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Abstract

It is shown here that every L-polytope of an even unimodular lattice

does not generate the lattice.

It is given here the corrected formulation of a previous result of

the author [3] on relations between extreme L-polytopes and perfect

lattices. We prove here the following special case. If the square radius

of the circumscribing sphere of an extreme L-polytope P of a lattice

L is less than the minimal norm m of L, then the m-extension of P

generates a perfect lattice.

1 Introduction

Recall some notions of integral lattices and L-polytopes. Details see in [1].

An L-polytope of a lattice L is the convex hull of all lattice points lying

on an empty sphere. An empty sphere in a lattice L of dimension n is such a

sphere that there is no lattice point inside the sphere, and the lattice points

lying on the sphere a�nely generate the n-dimensional space.

We call the radius of the empty sphere a radius of the inscribed L-

polytope.

Let P be an L-polytope of a lattice L. We take the center of the empty

sphere circumscribing the polytope P as the origin. Let V = V (P ) be the

�
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set of vertices of P , and let v 2 V (P ) be the vector with endpoint in the

vertex v. If r is the radius of P , then v

2

= r

2

for all v 2 V .

Every point w of the lattice L(P ) a�nely generated by vertices of the

L-polytope P has the form

w =

X

v2V

z

v

v with

X

v2V

z

v

= 1; z

v

2 Z: (1)

Clearly, L(P ) � L. If L(P ) = L, then the L-polytope P is called generating.

If P has dimension n, and there are n + 1 a�nely independent vectors

v

0

; v

1

; :::; v

n

2 V such that any point w 2 L(P ) is represented by the vectors,

i.e. w =

P

n

0

z

i

v

i

, and

P

n

o

z

i

= 1, then fv

0

; v

1

; :::; v

n

g is an a�ne basis of

L(P ). In the case the L-polytope P is called basic. It is not proved that

each L-polytope is basic. But examples of nonbasic L-polytopes are not

known, and all L-polytopes of dimension � 5 are basic.

If v

0

2 V , then the lattice L(P ) is linearly generated by the vectors v�v

0

,

v 2 V . The vectors of the form v � v

0

are called lattice vectors.

A minimal set of lattice vectors of a lattice L linearly generating L is

called a basis of L. If dimension of L is n, then every basis of L contains n

vectors.

Let B = fb

1

; :::; b

n

g be a basis of an n-dimensional lattice L. Then

every lattice vector a of L is uniquely represented by the basis B as follows:

a =

P

n

1

z

i

b

i

with integral z

i

.

A lattice L is called integral if the inner product (a

1

; a

2

) of any two lattice

vectors a

1

; a

2

2 L is an integer.

For a 2 L, the number a

2

� (a; a) is the norm of the vector a. If the

norms of all vectors of an integral lattice are even, then the lattice is called

even. So, an even lattice is integral.

Another way to represent a lattice L is to give a quadratic form repre-

senting norms of lattice vectors. If a =

P

n

1

z

i

b

i

, then

a

2

=

X

1�i�j�n

b

ij

z

i

z

j

= z

T

Bz;

where B = (b

ij

) = ((b

i

; b

j

)) is the Gram matrix of the vectors b

i

. The

determinant of the matrix B, detB, does not depend on the basis B of the

lattice L, and is denoted by detL.

A lattice L is called perfect if L is uniquely determined by vectors of

minimal norm m. Let M(L) = fa =

P

n

1

b

i

z

a

i

2 L : a

2

= mg be the set of all

minimal vectors of L. If L is perfect, then the system of linear equations

X

1�i�j�n

b

ij

z

a

i

z

a

j

= m; a 2 M(L) (2)
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with the set of n(n+1)=2 unknowns b

ij

, 1 � i � j � n, has rank n(n+1)=2.

A dual L

�

of a lattice L is the set of all vectors c such that (c; a) is an

integer for all a 2 L. If L is integral, then L � L

�

, and detL

�

= (detL)

�1

.

A lattice is called unimodular if detL = 1. An integral lattice is unimod-

ular if and only if L = L

�

.

An even unimodular lattice exists only for dimension which is a multiple

of 8. There are one 8-dimensional even unimodular lattice, the root lattice

E

8

, two lattices of dimension 16, and 24 lattices of dimension 24, one of which

is the famous Leech lattice. There are more than 8:10

7

even unimodular

lattices of dimension 32.

The distance space (V; d) (where d(u; v) = (u � v)

2

is the squared Eu-

clidean distance between vertices of an L-polytope P ) is hypermetric, i.e. it

satis�es all hypermetric inequalities

X

u;v2V

z

u

z

v

d(u; v) � 0 for all integral z

v

such that

X

v2V

z

v

= 1:

The inequality is an expansion of the condition w

2

� r

2

for w given by ( 1).

A t-extension of the distance space (V; d) is the distance space(V [fwg; d)

such that d(w; v) = t for all v 2 V . If V = V (P ), we say that we have a

t-extension of P .

Let P be a basic L-polytope with the a�ne basis fv

0

; v

1

; :::; v

n

g. Every

vertex v 2 V (P ) is represented in the basis as follows: v =

P

n

0

z

v

i

v

i

with

integral z

v

i

and

P

n

0

z

v

i

= 1. The L-polytope P is called extreme if the system

of linear equations

X

0�i<j�n

d(v

i

; v

j

)z

v

i

z

v

j

= 0; v 2 V (P ) (3)

with the set of n(n + 1)=2 unknowns d(v

i

; v

j

), 0 � i < j � n, has rank

n(n + 1)=2� 1.

An extreme L-polytope generates in a sence extreme rays of the cone

Hyp

n

of all hypermetrics on n points (for details, see [1]). Hyp

n

has non-

trivial extreme rays (=extreme rays distinct from cut rays) only for n � 7.

Since L-polytopes of dimension n � 5 are basic, and extreme rays of Hyp

n

for n � 6 are trivial (Hyp

n

coincides with the cut cone for n � 6), extreme

L-polytopes exist for dimension � 6, only.

In low dimensions, there are known only two nontrivial extreme L-

polytopes:

a) the 6-dimensional asymmetric Schl�ai polytope with 27 vertices, and
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b) the 7-dimensional symmetric Gosset polytope with 56 vertices.

The extremality of the Schl�ai and the Gosset polytopes is proved in

[1], see also [2].

2 L-polytopes of an even unimodular lattice

In this section we prove the following

Theorem 2.1. Every L-polytope of an even unimodular lattice is not

generating.

The theorem is a corollary of the following

Lemma 2.2. Let P be a generating L-polytope of an even lattice L.

Then the center of the polytope P belongs to the dual lattice L

�

.

Proof. Let the origin be in the center of P . Let V be the set of vertices

of P , and let v

0

2 V . By de�nition, v

2

= r

2

for all v 2 V where r is the

radius of P .

Since L is even, the norm of the lattice vector v � v

0

,

(v � v

0

)

2

= v

2

� 2(v; v

0

) + v

2

0

= 2(r

2

� (v; v

0

));

is an even integer for every v 2 V . In other words

r

2

� (v; v

0

) = an integer for all v 2 V:

Consider the vector v

0

, and show that the vector belongs to the dual lattice

L

�

. In fact, we have

�(v

0

; v � v

0

) = v

2

0

� (v; v

0

) = r

2

� (v; v

0

) = an integer:

Since P is generating, the vectors v � v

0

, for v 2 V , linearly generate the

lattice L. Hence (v

0

; a) is an integer for every a 2 L, i.e. v

0

2 L

�

. Since

endpoints of v

0

are points of L, and the vector v

0

belongs to L

�

, the center

of P , which is one of the endpoints of the vector v

0

, belongs to L

�

. 2

3 Extreme L-polytopes and perfect lattices

It is given in [3] a theorem which is slightly not correct. I give here the

correct formulation.

Theorem 3.1. (Proposition 10 of [3]) Let (V; d) be an extreme hyper-

metric space generating a lattice L

0

. Let r be radius of the circumscribing
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sphere, and r

2

� t. Let w be an extension point of an t-extension of (V; d).

Then the lattice L a�nely generated by V and w is t-perfect if there are

v; v

0

2 V such that d(v; v

0

) = t.

If t of Theorem 3.1 is minimal norm of the lattice L, then L is perfect.

But we cannot demand in the formulation of Theorem 3.1 that t is minimal

norm of L.

If t is minimal norm of the lattice L(P ) = L

0

, and t > r

2

, then one can

prove that t is minimal norm of the lattice L, too. Below, we reformulate

Theorem 3.1 for t equal to minimal norm of L(P ) as Theorem 3.2. The

given proof is in essential the same as the proof of Theorem 3.1 given in [3].

If t is minimal norm of the lattice L(P ), and t = r

2

, then we cannot

prove that t is minimal norm of the lattice L. In the case, we demand in

Theorem 3.3 that t is minimal norm of the lattice L (not of L(P )). But now,

there is no necessity in condition that t is a distance between two points of

V . In fact, in many cases t is less than minimal norm of L(P ).

Theorem 3.2. Let P be an extreme L-polytope generating a lattice L(P )

of minimal norm m, and there are v; v

0

2 V (P ) with d(v; v

0

) = m. If the

squared radius of P is less than m, then the m-extension of P generates a

perfect lattice.

Proof. Let w be the extension point of P . Let fv

0

; v

1

; :::; v

n

g be an

a�ne basis of L(P ), v

i

2 V (P ). Let r be radius of P . Recall that the origin

is in the center of the sphere.

Since r

2

< m, the point w does not lie in the n-dimensional space spanned

by P .

If we set b

i

= v

i

� w; 0 � i � n, then fb

0

; b

1

; :::; b

n

g is a basis of the

(n+1)-dimensional lattice L generated by w and V .

The lattice L is composed of n-dimensional layers isomorphic to L(P ).

The minimal norm of L is m. In fact, if there is a vector a

0

2 L of norm

less than m, then its endpoints lie in di�erent (and neighbouring) layers.

W.l.o.g. we can suppose that w is one of endpoints of a

0

, and the other

endpoint lies in the space spanned by L(P ). Since a

2

0

< m, the endpoint of

a

0

lies inside the sphere circumscribing P . This contradicts to that P is an

L-polytope of the lattice L(P ), and L(P ) is a layer of L.

Let v =

P

n

0

z

v

i

v

i

,

P

n

0

z

v

i

= 1, be the representation of a point v 2 V in

the a�ne basis fv

0

; :::; v

n

g. Then the lattice vector a

v

= v�w of the lattice

L has the following representation in the basis fb

0

; :::; b

n

g

a

v

=

n

X

0

z

v

i

b

i

:
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Note that

d(v

i

; v

j

) = (v

i

� v

j

)

2

= ((v

i

�w)� (v

j

�w))

2

= (b

i

� b

j

) = b

2

i

+ b

2

j

� 2(b

i

; b

j

):

Since d(v

i

; w) = b

2

i

= m, we obtain that d(v

i

; v

j

) and the coe�cients b

ij

of

the Gram matrix B are related as follows

d(v

i

; v

j

) = 2(m� b

ij

); 0 � i � j � n: (4)

Since d(v

i

; v

i

) = 0, we can use the equations ( 3) with i = j in the sum.

Substituting ( 4) in such transformed ( 3) and using the equality

P

n

0

z

v

i

= 1,

we obtain

X

0�i�j�n

z

v

i

z

v

j

b

ij

= m: (5)

Note that this equality is the expansion of the condition that each vector a

v

,

v 2 V , having the representation a

v

=

P

z

v

i

b

i

has the norm m. For v = v

i

,

the corresponding equation of ( 5) is the equalitiy b

2

i

= m.

If the polytope P is extreme, then the system of equations ( 3) determines

uniquely (up to positive multiple) the distances d(v

i

; v

j

).

The equality d(v; v

0

) = m determines the multiple. In fact, the vector

v�v

0

is a lattice vector of the lattice L. Hence it has representation v�v

0

=

P

n

0

z

i

b

i

in the basis fb

0

; :::; b

n

g. Since the vector v � v

0

has minimal norm,

we obtain an additional equation of the type ( 5):

X

0�i�j�n

z

i

z

j

b

ij

= m: (6)

This implies that the system of equalities ( 5) and ( 6) determines uniquely

the matrix (b

ij

), i.e. the lattice L is perfect. 2

Recall that the contact polytope of a lattice is the convex hull of endpoints

of all minimal vectors of the lattice.

We note that the L-polytope P can be obtained from the lattice L a�nely

generated by w and V by the construction described in [1], Lemma 7.2, i.e.

by a section of the contact polytope of a lattice. Hence we can reformulate

Theorem 3.2 as follows.

Theorem 3.2'.Let an extreme n-dimensional L-polytope P is a section

of the contact polytope of a (n+1)-dimensional lattice L by a hyperplane

not going through the center of the contact polytope. Then the lattice L is

perfect. 2

Since extreme L-polytopes exist only for dimension not less than 6, the

perfect lattices which can be obtained as in Theorem 3.2 have dimension
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not less than 7. In general, using Table 1 of [4] of all known 7-dimensional

perfect lattices one can obtain all extreme polytopes which are a section of

the contact polytope of one of the 7-dimensional perfect lattices. But no

e�ective algorithm of �nding such a section is known. I can only say that

among sections orthogonal to a minimal vector there is only one giving an

extreme L-polytope. This is the case of the lattice E

�

7

. The corresponding

extreme L-polytope is the Schl�ai polytope having 27 vertices.

Another examples of perfect lattices obtained as an extension are the root

lattice E

8

, the lattice �

0

16

of [1] and the Leech lattice. The corresponding

extreme polytopes are the Gosset polytope 3

21

, the polytope P

16

related to

the Barnes-Wall lattice and the polytope P

23

related to the Leech lattice.

The polytopes are described in [1].

Theorem 3.3. Let P be an extreme L-polytope of radius r. Let its set

of vertices V and the center of P generate a lattice L with minimal norm

r

2

. Then L is perfect.

Proof. By supposition V �M(L), whereM(L) is the set of all minimal

vectors of L.

If fv

0

; v

1

; :::; v

n

g is an a�ne basis of P , then the system ( 3) determines

uniquely up to a multiple � the distances d(v

i

; v

j

). We have

d(v

i

; v

j

) = (v

i

� v

j

)

2

= 2(r

2

� (v

i

; v

j

)) = 2r

2

(1� �

ij

)

where �

ij

is the angle between the vectors v

i

and v

j

. Hence if we �x the

radius r, we �x the multiple �.

Since fv

0

; v

1

; :::; v

n

g is an a�ne basis, there is only one linear dependency

between the vectors v

i

; 1 � i � n. Hence we can suppose that v

1

; :::; v

n

are linearly independent. Let W be the matrix with the elements (v

i

; v

j

),

1 � i � j � n. Recall that, for �xed r, the elements of W are uniquely

determined by the system ( 3). The system is equivalent the system of all

equations

v

2

= r

2

; i.e.

X

0�i�j�n

z

v

i

z

v

j

(v

i

; v

j

) = r

2

; v 2 V: (7)

Let fb

1

; :::; b

n

g be a basis of L, and let v

i

=

P

n

i=1

x

k

i

b

k

. Let X be the

matrix whose i-th row is fx

k

i

: 1 � k � ng, and let B be the Gram matrix

of the vectors b

i

. We have

W = XBX

T

: (8)

Since the matrix X is not singular, we obtain

B = X

�1

W (X

T

)

�1

:
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Since the matrix W is uniquely determined by the system ( 3) and by the

value of r, the Gram matrix B is determined uniquely, too. We see that if

we substitute ( 8) in ( 7), we obtain a subsystem of the system ( 2) uniquely

determining b

ij

. 2

There are 7 perfect lattices in dimension 6. There are 33 known perfect

lattices in dimension 7. (See [4]).

I know only the following examples of L-polytopes of dimension 6 and 7

satisfying the conditions of Theorem 3.3.

The asymmetric Schl�ai polytope is an extreme L-polytope of the root

lattice E

6

. The polytope with its center generates the dual lattice E

�

6

which

is perfect. The contact polytope of E

�

6

is the diplo-Schl�ai polytope, vertices

of which are vertices of the Scl�ai polytope and its antipodes (the name is

taken from [5]).

The symmetric Gosset polytope is an extreme L-polytope of the root

lattice E

7

and the contact polytope of the perfect lattice E

�

7

(see [5]).

Unfortnately Theorems 3.2 and 3.3 cannot be reversed. In the �rst case,

not all perfect lattices provide extreme L-polytopes. In the second case, the

contact polytope not of each perfect lattice is an L-polytope. But if it is an

L-polytope, it is not always extreme.

I'm indebted to M.Deza who tortured me with the question on relations

between extreme L-polytopes and perfect lattices.
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