
Average Cost of Duval's Algorithm for

Generating Lyndon Words

Jean BERSTEL

Michel POCCHIOLA

Laboratoire d'Informatique, URA 1327 du CNRS

D�epartement de Math�ematiques et d'Informatique

Ecole Normale Sup�erieure

LIENS - 92 - 8

March 1992



Average Cost of Duval's Algorithm for

Generating Lyndon Words

�

Jean Berstel

(1)

(berstel@litp.ibp.fr)

Michel Pocchiola

(2)

(pocchiol@dmi.ens.fr)

(1) Laboratoire d'Informatique Th�eorique et Pratique (LITP)

Institut Blaise Pascal

4, place Jussieu, 75252 Paris C�edex 05

(2) Laboratoire d'Informatique de l'Ecole normale sup�erieure (LIENS)

URA 1327, CNRS, 45 rue d'Ulm, 75230 Paris C�edex 05

March 30, 1992

Abstract

The average cost of Duval's algorithm for generating all Lyndon words

up to a given length in lexicographic order is proved to be asymptotically

equal to (q + 1)=(q � 1), where q is the size of the underlying alphabet.

In particular, the average cost is independent of the length of the words

generated. A precise evaluation of the constants is also given.

1 Introduction

Several years ago, J.-P. Duval [4] has presented an amazingly simple algorithm

for generating all Lyndon words up to a given length in lexicographic order.

He observed that the worst-case behavior of his algorithm, for computing the

next Lyndon word is linear, and he left as an open problem to determine the

average-case running time. We answer this question by showing that the average

number of operations required for computing a Lyndon word of length at most

n is constant, and independent of n. More precisely, we show that the cost is

asymptotically equal to (q + 1)=(q � 1), where q is the size of the alphabet.

Given a totally ordered alphabet, a Lyndon word is a word that is smaller

than all its conjugates, for the lexicographic ordering. Lyndon words were in-

troduced by Lyndon [9] under the name \standard lexicographic sequences" in

�

Partially supported by PRC \Math�ematiques et Informatique"

1



order to give a base for the free Lie algebra over A (see Lothaire [8], Reute-

nauer [10]). One of the basic properties of the set of Lyndon words is that every

word admits a uniquely factorizable as a non increasing product of Lyndon

words. There is also a close relationship between Lyndon words and irreducible

polynomials over a �nite �eld (Golomb [6]).

There are several algorithms dealing with Lyndon words. Booth [1] shows

how to compute, in linear time, the smallest among the conjugates of a given

word. This is in fact an application of another algorithm by Duval [3] that

computes, in linear time, the factorization of a word into Lyndon words. The

algorithm for systematic generation of Lyndon words is similar, in structure, to

algorithms for systematic generation of trees [11, 14] or of other combinatorial

objects [12]. For these objects, known algorithms have constant average running

time. We show that the same holds for Duval's algorithm : the average cost is

given by

q + 1

q � 1

�

1 +

2q

(q

2

� 1)n

+O

�

1

n

2

��

: (1)

We even give an evaluation of the constant of the big-O in order to describe the

behaviour of the average cost for all values of n.

The paper is organized as follows: the next section reviews Duval's algorithm

and gives an expression for the cost. Then the asymptotic constant running

time is proved. The last section contains the e�ective constants. We conclude

by some remark about possible developments.

2 The algorithm

LetA be a totally ordered alphabet, and let� denote the lexicographical ordering

induced on the free monoid A

�

. Recall that the conjugacy class of a word w is

the set of all words uv such that w = vu. A Lyndon word is a word that is smaller

than all other elements in its conjugacy class. For example, if A = f0; 1g with

0 � 1, then the 14 Lyndon words of length at most 5 in lexicographic ordering

are :

0

0 0 0 0 1

0 0 0 1

0 0 0 1 1

0 0 1

0 0 1 0 1

0 0 1 1

0 0 1 1 1

0 1

0 1 0 1 1

0 1 1

2



0 1 1 1

0 1 1 1 1

1

Denote by a and z the minimal and the maximal letter in the alphabet A, and

by �(b) the letter following b 6= z in the total ordering of A. If w is a word of

the form w = ubz

h

, with b 6= z, then we denote by P (w) the word u�(b).

Consider a �xed integer n. Duval's algorithm computes, froma given Lyndon

word w, the next Lyndon word N (w) of length at most n in two steps:

Algorithm.

Input : An integer n, and a Lyndon word w 6= z of length at most n.

Step 1.- Compute the word v = D(w) = w

h

w

0

, where h � 1 and w

0

is the proper

pre�x of w de�ned by n = hjwj+ jw

0

j.

Step 2.- Compute the word P (v).

Output : P (D(w)).

Duval proved that N (w) = P (D(w)). The implementation of the algorithm

is straigthforward.

For the evaluation of the cost of the algorithm, we need some notation. We

denote by L the set of Lyndon words, and by L

n

the set of Lyndon words of

length at most n. Also, let `

n

be the number of Lyndon words of length n, and

let

L

n

= `

1

+ � � �+ `

n

be the number of Lyndon words of length at most n. Finally, we set

�

n

= L

1

+ � � �+ L

n

:

Proposition 2.1 The total cost C

n

of Duval's algorithm for generating all Lyn-

don words of length at most n is

C

n

= 2�

n

� L

n

� 2n+ 1

and the average cost 


n

is




n

= C

n

=L

n

� 2�

n

=L

n

� 1:

Proof. Let n be �xed. The cost of computing D(u) for a word u is n � juj.

The resulting word v = D(u) has length n. The cost for computing u

0

= P (v)

is n � ju

0

j + 1. Thus the cost for computing the next Lyndon word u

0

= N (u)

is 2n + 1 � (juj + ju

0

j). Consequently, the total cost of Duval's algorithm for

generating all Lyndon words of length at most n is

C

n

= (2n+ 1)(L

n

� 1)�

X

w2L

n

�fag

jwj �

X

w2L

n

�fzg

jwj:

Since,

X

w2L

n

jwj =

n

X

h=1

h`

h

= nL

n

� �

n

;

the expressions follow.

3



3 Average cost of Duval's algorithm

Recall that every word over the alphabet A admits a unique non increasing

factorization into Lyndon words:

A

�

=

Y

0

u2L

u

�

where the prime means that the product is decreasing. If A has q elements,

then taking generation functions, one gets:

1

1� qz

=

Y

u2L

1

1� z

juj

=

Y

n�1

�

1

1� z

n

�

`

n

Setting

`(z) =

X

n�1

`

n

z

n

one gets

log

1

1� qz

=

X

k�1

1

k

`(z

k

)

whence, by M�obius inversion:

`(z) =

1

X

k=1

�(k)

k

log(

1

1� qz

k

): (2)

Proposition 3.1 The average cost 


n

of Duval's algorithm, for an alphabet

with q letters, is given by




n

=

q + 1

q � 1

�

1 +

2q

(q

2

� 1)n

+ O

�

1

n

2

��

: (3)

Proof. For the proof, we use the transfer technique for the asymptotics of

generating functions to the asymptotics of their coe�cients, as developed in [5].

Let `(z), L(z) and �(z) be the generating functions of the integers `

n

; L

n

and �

n

. The generating series `(z) of Lyndon's words given above is analytic

in the complex plane, excepted on the half-line of the reals x � 1=q; moreover

`(z) � log

1

1� qz

(4)

is analytic in the complex plane excepted on the half-line of the reals x � 1=

p

q.

We consider the hierarchy of functions

f

k

(z) = (qz � 1)

k

log

1

1� qz

(k � 0): (5)

4



With the Taylor series expansion of 1=(1�z) and 1=(1�z)

2

in the neighborhood

of r = 1=q

1� r

1� z

=

k

X

i=0

(z � r)

i

(1 � r)

i

+

1

(1� r)

k

(z � r)

k+1

1� z

(6)

(1� r)

2

(1� z)

2

=

k

X

i=0

(i + 1)

(z � r)

i

(1� r)

i

+

1

(1� r)

k

(z � r)

k+1

�

k + 1

1� z

+

1

(1� z)

2

�

(7)

we obtain the following asymptotic developments as z goes to 1=q

(1�

1

q

)L(z) = a

0

f

0

(z) + a

1

f

1

(z) + � � �+ a

k

f

k

(z) +O(f

k+1

(z)) (8)

(1�

1

q

)

2

�(z) = a

0

f

0

(z) + 2a

1

f

1

(z) + � � �+ (k + 1)a

k

f

k

(z) + O(f

k+1

(z)) (9)

with

a

i

=

1

(q � 1)

i

:

Now, for n � k + 1,

[z

n

]f

k

(z) =

q

n

n

�

n� 1

k

�

:

Thus we can apply the transfer theorem of [5] and we obtain the following

expressions

(1�

1

q

)L

n

=

q

n

n

8

>

>

<

>

>

:

i=k

X

i=0

1

(q � 1)

i

1

�

n� 1

i

�

+O

�

logn

n

k+1

�

9

>

>

=

>

>

;

(1�

1

q

)

2

�

n

=

q

n

n

8

>

>

<

>

>

:

i=k

X

i=0

1

(q � 1)

i

i + 1

�

n� 1

i

�

+ O

�

logn

n

k+1

�

9

>

>

=

>

>

;

:

The proposition follows.

4 Evaluation of the constant

In this section, we evaluate the constant of the big-O which �gures in propo-

sition 3.1. The transfer theorem, though e�ective, does not give this constant

explicitely. Our evaluation is obtained by elementary majoration techniques.

The result is the following

5



Proposition 4.1 The average cost 


n

of Duval's algorithm satis�es, for a q-

letter alphabet and for all n � 11, the inequality




n

�

q + 1

q � 1

�

1 +

2q

(q

2

� 1)(n� 1)

+

61q

(q

2

� 1)(q � 1)(n � 1)

2

�

:

For the clarity of exposition, we decompose the proof into several lemmas. The

�rst lemma allows us to replace `

n

by q

n

=n in developments of L

n

and �

n

. The

two next lemmas give an upper bound for �

n

and a lower bound for L

n

.

Lemma 4.1 For all n � 1, we have

q

n

n

�

1�

q

(q � 1)q

n=2

�

� `

n

�

q

n

n

:

Proof. See exercise 3.27 page 142 of [7].

Recall that the functions f

k

(z) are de�ned by

f

k

(z) = (qz � 1)

k

log

1

1� qz

We introduce an operator � by setting

�f(z) =

f(z)

1� z

:

Next, we consider the developments (6) and (7), to the order 3 and 2 respectively,

and we multiply them by f

0

(z). This gives

(1�

1

q

) �f

0

(z) = f

0

(z) +

1

q � 1

f

1

(z) +

1

(q � 1)

2

f

2

(z) +

1

q(q � 1)

2

�f

3

(z) (10)

(1�

1

q

)

2

�

2

f

0

(z) = f

0

(z) +

2

q � 1

f

1

(z) +

1

q(q � 1)

�

2�f

2

(z) + �

2

f

2

(z)

	

(11)

Lemma 4.2 For all n � 11 and q � 2 one has

(1�

1

q

)L

n

�

q

n

n

(1 +

1

(q � 1)(n� 1)

):

Proof. The lemma is readily veri�ed by numerical computation in the domain

D = f (q; n) j 2 � q � 5; 11 � n � 25 g:

In order to prove it for the other values of q and n, we �rst show that the

coe�cient of z

n

in �f

3

(z) is positive. Indeed, one has

f

3

(z) = �qz +

5

2

q

2

z

2

�

11

6

q

3

z

3

+

1

X

n=4

6q

n

(n � 3)(n� 2)(n� 1)n

z

n

(12)

6



Since the coe�cient u

n

of z

n

in f

3

(z) is positive for n � 4, it su�ces to observe

that

u

1

+ u

2

+ u

3

+ u

4

+ u

5

+ u

6

= q (�1 +

5

2

q �

11

6

q

2

+

1

4

q

3

+

1

20

q

4

+

1

60

q

5

)

= 1=60 q(q� 2)(q

4

+ 5q

3

+ 25q

2

� 60q + 30)

is positive, and this is straightforward.

Using Lemma 4.1 we get that

L

n

�

n

X

1

q

k

k

�

q

q � 1

n

X

1

q

k=2

k

: (13)

The �rst sum of (13) can be bounded from below, in view of (10), by

q

q � 1

q

n

n

�

1 +

1

(q � 1)(n� 1)

+

2

(q � 1)

2

(n� 1)(n � 2)

�

:

We show that on the complement of the domain D,

q

n

n

2

(q � 1)

2

(n� 1)(n � 2)

�

n

X

1

q

k=2

k

:

For this, we bound each term in the right-hand side by

q

n=2

n

, and thus the whole

right-hand side by q

n=2

. Consequently, it su�ces to prove that

2

(q � 1)

2

n(n� 1)(n� 2)

�

1

q

n=2

Since the expression

d(q; n) =

(q � 1)

2

n(n� 1)(n� 2)

q

n=2

� 2

is decreasing in n and in q for all q � 2 and n � 11, it su�ces to observe that

d(6; 11) and d(2; 26) are negative to conclude the proof.

In order to prove the proposition, we now introduce a F (n;N; q) which will

allow us to parametrize the constant of the big-O. For this, note that

f

2

(z) = qz �

3

2

q

2

z

2

+

1

X

n=3

2q

n

(n� 2)(n� 1)n

z

n

(14)

and set

u

n

= [z

n

]f

2

(z) v

n

= [z

n

]�f

2

(z) w

n

= [z

n

]�

2

f

2

(z)

7



and de�ne

a(N ) =

1

1�

N + 1

(N � 2)q

:

Then by de�nition

F (n;N; q) = G(n;N; q) +H(n;N; q)

with

G(n;N; q) = 2

n� 1

n� 2

q � 1

q

a(N )(2 + a(N ))

H(n;N; q) = n(n� 1)

2

q � 1

q

n+1

f(n� N + 3)v

N�1

+w

N�1

g :

Observe that G andH are decreasing in n (forH, this holds for n � 8 as one may

verify by taking the logarithmic derivative). Next, letting �rst go n to in�nity

and then q to in�nity, one sees that F (n;N; q) is bounded from below by 6. The

proposition we look for is a consequence of the more general statement:

Proposition 4.2 The average cost 


n

of Duval's algorithm, for a q-letter al-

phabet and for all n � N � 11, satis�es the inequality




n

�

q + 1

q � 1

�

1 +

2q

(q

2

� 1)(n� 1)

+

2(F (n;N; q)� 1)q

(q

2

� 1)(q � 1)(n � 1)

2

�

:

Furthermore, F (n;N; q) decreases in n and q.

Lemma 4.3 For all n � N � 6 and all q � 2, one has

(1 �

1

q

)

2

�

n

�

q

n

n

�

1 +

2

(q � 1)(n� 1)

+

F (n;N; q)

(q � 1)

2

(n � 1)

2

�

:

Proof. In view of equation (11) it su�ces to prove that

[z

n

]

�

2�f

2

(z) + �

2

f

2

(z)

	

�

F (n;N; q) q

n+1

n(n� 1)

2

(q � 1)

:

We show �rst that for n � N � 6 and q � 2,

u

N

+ � � �+ u

n

� a(N )u

n

and

v

N

+ � � �+ v

n

� (n� N + 1)v

N�1

+ a(N )

2

u

n

Indeed, the inequality

u

n+1

=u

n

= q(n� 2)=(n+ 1) � q(N � 2)=(N + 1) = u

N+1

=u

N

> 1

8



implies, setting b = u

N+1

=u

N

, that

u

N

+ � � �+ u

n

� u

n

�

1 + b+ b

2

+ � � �+ b

n�N

�

�

1

1� b

u

n

= a(N )u

n

:

This proves the �rst inequality. The second follows by observing that

v

N

+ � � �+ v

n

� (n �N + 1)v

N�1

=

n

X

k=N

(u

N

+ � � �+ u

k

):

Combining these two inequalities, the lemma follows after some elementary al-

gebraic manipulations.

Proof of proposition 4.2. Set r = 1=

�

(q�1)(n�1)

�

; by the two preceeding

lemmas, and with c = F (n;N; q), one gets

(1�

1

q

)

�

n

L

n

�

1 + 2r + cr

2

1 + r

� (1 + 2r+ cr

2

)(1 � r + r

2

)

� 1 + r + (c� 1)r

2

� (c� 2)r

3

+ cr

4

� 1 + r + (c� 1)r

2

since cr

4

� (c� 2)r

3

for c � 6. The inequality follows.

We have already proved that F is a decreasing function of n. To prove that

F is decreasing in q, we show that this holds separately for the functions G

and H. It is straightforward to see that G is decreasing in q. For H, one may

proceed by proving that both that v

N�1

=q

n�1

and w

N�1

=q

n�1

are decreasing

functions of q. The �rst expression can be written as

v

N�1

q

n�1

=

1

q

n�11

v

10

q

10

+

u

11

+ � � �+ u

N�1

q

n�1

:

In this expression, the second term is decreasing with q because each u

i

is,

up to a positive multiplicative constant, an ith power of q. The �rst term

is decreasing because v

10

=q

10

is decreasing for integral values of q as may be

veri�ed (for instance by some symbolic manipulation system). One proceeds in

a similar manner to prove that w

N�1

=q

n�1

decreases, using the fact that v

k

=q

k

is decreasing for k � 11.

The following table, obtained with Maple [2], gives several values of the

function F (n;N; q) which allow to adjust the constant of our proposition as a

function of q and n.

q F (11; 11; q) F (20; 11; q) F (1; 11; q) F (1;1; q)

2 31.17 16.32 15 8

3 16.92 9.63 9.12 7

4 12.94 8.31 7.87 6.66

10 8.61 6.91 6.55 6.22

1 6.66 6.33 6 6

9



In particular, the value of F (11; 11; 2) gives the proposition 4.1. We conclude

by comparing the real value of the cost 


n

to the bound, denoted �

n;N

, as given

in the proposition 4.2, for some values of n and q.

q 


11

�

11;11




20

�

20;15




100

�

100;15

2 3.47 4.61 3.26 3.36 3.0417 3.0449

3 2.18 2.27 2.09 2.10

4 1.77 1.79 1.716 1.719

10 1.248 1.249 1.2354 1.2356

This shows that our bound is rather good.

5 Conclusion

We have shown that the computation of the next Lyndon word in the set of

Lyndon words up to some �xed length requires constant time. In the same

paper [4], Duval has presented another algorithm that generates all Lyndon

words of �xed length in lexicographic order. It is an easy consequence of our

result that the average cost of this second algorithm is asymptotically bounded

by (q + 1)=q. However, we were unable to give a sharp asymptotic estimation.

Another open problem is to prove a stronger claim, namely that Duval's

algorithm has amortized constant worst-case running time, in the sense of Tar-

jan [13]. This would mean that the computation of an interval of Lyndon word

costs a constant times the length of the interval plus the di�erence of some

potential. Such a potential seems to be di�cult to �nd, perhaps because the

computational cost increases for the \last" words in a sequence.

References

[1] K. S. Booth. Lexicographically least circular substrings. Inform. Proc.

Letters, 10:240{242, 1980.

[2] B.W. Char, K.O. Gettes, G.H. Gonnet, M.B. Monagan, and S.M. Watt.

Maple V Language Reference Manual. Springer-Verlag, 1991.

[3] J.-P. Duval. Factorizing words over an ordered alphabet. J. Algorithms,

4:363{381, 1983.

[4] J.-P. Duval. G�en�eration d'une section des classes de conjugaison et arbre

des mots de Lyndon de longueur born�ee. Theoret. Comput. Sci., 60:255{

283, 1988.

[5] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions.

SIAM J. Discr. Math., 3(2):216{240, may 1990.

10



[6] S. W. Golomb. Irreducible polynomials, synchronizing codes, primitive

necklaces and the cyclotomic algebra. In Proc. Conf. Combinatorial Math.

and Its Appl., pages 358{370, Chapel Hill, 1969. Univ. of North Carolina

Press.

[7] R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press,

1984.

[8] M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983.

[9] R. C. Lyndon. On Burnside problem I. Trans. American Math. Soc.,

77:202{215, 1954.

[10] C. Reutenauer. Free Lie Algebras. In press, 1992.

[11] F. Ruskey and T.C. Hu. Generating binary trees lexicographically. SIAM

J. Comput., 6:745{758, 1977.

[12] D. Stanton and D. White. Constructive Combinatorics. Springer-Verlag,

1986.

[13] R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Discr.

Meth., 6:306{318, 1985.

[14] R. A. Wright, B. Richmond, A. Odlyzko, and B. D. McKay. Constant time

generation of free trees. SIAM J. Comput., 15:540{548, 1986.

11


