0

;

b

�

0

>. We can assume that the set of states � and �

0

do not overlap (this can

always be achieved by renaming the states of one of them).

Let us recall that, for the sake of simplicity, < s

i

; a

k

; s

j

; cond

i;k;j

> is abbreviated as �

i;k;j

and

< s

0

i

0

; a

0

k

0

; s

0

j

0

; cond

i

0

;k

0

;j

0

> as �

0

i

0

;k

0

;j

0

.

The programs �

AUT

and �

AUT

0
associated with the automata AUT and AUT

0

are:

aut([]; s

0

(N))

n

aut([a

k

(M)jL]; s

j

(P)) cond

i;k;j

(N;M; P); aut(L; s

i

(N))

o

for all i; j; k such that �

i;k;j

2

b

�

aut

0

([]; s

0

0

(N

0

))

n

aut

0

([a

0

k

0

(M

0

)jL]; s

0

j

0

(P

0

)) cond

0

i

0

;k

0

;j

0

(N

0

;M

0

; P

0

); aut

0

(L; s

0

i

0

(P

0

)

o

for all i

0

; j

0

; k

0

such that �

0

i

0

;k

0

;j

0

2

b

�

0

5

5.1 Intersection

De�nition .3 The intersection automaton of AUT and AUT

0

is the generalized automaton

AUT

inter

characterized by the program:

aut

inter

([]; s

0

(N); s

0

0

(N

0

))

(

aut

inter

([a

k

(M)jL]; s

j

(P); s

0

j

0

(P

0

)) cond

i;k;j

(N;M; P); cond

0

i

0

;k

0

;j

0

(N

0

;M

0

; P

0

);

M =M

0

; aut

inter

(L; s

i

(N); s

0

i

0

(N

0

))

)

for all i; i

0

; k; k

0

; j; j

0

such that �

i;k;j

2

b

�; �

0

i

0

;k

0

;j

0

2

b

�

0

; a

k

= a

0

k

0

It can be easily proved:

Proposition .4 Rec(AUT

inter

) = Rec(AUT) \Rec(AUT

0

)

5.2 Shu�e-product

Given the two subsets A and A

0

of lists of actions, the shu�e product A tt A

0

denotes the set

of lists obtained by \interleaving" a list of action l of A with a list of action l

0

of A

0

.

De�nition .5 The shu�e product automaton of AUT and AUT

0

is the generalized automaton

AUT

shuffle

characterized by the program:

aut

shuffle

([]; s

0

(N); s

0

0

(N

0

))

(

aut

shuffle

([a

k

(M)jL]; s

j

(P); s

0

i

0

(N

0

)) cond

i;k;j

(N;M; P);

aut

shuffle

(L; s

i

(N); s

0

i

0

(N

0

))

)

for all i

0

and all i; k; j such that �

i;k;j

2

b

�

(

aut

shuffle

([a

0

k

0

(M

0

)jL]; s

i

(N); s

0

j

0

(P

0

)) cond

0

i

0

;k

0

;j

0

(N

0

;M

0

; P

0

);

aut

shuffle

(L; s

i

(N); s

0

i

0

(N

0

))

)

for all i and all i

0

; k

0

; j

0

such that �

0

i

0

;k

0

;j

0

2

b

�

0

It can be easily proved:

Proposition .6 Rec(AUT

shuffle

) = Rec(AUT) tt Rec(AUT

0

).

5.3 Completion

We want to construct an automaton that recognizes any list l of actions and that is able to

decide whether or not l is recognized by AUT .

In this section, we consider only deterministic automata: an automaton is deterministic i�, for

any action a

k

and any state s

i

, there is at most one transition labeled with a

k

which starts from

s

i

. This assumption does not entail any loss of generality, since any generalized automaton is

equivalent to a deterministic one (see section 7).

De�nition .7 The completed automaton of AUT is the generalized automaton AUT

comp

char-

acterized by the program:

6

aut

comp

([]; s

0

(N))

n

aut

comp

([a

k

(M)jL]; s

j

(P)) cond

i;k;j

(N;M; P); aut

comp

(L; s

i

(N))

o

for all i; k; j such that �

i;k;j

2

b

�

n

aut

comp

([a

k

(M)jL]; s

error

) (8 Q :cond

i;k;j

(N;M;Q)); aut

comp

(L; s

i

(N))

o

for all i; k such that: 9j(�

i;k;j

2

b

�)

1

n

aut

comp

([a

k

(M)jL]; s

error

) aut

comp

(L; s

i

(N))

o

for all i; k such that: 8j(�

i;k;j

62

b

�)

2

n

aut

comp

([a

k

(M)jL]; s

error

) aut

comp

(L; s

error

)

o

for all k

Note that the constraint 8 Q :cond

i;k;j

(N;M;Q) can always be replaced by an equivalent

quanti�er-free arithmetic expression (say cond

00

i;k;j

(N;M)) if cond

i;k;j

is a linear arithmetic

expression (i.e., contains only < = + 6= , but no �).

It can be easily proved:

Proposition .8 For any ground list l, any arithmetic vector n and any i 2 f 1; : : : ; v g:

� The goal aut

comp

(l; s

i

(n)) succeeds in �

comp

AUT

i� the goal aut(l; s

i

(n)) succeeds in

�

AUT

.

� The goal aut

comp

(l; s

error

) succeeds in �

comp

AUT

i� the goal aut(l; S) fails in �

AUT

.

It follows from proposition .8 that, as desired, the automata AUT

comp

is able to decide whether

or not a list l of actions is recognized by AUT .

5.4 An example of completed automaton

Consider the automaton AUT

2

characterized by program �

AUT

2

.

aut

2

([]; s

0

(N))

aut

2

([a

1

(M)jL]; s

1

(P)) M = P; aut

2

(L; s

0

(N))

aut

2

([a

2

(M)jL]; s

0

(P)) M = P; aut

2

(L; s

1

(N))

aut

2

([a

3

(M)jL]; s

1

(P)) M = N; aut

2

(L; s

1

(N))

This automaton is depicted on �gure 5.

The language recognized by AUT

2

is:

Rec(AUT

2

) = f [] g [f [a

1

(M)] g [f [a

1

(M); a

3

(M)] g [f [a

1

(M); a

2

(M

0

)] g [

f [a

1

(M); a

3

(M); a

2

(M

0

)] g [f [a

1

(M); a

2

(M

0

); a

1

(M

00

)] g [: : :

The program �

comp

AUT

2

associated with AUT

comp

2

is:

1

case where there is a (single) transition labeled with a

k

and starting from s

i

2

case where there is no transition labeled with a

k

and starting from s

i

7

s (N)
0 0 1 1

s (N)

M = N
1

, cond:a(M)
1 1 1

0
M = N, cond:a(M)

2 22

, cond: M = N
13

a(M)
33

Figure 5: Automaton AUT

2

aut

comp

2

([]; s

0

(N))

aut

comp

2

([a

1

(M)jL]; s

1

(P)) M = P; aut

comp

2

(L; s

0

(N))

aut

comp

2

([a

2

(M)jL]; s

0

(P)) M = P; aut

comp

2

(L; s

1

(N))

aut

comp

2

([a

3

(M)jL]; s

1

(P)) M = N; aut

comp

2

(L; s

1

(N))

aut

comp

2

([a

3

(M)jL]; s

error

) aut

comp

2

(L; s

0

(N))

aut

comp

2

([a

2

(M)jL]; s

error

) aut

comp

2

(L; s

0

(N))

aut

comp

2

([a

1

(M)jL]; s

error

) aut

comp

2

(L; s

1

(N))

aut

comp

2

([a

3

(M)jL]; s

error

) M 6= N; aut

comp

2

(L; s

1

(N))

aut

comp

2

([a

1

(M)jL]; s

error

) (8Q M 6= Q); aut

comp

2

(L; s

0

(N)) (�)

aut

comp

2

([a

2

(M)jL]; s

error

) (8Q M 6= Q); aut

comp

2

(L; s

1

(N)) (��)

aut

comp

2

([a

1

(M)jL]; s

error

) aut

comp

2

(L; s

error

)

aut

comp

2

([a

2

(M)jL]; s

error

) aut

comp

2

(L; s

error

)

aut

comp

2

([a

3

(M)jL]; s

error

) aut

comp

2

(L; s

error

)

Note that the constraints 8Q M 6= Q and 8Q M 6= Q in clauses (�) and (��) can be replaced

by \false". Hence these clauses can be removed.

The automaton AUT

comp

2

is depicted on �gure 6.

/

s (N)
0 0 1 1

s (N)

M = N
1

, cond:a(M)
1 1 1

a(M)
1 1

a(M)
2 2

0
M = N, cond:a(M)

2 22

, cond: M = N
13

a(M)
33

a(M)
33

a(M)
2 2

a(M)
1 1

a(M)
33

s
error

, cond: M = N
13

a(M)
33

Figure 6: Automaton aut

comp

2

The goal aut

comp

2

([a

2

(7); a

3

(5); a

1

(5)]; s

0

(0)) succeeds in �

comp

AUT

2

since

 aut

2

([a

2

(7); a

3

(5); a

1

(5)]; s

0

(0)) succeeds in �

AUT

2

.

8

The goal aut

comp

2

([a

2

(7); a

3

(5); a

1

(3)]; s

error

) succeeds in �

comp

AUT

2

since

 aut

2

([a

2

(7); a

3

(5); a

1

(3)]; S) fails in �

AUT

2

.

6 Language Inclusion Problem

In this section, we study the language inclusion problem for generalized automata with arith-

metic constraints, that is, given two generalized automata AUT and AUT

0

, decide whether or

not Rec(AUT) � Rec(AUT

0

).

From proposition .8 and the de�nition of the predicates aut and aut

0

, it follows:

Proposition .9 Given two generalized automata AUT and AUT

0

,

Rec(AUT) � Rec(AUT

0

) i� 8L 8S 8S

0

(aut(L; S) ^ aut

0

comp

(L; S

0

)) S

0

6= s

0

error

).

We now describe a method to decide the validity of:

aut(L; S) ^ aut

0

comp

(L; S

0

)) S

0

6= s

0

error

(� � �)

This is done following the steps below (cf. [6]):

1. Construct the program �

inter

associated with the intersection automaton of AUT and

AUT

0

comp

.

2. Construct the program �

0

inter

obtained removing the list argument L and the action

parameters M from the clauses of �

inter

.

3. Compute the output of the bottom-up evaluation process of program �

0

inter

.

The output of the bottom-up evaluation of �

0

inter

computed at step 3 is of the form

OUT

1

[OUT

2

, where:

OUT

1

=

S

i;j

i2f1;:::;vg

j2f1;:::;v

0

g

f (s

i

(N); s

0

j

(N

0

)) = '

i;j

(N;N

0

) holds g

OUT

2

=

S

i

i2f1;:::;vg

f (s

i

(N); s

0

error

) = �

i

(N) holds g

and '

i;j

and �

i

denote arithmetic formulas.

The formula (� � �) holds i� OUT

2

is empty.

The language inclusion problem is thus decidable when the bottom-up evaluation process of

step 3 terminates. This bottom-up evaluation is guaranteed to terminate when the arithmetic

constraints of AUT and AUT

0

contain just the symbols =; 6=; < (but neither + nor �): in

this case, the program �

0

inter

can be �nitely bottom-up evaluated using Revesz's Method [16].

Note that, even in the case where some arithmetic constraints in AUT and AUT

0

contain the

symbol +, it is sometimes possible to solve the inclusion problem, by using suitable bottom-up

evaluation techniques (see, e.g., [7] [11]).

9

Example 4

Consider the automatonAUT

1

depicted on the �gure 4 and the automatonAUT

2

depicted

on �gure 5. Our goal is to prove that Rec(AUT

1

) � Rec(AUT

2

).

The program �

comp

AUT

2

associated with AUT

comp

2

is given in subsection 5.4.

The next step consists in verifying if:

aut

1

(L; S) ^ aut

comp

2

(L; S

0

)) S

0

6= s

0

error

This is done following the steps 1, 2 and 3 described previously.

1. Construction of program�

inter

, resulting from the intersection ofAUT

1

andAUT

comp

2

.

(Note that the states s

i

and the parametersM

i

and N

i

of automaton AUT

comp

2

are

renamed as s

0

i

, M

0

i

and N

0

i

, respectively.)

aut

inter

([]; s

0

(N); s

0

0

(N

0

))

aut

inter

([a

1

(M)jL]; s

1

(P); s

0

1

(P

0

)) M =M

0

;M = N;M

0

= P

0

;

aut

inter

(L; s

0

(N); s

0

0

(N

0

))

aut

inter

([a

2

(M)jL]; s

0

(P); s

0

0

(P

0

)) M =M

0

;M = P;M

0

= P

0

;

aut

inter

(L; s

1

(N); s

0

1

(N

0

))

aut

inter

([a

2

(M)jL]; s

0

(P); s

0

error

) M =M

0

;M = P; aut

inter

(L; s

1

(N); s

0

0

(N

0

))

aut

inter

([a

1

(M)jL]; s

1

(P); s

0

error

) M =M

0

;M = N; aut

inter

(L; s

0

(N); s

0

1

(N

0

))

aut

inter

([a

1

(M)jL]; s

1

(P); s

0

error

) M =M

0

;M = N; aut

inter

(L; s

0

(N); s

0

error

)

aut

inter

([a

2

(M)jL]; s

0

(P); s

0

error

) M =M

0

;M = P; aut

inter

(L; s

1

(N); s

0

error

)

2. Elimination of the list variable L and the parameters M

i

from program �

inter

, thus

generating the program �

0

inter

:

aut

0

inter

(s

0

(N); s

0

0

(N

0

))

aut

0

inter

(s

1

(P); s

0

1

(P

0

)) N = P

0

; aut

0

inter

(s

0

(N); s

0

0

(N

0

))

aut

0

inter

(s

0

(P); s

0

0

(P

0

)) P = P

0

; aut

0

inter

(s

1

(N); s

0

1

(N

0

))

aut

0

inter

(s

0

(P); s

0

error

) aut

0

inter

(s

1

(N); s

0

0

(N

0

))

aut

0

inter

(s

1

(P); s

0

error

) aut

0

inter

(s

0

(N); s

0

1

(N

0

))

aut

0

inter

(s

1

(P); s

0

error

) aut

0

inter

(s

0

(N); s

0

error

)

aut

0

inter

(s

0

(P); s

0

error

) aut

0

inter

(s

1

(N); s

0

error

)

3. The output of the bottom-up evaluation can be computed by Revesz's method [16].

Here, we have:

OUT

1

= f (s

0

(N); s

0

0

(N

0

)) g [f (s

1

(N); s

0

1

(N

0

)) g

OUT

2

= ;

Since OUT

2

= ;, we have:

Rec(AUT

1

) � Rec(AUT

2

)

10

7 Deterministic automata

Given a generalized non-deterministic automaton AUT , we now show how to construct a

deterministic automatonAUT

det

such that AUT and AUT

det

recognize the same list of actions.

Let us recall that an automaton is deterministic i�, for any action a

k

and any state s

i

, there is

at most one transition labeled with a

k

which starts from s

i

.

Let �(i; k) be the set f j = �

i;k;j

2

b

� g. Intuitively, the set �(i; k) contains the indices of all

the states s

j

that are reached from state s

i

executing action a

k

. For a deterministic automaton

the set �(i; k) has at most one element, for any i and k.

The transformation is made by steps, where in each step, we merge all the states s

j

(if there is

more than one) that are reached from a selected state s

i

0

, executing a selected action a

k

0

.

More formally, in each step of our process we do the following:

1. Select i

0

and k

0

such that �(i

0

; k

0

) has more than one element, say r.

2. Transform the current automaton AUT into

g

AUT , de�ned by:

g

aut([]; s

0

(N))

g

aut([a

k

0

(M)jL]; s

w

(J; P))

_

j

�

i

0

;k

0

;j

2b�

(cond

i

0

;k

0

;j

(N;M; P) ^ J = j);

g

aut(L; s

i

0

(N))

n

g

aut([a

k

(M)jL]; s

j

(P)) cond

i;k;j

(N;M; P) ^ I = i;

g

aut(L; s

w

(I;N))

o

for all i; k; j such that �

i;k;j

2

b

�; �

i

0

;k

0

;i

2

b

� and �

i

0

;k

0

;j

62

b

�

n

g

aut([a

k

(M)jL]; s

w

(J; P)) cond

i;k;j

(N;M; P); ^ I = i ^ J = j;

g

aut(L; s

w

(I;N))

o

for all i; k; j such that �

i;k;j

2

b

�; �

i

0

;k

0

;i

2

b

� and �

i

0

;k

0

;j

2

b

�

n

g

aut([a

k

(M)jL]; s

w

(J; P)) cond

i;k;j

(N;M; P) ^ J = j;

g

aut(L; s

i

(N))

o

for all i; k; j such that �

i;k;j

2

b

�; �

i

0

;k

0

;i

62

b

� and �

i

0

;k

0

;j

2

b

�

n

g

aut
([a

k

(M)jL]; s

j

(P)) cond

i;k;j

(N;M; P);

g

aut
(L; s

i

(N))

o

for all i; k; j such that �

i;k;j

2

b

�; �

i

0

;k

0

;i

62

b

� and �

i

0

;k

0

;j

62

b

�

where w is a new state index and I and J are integer variables.

Since each step decreases the number of states (by r � 1) and since AUT has a �nite number

of states, this process is guaranteed to terminate and to generate a deterministic automaton

AUT

det

.

It can be easily proved:

Proposition .10 Rec(AUT) = Rec(AUT

det

)

11

Example 5

Consider the automaton AUT

3

represented by:

aut

3

([]; s

0

(N))

aut

3

([a

1

(M)jL]; s

1

(P)) M = P; aut

3

(L; s

0

(N))

aut

3

([a

1

(M)jL]; s

3

(P)) M = N; aut

3

(L; s

0

(N))

aut

3

([a

3

(M)jL]; s

3

(P)) M = N; aut

3

(L; s

1

(N))

aut

3

([a

2

(M)jL]; s

2

(P)) N = P; aut

3

(L; s

1

(N))

aut

3

([a

2

(M)jL]; s

4

(P)) M = P; aut

3

(L; s

3

(N))

aut

3

([a

1

(M)jL]; s

2

(P)) aut

3

(L; s

4

(N))

This automaton is depicted on �gure 7.

s (N)
0 0

s (N)
22

M = N, cond:a (M)
4

11
a (M)

1 1
s (N)

s (N)
3 3

M = N
1

, cond:
011

a (M)

M = N
1

, cond:
11

a (M)
1

M = N
1

, cond:
3

a (M)
3 3

4 4
s (N)

1
, cond:a (M) N = N

22 2

2 22

Figure 7: Automaton AUT

3

At the �rst step of our process, we generate the automaton

g

AUT

3

(depicted on �gure 8):

g

aut

3

([]; s

0

(N))

g

aut

3

([a

1

(M)jL]; s

5

(J; P)) (M = P ^ J = 1) _ (M = N ^ J = 3);

g

aut

3

(L; s

0

(N))

g

aut

3

([a

3

(M)jL]; s

5

(J; P)) M = N ^ I = 1 ^ J = 3;

g

aut

3

(L; s

5

(I;N))

g

aut

3

([a

2

(M)jL]; s

2

(P)) N = P ^ I = 1;

g

aut

3

(L; s

5

(I;N))

g

aut

3

([a

2

(M)jL]; s

4

(P)) M = P ^ I = 3;

g

aut

3

(L; s

5

(I;N))

g

aut

3

([a

1

(M)jL]; s

2

(P))

g

aut

3

(L; s

4

(N))

The next step generates the automaton

g

g

AUT

3

(depicted on �gure 9):

g

g

aut

3

([]; s

0

(N))

g

g

aut

3

([a

1

(M)jL]; s

5

(J; P)) (M = P ^ J = 1) _ (M = N ^ J = 3);

g

g

aut

3

(L; s

0

(N))

g

g

aut

3

([a

3

(M)jL]; s

5

(J; P)) M = N ^ I = 1 ^ J = 3;

g

g

aut

3

(L; s

5

(I;N))

g

g

aut

3

([a

2

(M

2

)jL]; s

6

(J; P)) (M = P ^ I = 3 ^ J = 4) _ (N = P ^ I = 1 ^ J = 2);

g

g

aut

3

(L; s

5

(I;N))

g

g

aut

3

([a

1

(M

1

)jL]; s

6

(J; P)) I = 4 ^ J = 2;

g

g

aut

3

(L; s

6

(I;N))

12

vI =1 J =3

s (N)
0 0

s (N)
22

22 11
a (M)

4 4
s (N)

1
, cond:a (M) N = N

2

v

22

M = N
1

, cond:
3

a (M)
3 3

v

, cond:
11

a (M)

M = N, cond:a (M)
42

5
s (I, N)

5

vI=3

I=1

5

5

55

(M = N I = 3)V
1 1

v
0

v(M = N I = 1)
5 5 5

5

Figure 8: Automaton

g

AUT

3

s (N)
0 0 , cond:a (M)

22
M = N v

2
N = N v v

v(

()

) V

11
a (M) , cond: v

5
s (I, N)

5 5

vI =1 J =3M = N
1

, cond:
3

a (M)
3 3

v

55

, cond:
11

a (M)

(M = N I = 3)V
1 1

v
0

v(M = N I = 1)
5 5 5

s (I, N)
6 6 6

6

5 6

I = 3

I = 1

J = 2

I = 4

I = 2
6

65

5

I = 4
6 6

Figure 9: Automaton

g

g

AUT

3

The automaton

g

g

AUT

3

is deterministic, so our process terminates after two iterations

(AUT

det

3

=

g

g

AUT

3

).

8 Parallel composition

An operation of parallel composition for generalized automata can be de�ned using a combi-

nation of the intersection and the shu�e product operations. (This is similar in spirit to what

is done in CSP [9].) Informally speaking, the parallel composition operation corresponds to

the intersection of automata for the transitions that we want to synchronize and corresponds

to the shu�e product otherwise.

Henceforth, we will assume that a special action � belongs to �. This action (called \silent

action") represents a spontaneous transition between states. We also assume that clauses of

the form aut([� jL]; s

i

(P)) N = P; aut(L; s

i

(N)) belong implicitly to the program �

AUT

.

We now explain how to perform the parallel composition of CCA on a typical example. (This

construction can be generalized without any problem.)

Let AUT and AUT

0

be de�ned by the following programs.

13

aut([]; s

0

(N))

aut([a

1

(M)jL]; s

1

(P)) M = P; aut(L; s

0

(N))

aut([a

2

(M)jL]; s

0

(P)) M = P; aut(L; s

1

(N))

aut

0

([]; s

0

0

(N

0

))

aut

0

([a

3

(M

0

)jL]; s

0

1

(P

0

)) M

0

= N

0

; aut

0

(L; s

0

0

(N

0

))

aut

0

([a

4

(M

0

)jL]; s

0

0

(P

0

)) aut

0

(L; s

0

1

(N

0

))

The automata AUT and AUT

0

are depicted on �gure 10.

, cond:a(M)

s (N)
0 0 1 1

s (N)

M = N
1

, cond:a(M)
1 1 1

M = N, cond:
02

a(M)
2 2

a(M)
44

s (N)
0 0 1 1

s (N)’ ’’ ’

3 3 0
’M = N

3

Figure 10: Automata AUT and AUT

0

Suppose we want to synchronize the transition associated with the action a

2

(M) of AUT with

the transition associated with the action a

3

(M

0

) of AUT

0

. The actions a

2

and a

3

must have

the same arity. First, we rename both actions a

2

(M) and a

3

(M

0

) as � . Then, we characterize

the parallel composition automaton AUT

paral

by the program:

aut

paral

([]; s

0

(N); s

0

0

(N

0

))

aut

paral

([a

1

(M)jL]; s

1

(P); s

0

0

(P

0

)) M = P; aut

paral

(L; s

0

(N); s

0

0

(N

0

))

aut

paral

([a

1

(M)jL]; s

1

(P); s

0

1

(P

0

)) M = P; aut

paral

(L; s

0

(N); s

0

1

(N

0

))

aut

paral

([a

4

(M)jL]; s

0

(P); s

0

0

(P

0

)) aut

paral

(L; s

0

(N); s

0

1

(N

0

))

aut

paral

([a

4

(M)jL]; s

1

(P); s

0

0

(P

0

)) aut

paral

(L; s

1

(N); s

0

1

(N

0

))

aut

paral

([� jL]; s

0

(P); s

0

1

(P

0

)) M = P; M

0

= N

0

; M =M

0

;

aut

paral

(L; s

1

(N); s

0

0

(N

0

))

The 2

nd

, 3

rd

, 4

th

and 5

th

clauses come from the program associated with the shu�e product of

AUT and AUT

0

, while the last clause comes from the program associated with the intersection

of AUT and AUT

0

, with the additional constraint M =M

0

.

The automaton AUT

paral

is depicted on �gure 11.

14

a(M)
44

M = N
1

, cond:a(M)
1 1 1M = N

02 0
’M = N

3
V V

2
M = M

3

M = N
1

, cond:a(M)
1 1 1

a(M)
44

s (N)
0 0

s (N)
0 0
’ ’

s (N)

s (N)
0 0
’ ’

s (N)
1 1

00
s (N)

1 1
s (N)’ ’

1 1
s (N)’ ’

, cond:

1 1

Figure 11: Automaton AUT

paral

9 The Alternating Bit Protocol

In this section, we apply the operation of parallel composition of automata for specifying the

Alternating Bit Protocol and we explain how to use the decision procedure of section 6 to prove

properties of this protocol. The description of this protocol is taken from [8]. (Apart from

some minor di�erences.)

The Alternating Bit Protocol is a process composed of four entities: SENDER,RECEIVER,

MEDIUM

1

and MEDIUM

2

.Each of these entities can be characterized by a generalized au-

tomaton. The table below (see [8]) gives the possible actions executed shared by them.

Actions From To Description

put(M) environment SENDER getting a message from the environment

send(M;B) SENDER MEDIUM

1

transmission of a message

rdt(M;B) MEDIUM

1

RECEIVER re-transmission of a message

rdte MEDIUM

1

RECEIVER loss of a message

get(M) RECEIVER environment sending a message to the environment

sack(B) MEDIUM

2

SENDER transmission of a bit control

sacke MEDIUM

2

SENDER loss of the bit control

rack(M) RECEIVER MEDIUM

1

re-transmission of a bit control

The alternating bit protocol can be regarded as the result of the parallel communication of

the entities SENDER,RECEIVER ,MEDIUM

1

andMEDIUM

2

, as represented on �gure

12(see [8]).

15

SENDER RECEIVER

MEDIUM1

2
MEDIUM

put

sack
sacke

rack

send
rdt

rdte get

Figure 12: Alternating Bit Protocol

9.1 Process SENDER

The SENDER process receives a message (via put), and transmits this message after adding

to it a control bit B (via send). This bit control is initialized with the value 0 and has it value

changed before each action put.

The SENDER process receives a message (via put), and transmits that message after adding

to it a control bit B (via send). This bit control is initialized with the value 0 and has it value

changed before each action put.

The SENDER re-sends a message if one of the following situations:

� The SENDER receives a noti�cation of loss of the message sacke.

� After a certain amount of time without any action (which is represented by a silent

action �), the SENDER spontaneously re-send the message to prevent the occurrence

of a deadlock.

We represent this process by the logic program �

sender

:

aut

sender

([]; initsend(0))

aut

sender

([put(M)jL]; readysend(M;B)) aut

sender

(L; initsend(B))

aut

sender

([send(M;B)jL]; readysack(M;B)) aut

sender

(L; readysend(M;B))

aut

sender

([sack(1)jL]; readysack(M; 0)) aut

sender

(L; readysack(M; 0))

aut

sender

([sack(0)jL]; readysack(M; 1)) aut

sender

(L; readysack(M; 1))

aut

sender

([sackejL]; readysend(M;B)) aut

sender

(L; readysack(M;B))

aut

sender

([� jL]; readysend(M;B)) aut

sender

(L; readysack(M;B))

aut

sender

([sack(0)jL]; initsend(1)) aut

sender

(L; readysack(N; 0))

aut

sender

([sack(1)jL]; initsend(0)) aut

sender

(L; readysack(N; 1))

Note that, for the sake of conciseness, the form of the clauses of program �

sender

has been

slightly simpli�ed. For example, the clause:

aut

sender

([put(M)jL]; readysend(M

0

; B)) M =M

0

; B = B

0

; aut

sender

(L; initsend(B

0

))

has been written as:

aut

sender

([put(M)jL]; readysend(M;B)) aut

sender

(L; initsend(B))

The automaton AUT

sender

is depicted on �gure 13.

16

readysend(B,M)readysack(B,M)

send(M,B)

sack(notB)

initsend(B ’)
B’ = 0

sack(B), cond: B=not(B’) put(M), cond: B’=B

sacke

Figure 13: Process SENDER

9.2 Process MEDIUM

1

The MEDIUM

1

process receives a message (via send) with a control bit B. Then, it can

behave in three di�erent ways:

� Re-send the message and the control bit, without changing their values. In this case, the

action rdt(M;B) is executed.

� Lose the message and send a noti�cation accusing this lost. In this case, the action rdte

is executed.

� Lose the message without sending any noti�cation. This corresponds to the silent action

� .

We represent this process by the logic program �

MEDIUM

1

:

medium

1

([]; initm1)

medium

1

([send(M;B)jL]; finalm1(M;B)) medium

1

(L; initm1)

medium

1

([rdt(M;B)jL]; initm1) medium

1

(L; finalm1(M;B))

medium

1

([rdtejL]; initm1) medium

1

(L; finalm1(M;B))

medium

1

([� jL]; initm1) medium

1

(L; finalm1(M;B))

The automaton AUT

medium

1

is depicted on �gure 14.

initm1

sacke

rdt(M,B)

sdt(M,B) finalm1
 (M,B)

Figure 14: Process MEDIUM

1

17

9.3 Process Medium

2

The behaviour of MEDIUM

2

is analogous to the behaviour of MEDIUM

1

. The only di�er-

ence is the name of the actions that are executed.

We represent this process by the program �

MEDIUM

2

:

medium

2

([]; initm2)

medium

2

([rack(B)jL]; finalm2(B)) medium

2

(L; initm2)

medium

2

([sackejL]; initm2) medium

2

(L; finalm2(B))

medium

2

([� jL]; initm2) medium

2

(L; finalm2(B))

The automaton AUT

medium

2

is depicted on �gure 15.

initm2
rack(B)

sack(B)

sacke

finalm2(B)

Figure 15: Process MEDIUM

2

9.4 Process RECEIV ER

The RECEIVER process behaves in the following ways:

� If it receives a message (via rdt), with a correct control bit B, this message is transmitted

to the environment (via get) and a bit control is re-send with value B (via rack) .

� If it receives a message (via rdt), with a incorrect bit B, the receiver waits for another

message to be received.

� If a message lost takes place (via rdte), a noti�cation of message lost is omited (via rack).

� In order to avoid deadlocks, after a certain amount of time (represented by a silent action

�), a noti�cation of message lost is omited by the RECEIVER (via rack).

We represent this process by the program �

RECEIV ER

:

receiver([]; initreceive(B))

receiver([rdt(M;B)jL]; readyget(M;B)) receiver(L; initreceive(B))

receiver([get(M)jL]; readyrackcorrect(B)) receiver(L; readyget(M;B))

receiver([rack(0)jL]; initreceive(1)) receiver(L; readyrackcorrect(0))

receiver([rack(1)jL]; initreceive(0)) receiver(L; readyrackcorrect(1))

receiver([rdt(N; 1)jL]; initreceive(0)) receiver(L; initreceive(0))

receiver([rdt(N; 0)jL]; initreceive(1)) receiver(L; initreceive(1))

receiver([rdtejL]; readyrackincorrect(B)) receiver(L; initreceive(B))

18

receiver([� jL]; initreceive(B)) receiver(L; readyrack(B))

receiver([rack(1)jL]; initreceive(0)) receiver(L; readyrackincorrect(0))

receiver([rack(0)jL]; initreceive(1)) receiver(L; readyrackincorrect(1))

The automaton AUT

receiver

is depicted on �gure 16.

readyrackcorrect

readyrackincorrect

readyget

initreceive

B, M
B

B

B
rdt(M,B) get(M)

rdt

rack(notB)

rdt(M,B)

rack(B)

Figure 16: Process RECEIVER

9.5 Parallel Composition

The generalized automaton AUT

bit

associated with the Alternating Bit Protocol is obtained

by applying the operation of parallel composition to the automata associated with SENDER,

RECEIVER, MEDIUM

1

and MEDIUM

2

. (The synchronized actions are those which are

shared by these entities (see �gure 12).

Applying the parallel operation to the programs that characterize those four processes, we

generate the program �

bit

:

bit([]; initsend(0); initm1; initreceive(0); initm2)

bit([put(M)jL]; readysend(M;B); Q;R; S) bit(L; initsend(B); Q;R; S)

bit([� jL]; readysack(M; 0); Q;R; initm2) bit(L; readysack(M; 0); Q;R; finalm2(1))

bit([� jL]; readysack(M; 1); Q;R; initm2) bit(L; readysack(M; 1); Q;R; finalm2(0))

bit([� jL]; readysend(M;B); Q;R; initm2) bit(L; readysack(M;B); Q;R; finalm2(B1))

bit([� jL]; initsend(1); Q;R; initm2) bit(L; readysack(M; 0); Q;R; finalm2(0))

bit([� jL]; initsend(0); Q;R; initm2) bit(L; readysack(M; 1); Q;R; finalm2(1))

bit([� jL]; P; initm1; readyget(M;B); S) bit(L;P; finalm1(M;B); initreceive(B); S)

bit([� jL]; P; initm1; initreceive(0); S) bit(L;P; finalm1(M; 1); initreceive(0); S)

bit([� jL]; P; initm1; initreceive(1); S) bit(L;P; finalm1(M; 0); initreceive(1); S)

bit([� jL]; P; initm1; readyrackincorrect(B); S) bit(L;P; finalm1(M;B1); initreceive(B); S)

bit([get(M)jL]; P;Q; readyrackcorrect(B); S) bit(L;P;Q; readyget(M;B); S)

bit([� jL]; P;Q; initreceive(1); finalm2(0)) bit(L;P;Q; readyrackcorrect(0); initm2)

bit([� jL]; P;Q; initreceive(0); finalm2(1)) bit(L;P;Q; readyrackcorrect(1); initm2)

bit([� jL]; P;Q; initreceive(0); finalm2(1)) bit(L;P;Q; readyrackincorrect(0); initm2)

bit([� jL]; P;Q; initreceive(1); finalm2(0)) bit(L;P;Q; readyrackincorrect(1); initm2)

bit([� jL]; P; initm1; R; S) bit(L;P; finalm1(M;B1); R; S)

bit([� jL]; readysend(M;B); Q;R; S) bit(L; readysack(M;B); Q;R; S)

bit([� jL]; P;Q;R; initm2) bit(L;P;Q;R; finalm2(B1))

bit([� jL]; P;Q; readyrackincorrect(B); S) bit(L;P;Q; initreceive(B); S)

19

bit([� jL]; readysack(M;B); finalm1(M;B); R; S) bit(L; readysend(M;B); initm1; R; S)

Let us now explain how to apply the decision procedure of section 6 for proving functional

properties of processes. Consider, for example, the property (l):

Within a list of actions l, it is impossible to have one action

put(m

1

) followed by one action get(m

2

), if m

1

6= m

2

.

It is easy to construct an automaton AUT

such that:

l 2 Rec(AUT

) , (l)

This automaton is depicted on �gure 17 and is characterized by the program:

aut

([]; N)

aut

([put(M)jL]; s

1

(P)) M = P; aut

(L; s

0

(N))

aut

([get(M)jL]; s

0

(P)) M = N; aut

(L; s

1

(N))

aut

([� jL]; s

1

(P)) aut

(L; s

1

(N))

aut

([get(M)jL]; s

0

(P)) aut

(L; s

0

(N))

aut

([� jL]; s

0

(P)) aut

(L; s

0

(N))

s (N)
0 0 1 1

s (N)

M = N
1

, cond:

1

1 1

M = N, cond:
2 2

put(M)

get(M)get(M)
2

Figure 17: Property

The veri�cation that any sequence of actions executed by the Alternating Bit Protocol satis�es

 reduces to the veri�cation that AUT

bit

� AUT

. This can be done using the procedure of

section 6.

10 Conclusion

We have presented an automata-based approach for specifying processes that manipulate ob-

jects de�ned over in�nite domains. We have shown how to model the parallel composition of

such processes and how to prove their functional properties: for example, we have explained

how to prove that, in the alternating bit protocol, the message received at one side coincides

with the message emitted at the other side. Such properties cannot be proved (and not even

speci�ed) within the framework of process algebras or �nite-state systems. This explains why

standard correctness proofs of protocols disregard the problems involving an unbounded num-

ber of data.

Wolper has shown, that under the assumption of \data-independence", a functional property

over an in�nite domain can be reduced to a property over a �nite domain [21]: the property

20

can then be proved using standard techniques, such as model checking [4] [14] [17] or bisimula-

tion [13]. This data-independence assumption holds in the case of the alternating bit protocol,

but not for more realistic protocols. In contrast, our method can be applied even when the

protocol is data-dependent (e.g., in the case of a \sliding window" protocol, where the win-

dow size is a parameter instead of a given constant). On the other hand, we are not able to

address temporal issues, such as liveness or safety, within our framework. Our method can

thus be seen as complementary to the standard methods used for proving concurrent systems

properties. A possible extension to our theory consists in considering tree automata (cf.[3] [12]).

Acknowledgements: We would like to thank Hubert Garavel, Klaus Havelund and Michel

Boyer for many helpful discussions.

References

[1] F.S. de Boer, J.N. Kok, C. Palamidessi and J.J.M.M. Rutten. \A Paradigm for Asyn-

chronous Communication and its Application to Concurrent Constraint Programming",

Logic Programming Languages: Constraints, Functions and Objects, K.R. Apt, J.W. de

Bakker and J.J.M.M Rutten, eds., the MIT Press, chapter 4, pp. 82-114.

[2] F. Bancilhon, D. Maier, Y. Sagiv and J.D. Ullman. \Magic Sets and Other Strange Ways

to Implement Logic Programs", Proc. ACM Symp. on Principles of Databases Systems,

Boston, 1986, pp. 1-15.

[3] A.C. Caron, J.L.Coquide and M. Dauchet. \Encompassment Properties and Automata

with Constraints", To appear in Proc. 5th Conf. on Rewriting Techniques and Applications,

Montreal, June, 1993.

[4] E.M. Clarke, E.A. Emerson and A.P. Sistla. \Automatic Veri�cation of Finite State Con-

current Systems Using Temporal Logic Speci�cations: A Practical Approach", Proc. 10th

ACM Symp. on Principles of Programming Languages, Austin, 1984, pp. 117-126.

[5] S. Eilenberg. Automata, Languages and Machines, Academic Press, 1974.

[6] L. Fribourg. \Mixing List Recursion and Arithmetic", Proc. 7th IEEE Symp. on Logic in

Computer Science, Santa Cruz, 1991, pp. 419-429.

[7] L. Fribourg and M. Veloso Peixoto. \Bottom-up Evaluation of Datalog Programs with

Arithmetic Constraints", Technical Report LIENS 92-13, Ecole Normale Sup�erieur, June

1992.

[8] H. Garavel and D. Pilaud. Description et Applications du Language LOTOS, Notes de

cours 3

�eme

ann�ee, ENSIMAG.

[9] C. A. R. Hoare. Communicating Sequencial Processes, Prentice-Hall Intl., 1985.

[10] J. Ja�ar and J.L. Lassez. \Constraint Logic Programming", Proc. 14th ACM Symp. on

Principles of Programming Languages, 1987, pp. 111-119.

21

[11] F. Kabanza, J. M. Stevenne and P. Wolper. \Handling In�nite Temporal Data", Proc. 9th

ACM Symp. on Principles of Database Systems,Nashville, 1990, pp. 392-403.

[12] D. Lugiez and J-L.Moysset. \Tree Automata Help Solve Equational Formulae in AC-

Theories", Technical Report CRIN 93-RR-044, Centre de Recherche en Informatique de

Nancy, April 1993.

[13] R. Milner. Calculus of Communicating Systems, Lecture Notes in Computer Science 92,

Springer-Verlag, New-York, 1980.

[14] J. Queille and J. Sifakis. \Speci�cation and Veri�cation of Concurrent Systems in CESAR",

Proc. 5th Int. Symp. in Programming, Lecture Notes in Computer Science 137, Springer-

Verlag, 1981.

[15] R. Ramakrishnan. \Parallelism in Logic Programs", Proc. 17th ACM Symp. on Principles

of Programming Languages, New York, 1990, pp. 246-260.

[16] P. Revesz. \A Closed Form For Datalog Queries with Integer Order", Proc. Int. Conf. on

Database Theory, Lecture Notes in Computer Science 470, 1990, pp. 187-201

[17] J.L. Richier, C. Rodriguez, J. Sifakis and J. Voiron. \Veri�cation in XESAR of the Sliding

Window Protocol", IFIP WG-6.1 Proc. 7th Int. Conf. on Protocol Speci�cation, Testing

and Veri�cation, Amsterdam: North Holland, 1987.

[18] V.A. Saraswat and M. Rinard. \Concurrent Constraint Programming", Proc. 17th ACM

Symp. on Principles of Programming Languages, New York, 1990, pp. 232-245.

[19] E.Y. Shapiro. \The Family of Concurrent Logic Programming Languages", ACM Com-

puting Surveys 21(3), 1989, pp. 412-450.

[20] L. Sterling and E.Y. Shapiro. The Art of Prolog: Advanced Programming Techniques, The

MIT Press, 1986

[21] P. Wolper. \Expressing Interesting Properties of Programs in Propositional Temporal

Logic", Proc. 13th ACM Symp. on Principles of Programming Languages, 1986, pp. 184-

193.

22

