
A Proof Method based on Folding

Lemmas:

Applications to Algorithm Correctness

Sta�an BONNIER

�

Laurent FRIBOURG

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

�

Link�oping University, Sweden

LIENS - 92 - 28

December 1992

A Proof Method based on Folding Lemmas:

Applications to Algorithm Correctness

Sta�an Bonnier

1

, Laurent Fribourg

L.I.E.N.S (URA 1327 CNRS) - 45 rue d'Ulm, 75005 Paris - France

e-mail: bonnier,fribourg@dmi.ens.fr

Abstract

In [Fri92] a proof method was developed for proving arithmetic conse-

quences of Horn clause programs de�ned over integer lists and integers. To

be applicable, the method requires the recursion schemes of all predicates

involved to be compatible. This is to guarantee a sequence of unfold trans-

formations to eventually lead to a foldable clause. In this paper we consider

the case when such a compatibility is not present. To enable folding folding

lemmas are constructed. The proof then proceeds using the old method, and

the theorem is proved with the lemmas as hypotheses. The method is illus-

trated by proving correctness criteria for Boyer and Moore's string matching

algorithm and for Dijkstra's descending subsequence algorithm.

1 Introduction

In [Fri92], a method was developed for proving implications of the form:

p

1

(L; X

1

) ^ : : : ^ p

n

(L; X

n

) =) a(X

1

: : :X

n

)

where L is a list variable, each X

i

is a vector of integer variables, and a(X

1

: : :X

n

)

is an arithmetic formula. The method works by transforming the hypothesis of the

implication into an arithmetic formula b(X

1

; : : ;X

n

), satisfying the equivalence:

9L : p

1

(L; X

1

) ^ : : : ^ p

n

(L; X

n

) () b(X

1

; : : ;X

n

)

Proving the initial implication is thus reduced to proving the arithmetic formula:

b(X

1

; : : ;X

n

) =) a(X

1

: : :X

n

)

1

On leave from Link�oping University, Link�oping, Sweden. Financial support from the Swedish

National Board for Industrial and Technical Development and from the Swedish Institute is grate-

fully acknowledged.

1

A crucial step in generating b(X

1

; : : ;X

n

) is the synthesis of a new predicate p, such

that:

p(L; X

1

: : :X

n

) () p

1

(L; X

1

) ^ : : : ^ p

n

(L; X

n

)

This synthesis is done by applying the unfold/fold transformations due to Sato and

Tamaki [TS84] to the conjunction p

1

(L; X

1

) ^ : : : ^ p

n

(L; X

n

).

In addition to the basic scheme in [Fri92], several extensions of the method are

considered, such as the admission of more than one list variable. An important

assumption made in [Fri92] which is common to all extensions is that the recursion

schemes of the p

i

's are compatible, and, moreover, that the body of a recursive clause

de�ning some p

i

contains only arithmetic constraints in addition to the recursive

call. This is essential for the unfolding transformations to eventually yield a clause

which can be completely folded, and hence for making the synthesis of the predicate

p possible. It may however be desirable to allow one or more p

i

to violate these

restrictions. In particular this is the case when formulating correctness criteria for

algorithms; Several algorithms, which are themselves de�ned in terms of subroutines,

do indeed contain extra literals in conjunction with the recursive calls when encoded

as Horn clause programs.

In this paper we develop an extension of the method given in [Fri92]. In order

to make folding possible also in the presence of predicates violating the mentioned

restrictions, the extended method allows a rule of folding enabling to be applied

during the synthesis of p. The rule allows replacements of bodies of clauses, so that

an unfoldable clause can be turned into a foldable one. The prerequisites of applying

the rule constitute folding lemmas on which the �nal proof relies, and which hence

need to be proved separately. We then apply the extended method in order to prove

correctness criteria for Boyer and Moore's string matching algorithm [BM79] and

for Dijkstra's descending subsequence algorithm [Dij80].

The paper is organized as follows: Section 2 presents the general aim of the

method, and introduces some notions and notation used in the remaining sections.

Section 3 describes the principles behind the basic method, that is, the proof method

developed in [Fri92]. The limitations of the basic method which serve as motivation

for the present paper are also discussed in this section. The following section con-

stitute the core of the paper in that it introduces the notions of folding lemmas and

folding enabling. Finally, Section 5 presents two applications of the new method,

and the paper is then concluded in Section 6.

2 General Aim

Let in the following � denote a program de�ning certain predicates. It will without

further mention be assumed that each argument of these predicates is either of type

(non-negative) integer or of type list of (non-negative) integers. Standard arithmetic

predicates are allowed to occur in the bodies of the clauses in �. Our general aim

2

is to design a method for proving

2

formulae of the form:

A

1

^ : : : ^ A

n

=) I (1)

where A

1

; : : ; A

n

are atoms de�ned by �, and where I is an arithmetic formula. We

furthermore wish the method to carry out each proof by using A

1

^ : : : ^ A

n

to

generate an arithmetic formula J such that:

A

1

^ : : : ^ A

n

=) J (2)

and hence to reduce the problem of proving (1) to that of proving the arithmetic

implication:

J =) I (3)

The formula J should thus be as strong as possible. Indeed, ideally it should satisfy:

(9L : A

1

^ : : : ^A

n

)(= J (4)

where L is the vector of all list variables occurring in A

1

^ : : :^A

n

. When (2) holds,

the method is said to be correct (for A

1

^ : : :^A

n

). When (4) holds, the method is

said to be complete (for A

1

^ : : : ^ A

n

).

3 The Basic Method

3.1 General principles

The proof method presented in this paper extends the method developed in [Fri92].

This latter method will from now on be referred to as the basic method. It relies in

itself on Sato and Tamakis unfold/fold transformation system [TS84] with which the

reader is assumed to be familiar. In order to give an account of the basic method

we �rst need to de�ne the operation of projection. To simplify notation we assume

in the following that each atom is of the form p(L; N), where L is the vector of list

arguments and N is the vector of integer arguments.

De�nition 3.1 The projection of p(L; N) is the atom p

�

(N), where p

�

is a new

predicate corresponding to p. By P

�

we denote the program obtained by replacing

each non arithmetic atom in P by its projection.

The following are the steps prescribed by the basic method, starting from the hy-

pothesis A

1

^ : : : ^A

n

in (1):

Step 1: De�ne a new predicate p (not occurring in �) by the equivalence E:

p(L; N) () A

1

^ : : : ^ A

n

where L, N are all variables occurring in A

1

; : : ; A

n

.

2

That is, proving the truth in the least model of � over the domain of non-negative integers.

3

Step 2: Let 	 be the result of applying unfold/fold transformations to � [fEg.

3

Step 3: Project 	 to obtain 	

�

.

Step 4: Generate an arithmetic formula J , such that:

J(N)() p

�

(N)

holds in the least model of 	

�

.

In certain cases the formula J in Step 4 may be generated by an extended form of

bottom-up evaluation [FVP92].

Example 3.2 Suppose we wish to prove that:

min(L; M) ^ memb(E; L) =) M � E

where respectively min(L; M) and memb(E; L) holds i� M is the minimal element of

the list L, and E is a member of L. The following clauses de�ning min and memb are

assumed to be in �:

min([X], X). memb(X, [X|L]).

min([X|L], X) :- memb(X, [Y|L]) :-

min(L, Y), memb(X, L).

X � Y.

min([X|L], Y) :-

min(L, Y),

X > Y.

In Step 1 the following equivalence E is de�ned:

p(L; M; E) () min(L; M) ^ memb(E; L)

By doing unfold/fold computations in Step 2 we arrive at the program 	 containing

the following clauses, in addition to the clauses de�ning min:

p([XjL], X, X) :- p([X], X, X).

min(L, Y),

X � Y.

p([XjL], M, X) :-

min(L, M).

X > M.

p([XjL], X, E) :- p([XjL], M, E) :-

X � Y, X > M,

p(L, Y, E). p(L, M, E).

Projection of 	 in Step 3 thus yields the program 	

�

, containing the following

clauses in addition to the projection of the clauses de�ning min:

3

We also allow here the removal of clauses on which the de�nition of p is not dependent.

4

p

�

(X, X) :- p

�

(X, X).

min

�

(Y),

X � Y.

p

�

(M, X) :-

min

�

(M).

X > M.

p

�

(X, E) :- p

�

(M, E) :-

X � Y, X > M,

p

�

(Y, E). p

�

(M, E).

Taking J(M; E) in Step 4 to be M � E, it is now easily seen that the following

equivalence holds in the least model of 	

�

:

p

�

(M; E) () J(M; E)

Thus the proof of the original theorem has been reduced to proving:

M � E =) M � E

3.2 Correctness

By the de�nition of p made in Step 1, and by the fact that the unfold/fold trans-

formations in Step 2 preserve the least model of a program [TS84], the following

implication holds in the least model of � [:

(9L : A

1

^ : : : ^A

n

) =) (9L : p(L; N)) (5)

Furthermore, as is easily seen, the ground atom p

�

(n) has an SLD-refutation in

	

�

whenever this is the case for p(l; n) in 	. Thus, by the completeness of SLD-

resolution [Llo87] and by the de�nition of J in Step 4, the implications below hold

in the least model of 	

�

[:

(9L : p(L; N)) =) p

�

(N) () J(N) (6)

By (5), (6) and the fact that � does not de�ne p, we may now conclude that the

following implication holds in the least model of �:

A

1

^ : : : ^A

n

=) J(N)

This settles the correctness of the basic method.

3.3 Limitations

Due to the equivalence preservation of the unfold/fold rules, the implication in (5)

is in fact bidirectional. Furthermore, in [Fri92] certain syntactical conditions on

A

1

^ : : :^A

n

and � were imposed, e�ectively ensuring the program 	 resulting from

Step 2 to be independent of its list arguments.

5

De�nition 3.3 	 is said to be independent of its list arguments i�, for each predi-

cate q de�ned by 	, the following equivalence holds in the least model of 	

�

[:

(9L : q(L; N)) () q

�

(N)

Hence, for the class of problems considered in [Fri92], also the �rst implication in

(6) is bidirectional, and the basic method is thus complete.

In general however, the unfold/fold transformation system is not powerful enough

to transform �[fEg into a program which is independent of its list arguments. More

generally; restricting the transformations in Step 2 to unfolding and folding puts a

de�nite limit to the class of theorems provable by the basic method: The implication

(1) can be obtained only if there exists a sequence of unfold/fold transformations

resulting in 	, such that:

p

�

(N) =) I holds in the least model of 	

�

. (7)

The main obstacle in achieving (7) is that folding (introduction of recursion) often

is not applicable due to the syntactical form of the unfolded clauses.

Example 3.4 Let the equivalence E de�ned in Step 1 be:

p(L, N1, N2) () a1(L, N1)^ a2(L, N2).

Suppose the following are the clauses in � de�ning a1 and a2:

a1(l1, n1). a2(l2, n2).

a1(L, f1(N)) :- a2(L, f2(N)) :-

e1(T, L), e2(T, L),

a1(T, N). a2(T, N).

Then E unfolds into clauses 1 to 4 below:

1 p(L, n1, n2) :- L=l1, L=l2.

2 p(l1, n1, f2(N2)) :-

e2(T, l1),

a2(T, N).

3 p(l2, f1(N1), n2) :-

e1(T, l2),

a1(T, N).

4 p(L, f1(N1), f2(N2)) :-

e1(T1, L),

a1(T1, N1),

e2(T2, L),

a2(T2, N2).

Unfolding of the last clause can only lead to a clause foldable by E if e1 and e2,

when unfolded, identify T1 and T2.

6

4 Extending the Basic Method

4.1 Aim of the extension

Our aim is to allow other transformations in Step 2 than unfolding and folding, so

that the resulting program 	 is guaranteed to be independent of its list arguments.

That is, completeness should not be lost when projecting 	 in Step 3. Since inde-

pendence of list arguments is a quite unmanageable property of programs (it is in

fact undecidable), we �rst introduce a su�cient condition for it to hold.

Lemma 4.1 Suppose 	 satis�es the following two conditions:

1. No list variable occurs more than once in the body of a clause in 	.

2. For each head p(Lh; Nh) of a clause in 	, and for each atom p(Lb; Nb) oc-

curring in the body of a clause in 	, Lh is an instance of Lb.

Then 	 is independent of its list arguments.

The condition provided by Lemma 4.1 is strictly weaker than the conditions on

list-recursiveness given in [Fri92]. The next task is thus to reformulate Step 2. To

this end we will say that transformations applied to obtain 	 from � [fEg are

correctness preserving i� the implication (5) holds in the least model of � [.

When the converse of the implication holds, the transformations are said to be

completeness preserving. Step 2a below now provides a �rst approximation of a new

version of Step 2:

Step 2a: Let 	 be a program satisfying Lemma 4.1, such that 	 is the result of

correctness preserving transformations of � [fEg.

Note that the implications (5) and (6) are still valid, so the method obtained by

replacing Step 2 by Step 2a is also correct. As already pointed out, the requirement

on 	 to satisfy Lemma 4.1 furthermore ensures that (6) can be replaced by:

(9L : p(L; N)) () p

�

(N) () J(N)

Thus, whenever the transformations in Step 2a are completeness preserving, the

generated arithmetic expression J satis�es (4), i.e. the method is complete.

We will however not worry so much about completeness preservation of the new

rules; As long as some order of their application yields a �nal 	 such that (7) holds,

they are \su�ciently" complete for proving the theorem at hand.

7

4.2 Goal deletion

Goal deletion allows the removal of arbitrary atoms in bodies of clauses. Let P be

a program and let C be a clause. The rule may then be formulated as follows:

Goal deletion allows P [fCg to be transformed into P [fC

0

g, where C

0

is obtained

from C by the removal of one or more body atoms in C.

Adding goal deletion to the unfold/fold system does not violate correctness preserva-

tion of the transformations in Step 2. Completeness is however usually not preserved.

It is worthwhile noting that by the application of goal deletion, any program can be

transformed into one which satis�es the requirements in Lemma 4.1. Thus, when

goal deletion is permitted, Step 2a can always be carried out successfully.

4.3 Folding enabling

As pointed out in Section 3.3, the limitations of the basic method become apparent

when unfolding in Step 2 does not lead to foldable clauses. Our aim is therefore to

introduce a transformation rule which allows folding to be enabled in situations sim-

ilar to the one in Example 3.4. What we have in mind is essentially a variant of the

goal replacement rule in [TS84]. More precisely, the rule should allow replacements

of bodies of clauses, so that an unfoldable clause can be turned into a foldable one.

The prerequisites of applying the rule will then constitute a folding lemma on which

the �nal proof will rely.

De�nition 4.2 Let C be a clause H : �B

1

; : : ; B

m

, where each B

i

is built from a

predicate de�ned by �. A folding lemma for C and the equivalence p(L; N) ()

A

1

^ : : : ^A

n

is a conjunction � of two implications of the forms 1 and 2 below:

1. B

1

^ : : : ^ B

m

=) 9L

0

: �

L

2. B

1

^ : : : ^ B

m

^ �

L

=) 9N

0

: A

0

1

^ : : : ^A

0

n

^ �

N

where:

� Each A

0

i

is obtained from A

i

by the replacement of L; N for new variables

L

0

; N

0

not occurring in H or in B

1

; : : ; B

m

.

� �

N

is an arithmetic expression, called the integer relation of �.

� �

L

is a conjunction of atoms, called the list witness of �.

8

Using the same notation as in De�nition 4.2, the rule of folding enabling may now

be formulated as follows:

Folding enabling allows P[fH : �B

1

; : : ; B

m

g to be transformed into the program

P [fH : ��

N

; A

0

1

; : : ; A

0

n

g. The transformation is said to be justi�ed by �.

The purpose of the integer relation is to preserve certain arithmetic consequences of

B

1

^ : : :^B

m

and to provide an appropriate relation in between the integer variables

in H and those in N

0

. Note that without such a relation, the program resulting from

folding enabling can be used to derive that any integers are in the relation de�ned

by H (assuming that 9L

0

: A

0

1

^ : : : ^A

0

n

holds in the least model of �).

The purpose of the list witness is just to specify values for the list variables in

L

0

, and hence to facilitate the realization (the proof) that the second implication of

� holds true, since otherwise a proof of this implication would require the explicit

construction of appropriate lists. In all subsequent examples, the list witnesses will

have the form:

L

0

1

= L1 ^ : : : ^ L

0

n

= L

n

where L

0

1

; : : ; L

0

n

are all variables in L

0

. Hence implication 1 in De�nition 4.2 will

hold trivially and will therefore in general be omitted.

Example 4.3 Any folding lemma for clause 4 and E in Example 3.4 has the form:

e1(T1, L)^

a1(T1, N1)^

e2(T2, L)^

a2(T2, N2) =) 9 L': �

L

^

e1(T1, L)^

a1(T1, N1)^

e2(T2, L)^

a2(T2, N2)^�

L

=) 9 N1',N2':

a1(L', N1')^

a2(L', N2')

When taking for instance �

L

to be L

0

= T1 and �

N

to be N1

0

= N1 ^ N2

0

= g(N1; N2),

the above lemma immediately reduces to:

e1(T1, L)^

a1(T1, N1)^

e2(T2, L)^

a2(T2, N2) =) a2(T1, g(N1,N2))

It still remains to give conditions under which folding enabling together with un-

folding and folding yields correctness preserving transformations. This will be the

9

case when the following two conditions hold. The notation is the same as the one

used in De�nition 4.2:

Correctness conditions:

1. � holds in the least model of �.

2. For each ground substitution � for H there is a ground substitution � for the

remaining variables in �, such that if (B

1

^ : : :^B

m

^�

L

)�� holds in the least

model of �, then:

� �

N

�� holds in the least model of �, and

� Each A

0

i

� has a rank-consistent proof in the program resulting from the

folding enabling justi�ed by �.

Condition 2 is needed to ensure that invariant I2 in [TS84] is preserved. This

condition will however not be further considered in this paper. The reader is instead

referred to [TS84] for the de�nition of rank-consistency and for conditions under

which it holds.

4.4 The extension

We can now make a �nal reformulation of Step 2 of the basic method:

Step 2f: Let 	 be a program satisfying Lemma 4.1, such that 	 is obtained by

transforming �[fEg using unfold/folding, goal deletion and folding enabling.

5 Two Examples

5.1 The Boyer-Moore string matching algorithm

The problem

The Boyer-Moore string matching algorithm [BM79] deals with the problem of �nd-

ing the position of the �rst occurrence of a pattern P in a string S. Let us call this

position (when it exists) the string position of the pattern in the string, and let us

denote it �(P; S). For instance, if the pattern is:

P = 123

and the string is:

S = 121241231234

then �(P; S) is 5 (assuming the numbering of the positions starts with 0).

10

Principles of the algorithm

Let respectively P [i] and S[j] denote the i'th and the j'th element in the pattern P

and the string S. Let furthermore n be an integer less than the length of P and let

d be an integer less than or equal to n. The main insight underlying the correctness

of Boyer and Moore's algorithm can now be expressed by the formula (n; d):

 (n; d) � (8 i : n� d � i � n =) P [i] 6= S[n]) =) �(P; S) � d+ 1 (8)

Informally (n; d) can be explained as follows; Suppose S contains the element e in

its n'th position. Suppose furthermore that the n'th position in P , as well as the d

consecutive positions to the left of the n'th, contain elements distinct from e. Then

the string position of P in S must be at least d + 1. Hence, when computing the

string position it is safe starting searching for P from the d+ 1'th position in S.

Letting jP j and jSj respectively denote the lengths of S and P , and letting Sji

denote the su�x of S obtained by removing the �rst i positions of S, we may now

give the following informal recursive formulation of Boyer and Moore's algorithm:

(BAS) If jP j > jSj, then �(P; S) is unde�ned. If P matches S, then �(P; S) = 0.

(REC) Suppose jP j � jSj and that P does not match S. Let n be the last (largest)

position such that P [n] 6= S[n], and let d be the largest number such that

 (n; d) in (8) holds. Then �(P; S) = �(P; Sj(d+ 1)) + d + 1.

The following is a trace of the algorithm when P and S are de�ned as above:

P = 123 and S = 121241231234

The last mismatch is the position n = 2, with S[2] = 1. Thus d = 1, and we drop

the two �rst positions of S.

P = 123 and S = 1241231234

The last mismatch is again n = 2, but S[2] = 4 which does not occur in P, so we

have also d = 2. Dropping the three �rst positions of S now yields:

P = 123 and S = 1231234

Thus a match is found. In the concrete formulation of the algorithm given in [BM79],

the search for n starts from the end of P and proceeds towards its beginning. The

main reason for the e�ciency of the algorithm is that the function which computes

d when given n and S[n] can be completely synthesized from P into an e�ciently

accessible �nite table.

11

The de�nition of a correctness criterion

Our aim is to apply the proof method in order to prove (8) when n and d are chosen

as in the recursive case of the formulation of the algorithm. The theorem to be

proved may thus be expressed as follows:

strpos(P, S, Pos)^

lastnomatch(P, S, C, Nm)^

delta(C, Nm, P, D) =) Pos � D+ 1

where brief descriptions of each of the predicates strpos, lastnomatch and delta

are given below together with their de�nitions:

strpos(P, S, Pos) holds i� P matches S at position Pos. Thus strpos does in

fact generalize � as it was de�ned above. It should however be emphasized

that the proof could be carried out just as well without this generalization.

The reason for doing it is to keep the proof free from certain irrelevant details

which would obscure the presentation.

strpos(P, S, 0) :-

match(P, S).

strpos(P, [X|S], Pos+1) :-

strpos(P, S, Pos).

The predicate match is de�ned in the standard way. We will however not apply

unfolding to match, and therefore its de�nition is not given explicitly.

lastnomatch(P, S, C, Nm) holds i� Nm is the last position on which P and S do

not agree, and C is the element at the Nm's position in S.

lastnomatch([X|P], [Y|S], C, 0) :-

X 6= Y,

match(P, S).

lastnomatch([X|P], [Y|S], C, Pos+1) :-

lastnomatch(P, S, C, Pos).

delta(C, Nm, P, D) holds i� there are exactly D consecutive positions not con-

taining C to the left of position Nm in P.

delta(C, 0, P, 0).

delta(C, D+1, [C|P], D) :-

delta(C, D, P, D).

delta(C, D+1, [X|P], D+1) :-

C 6= H,

delta(C, D, P, D).

delta(C, Nm+1, [X|P], D) :-

D < Nm,

delta(C, Nm, T, D).

12

The proof

Step 1 is carried out by de�ning the equivalence E:

p(P, S, Pos, D, Nm, C) () strpos(P, S, Pos)^

lastnomatch(P, S, C, Nm)^

delta(C, Nm, P, D)

Step 2f is commenced by unfolding strpos in E, which yields the two clauses:

1.1 p(P, S, 0, D, Nm, C) :-

match(P, S),

lastnomatch(P, S, C, Nm),

delta(C, Nm, P, D).

1.2 p(P, [X|S], Pos+1, D, Nm, C) :-

strpos(P, S, Pos),

lastnomatch(P, [X|S], C, Nm),

delta(C, Nm, P, D).

Unfold/fold transformations of a new predicate, de�ned to be equivalent to the body

of clause 1.1, would show that this body can not be satis�ed (because of the presence

of match(P; S) and lastnomatch(P; S; C; Nm)). Thus clause 1.1 can be discarded.

Unfolding of lastnomatch in 1.2 now results in the following clauses (where delta

has been subsequently unfolded to obtain 1.2.1):

1.2.1 p([Y|P], [X|S], Pos+1, 0, 0, X) :-

strpos([Y|P], S, Pos),

Y 6= X,

match(P, S).

1.2.2 p([Y|P], [X|S], Pos+1, D, Nm+1, C) :-

strpos([Y|P], S, Pos),

lastnomatch(P, S, C, Nm),

delta(C, Nm+1, [Y|P], D).

Applying goal deletion to remove the body of clause 1.2.1 gives a unit clause as

result:

1.2.1.1 p([Y|P], [X|S], Pos+1, 0, 0, X).

Unfolding of delta in clause 1.2.2 �nally yields:

1.2.2.1 p([Y|P], [X|S], Pos+1, Nm, Nm+1, Y) :-

strpos([Y|P], S, Pos),

lastnomatch(P, S, Y, Nm),

delta(Y, Nm, P, Nm).

13

1.2.2.2 p([Y|P], [X|S], Pos+1, Nm+1, Nm+1, C) :-

strpos([Y|P], S, Pos),

lastnomatch(P, S, C, Nm),

Y 6= C,

delta(C, Nm, P, Nm).

1.2.2.3 p([Y|P], [X|S], Pos+1, D, Nm+1, C) :-

strpos([Y|P], S, Pos),

lastnomatch(P, S, C, Nm),

D < Nm,

delta(C, Nm, P, D).

It is clear that further unfolding of clauses 1.2.2.1 to 1.2.2.3 does not lead to clauses

foldable by the initial equivalence E. Thus, in order to apply folding enabling, we

construct the following three folding lemmas:

�:1 strpos([Y|P], S, Pos)^

lastnomatch(P, S, Y, Nm)^

delta(Y, Nm, P, Nm)^�

L1

=) 9 Pos', C', Nm', D':

strpos(P', S', Pos')^

lastnomatch(P', S', C', Nm')^

delta(C', Nm', P', D')^�

N1

Where:

�

N1

: Pos

0

� Pos+ 1 ^ C

0

= Y ^ Nm

0

= Nm ^ D

0

= Nm

�

L1

: P

0

= P ^ S

0

= S

�:2 strpos([Y|P], S, Pos)^

lastnomatch(P, S, C, Nm)^

Y 6= C^

delta(C, Nm, P, Nm)^�

L2

=) 9 Pos', C', Nm', D':

strpos(P', S', Pos')^

lastnomatch(P', S', C', Nm')^

delta(C', Nm', P', D')^�

N2

Where:

�

N2

: Pos

0

� Pos+ 1 ^ C

0

= C ^ Nm

0

= Nm ^ D

0

= Nm ^ Y 6= C ^ (Pos = Nm =) Y = C)

�

L2

: P

0

= P ^ S

0

= S

�:3 strpos([Y|P], S, Pos)^

lastnomatch(P, S, C, Nm)^

D < Nm^

delta(C, Nm, P, D)^�

L3

=) 9 Pos', C', Nm', D':

14

strpos(P', S', Pos')^

lastnomatch(P', S', C', Nm')^

delta(C', Nm', P', D')^�

N3

Where:

�

N3

: Pos

0

� Pos+ 1 ^ C

0

= C ^ Nm

0

= Nm ^ D

0

= D

�

L3

: P

0

= P ^ S

0

= S

Folding enabling justi�ed by �:1 to �:3 followed by folding now yields:

1.2.2.1.1 p([Y|P], [X|S], Pos+1, Nm, Nm+1, Y) :-

�

N1

,

p(P', S', Pos', D', Nm', C').

1.2.2.2.1 p([Y|P], [X|S], Pos+1, Nm+1, Nm+1, C) :-

�

N2

,

p(P', S', Pos', D', Nm', C').

1.2.2.3.1 p([Y|P], [X|S], Pos+1, D, Nm+1, C) :-

�

N3

,

p(P', S', Pos', D', Nm', C').

It is clear that the present program 	 (consisting of clauses 1.2.1.1, 1.2.2.1.1,

1.2.2.2.1 and 1.2.2.3.1) satis�es the requirement in Lemma 4.1. Thus no further

transformations are needed. Step 3 consists in projecting 	 to obtain the clauses

below:

1.2.1.1* p

�

(Pos+1, 0, 0, X).

1.2.2.1.1* p

�

(Pos+1, Nm, Nm+1, Y) :-

�

N1

,

p

�

(Pos', D', Nm', C').

1.2.2.2.1* p

�

(Pos+1, Nm+1, Nm+1, C) :-

�

N2

,

p

�

(Pos', D', Nm', C').

1.2.2.3.1* p

�

(Pos+1, D, Nm+1, C) :-

�

N3

,

p

�

(Pos', D', Nm', C').

To carry out Step 4 we con�ne ourselves with verifying that the following disequality

is an invariant of the clauses in 	

�

:

Pos � D+1

15

and hence that it also must be a consequence of any formula J which characterizes

the least model of p

�

. The formulae to be veri�ed are:

1.2.1.1i Pos+1 � 0+1

1.2.2.1.1i Pos' � D'+1 ^ �

N1

=) Pos+1 � Nm+1

1.2.2.2.1i Pos' � D'+1 ^ �

N2

=) Pos+1 � Nm+1+1

1.2.2.3.1i Pos' � D'+1 ^ �

N3

=) Pos+1 � D+1

It is immediate that 1.2.1.1i, 1.2.2.1.1i and 1.2.2.3.1i all hold. In the case of 1.2.2.2.1i

we have:

Pos+1 � Pos' � D'+1 = Nm+1

We can however not have Pos+ 1 = Nm+ 1 since then, by �

N2

, both Y 6= C and

Y = C would follow. Implication 1.2.2.2.1i is thus a consequence of the fact that

Pos+ 1 > Nm+ 1.

Intuition about the lemmas

There are two important implications present in lemmas �:1, �:2 and �:3. The �rst

one is common to all three lemmas:

strpos([Y|P], S, Pos) =) 9 Pos': strpos(P, S, Pos')^ Pos' � Pos+1

Its truth may informally be explained as follows; If [YjP] occurs in S at position

Pos, then clearly P must occur in S at position Pos+ 1. The �rst occurrence of P

in S may however be at a position earlier than Pos+ 1. The second implication is

present only in lemma �:2:

strpos([Y|P], S, Pos)^ lastnomatch(P, S, C, Nm) =) (Pos = Nm =) Y=C)

Its truth may be realized as follows; If [YjP] occurs in S at position Pos, then the

element in S at this position must be Y. Moreover, by the de�nition of lastnomatch,

lastnomatch(P; S; C; Nm) holds only if C is the content of the Nm'th position in S.

Thus the implication must hold. It is worthwhile noticing that the latter implication

does not involve any existentially quanti�ed variables, and therefore could be proved

using the method itself.

16

5.2 Dijkstra's descending subsequence algorithm

The problem

Dijkstra's descending subsequence algorithm [Dij80] deals with the problem of com-

puting the length of a longest descending subsequence of a given sequence S.

4

For

instance, if the sequence is:

S = 25341

then 541 is a longest descending subsequence of S (and is in this case also unique),

and the searched length is thus 3.

Principles of the algorithm

In [Dij80], Dijkstra shows that the problem at hand can be solved by a one-pass

algorithm, that is, an algorithm which takes the elements of S into consideration

one by one in their order from right to left.

4

The algorithm recursively builds up a

sequence �(S) in the following way:

(BAS) If S is empty, then �(S) is empty.

(REC) If X is greater than or equal to the last element in �(S), or if S is empty, then

�(X:S) = �(S):X. Otherwise �(X:S) is obtained from �(S) by replacing the

left most element strictly greater than X by X.

The following is a trace of the steps taken to compute �(S) in the example above:

�() =

�(1) = 1

�(41) = 14

�(341) = 13

�(5341) = 135

�(25341) = 125

The integer given as output by the algorithm is the length of �(S). That is, �(S)

has the same length as the longest descending subsequence of S. The correctness

of the output follows from the fact that the recursive de�nition of �(S) given above

implies (and is in fact equivalent to) the following characterization:

The length of �(S) equals the length of the longest descending subsequence

in S. Moreover, for each n, the content of the n'th position in S is the least

integer being the left most element of a descending subsequence of length

n + 1 in S.

(9)

4

Actually, the algorithm in [Dij80] searches S from left to right and deals with ascending sub-

sequences. The algorithm discussed here is however completely dual to the original one.

17

The de�nition of a correctness criterion

Our aim is now to show how the proof method can be applied in order to prove the

following weaker version of (9):

The length of �(S) is greater than or equal to the length of the longest

descending subsequence in S. Moreover, for each n, the content of the n'th

position in S is less than or equal to the least integer being the left most

element of a descending subsequence of length n+ 1 in S.

The condition may be formalized as follows:

down(S, R)^

decss(S, [D1jD])^

length(R, LenR)^

length([D1jD], LenD)^

last(R, Rl)^

nth(R, N, Rn) =) LenD � LenR ^ (N+ 1 = LenD =) Rn � D1)

The predicates involved are de�ned below:

down(S, R) holds i� R is the result of computing �(S) according to the recursive

de�nition given above. It may thus be de�ned as follows:

down([], []).

down([XjS], R) :-

down(S, T),

ins(X, T, R).

where:

ins(X, T, R) holds i� R is the result of inserting X into T as speci�ed in the

recursive step of the de�nition of �(S). Since we will not unfold ins, its

de�nition is omitted.

decss(S, D) holds i� D is a decreasing subsequence of S. That is:

decss([], []).

decss([XjS], [X]).

decss([XjS], D) :-

decss(S, D).

decss([XjS], [X,YjD]) :-

X � Y,

decss(S, [YjD]).

length(L, N) holds i� N is the length of L:

18

length([], 0).

length([XjL], N+1) :-

length(L, N).

last(L, Ll) holds i� Ll is the last element of L:

last([X], X).

last([XjL], Ll) :-

last(L, Ll).

nth(L, N, Ln) holds i� Ln is the N'th element of L:

nth([XjL], 0, X).

nth([XjL], N+1, Ln) :-

nth(L, N, Ln).

The proof

Step 1 consists in de�ning p by the following equivalence E:

p(S, R, D, LenR, LenD, N, Rn, Rl, D1) () down(S, R)^

decss(S, [D1jD])^

length(R, LenR)^

length([D1|D], LenD)^

last(R, Rl)^

nth(R, N, Rn)

We start Step 2f by unfolding the equivalence on down to obtain the two clauses:

1.1 p([], [], D, LenR, LenD, N, Rn, Rl, D1) :-

decss([], [D1jD]),

length([], LenR),

length([D1jD], LenD),

last([], Rl),

nth([], N, Rn).

1.2 p([XjS], R, D, LenR, LenD, N, Rn, Rl, D1) :-

down(S, T),

ins(X, T, R),

decss([XjS], [D1jD]),

length(R, LenR),

length([D1jD], LenD),

last(R, RL),

nth(R, N, Rn).

Clearly the body of clause 1.1 can not be satis�ed, and the clause can therefore be

discarded. Unfolding of decss in 1.2 results in three clauses:

19

1.2.1 p([XjS], R, [], LenR, 1, N, Rn, Rl, X) :-

down(S, T),

ins(X, T, R),

length(R, LenR),

last(R, Rl),

nth(R, N, Rn).

1.2.2 p([XjS], R, D, LenR, LenD, N, Rn, Rl, D1) :-

down(S, T),

ins(X, T, R),

decss(S, [D1jD]),

length(R, LenR),

length([D1jD], LenD),

last(R, Rl),

nth(R, N, Rn).

1.2.3 p([XjS], R, [YjD], LenR, LenD+1, N, Rn, Rl, X) :-

down(S, T),

ins(X, T, R),

X � Y,

decss(S, [YjD]),

length(R, LenR),

length([YjD], LenD),

last(R, Rl),

nth(R, N, Rn).

Goal deletion of the �rst atom in the body of clause 1.2.1 yields:

1.2.1.1 p([XjS], R, [], LenR, 1, N, Rn, Rl, X) :-

ins(X, T, R),

length(R, LenR),

last(R, Rl),

nth(R, N, Rn).

Folding the body of 1.2.1.1 by the new predicate q results in:

1.2.1.1.1 p([XjS], R, [], LenR, 1, N, Rn, Rl, X) :-

q(T, R, LenR, N, Rn, Rl, X).

where the equivalence de�ning q is:

q(T, R, LenR, N, Rn, Rl, X) () ins(X, T, R) ^

length(R, LenR) ^

last(R, Rl) ^

nth(R, N, Rn)

Under the (realistic) assumption that the de�nition of ins recurs on T and R,

pure unfold/folding of this equivalence yields a program which satis�es the require-

ment in Lemma 4.1. Moreover, the following arithmetic formula is equivalent to

20

q

�

(LenR; N; Rn; Rl; X):

N+ 1 � LenR ^ (N+ 1 = LenR =) Rn = Rl) ^ (N = 0 =) Rn � X) (10)

Neither 1.2.2 nor 1.2.3 can be unfolded into foldable clauses. We therefore construct

the following two folding lemmas:

�:1 down(S, T)^

ins(X, T, R)^

decss(S, [D1jD])^

length(R, LenR)^

length([D1jD], LenD)^

last(R, Rl)^

nth(R, N, Rn)^�

L1

=) 9 D1', LenR', LenD', Rl', N', Rn':

down(S', R')^

decss(S', [D1'jD'])^

length(R', LenR')^

length([D1'|D'], LenD')^

last(R', Rl')^

nth(R', N', Rn')^�

N1

Where:

�

N1

: D1

0

= D1 ^ LenD

0

= LenD^

(LenR

0

� LenD

0

=) N

0

+ 1 = LenD

0

)^

N+ 1 � LenR ^ (N+ 1 = LenR =) Rn = Rl)^

(X � Rl

0

=) Rl = X ^ LenR = LenR

0

+ 1)^

(X < Rl

0

=) LenR = LenR

0

)^

(N = N

0

=) Rn � Rn

0

)

�

L1

: S

0

= S ^ R

0

= T ^ D

0

= D

�:2 down(S, T)^

ins(X, T, R)^

X � Y^

decss(S, [YjD])^

length(R, LenR)^

length([YjD], LenD)^

last(R, Rl)^

nth(R, N, Rn)^�

L2

=) 9 D1', LenR', LenD', Rl', N', Rn':

down(S', R')^

decss(S', [D1'jD'])^

length(R', LenR')^

length([D1'|D'], LenD')^

last(R', Rl')^

nth(R', N', Rn')^�

N2

Where:

�

N2

: D1

0

= Y ^ LenD

0

= LenD^

21

(LenR

0

� LenD

0

=) N

0

+ 1 = LenD

0

)^

N+ 1 � LenR ^ (N+ 1 = LenR =) Rn = Rl)^

(X � Rl

0

=) Rl = X ^ LenR = LenR

0

+ 1)^

(X < Rl

0

=) LenR = LenR

0

)^

(N = N

0

=) Rn � Rn

0

)^

X � Y

�

L2

: S

0

= S ^ R

0

= T ^ D

0

= D

Folding enabling followed by folding of the two clauses 1.2.2 and 1.2.3 now yields:

1.2.2.1 p([XjS], R, D, LenR, LenD, N, Rn, Rl, D1) :-

�

N1

,

p(S', R', D', LenR' LenD', N', Rn', Rl', D1').

1.2.3.1 p([XjS], R, [YjD], LenR, LenD+1, N, Rn, Rl, X) :-

�

N2

,

p(S', R', D', LenR' LenD', N', Rn', Rl', D1').

At this point in the transformation the program 	 contains the clauses 1.2.1.1.1,

1.2.2.1 and 1.2.3.1, plus those clauses which de�ne q. As already remarked, the

latter ones do satisfy the requirement in Lemma 4.1. Thus this is also the case for

the whole program 	. This means that Step 2f is concluded. Projecting 	 to obtain

	

�

as prescribed by Step 3, now yields the clauses below plus the projection of the

clauses de�ning q:

1.2.1.1.1* p

�

(LenR, 1, N, Rn, Rl, X) :-

q

�

(LenR, N, Rn, Rl, X).

1.2.2.1* p

�

(LenR, LenD, N, Rn, Rl, D1) :-

�

N1

,

p

�

(LenR' LenD', N', Rn', Rl', D1').

1.2.3.1* p

�

(LenR, LenD+1, N, Rn, Rl, X) :-

�

N2

,

p

�

(LenR' LenD', N', Rn', Rl', D1').

As in the Boyer-Moore example, we will not carry out Step 4 by generating an

arithmetic expression equivalent to p

�

(LenR; LenD; N; Rn; Rl; D1). Instead we

will construct a formula �(LenR; LenD; N; Rn; Rl; D1) and prove that it is an

invariant of the clauses de�ning p

�

, and hence that it must hold in the least model

of 	

�

. The formula �(LenR; LenD; N; Rn; Rl; D1) is de�ned to be:

(a) LenR � LenD^

(b) N+ 1 = LenD =) Rn � D1^

(c) N+ 1 � LenR^

(d) N+ 1 = LenR =) Rn = Rl

The implications that need to be shown are thus:

1.2.1.1.1i q

�

(LenR; N; Rn; Rl; X) =) �(LenR; 1; N; Rn; Rl; X)

22

1.2.2.1i �(LenR

0

LenD

0

; N

0

; Rn

0

; Rl

0

; D1

0

)^ �

N1

=) �(LenR; LenD; N; Rn; Rl; D1)

1.2.3.1i �(LenR

0

LenD

0

; N

0

; Rn

0

; Rl

0

; D1

0

)^ �

N2

=) �(LenR; LenD+ 1; N; Rn; Rl; X)

Implication 1.2.1.1.1i is immediate from (10). For 1.2.2.1i and 1.2.3.1i, (c) and (d)

in the formulation of � follows directly, since they are explicitly stated in �

N1

and

�

N2

. Furthermore, in the implication 1.2.2.1i, (a) and (b) may be realized by:

(a) LenR � LenR

0

� LenD

0

= LenD.

(b) LenR

0

� LenD

0

, and hence N+ 1 = LenD = LenD

0

= N

0

+ 1

i.e. N = N

0

which implies Rn � Rn

0

� D1

0

= D1.

For 1.2.3.1i, (b) can obtained in the same way as for 1.2.2.1i. Moreover, when

X � Rl

0

also (a) can be derived as for 1.2.2.1i, since then LenR = LenR

0

+ 1. What

remains is to realize that (a) holds for 1.2.3.1i also in the case when X < Rl

0

. Thus,

assume that:

LenR'=LenD'

Then, since N

0

+ 1 = LenD

0

, we can use (d) and (b) to conclude that:

Rl

0

� Rn

0

� D1

0

But we also have:

D1

0

= Y � X

Hence the contradiction X < Rl

0

� X follows, which proves that LenR

0

= LenD

0

can

not be the case. We may therefore conclude:

LenR = LenR

0

� LenD

0

+ 1 = LenD+ 1

from which (a) follows.

Intuition about the lemmas

In essence, the two folding lemmas �:1 and �:2 serve as speci�cations of the predicate

ins(X; T; R), since their integer relations relate certain integer attributes of T to

those of R. In particular it is expressed how the length of R depends on the relation

between X and the last element of T (the fourth and the �fth lines in �

N1

and �

N2

).

It should also be noted that the truths of �:1 and �:2 do not depend on the

presence of down(S; T) in the hypotheses, provided that the de�nition of ins agrees

with the recursive step in the de�nition of �(S) given before. As noted in [Pri81], a

more e�cient de�nition of ins may be used, which makes use of the fact that T is

ordered whenever down(S; T) holds. Consequently, when such a de�nition is used,

down(S; T) must be involved in the proof of the lemmas.

23

6 Final Remarks

We have given a method for proving arithmetic consequences of Horn clause pro-

grams de�ned over integer lists and integers. The new method extends the method

developed in [Fri92]. In contrast to the latter, the method presented here may

also handle predicates with incompatible recursion schemes and/or extra literals

occurring in the bodies of recursive clauses. The usefulness of the method was

demonstrated by proving correctness criteria for Boyer and Moore's string matching

algorithm and for Dijkstra's descending subsequence algorithm.

There is one main problem caused by extending the class of theorems which

can be proved by the old method; The unfold/fold transformation (which constitute

a central step in [Fri92]) can no longer be carried out in a satisfactory way. More

precisely, there is no longer any guarantee that unfolding leads to foldable clauses. In

this paper we have proposed the introduction of folding lemmas in order to remedy

this problem. The purpose of such a lemma is to justify the transformation of

an unfoldable clause into a foldable one. Although the notion of a folding lemma

was formally de�ned and some non-trivial examples of its use were given, there are

still several problems which require further investigation in order for the method to

become really useful. Some of these problems are mentioned below:

Checking rank-consistency

As was pointed out in Section 4.3 it is in general not su�cient to ensure the truths

of the folding lemmas in order to ensure the correctness of the proof method. The

reason is that fold enabling followed by folding may decrease the least model of a

program if certain rank-consistency requirements are not satis�ed. Informally, these

requirements ensure that no in�nite loops are introduced in the folding step. Indeed,

the veri�cation of these requirements remains in the two examples of Section 5. The

conditions given in [TS84] for the safe application of goal replacement (of which fold

enabling can be seen as a special case) do however seem somewhat complicated,

since they require the comparison of the sizes of certain proof-trees. In many cases

it seems however as if the requirements may be obtained by observing certain simple

structural properties of the folding lemma. For instance, in the the Boyer-Moore

example, the list witness speci�es that P should take the place of [YjP] while S re-

mains unchanged. This together with information about how the predicates strpos,

lastnomatch and delta recur over their list arguments, may be used to conclude

that the rank-consistency requirement holds.

Strategies for generating folding lemmas

It still remains to be investigated at which points in the unfold/fold transformation

the applications of folding enabling (and hence the introduction of folding lemmas)

are needed. In particular this requires taking the de�nitions of the predicates in �

24

into account, in order to realize that continued unfolding is not su�cient in order

to obtain appropriate foldable clauses.

Generating the list witness

At present the list witness needs to be speci�ed by the user. The heuristic used

in the string-matching example of Section 5 was to \copy" most variables from the

hypothesis of the lemma to the conclusion, in order to make the implication of most

of the atoms in the conclusion trivial.

Generating the integer relation

Also the integer relation is given by the user in the current version of the method.

As already remarked, there are however two kinds of relations present in the integer

relation; (1) Those which are consequences of the hypothesis of the lemma, and (2)

those which relate the old variables to the existentially quanti�ed ones. It should

at least be possible to infer the relations in (1) by using the method itself. It

seems however as if generating appropriate relations of the kind (2) often requires a

certain degree of insight into the problem at hand. For instance, in order to realize

the need for the implication (LenR

0

� LenD

0

=) N

0

+ 1 = LenD

0

) in the descending

subsequence example, one must realize that the N

0

'th element of R is of relevance

only when N

0

+ 1 = LenD

0

.

References

[BM79] R.S Boyer and J.S Moore. A Computational Logic. ACM, 1979.

[Dij80] E.W Dijkstra. Some Beautiful Arguments Using Mathematical Induction.

Acta Informatica, 13:1{8, 1980.

[Fri92] L. Fribourg. Mixing List Recursion and Arithmetic. In Proc. 7th Symp.

on Logic in Computer Science, pages 419{429, Santa Cruz, 1992. IEEE.

[FVP92] L. Fribourg and M. Veloso Peixoto. Bottom-Up Evaluation of Datalog

Programs with Arithmetic Constraints. Technical Report LIENS - 92 - 13,

Laboratoire d'Informatique, Ecole Normale Sup�erieure, 1992.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

2nd edition.

[Pri81] P. Pritchard. Another Look at the \Longest Ascending Subsequence"

Problem. Acta Informatica, 16:87{91, 1981.

[TS84] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs.

In Proc. 2nd Int. Conf. on Logic Programming, pages 127{138, Uppsala,

1984.

25

