
A Calculus for Overload Functions with

Subtyping

G. CASTAGNA G. GHELLI

G. LONGO

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

LIENS - 92 - 4

February 1992

A Calculus for Overloaded Functions with Subtyping

�

Giuseppe Castagna

y

LIENS(CNRS)-DMI

45 rue d'Ulm, Paris, FRANCE

e-mail: castagna@dmi.ens.fr

Giorgio Ghelli

z

Dipartimento d'Informatica

Corso Italia 40, Pisa, ITALY

e-mail: ghelli@di.unipi.it

Giuseppe Longo

x

LIENS(CNRS)-DMI

45 rue d'Ulm, Paris, FRANCE

e-mail: longo@dmi.ens.fr

August 3, 1993

Abstract

We present a simple extension of typed �-calculus where functions can be over-

loaded by putting di�erent \branches of code" together. When the function is

applied, the branch to execute is chosen according to a particular selection rule

which depends on the type of the argument. The crucial feature of the present

approach is that the branch selection depends on the \run-time type" of the ar-

gument, which may di�er from its compile-time type, because of the existence of

a subtyping relation among types. Hence overloading cannot be eliminated by a

static analysis of code, but is an essential feature to be dealt with during compu-

tation. We obtain in this way a type-dependent calculus, which di�ers from the

various �-calculi where types do not play any rôle during computation. We prove

Conuence and a generalized Subject-Reduction theorem for this calculus. We

prove Strong Normalization for a \strati�ed" subcalculus. The de�nition of this

calculus is guided by the understanding of object-oriented features and the con-

nections between our calculus and object-orientedness are extensively stressed. We

show that this calculus provides a foundation for typed object-oriented languages

which solves some of the problems of the standard record-based approach.

1 Introduction

An important distinction has been extensively used in language theory for the last two

decades, between parametric (or universal) polymorphism and \ad hoc" polymorphism

�

An extended abstract of this work appeared in the proceedings of the ACM Conference on

LISP and Functional Programming, San Francisco, June 1992. To appear in INFORMATION and

COMPUTATION

y

This autor has been supported by a grant of the BRA-Esprit project no. 3020 and by the grant no.

203.01.56 of the Consiglio Nazionale delle Ricerche { Comitato Nazionale delle Scienze Matematiche,

Italy

z

This author has been partially supported by E.E.C., Esprit Basic Research Action 6309 FIDE2,

by \Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo" of the Italian National Research

Council under grant No.91.00877.PF69 and by \Ministero dell'Universit�a e della Ricerca Scienti�ca e

Tecnologica".

x

Part of this author's work has been supported by a collaboration at DEC- PRL (Digital, Paris

Research Laboratory) within the \Paradise" project.

1

(see [CW85]). Parametric polymorphism allows one to write a function whose code can

work on di�erent types, while using \ad hoc" polymorphism it is possible to write a

function which executes di�erent code for each type. Both the Proof Theory and the

semantics of the �rst kind of polymorphism have been widely investigated by many

authors (including two of the authors of the present paper), on the grounds of early

work of Hindley, Girard, Milner and Reynolds, and developed into robust programming

practice. The second kind, usually known as \overloading", has had little theoretical

attention, with the notable exception of [WB89], [MOM90] and [Rou90]; consequently,

its wide use has been little a�ected by any inuence comparable to the one exerted by

implicit and explicit polymorphism in programming.

This is due, probably, to the fact that the traditional languages o�er a very limited

form of overloading: in most of them only prede�ned functions (essentially arithmetic

operators de�ned on integers and reals and input/output operators) are overloaded,

while in the relatively few languages where the programmer can de�ne overloaded

functions their actual meaning is always decided at compile time. This form of over-

loading can be easily understood as a form of syntactic abbreviation which does not

signi�cantly a�ect the underlying language.

We believe though that the ability to de�ne new overloaded functions, when com-

bined with subtyping and with late-binding (as de�ned below), allows a high level of

code reusability, and is the main point which distinguishes object-oriented programming

from programming with abstract data types.

In this paper we begin a theoretical analysis, and thus a \uniform and general"

one, of this richer kind of overloading. It appears that the challenges it poses are non

trivial: indeed, this paper is just a preliminary step towards a theoretical universe still

to be discovered and which, we claim, may also a�ect language design.

We design here a formalism where functions can be overloaded by adding a di�erent

\piece of code". Thus the code of an overloaded function is formed by several branches

of code. The branch to execute is chosen when the function is applied, according to

a particular selection rule, which depends on the type of the argument. A crucial

feature of the present approach is that the branch selection depends on the \run-time

type" of the argument, which may di�er from its compile-time type (late binding).

Hence, branch selection cannot be performed at compile-time, as happens in imperative

languages (early binding), but has to be performed during computation, each time the

overloaded application is evaluated.

For example, suppose that Circle and Square are subtypes of Picture, and draw is

an overloaded function de�ned on all of them; and suppose that x is a formal parameter

of a function with type Picture. If the compile time type of the argument is used for

branch selection (early binding) an overloaded function application (here denoted

�

)

like the following one

�x

Picture

: : : :draw

�

x : : :

is always executed using the draw code for pictures ; with late binding, each time the

whole function is applied, the code for draw is chosen only when the x parameter has

been bound and evaluated. Thus the appropriate code for draw is used on the basis of

2

the run-time type of x and according to whether x is bound to a circle or to a square.

We do not present a general treatment for overloaded functions, but we develop a

purely functional approach focussed on the study of some features of object-orientedness,

namely message-passing, inheritance and subtyping. Since the approach is entirely

novel we �rst felt the need, via this preliminary, proof-theoretic analysis, to develop

the non trivial investigation of key functional properties, such as normalization, conu-

ence and \subject-reduction" (i.e. termination and consistency and \how types evolve

during computation"), in the setting of a truly type dependent calculus.

Indeed, \type dependency" (the fact that terms and values may depend on types)

and the role played by the distinction between run-time and compile-time types are

peculiar properties of the calculus. The various (higher order) calculi, such as Girard's

System F and its extensions, allow abstraction w.r.t. type variables and the application

of terms to types, but the \value" of this application does not truly depend on the

argument type, and more generally the semantics of an expression does not depend on

the types which appear in it. Indeed, this \parametricity" or \type-erasure" property

plays a crucial role in the basic proof-theoretic property of these calculi: the normal-

ization (cut-elimination) theorem. In the semantic interpretations, this essential type

independence of computations is understood by the fact that the meaning of polymor-

phic functions is given by essentially constant functions (we will say more about this in

the last section of this paper). On the other hand, it is clear that overloaded functions

express computations which truly depend on types, as di�erent branches of code (i.e.

possibly unrelated terms) may be applied on the basis of input types.

Our motivation comes from considering overloading as a way to interpret message-

passing in object-oriented programming, when methods are viewed as \global" func-

tions. Let us be more speci�c. In object-oriented languages the computation evolves on

objects. Objects are programming items grouped in classes and possessing an internal

state that may be accessed and modi�ed by sending messages to the object. When an

object receives a message it invokes the method (i.e. the code) associated with that

message. The association between methods and messages is described by the class the

object belongs to.

There are two possible ways to see message-passing: the �rst is to consider objects

as arrays that associate a method with each message. Therefore when a message m is

passed to an object obj then the method associated with m in the object obj is looked

for. In this approach, an object has the form shown in Figure 1:

object

internal state

message 1 method 1

.

.

.

.

.

.

message n method n

message i

class name 1 method 1

.

.

.

.

.

.

class name n method n

Figure 1. Figure 2.

Objects as records. Messages as overloaded functions.

3

This �rst point of view has been extensively studied and corresponds to the \objects

as records" analogy [Car88]. The second approach to message-passing, as shown in

Figure 2, is to consider messages as names of overloaded functions: depending on the

class (or more generally, the type) of the object the message is passed to, a di�erent

method is chosen (this is the approach of the CLOS language [DG87]; this approach

was introduced, in the context of typed languages, in [Ghe91b]). In this way, in a sense,

we reverse the previous situation: instead of passing messages to objects we now pass

objects to messages.

This di�erent approach seems to have some advantages w.r.t. the \objects as records"

paradigm, at least in a proof-theoretical study of the typed case.

For example, in the record based approach an object of class A containing a method

binary of type A � A! B is modeled as a record belonging to the following recursive

type

�A:hh: : :binary:A! B : : :ii;

since the �rst argument of the function is the record itself and, thus, it is an internal

or hidden argument of the method, referred by the keyword self. In the same way a

recursive type is needed to type an object of class A with a copy method of type A! A:

�A:hh: : : copy:A : : :ii:

In the model based on overloading there is no need to use recursion to de�ne the

type of the binary and copy methods, and this seems more reasonable, since, intuitively,

binary or copying operations generally have nothing to do with �xpoints and do not

need the expressive power of recursion.

A similar observation can be made for the �rst \hidden" parameter self of methods,

referring to the object receiving the message. In the record model this parameter must

be accessed by recursion, while in our model it is just a parameter with the additional

feature that it is used for code selection. For other problems regarding inheritance in

the record based model see [CHC90, CM91, Mit90, Bru91, Ghe91a, Ghe91b].

Of course other problems arise when overloaded functions are used to de�ne meth-

ods, especially to model the dynamic de�nition of new classes. On the other hand,

the full expressiveness of records is recovered, as record types and values are derivable

notions in our approach.

In summary, this paper develops a simple extension of the typed �-calculus meant

to formalize the behaviour of overloaded functions with late binding in a type disci-

pline with subtyping. The basic idea is that an overloaded function consists of a �nite

collection of ordinary functions that are stuck together to form the di�erent branches.

Its type will be the set of the types of its branches. Therefore we add, to ordinary �-

terms, new terms such as (M

1

&M

2

& : : :&M

n

), that represent the overloaded function

consisting of the n branches M

i

.

1

Likewise, we add an operation of overloaded appli-

cation M

�

N to the ordinary functional application M �N . The types of the overloaded

functions are �nite lists of arrow types fV

0

1

! V

00

1

; : : : ; V

0

n

! V

00

n

g (sometimes denoted

1

Hereafter we will call a term of the form (M&N) an \&-term".

4

by fV

0

i

! V

00

i

g

i2I

), where every arrow corresponds to the type of a branch. Overloaded

types must satisfy relevant consistency conditions; among others things, they account

for the longstanding debate concerning the use of covariance or contravariance of the

arrow type in its left argument. More precisely, the general arrow types will be given

by contravariant \!" in the �rst argument: this is an essential feature of (typed) func-

tional programs, where type assignment (type-checking) helps to avoid run-time errors.

On the other hand, the types of overloaded functions are covariant families of arrow

types, as explained in detail below.

We stress that the subtyping relation introduced is an essential feature of the cal-

culus: it allows multiple choices, as a type may be a subtype of several types and

subtyping is used to choose branches of overloaded terms. The blend of &-terms and

subtyping makes our calculus an expressive and original mathematical formalism which

shows that \ad hoc" polymorphism may have also theoretical relevance.

In Section 2 we describe the combination of overloading and subtyping and the

consequences of their interaction. Section 3 presents the syntax of the system as well

as the reduction rules. In Section 4 we show how some other types can be encoded

in the primitive system. The next Sections are devoted to the basic properties of

the calculus: Section 5 to Subject-Reduction, Section 6 to conuence and Section 7

to the normalization theorem. In Section 8 we give some more intuition on how our

calculus �ts object-oriented programming, hinting how to implement subtyping and

message-passing by the constructs of our calculus. A conclusion suggests further work,

in particular the challenging extension to higher order systems.

2 Overloading, Subtyping and \Run-Time Types"

In the introduction we said that overloading is interesting because of its connection with

object-oriented languages. However, we think that overloading is worth studying also

for its own sake, in spite of the lack of formal studies on this mechanism. This lack may

depend on the fact that overloading by itself (i.e. without subtyping), does not increase

the expressiveness of the language: an overloaded function can be substituted by the

appropriate code, at compile-time; in this case, overloading seems more a notational

trick than a programming construct. If combined, though, with subtyping and late-

binding, it becomes a exible and powerful tool.

The idea is that if we have an overloaded function whose n branches have respec-

tively type U

i

! V

i

(i = 1::n) and we pass it an argument of type U , the chosen branch

j is the one that \best approximates" U , i.e. such that U

j

= min

i2I

fU

i

jU � U

i

g. How-

ever, it is known that, when a subtyping relation is de�ned, the type of a term is no

longer the same during computation, but it may decrease (see [CG93]). This \shrink-

ing of the run-time type" corresponds to the increase of information that characterizes

the evolving of computation

2

. The fact that during computation types may get more

2

We think that the increase in information is part of the essence of computation, and is due to the

approaching of the result, the normal form, which is the most informative form of the term (informative

in the sense of understandability, not in the sense of the theory of information where the computation

5

informative implies that, if one makes the choice of the branch at compile-time (early

binding), this choice would be based on rather incomplete information about the \real"

type of the argument (see the example with Picture in the previous section). Moreover

late binding allows, in object-oriented languages, us to write a function whose behaviour

may be \extended" by adding new classes. Consider for example a compiler written

in object-oriented style, with a class for every syntactic class in the language. Every

class implements methods Parse, Type-Check, Pretty-Print, and Code-Generate. New

syntactic classes may be dynamically added by creating the corresponding class, and

every general purpose function which sends, e.g., a Pretty-Print message to an object

will be able to correctly operate on objects of these new classes too. For this reason,

late binding plays an essential role in the high code reusability which can be attained

in object-oriented programming, making it possible to write \graphical editor shells"

or \compiler shells" where the general purpose code is written before writing the actual

de�nition of the classes which specify the speci�c behaviour of the application.

The meaning of terms like \run-time type" and \compile-time type" is reasonably

clear in the context of a traditional, eagerly evaluated programming language: in that

case, a single term, such as an occurrence of a formal parameter x of a function, is

\evaluated" many times, once each time the function is called. Each time x is bound

to a value, the run-time type of that value becomes the \run-time type" of x, while in

the source code that occurrence of x has a unique compile-time type, the one written

by the programmer. However, the \compile-time type" of a term and the \run-time

types" of its values are not unrelated: the property holds that all the run-time types

of the values will be subtypes of the unique compile-time type of the term.

This distinction may not be intuitive in the context of a rewriting system, such as �-

calculus, where a more formal de�nition is needed. To follow the di�erent \evaluations"

of an occurrence of a term, we may use the notion of residual of an occurrence of a term

(see [Bar84] where this de�nition is used only when the term is a redex). Intuitively,

a residual is what the term has become after a reduction. As happens in traditional

languages, in a rewriting system an occurrence of a term has many di�erent residuals

with possibly many di�erent types, which are only guaranteed to be subtypes of the

original one.

We will adopt the following de�nition: when a term is closed and normal, we then

say that it is \a value",

3

and we mean by this that it cannot evolve anymore. We

similarly say that its type is \a run-time type", which means that no more information

can be speci�ed about the type of that term. The type of a value which is the residual

of a given term is a run-time type for that term.

Thus the relation between a compile-time type and a run-time type is the same as

the relation between a term and a value: a value for a term is any closed normal form

obtained by performing reductions and substitutions over that term; a run-time type

corresponds to a loss of information). At type level this corresponds to the decrease in the type: the

smaller the type, the more informative it is. For instance, think of the real and rational numbers

(Q�R): if we know that a number is rational then we know that it possesses all the properties of real

numbers AND some more (for example, it can be represented as the quotient of two integers)

3

For example �x:�y:x and �x:�y:y are the only two values of type Bool��! �! �.

6

for that term is the type of any of its values. Note that an open term is bound, during

a computation, to many di�erent values, and so it gets many di�erent run-time types.

Note also that we did not formally de�ne the notion of \evolution of a term", thought

it would be possible. We are now just trying to convey the intuition behind the idea of

run-time types, while the formal de�nition of the reduction rules is given in the next

section.

Although the selection of the branches of overloaded functions is based on the run-

time types, the static typing of a term is enough to assure that the computation will

be type-error free. This is a corollary of Theorem 5.2, which guarantees that types can

only decrease during computation (so that the run-time type of any residual of a term

is always a subtype of its compile-time type) and thus that well-typed terms rewrite

to well typed terms. To guarantee this property a \consistency" condition must be

imposed on overloaded types. In short, an overloaded type fU

i

! V

i

g

i2I

is well-formed

if and only if for all i; j 2 I it satis�es the following conditions, where U

i

+ U

j

means

that U

i

and U

j

are downward compatible, i.e. they have a common lower bound:

U

i

� U

j

) V

i

� V

j

(1)

U

i

+ U

j

) there exists a unique h 2 I such that U

h

= inffU

i

; U

j

g (2)

Condition (1) is the consistency condition at issue, which assures that during compu-

tation the type of a term may only decrease. Informally, in view of our analogy \type{

amount of information", it says that, if the input information given to an overloaded

function increases, so does the information in the output. More speci�cally, in our ap-

proach, if we have a two-branched overloaded function M of type fU

1

! V

1

; U

2

! V

2

g

with U

2

� U

1

and we pass it a term N which has the compile-time type U

1

then the

compile-time type ofM

�

N will be (smaller than or equal to) V

1

; but if the normal form

of N has type U

2

then the run-time type ofM

�

N will be V

2

and therefore V

2

� V

1

must

hold. The second condition concerns the selection of the correct branch: we said before

that if we apply an overloaded function of type fU

i

! V

i

g

i2I

to a term of type U then

the selected branch has type U

j

! V

j

such that U

j

= min

i2I

fU

i

jU � U

i

g; condition

(2) assures the existence and uniqueness of this branch.

At �rst sight these restrictions may seem excessively complicated, and may dis-

courage the reader with no experience in object-oriented languages. However, these

restrictions are more obvious than they appear; especially with respect to the connec-

tion with object-oriented programming where they have a very natural interpretation

(see Section 8).

3 The �&-calculus

In this section we de�ne the extension of the typed lambda calculus we study in the

rest of the paper. We use the following conventions: A;B denote Atomic Types,

S; T; U; V;W : : : denote (Pre)Types, M;N; P;Q; denote Terms, H; I; J;K denote sets

of indexes and h; i; j; k; n indexes. We �rst de�ne a set of Pretypes and then from them

we select those that satisfy the conditions above and that constitute the types.

7

PreTypes V :: = A j V ! V j fV

0

1

! V

00

1

; : : : ; V

0

n

! V

00

n

g

For technical reasons we consider overloaded types as lists, i.e. possessing an order;

the list may also be empty: in this case the type is denoted by fg.

3.1 Subtyping rules.

We de�ne a subtyping relation on the set of Pretypes. This relation is used to de�ne

the types. The idea is that one may start from a partial order which is prede�ned on

atomic (pre)types and extend it to a preorder on all Pretypes: the relation is obtained

by adding the rules of transitive and reexive closure to the following ones:

U

2

� U

1

V

1

� V

2

U

1

! V

1

� U

2

! V

2

for all i 2 I , there exists j 2 J such that U

00

i

� U

0

j

and V

0

j

� V

00

i

fU

0

j

! V

0

j

g

j2J

� fU

00

i

! V

00

i

g

i2I

Intuitively, if we consider two overloaded types U and V as sets of functional types

then the last rule states that U � V if and only if for every type in V there is one in U

smaller than it. In contrast to the usual partial order on record types, the cardinality

of I and J are unrelated. Note that this is just a preorder, and not a partial order, as

U � V and V � U do not imply U = V .

3.2 Types

Our system is an extended strongly typed �-calculus. Arrow types and overloaded

types are de�ned inductively from atomic types. As mentioned in the introduction, the

overloaded types have a well formation rule that allows a consistent application of the

reduction rules.

1. A 2 Types

2. if V

1

; V

2

2 Types then V

1

! V

2

2 Types

3. if for all i; j 2 I

(a) (U

i

; V

i

2 Types) and

(b) (U

i

� U

j

) V

i

� V

j

) and

(c) (U

i

+U

j

) there is a unique h 2 I such that U

h

= inffU

i

; U

j

g)

4

then fU

i

! V

i

g

i2I

2 Types

4

This notation is not very precise; since � is just a preorder, a set generally has many equivalent

g.l.b.'s; we should then write U

h

2 inffU

i

; U

j

g, or fU

h

g = inffU

i

; U

j

g.

8

In a system with subtyping, if f :U ! V , this means that when f is applied to a term

a with a run-time type U

0

� U , the run-time type of the result will be a type V

0

� V .

Intuitively, an overloaded type fU

i

! V

i

g

i2I

is inhabited by functions, made out of

di�erent pieces of code, such that when they are applied to a term whose run-time type

U

0

is the subtype of some U

i

, the run-time type of the result will be a subtype V

0

of

the corresponding V

i

. This is assured by condition (b) above.

To ensure the existence of an inf for any pair of downward compatible types, we

require that � yields a \partial lattice" on Atomic Types. In accordance with the rules

given in the previous section, the whole Types inherits this structure.

5

In object-

oriented languages this is not always the case. We can distinguish object-oriented lan-

guages where Atomic Types have a tree structure (the so called \single inheritance")

and object-oriented languages where Atomic Types have a free order relation and where

additional structure is used to solve the problems caused by compatible types without

an inf. The same kind of technique can be used to extend our approach to this sit-

uation, since the partial lattice property is not essential, but is useful for getting a

simple branch selection rule, as described in the section on reduction. Likewise, while

condition (b) above is an essential feature of our approach, condition (c) is linked to

the branch selection rule, and could easily be modi�ed (see [Ghe91b]). Furthermore, we

suppose that the subtyping relation is decidable on atomic types, which implies that it

is decidable on Types as well. Note that this poses no problem in the current (simple)

approach, as we have �xed atomic types; more work would be needed in order to allow

programmer's de�nable base types.

Henceforth we only deal with Types and completely forget PreTypes; thus we will

intend that all the pretypes which appear in the rest of the paper satisfy the conditions

above.

3.3 Terms

Roughly speaking, terms correspond to terms of the classical lambda calculus plus

operations to build and apply overloaded functions. Overloaded functions are built

as customary with lists, by starting from an empty overloaded function and adding

branches with the & operator. We distinguish the usual application M �M of lambda-

calculus from the application of an overloaded function M

�

M since they constitute two

completely di�erent mechanisms: indeed a notion of variable substitution is associated

with the former, while in the latter there is the notion of selection of a branch. This is

also stressed by the proof-theoretical viewpoint where these constructors correspond to

two di�erent elimination rules. Finally, a further di�erence, speci�ed in the reduction

rules, is that overloaded application is associated with call by value, which is not needed

by the ordinary application. For the same reason we must distinguish between the type

U ! V and the overloaded function type with just one branch fU ! V g.

However, in some cases it will be useful to have only one notation to deal with both

kinds of application; for this aim the simple juxtaposition will be used.

5

More precisely, since � is not an order, it is Types modulo � which inherits the partial lattice

structure, where T � U when T � U and U � T .

9

Variables are indexed by their type, to avoid the use of type environments in the

type-checking rules.

Terms M :: = x

V

j c j �x

V

:M jM �M j " jM&

V

M jM

�

M

The type which indexes the & is a technical trick to allow the reduction inside

overloaded function, as explained later on. c represents generic constants while " is a

distinct constant for the empty overloaded function.

Hereafter, we may use the notation �x:V:M instead of �x

V

:M , and we may omit

the type indexing of &, when not needed. Also the " at the beginning of &-terms may

be omitted, in examples.

3.4 Type checking

We de�ne here the typing relation \:", a proper subset of Terms�Types. Therefore,

as already pointed out, in the rules below we omit the condition V 2 Types. This

means that, all the PreTypes that appear in the following rules are to be considered as

well-formed types. Anyway we observe that an algorithm implementing the following

type-checking rules should check that the types appearing in the conclusions of the

rules [Taut], [! Intro] and [fgIntro] are well formed.

We use the notation `M :V � U as a shorthand for the conjunction \`M :V and

V � U".

[Taut] ` x

V

:V

[! Intro]

`M :V

` �x

U

:M :U ! V

[! Elim

(�)

]

`M :U ! V ` N :W � U

`M �N :V

[Taut

"

] ` ": fg

[fgIntro]

`M :W

1

� fU

i

! V

i

g

i�(n�1)

` N :W

2

� U

n

! V

n

` (M&

fU

i

!V

i

g

i�n

N): fU

i

! V

i

g

i�n

[fgElim]

`M : fU

i

! V

i

g

i2I

` N :U U

j

= min

i2I

fU

i

jU � U

i

g

`M

�

N :V

j

In the last rule the premise on U

j

as well as the type constraints are indeed meta-

premises, i.e. they are conditions to the application of the rules but they do not belong

to the tree-structure of the deduction. The empty term " and the empty type fg are

10

used to start the formation of overloaded terms and types. We read M&N&P as

(M&N)&P .

As the careful reader will have noted, we do not use the subsumption rule (see

below) in type-checking. We utilized a slightly di�erent type discipline, where the use

of subsumption is distributed where needed. The resulting system is equivalent, in the

sense explained below, to the subsumption discipline, but every term possesses a unique

type, which simpli�es the de�nition of the operational semantics and some proofs.

Consider the functional core of our system, i.e. only the �rst three typing rules

at the beginning of this section and let denote this system by `

�

. The subsumption

system (denoted by `

sub

) is obtained from this one by replacing ` N :W � U with

` N :U in [! Elim

(�)

] and by adding the subsumption rule:

[!Elim]

`

sub

M :U ! V `

sub

N :U

`

sub

MN :V

[Subsumption]

`

sub

M :U U � V

`

sub

M :V

Now, we can prove the following theorem.

Theorem 3.1 `

�

M :V i� V = minfU j `

sub

M :Ug (which implies that the set

fU j `

sub

M :Ug is not empty).

Proof. ()) By induction on the proof of `

�

M :V and by cases on the last applied

rule.

(() By induction on the smallest proof that `

sub

M :V and by cases on the last

applied rule. 2

Corollary 3.2 Every well-typed �&-term possesses a unique type

In conclusion, the theorem states that `

�

is equivalent to `

sub

in the sense that

it always returns the smallest (i.e. most precise) type returned by the subsumption

system. This theorem suggests that it is possible to de�ne a subsumption based version

`

sub

for the full system too. We must add subsumption, substitute all judgements

` N : T � U in the rules with ` N : U and �nally, in the [fgElim] rule, substitute

` N : U with \U is the minimum type such that `

sub

N : U".

We can then extend theorem 3.1 to our entire calculus.

Theorem 3.3 (Subsumption Elimination) For the whole �&, ` M :V i� V =

minfU j `

sub

M :Ug

Since we have chosen the subsumption-free presentation, every term possesses a

unique type, because there is a unique derivation for the type of a term.

In our presentation of the subtype rules we implicitly de�ned a transitivity rule.

We can easily prove that this rule is not really needed.

Theorem 3.4 (Transitivity Elimination) ` T � U i� `

-

T � U where `

-

is de�ned

by the rules of ` minus transitivity.

11

Proof. We �rst prove that `

-

T � U and `

-

U � V implies `

-

T � V . Observe that

if `

-

T � U then either T and U are both atomic types, or they are both arrow types

or they are both overloaded types. We prove that `

-

T � U and `

-

U � V implies

`

-

T � V by induction on the size of T; U; V . If they are all atomic types the thesis is

immediate. If T = fT

0

i

! T

00

i

g

i2I

, U = fU

0

j

! U

00

j

g

j2J

and V = fV

0

l

! V

00

l

g

l2L

, then

for all l 2 L exists j 2 J such that `

-

U

0

j

! U

00

j

� V

0

l

! V

00

l

and for all j 2 J exists

i 2 I such that `

-

T

0

i

! T

00

i

� U

0

j

! U

00

j

. By induction, for all l 2 L exists i 2 I such

that `

-

T

0

i

! T

00

i

� V

0

l

! V

00

l

, hence `

-

fT

0

i

! T

00

i

g

i2I

� fV

0

l

! V

00

l

g

l2L

, q.e.d.. The

arrow case is similar and simpler. Now the theorem follows by induction on the proof

of ` T � U and by cases on the last applied rule, where the only interesting case is

transitivity. 2

Note that the lack of type variables makes the proof of subsumption elimination

and transitivity elimination much easier for this calculus than for F

�

(see [CG92]).

3.5 Reduction Rules

In order to simplify the de�nition of the system, we consider the types of overloaded

functions as ordered sets, where the order corresponds, more or less, to the order in

which branches are added when an overloaded function is built. However the reader

may note that this order is completely irrelevant in subtyping and typing rules, with

the only exception of [fgIntro], where we want to be able to distinguish the only

arrow type associated with the right hand side of the & from the set of the other ones.

Exactly the same information is all that is needed by the reduction rules.

As we mentioned before, the run-time types are used during computation to perform

branch selection. Thus, we have to de�ne what the run-time type of a term is. We

propose here a simple solution: the deduction system that infers the run-time type of a

term is the same as the one used for type-checking. What distinguishes run-time types

and compile-time types is thus the time when the deduction is made. In fact, during

the computation the type of a term may change since reduction and substitution may

decrease the type of a term (as shown in Theorems 5.1 and 5.2).

We say that the type of a term is its run-time type when that term is a

\value", i.e. when it is normal and closed; a run-time type of a residual

of a term is also a run-time type of the term. We allow a reduction of the

application of an overloaded function only when the argument is a value,

i.e. when it is typed by a run-time type.

This is a crucial point. If we allowed selecting the branch of an overloaded function on

the basis of the type of an argument whose type could still be decreased (by reduction

or by substitution) then the selection would give di�erent results depending on the time

when it is applied, and the system would be no longer conuent.

As a matter of fact, this call-by-value constraint is not a limitation if our aim is to

model object-oriented languages. In these languages message passing evaluation always

12

requires that the receiving object has been fully evaluated.

6

We start by de�ning, in a standard way, substitutions on the terms of our system:

De�nition 3.5 (Substitution) We de�ne the term M [x

T

:=N] by induction on the

structure of M :

1. x

T

[x

T

:=N] � N

2. y

S

[x

T

:=N] � y

S

if y

S

6� x

T

3. "[x

T

:=N] � "

4. (�y

S

:P)[x

T

:=N] � (�y

S

:(P [x

T

:=N])) where y is not free in N

5. (P&

V

Q)[x

T

:=N] � ((P [x

T

:=N])&

V

(Q[x

T

:=N]))

6. (PQ)[x

T

:=N] � (P [x

T

:=N])(Q[x

T

:=N])

2

Of course, this de�nition only makes sense when the type of N is a subtype of T .

Note that in 5, even if the types of the subterms change, the type of the whole term

is always the same, since it is frozen in the index of the &; thus the selection of the

branch does not depend on the grade of reduction of the &-term. This is a decisive

point in our approach, which makes the system type-safe though reductions within an

overloaded term are allowed.

We de�ne the one-step reduction relation > which is a proper subset of Terms �

Terms. We denote by >

�

its reexive and transitive closure, under the usual conditions

(in �) to avoid free variables being captured:

�) (�x

S

:M)N >M [x

S

:=N]

�

&

) If N :U is closed and in normal form and U

j

= minfU

i

jU � U

i

g then

((M

1

&

fU

i

!V

i

g

i=1::n

M

2

)

�

N) >

(

M

1

�

N for j < n

M

2

�N for j = n

context) If M

1

>M

2

then

(M

1

N) > (M

2

N) (3)

(NM

1

) > (NM

2

) (4)

(�x

U

:M

1

) > (�x

U

:M

2

) (5)

(M

1

&N) > (M

2

&N) (6)

(N&M

1

) > (N&M

2

) (7)

6

This happens not only for the essential reason we pointed out (the run-time type is generally only

known for fully evaluated terms) but also since object oriented languages heavily rely on state and

state-updating operations, and programs using updates are much more readable if eagerly evaluated.

13

The intuitive operational meaning of (�

&

) is easily understood when looking at the

simple case, i.e. when there are as many branches as arrows in the overloaded type. In

this case, under the assumptions in the rule:

("&M

1

& : : :&M

n

)

�

N >

�

M

j

�N

However, in general, the number of branches of the overloaded function may be di�erent

from the number of arrows in the overloaded types, both since an overloaded function

could begin with an application or with a variable, accounting for an initial segment of

the overloaded type (they are just required to possess an overloaded type), and because

of the subtyping relation used in the rule of [fgIntro].

If we allowed (�

&

) reductions with open or non normal arguments the system would

not be conuent, since the type of an open or non normal argument can be di�erent in

di�erent phases of the computation. For example, consider a term

(�x

V

:((P&

fV!V;U!Ug

M)

�

x

V

))�(N

U

)

with U � V (we superscript terms with their types, like in N

U

, to increase readability

of examples). If the inner �

&

reduction were performed with the x argument (which

is not closed), the �rst P branch would be chosen, while if the outer � reduction is

performed �rst then the term becomes:

(P&

fV!V;U!Ug

M)

�

N

U

and the second branchM is (correctly) chosen. In short, the argument of an overloaded

application must be closed and normal to perform the evaluation, since this is the only

case where its type cannot decrease anymore, and describes the value as accurately as

possible.

Complementary to the idea of freezing the argument of an overloaded application

to its normal form, is the use of the type which indexes the &s to freeze the type of &-

terms. We outline two short examples to show the problems that arise with reduction

and substitution inside &-terms without this index.

We suppose that U

0

� U and V

0

� V ; consider the term

F

1

� ("&M

U!V

&((�x

U

0

!V

0

:x)�N

U!V

0

))

this can be intuitively typed as follows:

F

1

: fU ! V; U

0

! V

0

g

Though, if we reduce the right branch, without freezing the index, we are no longer

able to recover a type for the contractum, namely for ("&M

U!V

&N

U!V

0

) since both

terms possess the same input type. Consider next the term

F

2

� �y

U

0

!V

0

:("&(�x

U

:M

V

)&(y

U

0

!V

0

))

again we can intuitively type it as follows.

F

2

: (U

0

! V

0

)! fU ! V; U

0

! V

0

g

14

but if we apply F

2

to N

U!V

0

and �-reduce, then we are in the same case as above.

Note, �nally, that our calculus is truly type-dependent (that is, the type erasure of

a term is not enough to forecast its evolution or meaning, see the conclusion) for two

di�erent reasons:

� �

&

reduction depends on the type of the argument

� �

&

reduction depends on the index T of the & in the overloaded term

More speci�cally, if fU

i

! V

i

g

i=1::n

is the index of &, �

&

reduction depends on the list

[U

i

]

i=1::n

of the input types of the overloaded function. For example, if U

0

� U , both

terms

("&M

U!V

&

fU!V;U

0

!V g

M

0U!V

)

and

("&M

U!V

&

fU

0

!V;U!V g

M

0U!V

)

are well typed, but they behave di�erently if applied to a normal closed term N

U

.

Note that we are here in a di�erent and more exible situation than in object-

oriented languages, since in those languages every branch of an overloaded function

(every method) must be understood as a �-abstraction (when viewing methods as

global, overloaded functions in our sense.) In this language, on the other hand, any

expression with a functional type (in particular an application) can be concatenated by

using &. Thus, when following the object-oriented style, the left hand side U of the type

U ! V of an expression �x

U

:M does not change when reductions and substitutions

are performed inside �x

U

:M . In our approach, when reducing inside an &, one may

obtain a smaller type for the reductum, in particular a larger U in a type U ! V . To

allow this possibility of \inside" reductions and preserve determinism, we label the &'s

with types .

4 Deriving records

In various approaches to object-oriented programming records play an important rôle.

In particular, current functional treatments of object-oriented features formalize objects

directly as records. Moreover, if records are not included in a calculus, the subtyping

relation may be quite trivial. In our system, records can be encoded in a straightforward

way.

Let L

1

; L

2

; : : : be an in�nite list of atomic types. Assume that they are isolated

(i.e., for any type V , if L

i

� V or V � L

i

, then L

i

= V), and introduce for each L

i

a constant `

i

:L

i

. It is now possible to encode record types, record values and record

selection, respectively, as follows:

hh`

1

:V

1

; : : : ; `

n

:V

n

ii � fL

1

! V

1

; : : : ; L

n

! V

n

g

h`

1

=M

1

; : : : ; `

n

=M

n

i � (" & �x

L

1

:M

1

& : : :& �x

L

n

:M

n

) (x

L

i

62 FV (M

i

))

M:` � M

�

`

15

Since L

1

: : :L

n

are isolated, then the subtyping rule for records is a special case of the

rule for overloaded types:

Subtyping-rule

V

1

� U

1

: : :V

k

� U

k

hh`

1

:V

1

; : : : ; `

k

:V

k

; : : : ; `

k+j

:V

k+j

ii � hh`

1

:U

1

; : : : ; `

k

:U

k

ii

The type-checking rules are similarly derivable:

Type-checking

[RECORD]

`M

1

:V

1

: : : `M

n

:V

n

` h`

1

=M

1

; : : : ; `

n

=M

n

i: hh`

1

:V

1

; : : : ; `

n

:V

n

ii

[DOT]

`M : hh`

1

:V

1

; : : : ; `

n

:V

n

ii

`M:`

i

:V

i

Finally, the rewriting rules (�) and (recd) below are just special cases of (�

&

) and

(context) respectively.

�) h`

1

=M

1

; : : : ; `

n

=M

n

i:`

i

>M

i

(0 � i � n)

recd) M >M

0

)M:` >M

0

:` and h: : : ` =M : : :i > h: : : ` =M

0

: : :i

5 The Generalized Subject Reduction Theorem

The Subject Reduction Theorem in classical �-calculus proves that the type of a term

does not change when the term is reduced. In this section, we generalize this theorem

for our calculus, since we prove that if a term is typable in our system, then it can only

be reduced to typable terms and that these terms have a type smaller than or equal to

the type of the redex.

In order to enhance readability, in this and in the following section, we will often

omit the turn-style symbol.

Lemma 5.1 (Substitution Lemma) Let x:T; M :U; N :T

0

and T

0

� T .

Then M [x :=N]:U

0

, where U

0

� U .

Proof. By induction on the structure of M .

M�" straightforward

M�x straightforward

M�y 6� x straightforward

M��x

V

:M

0

straightforward

16

M��y

V

:M

0

Then U = V ! W and M

0

:W .

By induction hypothesis M

0

[x :=N]:W

0

� W , therefore M [x :=N]��y

V

:M

0

[x :=

N]:V ! W

0

� V ! W

M�(M

1

&

T

M

2

) Then M [x :=N]�(M

1

[x :=N]&

T

M

2

[x :=N]); by induction hypothesis

and the rule [fgIntro] M [x :=N] is well typed and its type is the same of the

one of M that is T .

M�M

1

�M

2

where M

1

:V ! U and M

2

:W � V . By induction hypothesis:

M

1

[x :=N]:V

0

! U

0

with V � V

0

and U

0

� U

M

2

[x :=N]:W

0

with W

0

� W

Since W

0

� W � V � V

0

we can apply the rule [!Elim

(�)

] and thus M [x :=

N]�(M

1

[x :=N])�(M

2

[x :=N]):U

0

� U

M�M

1

�

M

2

where M

1

: fV

i

! W

i

g

i2I

and M

2

:V .

Let V

h

= min

i2I

fV

i

jV � V

i

g. Thus U = W

h

.

By induction hypothesis:

M

1

[x :=N]: fV

0

j

! W

0

j

g

j2J

with fV

0

j

! W

0

j

g

j2J

� fV

i

! W

i

g

i2I

M

2

[x :=N]:V

0

with V

0

� V

Let V

0

k

= min

j2J

fV

0

j

jV

0

� V

0

j

g. Thus M [x :=N]:W

0

k

. Therefore we have to prove

that W

0

k

� W

h

As fV

0

j

! W

0

j

g

j2J

� fV

i

! W

i

g

i2I

then for all i 2 I there exists j 2 J such

that V

0

j

! W

0

j

� V

i

! W

i

. Given i = h we chose an

~

h 2 J which satis�es this

condition: that is,

V

0

~

h

! W

0

~

h

� V

h

! W

h

(8)

We now have the following inequalities:

V � V

h

(9)

by the de�nition of V

h

, as V

h

= min

i2I

fV

i

jV � V

i

g;

V

h

� V

0

~

h

(10)

which follows from (8);

V

0

� V

0

~

h

(11)

which follows from (9), (10) and V

0

� V ;

W

0

~

h

� W

h

(12)

which follows from (8).

V

0

k

� V

0

~

h

(13)

17

which follows from (11), as V

0

~

h

belongs to a set with V

0

k

as least element. Finally,

W

0

k

� W

0

~

h

(14)

follows from (13) and from the covariance rule on fV

0

j

! W

0

j

g

j2J

Thus, by (12) and (14), W

0

k

� W

h

2

Theorem 5.2 (Generalized Subject Reduction) LetM :U . IfM >

�

N then N :U

0

,

where U

0

� U .

Proof. It su�ces to prove the theorem for >; the thesis follows from a simple

induction on the number of steps of the reduction. Thus, we proceed by induction on

the structure of M :

M�x x is in normal form and the thesis is straightforwardly satis�ed.

M�" as in the previous case.

M��x

V

:P . The only case of reduction is that P > P

0

and N��x

V

:P

0

; but from the

induction hypothesis it follows that N is well-typed and the type of the codomain

of N will be less than or equal to the one of M ; since the domains are the same,

the thesis thus holds.

M�(M

1

&

T

M

2

). Just note that whenever M is reduced it is still well-typed (apply the

induction hypothesis) and its type doesn't change.

M�M

1

�M

2

where M

1

:V ! U and M

2

:W � V . We have three subcases:

1. M

1

>M

0

1

, then by induction hypothesisM

0

1

:V

0

! U

0

with V � V

0

and U

0

�

U . Since W � V � V

0

, then by rule [!Elim

(�)

] we obtain M

0

1

M

2

:U

0

� U .

2. M

2

> M

0

2

, then by induction hypothesis M

0

2

:W

0

with W

0

� W . Again,

W

0

� W � V and, thus, by [!Elim

(�)

] we obtain M

1

M

0

2

:U .

3. M

1

� �x

V

:M

3

and M > M

3

[x :=M

2

] , with M

3

:U . Thus, by Lemma 5.1,

M

3

[x :=M

2

]:U

0

with U

0

� U .

M�M

1

�

M

2

where M

1

: fV

i

! W

i

g

i2I

and M

2

:V .

Let V

h

= min

i2I

fV

i

jV � V

i

g. Thus U = W

h

. Again we have three subcases:

1. M

1

> M

0

1

then by induction M

0

1

: fV

0

j

! W

0

j

g

j2J

with fV

0

j

! W

0

j

g

j2J

�

fV

i

! W

i

g

i2I

. Let V

0

k

= min

j2J

fV

0

j

jV � V

0

j

g. Thus M

0

1

�

M

2

:W

0

k

. Therefore

we have to prove that W

0

k

� W

h

Since fV

0

j

! W

0

j

g

j2J

� fV

i

! W

i

g

i2I

, then for all i 2 I there exists j 2 J

such that V

0

j

! W

0

j

� V

i

! W

i

. For i = h we choose a certain

~

h 2 J which

satis�es this condition. That is:

V

0

~

h

! W

0

~

h

� V

h

! W

h

(15)

18

We now have the following inequalities:

V � V

h

(16)

by hypothesis, since V

h

= min

i2I

fV

i

jV � V

i

g;

V

h

� V

0

~

h

(17)

follows from (15);

V � V

0

~

h

(18)

follows from (16) and (17);

W

0

~

h

� W

h

(19)

follows from (15);

V

0

k

� V

0

~

h

(20)

by (18), since V

0

~

h

belongs to a set with V

0

k

as least element;

W

0

k

� W

0

~

h

(21)

follows from (20) and the covariance rule on fV

0

j

! W

0

j

g

j2J

Finally, by (19) and (21), one has that W

0

k

� W

h

2. M

2

> M

0

2

then by induction hypothesis M

0

2

:V

0

with V

0

� V . Let V

k

=

min

i2I

fV

i

jV

0

� V

i

g. Thus M

1

�

M

0

2

:W

k

. Since V

0

� V � V

h

then V

k

� V

h

;

thus, by the covariance rule in fV

i

! W

i

g

i2I

, we obtain W

k

� W

h

.

3. M

1

� (N

1

&N

2

) and M

2

is normal. Then we have two cases, that is M >

(N

1

�

M

2

) (case h < n) or M > (N

2

�M

2

) (case h = n). In both cases, by

[fgElim] or [!Elim

(�)

], according to the case, it is easy to show that the

terms have type less than or equal to W

h

.

2

6 Church-Rosser

In this section we prove that this system is Church-Rosser (CR). The proof is a simple

application of a lemma due to Hindley [Hin64] and Rosen [Ros73]:

Lemma 6.1 (Hindley-Rosen) Let R

1

,R

2

be two notions of reduction. If R

1

; R

2

are

CR and >

�

R

1

commutes with >

�

R

2

then R

1

[R

2

is CR.

Set now R

1

� �

&

and R

2

� �; if we prove that these notions of reduction satisfy the

hypotheses of the lemma above, we thus obtain CR for our system. It is easy to prove

that � and �

&

are CR: indeed, the �rst one is a well known result while for the other

just note that �

&

satis�es the diamond property.

Thus it remains to prove that the two notions of reduction commute, for which we

need two technical lemmas.

19

Lemma 6.2 If N >

�

�

&

N

0

then M [x := N] >

�

�

&

M [x := N

0

]

Proof. The proof is done by induction on the structure of M and consists in a

simple diagram chase

M LHS RHS comment

" " " OK

x N N

0

OK

y y y OK

PQ P []Q[] P [

0

]Q[

0

] use the induction hypothesis

�y:P �y:P [] �y:P [

0

] use the induction hypothesis

(P&Q) (P []&Q[]) (P [

0

]&Q[

0

]) use the induction hypothesis

2

Lemma 6.3 If M >

�

&

M

0

then M [x := N] >

�

&

M

0

[x := N]

Proof. We proceed by induction on the structure of M >M

0

(we omit the index

since there is no ambiguity here); we have the following cases:

Case 1 �y:P > �y:P

0

the thesis follows from the induction hypothesis on P > P

0

.

Case 2 PQ > P

0

Q the thesis follows from the induction hypothesis on P > P

0

. The

same for QP >QP

0

, P&Q > P

0

&Q and Q&P > Q&P

0

.

Case 3 (P

1

&P

2

)Q > P

i

Q then

M [x := N] � (P

1

[x := N]&P

2

[x := N])Q[x := N]

� (P

1

[x := N]&P

2

[x := N])Q since Q is closed

Since substitutions do not change the type in (P

1

&P

2

) (just recall that the type is

�xed on the & and does not change during computation) then the selected branch

will be the same for both (P

1

&P

2

)Q and (P

1

[x := N]&P

2

[x := N])Q, thus:

> P

i

[x := N]Q

� P

i

[x := N]Q[x := N] since Q is closed

� M

0

[x := N]

2

The next lemma shows that reductions are not context-sensitive: given a context

C[], i.e. a lambda term with a hole, a reduction inside the hole is not a�ected by

the context. This lemma will allow us to reduce the number of the cases in the next

theorem:

Lemma 6.4 Let R denote either � or �

&

; then for all contexts C[] if M >

�

R

N then

C[M] >

�

R

C[N]

20

Proof. The proof is a simple induction on the context C[] 2

Theorem 6.5 (Weak commutativity) If M >

�

N

1

and M >

�

&

N

2

then there exists

N

3

such that N

1

>

�

�

&

N

3

and N

2

>

�

�

N

3

Proof. We proceed by induction on the structure of M . Since M is not in normal

form, then M 6� x and M 6� ". In every induction step we will omit the (sub)cases

which are a straightforward consequence of lemma 6.4:

1. M��x:P . This case follows from lemma 6.4 and induction.

2. M�(M

1

&M

2

) then the only subcase which is not resolved by straightforward use

of lemma 6.4 is N

1

� (M

1

&M

0

2

) and N

2

� (M

0

1

&M

2

) or symmetrically. But then

N

3

�(M

0

1

&M

0

2

).

3. M�M

1

�

M

2

Subcase 1: N

1

�M

1

�

M

0

2

and N

2

�M

0

1

�

M

2

or symmetrically. Thus N

3

�M

0

1

�

M

0

2

The remaining cases are when M

1

�(P&Q) and M

2

is closed and in normal form.

Then we can have:

Subcase 2: N

1

�(P

0

&Q)M

2

and N

2

�PM

2

but then N

3

�P

0

M

2

Subcase 3: N

1

�(P&Q

0

)M

2

and N

2

�QM

2

but then N

3

�Q

0

M

2

Subcase 4: N

1

�(P&Q

0

)M

2

and N

2

�PM

2

but then N

3

�N

2

Subcase 5: N

1

�(P

0

&Q)M

2

and N

2

�QM

2

but then N

3

�N

2

Note that in the last four cases we have used the property that the type of an

&-term doesn't change when we reduce inside it and therefore the selected branch

will be the same for the same argument.

4. M�M

1

�M

2

then as in the previous case we have:

Subcase 1: N

1

�M

1

M

0

2

and N

2

�M

0

1

M

2

or symmetrically. Thus N

3

�M

0

1

M

0

2

The other cases are when M

1

is of the form �x:P . Then we can have:

Subcase 2: N

1

� P [x := M

2

] and N

2

� (�x:P)M

0

2

But N

1

>

�

�

&

P [x := M

0

2

] (by

lemma 6.2) and N

2

>

�

P [x :=M

0

2

]. Thus N

3

�P [x :=M

0

2

].

Subcase 3: N

1

� P [x := M

2

] and N

2

� (�x:P

0

)M

2

But N

1

>

�

�

&

P

0

[x := M

2

] (by

lemma 6.3) and N

2

>

�

P

0

[x :=M

2

]. Thus N

3

�P

0

[x :=M

2

]

2

Corollary 6.6 >

�

�

&

commutes with >

�

�

Proof. By lemma 3.3.6 in [Bar84]. 2

Finally, by applying the Hindley-Rosen lemma, we obtain that the calculus is CR.

7 Strong Normalization

7.1 The full calculus is not normalizing

The �& calculus is not normalizing. Consider the following term, where ; is used

instead of fg to reduce the parenthesis nesting level, and where M stands for any term

21

of type f; ! ;g, e.g. M = (" &

f;!;g

�x

;

:"):

Double = (M &

f;!;;f;!;g!;g

(�x

f;!;g

:x

�

x)):DType

DType = f; ! ;; f; ! ;g ! ;g

Double is a �& version of the untyped �-term �x:xx, coerced to a type DType such

that it is possible to apply Double to itself. Double is well typed; in particular, x

�

x is

well typed and has type ; as proved below:

[fgElim]

` x: f; ! ;g ` x: f; ! ;g ; = min

U2f;g

fU jf; ! ;g � Ug

` x

�

x: ;

It may seem that the possibility to perform self-application is due to the existence

of an empty overloaded type which is a maximum element in the set of all the over-

loaded types. This is not the case; actually, in the following proof of well-typing of

Double

�

Double, we may substitute ; with any other overloaded type.

[fgElim]

` Double:DType ` Double:DType

f; ! ;g = min

U2f;;f;!;gg

fU jf; ! ;; f; ! ;g ! ;g � Ug

` Double

�

Double: ;

Now we can show that Double

�

Double has not a normal form as it reduces to itself:

Double

�

Double >

�

&

(�x

f;!;g

:x

�

x)�Double >

�

Double

�

Double

Simply typed lambda calculus prevents looping, essentially, by imposing a strati�-

cation between a function of type T ! U and its argument, whose type T is \simpler"

than the whole type T ! U ; the same thing happens, in a subtler way, with system F.

When we add subtyping, the type T

0

of the argument of a function with type T ! U

is just a subtype of T , and may be, syntactically, much bigger than the whole T ! U :

consider the case when T

0

is a record type with more �elds that T . However, the rank of

T

0

is still strictly smaller than that of T ! U , where the rank of an arrow type is at least

the rank of its domain part plus one (for a correct de�nition see below). This happens,

in short, since in �

�

and in F

�

two types can be related by subtyping only when they

have the same rank. Hence, �

�

and F

�

are still strongly normalizing [Ghe90].

�& typing does not prevent looping, essentially, since it allows to compare types with

a di�erent rank. In our example, we pass a parameter of type f; ! ;; f; ! ;g ! ;g

(rank 2) to a function with domain type f; ! ;g (rank 1), and in the x

�

x case we

pass a parameter of type f; ! ;g (rank 1) to a function with domain type fg (rank 0).

Hence, �& typing does not prevent looping since it does not stratify functions w.r.t.

their arguments.

However, when �& is used to model object-oriented programming, it is always

used in a strati�ed way. It is then interesting to de�ne a strati�ed subsystem of �&

which is both strongly normalizing and expressive enough to model object-oriented

programming. To this aim, we will prove the following theorem.

22

Theorem 7.1 Let �&

-

be any subsystem of �& closed by reduction and let rank be

any function associating integers with �&

-

types. Assume also that, if T (syntactically)

occurs in U , then rank(T) � rank(U). If in �&

-

, for any well typed application M

T

N

U

one has rank(U) < rank(T), then �&

-

is Strongly Normalizing.

Example 7.2 We may obtain a subsystem of �& with the properties of �&

-

in 7.1

either by restricting the set of types, or by imposing a stricter subtyping relation. We

propose here two signi�cant examples based on these restrictions: (�&

-

T

) and (�&

-

�

),

respectively. In either case, the rank function is de�ned as follows:

rank(fg) = 0

rank(A) = 0

rank(T ! U) = maxfrank(T) + 1; rank(U)g

rank(fT

i

! U

i

g

i2I

) = max

i2I

frank(T

i

! U

i

)g

The idea is that, by restricting the set of types or the subtyping relation as described

below, the types of a function and of its arguments are \strati�ed", namely the rank of

the functional type is strictly greater than the rank of the input type, as required by

theorem 7.1.

� �&

-

�

is de�ned by substituting � in all �& rules with a stricter subtyping relation

�

-

de�ned by adding to any subtyping rule which proves T � U the further con-

dition rank(T) � rank(U). In any well typed �&

-

�

application M

fT

i

!U

i

g

i2I

�

N

T

0

,

the rank of T

0

is then smaller than the rank of some T

i

, hence is strictly smaller

than the rank of fT

i

! U

i

g

i2I

; similarly for functional application. The subject

reduction proof for �& works for �&

-

�

too, thanks to the transitivity of the �

-

relation.

7

� �&

-

T

is de�ned by imposing, on overloaded types fT

i

! U

i

g

i2I

, the restriction

that the ranks of all the branch types T

i

! U

i

are equal, and by stipulating that fg

is not a supertype of any non-empty overloaded type (see the previous footnote).

Then we can prove inductively that, whenever T � U , then rank(T) = rank(U),

and that �&

-

T

is a subsystem of �&

-

�

. To prove the closure under reduction (i.e.,

that �&

-

T

terms reduce to �&

-

T

terms), observe �rst that a �& term is also a

�&

-

T

term i� all the overloaded types appearing in the indexes of variables and of

&'s are �&

-

T

overloaded types (this is easily shown by induction on typing rules).

The closure by reduction follows immediately, since variables and &'s indexes are

never created by a reduction step.

Note that �&

-

T

is already expressive enough to model object-oriented programming,

where all methods always have the same rank (rank 1), and that �&

-

�

is even more

expressive than �&

-

T

. 2

7

Note that, in this system, fg is not a supertype of any non-empty overloaded type; this is not

a problem, since the empty overloaded type is only used to type ", which is only used only to start

overloaded function construction. However, we may alternatively de�ne a family of empty types fg

i2!

,

each being the maximum overloaded type of the corresponding rank, and a correspondent family of

empty functions "

i2!

.

23

Theorem 7.1 and the examples show that there exist subsystems of �& which are

strongly normalizing and expressive enough for our purposes

8

. However we preferred to

adopt the whole �& as our target system, since it is easier to establish results such as

Subject Reduction and Conuence on the wider system and apply them in subsystems

rather than trying to extend restricted versions to more general cases.

In the following subsections we prove Theorem 7.1.

7.2 Typed-inductive properties

As is well known, strong normalization cannot be proved by induction on terms, since

� reduction potentially increases the size of the reduced term. For this reason we

introduce, along the lines of [Mit86], a di�erent notion of induction on typed terms,

called typed induction, proving that every typed-inductive property is satis�ed by any

typed �&

-

term. This notion is shaped over reduction, so that some reduction related

properties, such as strong normalization or conuence, can be easily proved to be typed-

inductive. Theorem 7.9, which proves that every typed-inductive property is satis�ed

by any typed �&

-

term, is the kernel of our proof and is related to the normalization

proofs due to Tait, Girard, Mitchell and others. We had to avoid, though, the notions

of saturated set and of logical relation, which do not seem to generalize easily to our

setting. In this section we de�ne a notion of \typed-inductive property" for �&

-

terms

and show that every typed-inductive property is satis�ed by any (well-typed) �&

-

term.

Although many of the results and de�nitions in this section hold or make sense for �&

too, the reader should remember that all the terms, types and judgments in this section

refer to a �&

-

system satisfying the conditions of Theorem 7.1.

Notation 7.3 M�N will denote M �N if M :T ! U and M

�

N if M : fM

i

! N

i

g

i=1:::n

.

Notation 7.4

~

M denotes a list [M

i

]

i=1;:::;n

of terms, possibly empty, and N �

~

M means

N �M

1

�: : :�M

n

; the same for N

�

~

M ; if

~

M is empty, N �

~

M is just N .

\

~

M is well typed" means \each M

i

2

~

M is well typed"; similarly for other predicates

on terms.

De�nition 7.5 Let fS

T

g

T

be a family of sets of �&

-

terms, indexed over �&

-

types,

such that:

M

2

S

T

) `M :T:

S is typed-inductive if it satis�es the following conditions

9

(where M

2

S

if

means

\M

2

S if M is well typed"):

(x=c) 8x;

~

N

2

S : x�

~

N 2 S

if

and similarly for constants and for ".

8

Strictly speaking these are not subsystems: we have excluded some types, thus two types that

possessed a common lower bound in the full system may no longer possess it here. Therefore the

condition (c) may be more easily satis�ed and types that were not well formed may now satisfy all the

condition of good formation

9

We use S for fS

T

g

T

. Furthermore, since any term M has a unique type T , we will write without

ambiguity M

2

S to mean M

2

S

T

.

24

(&

1

) 8M

1

2

S ;M

2

2

S ; N

2

S ;

~

N

2

S :

M

1

�

N �

~

N 2 S

if

^ M

2

�N �

~

N 2 S

if

) (M

1

&M

2

)

�

N �

~

N 2 S

if

(�

1

) 8M

2

S ; N

2

S ;

~

N

2

S : M [x :=N]�

~

N 2 S

if

) (�x:T:M)�N �

~

N 2 S

if

(&

2

) 8M

1

2

S ;M

2

2

S : M

1

&M

2

2 S

if

(�

2

) 8M

2

S : �x

T

:M 2 S

if

The S

if

notation means that all the \

2

S" predicates in the above implications must

only be satis�ed only by typed preterms. This is di�cult only in case &

1

: depending

on whether M

1

�

: : : is well-typed, M

2

�: : : is well-typed or both are well-typed, the �rst,

the second or both are required to be in S ; indeed we want to take into account all the

branches that could be selected not only the one that will be actually executed. For

this reason we used in &

1

a \^" rather than a _".

We aim to prove, by induction on terms, that every well-typed �&

-

term N belongs

to S . The conditions on typed induction allow an inductive proof of this fact for terms

like �x

T

:M and M&N , but we have no direct proof that (M

2

S ^N

2

S))(M�N

2

S).

For this reason we derive from S a stronger predicate S

�

which allows term induction

through application. We will then prove that S

�

is not actually stronger than S , since

for any typed-inductive property S :

M

2

S

�T

,M

2

S

T

, `M :T:

The de�nition of S

�

is the only part of the proof where we need the strati�cation by

the rank function.

Notation 7.6 (

d

[T

i

]

i2I

) For any list of types [T

i

]

i2I

, T

0

2

d

[T

i

]

i2I

, 9i

2

I:T

0

�T

i

. Note

that if `M : fT

i

! U

i

g

i2I

and ` N :T

0

then M

�

N is well typed i� T

0

2

d

[T

i

]

i2I

.

De�nition 7.7 For any typed-inductive property fS

T

g

T

its application closure on �&

-

terms fS

�T

g

T

is de�ned, by lexicographic induction on the rank and then on the size

of T, as follows:

(atomic) M

2

S

�A

,M

2

S

A

(!) M

2

S

�T!U

, M

2

S

T!U

^ 8T

0

�T:8N

2

S

�T

0

: M �N

2

S

�U

(fg) M

2

S

�fT

i

!U

i

g

i=1 :::n

, M

2

S

fT

i

!U

i

g

i=1 :::n

^ 8T

0

2

d

[T

i

]

i=1:::n

:8N

2

S

�T

0

:9i

2

[1::n]:M

�

N

2

S

�U

i

In short:

M

2

S

�

,M

2

S ^ 8N

2

S

�

:M �N

2

S

�if

In the de�nition of S

�

, we say that M belongs to S

�

by giving for granted the

de�nition of S

�

over the types of the N 's such that M �N is well typed and over the

type of M �N itself. This is consistent with the inductive hypothesis since:

25

1. The rank of the type of N is strictly smaller than the rank of the type of M in

view of the conditions in Theorem 7.1.

2. Since the type U of M �N strictly occurs in the type W of M , then the rank of

U is not greater than the rank of W (by the conditions in Theorem 7.1). Hence

the de�nition is well formed either by induction on the rank or, if the ranks of U

and W are equal, by secondary induction on the size.

The next lemma shows, informally, that in the conditionM

2

S

�

,8N

2

S

�

:M�N

2

S

�if

we can trade an � for an ~, since 8N

2

S

�

:M �N

2

S

�if

,8

~

N

2

S

�

:M �

~

N

2

S

if

.

Lemma 7.8 M

2

S

�

,M is well typed ^ 8

~

N

2

S

�

:M �

~

N

2

S

if

Proof.

()) \M is well typed" is immediate since M

2

S

�T

) M

2

S

T

) `M :T .

8

~

N

2

S

�

:M�

~

N

2

S

if

is proved by proving the stronger property 8

~

N

2

S

�

:M�

~

N

2

S

�if

by induction on the length of

~

N . If

~

N is empty, the thesis is immediate. If

~

N = N

1

[

~

N

0

then M �N

1

2

S

�if

by de�nition of S

�

, and (M �N

1

)�

~

N

0

2

S

�if

by

induction.

(() By de�nition, M

2

S

�

,M

2

S ^ 8N

2

S

�

:M �N

2

S

�if

. 8

~

N

2

S

�

:M

�

~

N

2

S

if

implies

immediately M

2

S : just take an empty

~

N . M �N

2

S

�if

is proved by induction

on the type of M .

(atomic) ` M :A: M �N is never well typed; M

2

S

A

is enough to conclude

M

2

S

�A

.

(fg) `M : fg: as above.

(!) `M :T ! U : we have to prove that 8N

2

S

�T

0

; T

0

�T:M �N

2

S

�U

.

By hypothesis:

8

~

N

2

S

�

:M �N �

~

N

2

S

if

applying induction to M �N , whose type U is smaller than the one

of T ! U , we have that M �N

2

S

�U

.

(fT

i

! U

i

g) `M : fT

i

! U

i

g

i=1:::n+1

: as in the previous case.

2

Theorem 7.9 If S is typed-inductive, then every term ` N :T is in S

�T

.

Proof. We prove the following stronger property: if N is well-typed and �� [~x

~

T

:=

~

N]

is a well-typed S

�

-substitution (i.e. for i

2

[1::n]. N

i

2

S

�T

0

i

and T

0

i

� T

i

), then N�

2

S

�

;

~x

~

T

is called the domain of �� [~x

~

T

:=

~

N], and is denoted as dom(�).

It is proved by induction on the size of N . In any induction step, we prove

8�:N�

2

S

�

, supposing that, for any N

0

smaller than N , 8�

0

:N

0

�

0

2

S

�

(which implies

N

0

�

0

2

S and N

0

2

S).

26

(c) c� � c. We apply lemma 7.8, and prove that 8

~

N

2

S

�

:c �

~

N

2

S

if

. Since

~

N

2

S

�

)

~

N

2

S then c�

~

N

2

S

if

follows immediately from property (c) of S .

(x) If x

2

dom(�) then x�

2

S

�

since � is an S

�

-substitution. Otherwise, reason

as in case (c).

(M

1

&M

2

) By applying lemma 7.8 we prove that 8�:8

~

N

2

S

�

:(M

1

&M

2

)��

~

N

2

S

if

.

We have two cases. If

~

N is not empty then

~

N � N

1

[

~

N

0

. For any �,

M

1

�

�

N

1

�

~

N

0

2

S

if

andM

2

��N

1

�

~

N

0

2

S

if

by induction (M

1

andM

2

are smaller

than M

1

&M

2

). Then (M

1

&M

2

)�

�

N

1

�

~

N

0

2

S

if

by property (&

1

) of S .

If

~

N is empty then (M

1

&M

2

)�

2

S follows, by property (&

2

) of S , from the

inductive hypothesis M

1

�

2

S and M

2

�

2

S .

(�x

T

:M) We will prove that 8�:8

~

N

2

S

�

: (�x

T

:M)��

~

N

2

S

if

, supposing, w.l.o.g., that

x is not in dom(�).

We have two cases. If

~

N is not empty and (�x

T

:M)� �

~

N is well typed

then

~

N � N

1

[

~

N

0

and the type of N

1

is a subtype of T . Then for any

S

�

-substitution �, �[x

T

:=N

1

] is a well-typed S

�

-substitution, since N

1

2

S

�

by hypothesis, and then M(�[x :=N

1

])�

~

N

0

2

S

if

by induction, which implies

(M�)[x :=N

1

]�

~

N

0

2

S

if

. Then (�x

T

:M�) �N

1

�

~

N

0

� (�x

T

:M)� �

~

N

2

S

if

by

property (�

1

) of S .

If

~

N is empty, (�x

T

:M)�

2

S follows, by property (�

2

), from the inductive

hypothesis M�

2

S .

(M �N) By induction M�

2

S

�

and N�

2

S

�

; then (M �N)�

2

S

�

by de�nition of S

�

.

This property implies the theorem since, as can be argued by case (x) of this proof, the

identity substitution is a well-typed S

�

-substitution. 2

Corollary 7.10 If S is a typed-inductive property, every well-typed term satis�es S

and its application closure:

M

2

S

�T

, M

2

S

T

, `M :T

Proof.

M

2

S

�T

) M

2

S

T

by de�nition of S

�

:

M

2

S

T

) `M :T by de�nition of typed induction:

`M :T) M

2

S

�T

by theorem 7.9:

2

7.3 Strong Normalization is typed-inductive

In this section we prove Strong Normalization of �&

-

by proving that Strong Normal-

ization is a typed-inductive property of �&

-

terms.

Consider the following term rewriting system unconditional-�[�

&

, which di�ers from

�[�

&

since unconditional-�

&

reduction steps are allowed even if N is not normal or not

closed, and the selected branch can be any of those whose input types is compatible

with the type of the argument:

27

�) (�x

S

:M)N >M [x

S

:=N]

uncond.-�

&

) If N :U � U

j

then

((M

1

&

fU

i

!V

i

g

i=1::n

M

2

)

�

N) >

(

M

1

�

N for j < n

M

2

�N for j = n

Instead of proving Strong Normalization for �&

-

reduction, we prove Strong Nor-

malization for unconditional-�[�

&

. Since any �[�

&

reduction is also an unconditional-

� [�

&

reduction, Strong Normalization of the unconditional system implies Strong

Normalization for the original one. Note that the proof of subject reduction is valid

also when using uncond-�

&

(the proof result even simpler) but that, even if the �

&

con-

ditions are not necessary to obtain strong termination, they are still needed to obtain

conuence.

Notation 7.11 If M is strongly normalizing, �(M) is the length of the longest reduc-

tion chain starting from M . �(

~

M) is equal to �(M

1

) + : : :+ �(M

n

).

Theorem 7.12 SN

T

, the property of being strongly normalizing terms of type T (ac-

cording to the unconditional relation) is typed-inductive.

Proof.

(x/c) 8

~

N

2

SN : x

U

�

~

N

2

SN

if

By induction on �(

~

N): if x�

~

N > P then P = x�N

0

1

� : : :�N

0

n

where just one

of the primed terms is a one-step reduct of the corresponding non-primed one,

while the other ones are equal. So P

2

SN by induction on �(

~

N).

(&

1

) 8M

1

2

SN ;M

2

2

SN ; N

2

SN ;

~

N

2

SN :

M

1

�

N �

~

N 2 SN

if

^ M

2

�N �

~

N 2 SN

if

) (M

1

&M

2

)

�

N �

~

N 2 SN

if

By induction on �(M

1

) + �(M

2

) + �(N) + �(

~

N).

If (M

1

&M

2

)

�

N �

~

N > P then we have the following cases:

(�&

l

) P =M

1

�

N�

~

N: since P is well-typed by subject-reduction, then P

2

SN

by hypothesis.

(�&

r

) P =M

2

�N �

~

N: as above.

(congr.) P = (M

0

1

&M

0

2

)

�

N

0

�

~

N

0

: P

2

SN by induction on �.

So (M

1

&M

2

)

�

N �

~

N

2

SN since it one-step reduces only to strongly normalizing

terms.

(�

1

) 8M

2

SN ; N

2

SN ;

~

N

2

SN : M [x :=N]�

~

N 2 SN) (�x

T

:M)�N �

~

N 2 SN

if

By induction on �(M) + �(N) + �(

~

N). If (�x

T

:M) �N �

~

N > P we have the

following cases:

28

(�) P =M [x :=N]�

~

N: P

2

SN by hypothesis.

(congr.) P = (�x

T

:M

0

)�N

0

�

~

N

0

where just one of the primed terms is a one-step

reduct of the corresponding one, while the other ones are equal: P

2

SN

by induction on �.

(&

2

) 8M

1

2

SN ;M

2

2

SN : M

1

&M

2

2 SN

if

By induction on �(M

1

)+ �(M

2

). If M

1

&M

2

>P then P�M

0

1

&M

0

2

where one of

the primed terms is a one-step reduct of the corresponding one, while the other

one is equal; then P

2

SN by induction.

(�

2

) 8M

2

SN : ` �x

T

:M :T ! U)�x

T

:M 2 SN

If �x

T

:M > �x

T

:M

0

then, since �(M

0

) < �(M), �x

T

:M

0

2

SN by induction on

�(M). So �x

T

:M

2

SN .

2

The last proof can be easily extended to show that the reduction system remains

strongly normalizing if we add the following extensionality rules:

(�) �x

T

:M �x >M if x is not free in M

(�

&

) M&(�x

T

:M

�

x) >M if x is not free in M

Theorem 7.1 is now a corollary of Theorem 7.12 and of Corollary 7.10.

8 Overloading and Object-Oriented Programming

We already explained in the introduction the relation between object-oriented languages

and our investigation of overloading. We discuss this relation here in more depth:

by now, it should be clear that we represent class-names as types, and methods as

overloaded functions that, depending on the type (class-name) of their argument (the

object the message is sent to), execute a certain code.

There are many techniques to represent the internal state of objects in this overloading-

based approach to object-oriented programming. Since this is not the main concern

of this research, we follow a rather primitive technique: we suppose that a program

(�&-term) may be preceded by a declaration of class types: a class type is an atomic

type, which is associated with a unique representation type, which is a record type.

Two class types are in subtyping relation if this relation has been explicitly declared

and it is feasible, in the sense that the respective representation types are in subtyping

relation too. In other words class types play the role of the atomic types from which we

start up, but in addition we can select �elds from a value in a class type as if it belonged

to its representation record type, and we have an operation

classType

to transform a

record value r:R into a class type value r

classType

of type classType, provided that the

representation type of classType is R. Class types can be represented in our system

by generalizing the technique used to represent record types, but we will not show this

29

fact in detail. We use italics to distinguish class types from the usual types, and

:

= to

declare a class type and to give it a name; we will use � to associate a name with a

value (e.g. with a function). Thus for example we can declare the following class types:

2DPoint

:

= hhx : Int; y : Intii

3DPoint

:

= hhx : Int; y : Int; z : Intii

and impose that on the types 3DPoint and 2DPoint we have the following relation

3DPoint � 2DPoint (which is feasible since it respects the ordering of the record types

these class types are associated with). A simple example of a method for these class

types is Norm. This will be implemented by the following overloaded function:

Norm � (�self

2DPoint

:

p

self:x

2

+ self:y

2

& �self

3DPoint

:

p

self:x

2

+ self:y

2

+ self:z

2

)

whose type is f2DPoint! Real; 3DPoint! Realg.

Indeed, this is how we implement methods, as branches of global overloaded func-

tions. Let us now carry on with our example and add some more methods to have a

look at what the restrictions in the formation of the types (see Section 2) become in

this context.

The �rst condition, i.e. covariance inside overloaded types, expresses the fact that a

version of a method which receives a more informative input returns a more informative

output. Consider for example a method that updates the internal state of an object,

such as the method Erase which sets the x component of a point to zero:

Erase � (�self

2DPoint

:hx = 0; y = self:yi

2DPoint

& �self

3DPoint

:hx = 0; y = self:y; z = self:zi

3DPoint

)

whose type is f2DPoint ! 2DPoint ; 3DPoint ! 3DPointg. Here covariance arises

quite naturally.

10

In object-oriented jargon, covariance says that an overriding method

must return a type smaller than the one returned by the overriden one.

As for the second restriction it simply says that in case of multiple inheritance

the methods which appear in di�erent ancestors not related by �, must be explicitly

rede�ned. For example suppose we also have these de�nitions:

Color

:

= hhc : Stringii

2DColPoint

:

= hhx : Int; y : Int; c : Stringii

and that we extend the ordering on the newly de�ned atomic types in the following (fea-

sible) way: 2DColPoint�Color and 2DColPoint�2DPoint. Then the following function

is not legal, as formation rule 3.c in Section 3.2 is violated:

10

In the example the notation we used is quite cumbersome since we did not use �eld update oper-

ations on records like those of [CM91] or [Wan91]. Such operations may be derived in our system, by

exploiting the & operator and by a clever use of explicit coercions: see [Cas92].

30

Erase � (�self

2DPoint

:hx = 0; y = self:yi

2DPoint

& �self

3DPoint

:hx = 0; y = self:y; z = self:zi

3DPoint

& �self

Color

:hc = \white"i

Color

)

In object-oriented terms, this happens since 2DColPoint, as a subtype of both 2DPoint

and Color, inherits the Erase method from both classes. Since there is no reason to

choose one of the two methods and no general way of de�ning a notion of \merging" for

inherited methods, we ask that this multiply inherited method is explicitly rede�ned for

2DColPoint. Note that some object-oriented languages do not force this rede�nition,

but use some di�erent criterion to choose from inherited methods, usually related to

the order in which class de�nitions appear in the source code. As discussed in [Ghe91b],

our rule 3.c in Section 3.2 can be easily substituted to model these di�erent approaches

to the problem of choosing between inherited methods, allowing a formalization and a

comparison of these approaches in a unique framework. The approach we have chosen

in this foundational study is just the simplest one in a context where the set of atomic

types is �xed.

In our approach, a correct rede�nition of the Erase method would be:

Erase � (�self

2DPoint

:hx = 0; y = self:yi

2DPoint

& �self

3DPoint

:hx = 0; y = self:y; z = self:zi

3DPoint

& �self

Color

:hc = \white"i

Color

& �self

2DColPoint

:hx = 0; y = self:y; c = \white"i

2DColPoint

)

which has type:

f 2DPoint! 2DPoint;

3DPoint! 3DPoint;

Color! Color;

2DColPoint! 2DColPoint g

The way we have written these methods may seem complicated with respect to the

simplicity and modularity of object-oriented languages. Indeed the terms above can be

regarded as the result of a compilation (or translation) of a higher-level object-oriented

program like:

class 2DPoint

state x:Int;

y:Int

methods Norm = sqrt(self.x^2 + self.y^2);;

Erase = x <- 0;;

interface Norm: Real;

Erase: Likeself

endclass

31

class 3DPoint is 2DPoint and

state z:Int

methods Norm = sqrt(self.x^2+self.y^2+self.z^2);;

interface Norm: Real

endclass

class Color

state c:String

methods Erase = c <- "white";;

interface Erase: Likeself

endclass

class 2DColPoint is Color, 2DPoint and

methods Erase = x <- 0; c <- "white";;

endclass

8.1 Inheritance

Inheritance is the ability to de�ne the state, interface and methods of a class \by

di�erence" with respect to another class; inheritance on methods is the most important

one. In the record based model, inheritance is realized using the record concatenation

operation to add to the record of the methods of a superclass the new methods de�ned

in the subclass. However, the recursive nature of the hidden self parameter forces

one to distinguish between the \generator" associated with a class de�nition, which is

essentially a version of the methods where self is a visible parameter, from the �nished

method set, obtained by a �x point operation which transforms self into a recursive

pointer to the object which the methods belong to. This operation is called \generator

wrapping". Inheritance may be de�ned by record concatenation over generators.

11

To be able to reuse a generator, the type of self parameter must not be �xed: it must

be a type variable that will assume as value the type for which the generator is reused.

A �rst approach is to consider the type of self as a parameter itself; let us call it Likeself.

In this case, if this \recursive type" appears in the result type of some method, then,

when a generator is wrapped, the same operation must be performed on the type, to

bind Likeself to the type of the class under de�nition, hence we need a �x point operator

at the type level too. If, furthermore, there is some binary method, then Likeself must

be linked to the type of the class under de�nition on the left hand side of arrows

too. But, if a generator G has such a binary method, and a generator G

0

is obtained

by extending G, then the type obtained by wrapping G

0

is not a subtype of the one

11

To be fair, we must note that the generator based approach may account for the special identi�er

super used in object-oriented languages to refer to a method as it is implemented in a superclass, while

we do not have this possibility in our system.

32

obtained by wrapping G, as explained in more detail below. Hence, subtyping cannot

be used to write functions operating on objects corresponding to both G and G

0

, but

F-bounded polymorphism must be introduced. F-bounded polymorphism is essentially

a way of quantifying over all types obtained by wrapping an extension of a generator

F . For an account of this approach see for example [CCH

+

89, CHC90, Mit90, Bru91].

The feeling is that in the approach outlined above, recursion is too heavily used.

An approach close to the previous one but that avoids the use of recursive types has

been recently proposed in [PT93]. The idea is to separate the state of an object from

its methods and then encapsulate the whole object by existentially quantifying over the

type of the state. The type of a method that works on the internal state does not need

to refer to the type of the whole object (as in the previous approach) but only to its state

part; therefore recursive types are no longer needed. The type of the state is referred by

a type variable since it is the abstract type of the existential quanti�cation. The whole

existential type is passed to the generator as in the previous case but without any use

of recursive types. Finally, the behavior of F-bounded polymorphism is obtained by a

clever use of higher order quanti�cation.

Our approach to method inheritance is even simpler since we also separate the state

from the methods. In our system, every subtype of a type inherits all the methods of

its supertypes, since every overloaded function may be applied to every subtype of the

types which the function has been explicitly written for. Moreover, the behavior of an

inherited method M appearing as a branch of an overloaded function (i.e. a message)

N can be overridden, i.e. de�ned in a way which is speci�c for a subtype T , by de�ning

a branch for T inside the overloaded function N . Finally, new methods may be de�ned

for a subtype by de�ning new overloaded functions. By this, we may say that, in our

system, inheritance is given by subtyping plus the branch selection rule. This can be

better seen by an example: suppose to have a message for which a method has been

de�ned in the classes U

1

: : :U

n

; thus this message denotes an overloaded function of

type fU

i

! T

i

g

i=1::n

for some T

i

's. When this overloaded function is applied to an

argument, the branch selected is the one de�ned for the class min

i=1::n

fU

i

jU � U

i

g,

where U is the class (type) of the argument. If this minimum is exactly U , this means

that the receiver uses the method that has been de�ned in its class; otherwise, i.e. if

this minimum is strictly greater, then the receiver uses the method that its class, U ,

has inherited from this minimum (a superclass); in other terms, the code written for

the class which resulted to be the minimum, is reused by the objects of the class U .

The reader should note that, although our system has a static nature (the set of

atomic types is �xed), it is possible to extend it to a dynamic one, along the lines drawn

in [Ghe91b].

8.2 Binary methods and multiple dispatch

Let us now see the problem with binary methods in greater detail. Let us see what

happens in the \objects as records" analogy: if we add a method Equal to 2DPoint

and 3DPoint then, in the notation typical of formalisms built around this analogy, we

obtain the following recursive record types (we forget the other methods):

33

2DEPoint � hhx : Int; y : Int;Equal : 2DEPoint! Boolii

3DEPoint � hhx : Int; y : Int; z : Int;Equal : 3DEPoint! Boolii.

The two types are not comparable because of the contravariance of the arrow type in

Equal : since one would expect 2DEPoint to be larger, as a record, than 3DEPoint, the

type at the left of the outer arrow in 2DEPoint should be larger, which is impossible

by contravariance.

12

Note that this should not be considered a aw in the system but a

desirable property, since a subtyping relation between the two types, in the record based

approach, could cause a run-time type error (see [CL91] for an example). Hence, there

is an apparent incompatibility between the covariant nature of most binary operations

and the contravariant subtyping rule of arrow types.

Our system is essentially more exible, in this case. Indeed if we set 3DPoint�2DPoint

then an equality function, with type:

Equal: f2DPoint! (2DPoint! Bool); 3DPoint! (3DPoint! Bool)g

would not be well-typed in our system either, since 3DPoint � 2DPoint while 2DPoint

! Bool � 3DPoint ! Bool. This expresses the fact that a comparison function cannot

be chosen only on the basis of the type of the �rst argument. In our system, on the

other hand, we can write an equality function where the code is chosen on the basis of

both arguments

Equal � (�(p; q)

2DPoint�2DPoint

:(p:x = q:x) AND (p:y = q:y)

& �(p; q)

3DPoint�3DPoint

:(p:x = q:x) AND (p:y = q:y) AND (p:z = q:z)

)

the function above has type:

f(2DPoint� 2DPoint)! Bool; (3DPoint� 3DPoint)! Boolg

which is well formed

13

.

In the presence of a subtyping relation, the covariance versus contravariance of the

arrow type, w.r.t. the left argument (domain), is a delicate and classical debate. Seman-

tically (categorically) oriented people have no doubt: the hom-functor is contravariant

in the �rst argument. Moreover, this nicely �ts with typed models constructed over

type-free universes, where types are subsets or subrelations of the type-free structure,

and type-free terms model runtime computations. Also the common sense of the type-

checking forces contravariance: if we consider one type a subtype of another if and

only if all expressions of the former type can be used in the place of expressions of

the latter, then a function g : T ! U may be substituted by a function f only if the

domain of f is greater than T . However, practitioners often have a di�erent attitude.

In OOP, in particular, the \overriding" of a method by one, say, with a smaller domain

12

Recursive types should be considered as denotations for their in�nite expansion, and an in�nite

type is a subtype of another one when all the �nite approximations of the �rst one are subtypes of the

corresponding �nite approximation of the second one; see [AC90].

13

This is not surprising as, even if the types of the two versions of equal are componentwise isomor-

phic, in general isomorphisms of types do not preserve subtyping.

34

(input type) leads to a smaller codomain (output type), in the spirit of a \preservation

of information". Indeed, in our approach, we show that both viewpoints are correct,

when adopted in the \right" context.

In fact, our general arrow types (the types of ordinary functions) are contravariant

in the �rst argument, as required by common sense and mathematical meaning. How-

ever, the families of arrow types which are glued together in overloaded types form

covariant collections, by our conditions on the formation of these types (see 3.2). Be-

sides the justi�cation of this at the end of Section 2, consider the practice of overriding.

The implementation of a method in a superclass is substituted by a more speci�c im-

plementation in a subclass; or, more precisely, overriding methods must return smaller

or equal types than the overridden one. For example, the \+" operation, on di�erent

types, may be given by two di�erent implementations: one implementation of type

Int� Int! Int , the other of type Real� Real! Real. In our approach, we can glue

these implementations together into one global method, precisely because their types

satisfy the required covariance condition.

We have already noted that part of the expressive power of our system derives from

the ability to choose one implementation on the basis of the types of many arguments.

This ability makes it even possible to decide explicitly how to implement \mixed binary

operations". For example, besides implementing \pure" equality between 2DPoints

and between 3DPoints, we can also decide how we should compare a 2DPoint and a

3DPoint, as below:

Equal � (�(p; q)

2DPoint�2DPoint

: :::

& �(p; q)

3DPoint�3DPoint

: :::

& �(p; q)

2DPoint�3DPoint

:(p:x = q:x) AND (p:y = q:y)

& �(p; q)

3DPoint�2DPoint

:(p:x = q:x) AND (p:y = q:y) AND (p:z = 0)

)

The ability to choose a method on the basis of several object parameters is called, in

object-oriented jargon, multiple dispatch.

9 Conclusion: intersections, products and their seman-

tics

This work is only the starting point of a new type discipline to be more extensively

explored. We believe that we have proposed here a sound solution to the use of con-

travariant arrow types and of covariant ones in programming: the \purely functional"

or external arrows are contravariant, in the �rst argument, while overloaded functions,

as inspired by our understanding of message passing and methods in object-oriented

programming, yield covariant families of arrow types. It should also be clear that our

language essentially models message passing and inheritance, by the use of overloaded

application and subtyping, as described in the previous sections, thus avoiding unnec-

essary use of recursion.

35

We have not dealt, though, with abstract data types nor with incremental class

de�nitions: this may be a matter for future extensions. We have tried to present our

perspective and motivations in the introduction, by stressing the need to found the

so called \ad hoc" polymorphism onto decent mathematical grounds, in particular in

view of its role in the understanding of the object-oriented features mentioned above.

Reference has been given to the work we are aware of in this subject, all of which has,

in fact, a quite di�erent perspective.

As for the Type Theory proposed, one has �rst to stress that that \terms depend-

ing on types" is a concept entirely di�erent from \types depending on terms", (as

described in the |�rst order| types of Martin-L�of type theory or of the Calculus of

Constructions). One should also quote possible connections with other type disciplines,

in particular, the intersection types, originated in [CDCV81]. Indeed, an overloaded

type, in our sense, is strictly related to an intersection of types: recent applications of

intersection types in [Pie90] and in the programming language Forsythe support this

analogy [Rey88]. However, the two notions are slightly di�erent. An intersection type

T \ U is a type whose elements can play both the role of an element of type T and

of an element of type U , and this is the case for our overloaded types too. In the

case of intersection, though, types, a coherence condition is imposed too, which means,

essentially, that when a value can play di�erent roles, we are free to choose any of

these roles, without a�ecting the result of the computation [Rey91]. In our context,

this is not the case; a programmer may de�ne an overloaded function \foo" of type

fInt � Int! Int;Real�Real ! Realg which sums two integers but multiplies two real

numbers, while in a coherent intersection type discipline an overloaded function with

that type should behave in a consistent way on integers and reals.

Consider now higher order systems and observe that in Girard's system F (Reynolds'

second order �-calculus, [GLT89]), second order terms may be fed with input types.

These terms then may seem to express an explicit type dependency as the one we tried

to formalize in this paper. We fully understand now that it is not so. On the model

theoretical side, this is made clear by the interpretation of second order product types

as intersections (in view of the semantic relation between intersection and dependent

products given in [LM91], this is a delicate issue: see [Lon94] for a discussion). From

the point of view of proof theory, the low expressiveness of terms which may take types

as inputs is explained by early intuitions of Reynolds on parametricity and the work in

[MR91], [ACC93] and [LMS93]. Intuitively, Reynolds Abstraction Theorem says that

a term, taking as inputs two \related" types, gives \related" terms as outputs and the

Genericity Theorem in [LMS93] shows that if two terms coincide on one input type

then they coincide on all input types. The moral is that in system F, as a properly

second order logical system, one cannot have terms whose output values truly depend

on input types.

For all these reasons, we had to design a completely new language: no tools are

available from (constructive) logic to express the simple fact of practice that the value

of a term may depend on a type as input. We decided, consistently with the practice of

object-oriented programming, to allow only a \�nite dependency": overloaded terms are

�nitely branching terms and the essential richness of the discipline is largely due to the

36

use of subtyping, which ful�lls a quanti�cation over an in�nity of types. However, the

way is open to further strengthening, once we set the safe grounds of a few, but crucial,

consistency properties (Church-Rosser, Strong Normalization, Subject Reduction).

In particular, one may think to allow type variables and second order �-abstraction,

also in overloaded types and terms (e.g. allow �X:(: : :&

X

: : :)) and study how the co-

variance constraints and the syntactic properties are transformed in this case. Explicit

polymorphism would then be entirely revised as type dependency would be as uniform

and as e�ective as ever. The border line, though, between safe systems and inconsisten-

cies would then become narrow: the technical di�culties of the normalization theorem,

at our propositional level, may suggest the major obstacles one may encounter in de�n-

ing \sound" higher order systems.

We plan to explore this direction as well as three less ambitious projects. First

the semantics of �&, a non trivial matter even in the propositional case (a preliminary

proposal is in [CGL93]). Second, the application of the ideas of this calculus to the

implementation of a prototypical object-oriented language. Third, a more detailed

investigation of \compile-time vs. run-time" types. In this paper we proposed a simple

view of this \dualism", which �ts our approach. More should be said, though, in

particular regarding subtyping, coercions, etc., i.e. the various ways of dealing with

\types evolving during computations".

As for the use of recursion, surely an essential tool for programming practice, we

believe that the theoretic investigation of complex issues, like this, should be made into

two steps, if possible. First, analyze type disciplines where some \unshakable grounds"

can be set: following the analogy \types as propositions" in �-calculus, this means

consistency proofs, via normalization, say, and related facts. Then, if everything works

�ne, add recursion when really needed for computations, both for types and terms. This

is another \methodological" point which distinguishes our approach from the current

theoretical treatments of object-oriented features.

Acknowledgments. G. Castagna would like to thank Maribel Fern�andez for her

comments on an early draft and Roberto Di Cosmo for his help in the work and patience

in sharing an o�ce. Very special thanks to Franca and Nico, too.

References

[AC90] R. Amadio and L. Cardelli. Subtyping recursive types. Technical report,

Digital System Research Center, August 1990.

[ACC93] M. Abadi, L. Cardelli, and P.-L. Curien. Formal parametric polymorphism.

In Dezani, Ronchi, and Venturini, editors, B�ohm Festschrift. 1993.

[Bar84] H.P. Barendregt. The Lambda Calculus Its Syntax and Semantics. North-

Holland, 1984. Revised edition.

37

[Bru91] K.B. Bruce. The equivalence of two semantic de�nitions of inheritance in

object-oriented languages. In Proceedings of the 6th International Confer-

ence on Mathematical Foundation of Programming Semantics, 1991. To

appear.

[Car88] Luca Cardelli. A semantics of multiple inheritance. Information and Com-

putation, 76:138{164, 1988. A previous version can be found in Semantics

of Data Types, LNCS 173, 51-67, Springer-Verlag, 1984.

[Cas92] G. Castagna. Strong typing in object-oriented paradigms. Technical Report

92-11, Laboratoire d'Informatique, Ecole Normale Sup�erieure - Paris, June

1992.

[CCH

+

89] P.S. Canning, W.R. Cook, W.L. Hill, J. Mitchell, and W.G. Ortho�. F-

bounded quanti�cation for object-oriented programming. In ACM Confer-

ence on Functional Programming and Computer Architecture, September

1989.

[CDCV81] M. Coppo, M. Denzani-Ciancaglini, and B. Venneri. Functional characters

of solvable terms. Zeit. Math. Logik, 27:45{58, 1981.

[CG92] P. L. Curien and G. Ghelli. Coherence of subsumption, minimum typing

and the type checking in F

�

. Mathematical Structures in Computer Science,

2(1), 1992.

[CG93] P.-L. Curien and G. Ghelli. Conuence and decidability of ��top

�

reduction

in F

�

. Information and Computation, 1993. To appear.

[CGL93] G. Castagna, G. Ghelli, and G. Longo. A semantics for �&-early: a calculus

with overloading and early binding. In M. Bezem and J.F. Groote, editors,

International Conference on Typed Lambda Calculi and Applications, num-

ber 664 in LNCS, pages 107{123, Utrecht, The Netherlands, March 1993.

Springer-Verlag. TLCA'93.

[CHC90] W.R. Cook, W.L. Hill, and P.S. Canning. Inheritance is not subtyping. 17th

Ann. ACM Symp. on Principles of Programming Languages, January 1990.

[CL91] G. Castagna and G. Longo. From inheritance to Quest's type theory. In

Ecole Jeunes Chercheurs du GRECO de Programmation, Sophia-Antipolis

(Nice), April 1991. Talk given at the 5th Jumelage on Typed Lambda

Calculus - Paris - January 1990.

[CM91] L. Cardelli and J.C. Mitchell. Operations on records. Mathematical Struc-

tures in Computer Science, 1(1):3{48, 1991.

[CW85] L. Cardelli and P. Wegner. On understanding types, data abstraction and

polymorphism. Computing Surveys, 17(4):471{522, December 1985.

38

[DG87] L.G. DeMichiel and R.P. Gabriel. Common lisp object system overview.

In Proc. of ECOOP '87 European Conference on Object Oriented Program-

ming, 1987.

[Ghe90] G. Ghelli. Proof Theoretic Studies about a Minimal Type System Integrat-

ing Inclusion and Parametric Polymorphism. PhD thesis, Dipartimento di

Informatica, Universit�a di Pisa, March 1990. Tech. Rep. TD-6/90.

[Ghe91a] G. Ghelli. Modelling features of object-oriented languages in second order

functional languages with subtypes. In J.W. de Bakker, W.P. de Roever, and

G. Rozenberg, editors, Foundations of Object-Oriented Languages, number

489 in LNCS, pages 311{340, Berlin, 1991. Springer-Verlag.

[Ghe91b] G. Ghelli. A static type system for message passing. In Proc. of OOPSLA

'91, 1991.

[GLT89] J.Y. Girard, I. Lafont, and P. Taylor. Proof and Types. Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1989.

[Hin64] R. Hindley. The Church-Rosser property and a result of combinatory logic.

Dissertation, 1964. University of Newcastle-upon-Tyne.

[LM91] G. Longo and E. Moggi. Constructive natural deduction and its !-set in-

terpretation. Mathematical Structures in Computer Science, 1(2):215{253,

1991.

[LMS93] G Longo, K. Milsted, and S. Soloviev. The genericity theorem and para-

metricity in functional languages. In 8th Annual IEEE Symposium on Logic

in Computer Science, Montreal, June 1993.

[Lon94] G. Longo. Parametric and type-dependent polymorphism. Fundamenta

Informaticae, 1994. To appear.

[Mit86] J. C. Mitchell. A type inference approach to reduction properties and se-

mantics of polymorphic expressions. In ACM Conference on LISP and Func-

tional Programming, pages 308{319, 1986.

[Mit90] J.C. Mitchell. Toward a typed foundation for method specialization and in-

heritance. 17th Ann. ACM Symp. on Principles of Programming Languages,

January 1990.

[MOM90] N. Mart��-Oliet and J. Meseguer. Inclusions and subtypes. Technical report,

SRI International, Computer Science Laboratory, December 1990.

[MR91] Q.Y. Ma and J. Reynolds. Types, abstractions and parametric polymor-

phism, part II. In MFCS. LNCS, Springer-Verlag, 1991.

[Pie90] B. Pierce. Intersection and union types. Technical report, Carnegie Mellon

University, 1990.

39

[PT93] B.C. Pierce and D.N. Turner. Object-oriented programming without re-

cursive types. In 10th Ann. ACM Symp. on Principles of Programming

Languages. ACM-Press, 1993. To appear in Journal of Functional Program-

ming.

[Rey88] John C. Reynolds. Preliminary design of the programming language

Forsythe. Technical Report CMU-CS-88-159, Carnegie Mellon University,

June 1988.

[Rey91] John C. Reynolds. The coherence of languages with intersection types. In

T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software

(Sendai, Japan), number 526 in LNCS, pages 675{700. Springer-Verlag,

September 1991.

[Ros73] B. K. Rosen. Tree manipulation systems and Church-Rosser theorems. Jour-

nal of ACM, 20:160{187, 1973.

[Rou90] F. Rouaix. ALCOOL-90, Typage de la surcharge dans un langage fonction-

nel. PhD thesis, Universit�e PARIS VII, December 1990.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple in-

heritance. Information and Computation, 93(1):1{15, 1991.

[WB89] Philip Wadler and Stephen Blott. How to make \ad-hoc" polymorphism

less \ad-hoc". In 16th Ann. ACM Symp. on Principles of Programming

Languages, pages 60{76, 1989.

40

