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Abstract

To establish the correctness of some software w.r.t. its formal speci�cation is

widely recognized as a di�cult task. A �rst simpli�cation is obtained when the semantics

of an algebraic speci�cation is de�ned as the class of all algebras which correspond to the

correct realizations of the speci�cation. A software is then declared correct if it corre-

sponds to some algebra of this class. We approach this goal by de�ning an observational

satisfaction relation which is less restrictive than the usual satisfaction relation. Based

on this notion we provide an institution for observational speci�cations. The idea is that

the validity of an equational axiom should depend on an observational equality, instead

of the usual equality. We show that it is not reasonable to expect an observational equality

to be a congruence. We de�ne an observational algebra as an algebra equipped with an

observational equality which is an equivalence relation but not necessarily a congruence.

We assume that two values can be declared indistinguishable when it is impossible

to establish they are di�erent using some available observations. This is what we call

the Indistinguishability Assumption. Since term observation seems su�cient for data

type speci�cations, we de�ne an indistinguishability relation on the carriers of an algebra

w.r.t. the observation of an arbitrary set of terms. From a careful case study it follows

that this requires to take into account the continuations of suspended evaluations of

observable terms. Since our indistinguishability relation is not transitive, it is only an

intermediate step to de�ne an observational equality. Our approach is motivated by

numerous examples.

Keywords: algebraic speci�cation, observability, software correctness

1 Introduction

A main purpose of formal speci�cations is to provide a rigorous basis for establishing

software correctness. Indeed, it is well known that proving the correctness of some piece of

software without any formal reference makes no sense. Algebraic speci�cations are widely

advocated as being one of the most promising formal speci�cation techniques. However, to be

provided with some algebraic speci�cation is not su�cient per se. A precise (and adequate)

de�nition of software correctness is mandatory. This crucial prerequisite must be �rst ful�lled

before one can develop the relevant veri�cation methods, and try to mechanize them.

The adequacy of the chosen de�nition of software correctness has a great practical im-

pact, and we should therefore de�ne software correctness according to the actual needs. In
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the framework of algebraic speci�cations, straightforward de�nitions of correctness turn out

to be oversimpli�ed: most programs that should be considered as being correct (from a prac-

tical point of view) are rejected. The �rst thing is then to formally de�ne the class of algebras

which correspond to the correct implementations of a given speci�cation. It is well known

that this class contains not only all the models of the speci�cation but also some algebras

which do not satisfy (in the usual sense) all of the axioms of the speci�cation. In fact, this

class should rather correspond to the algebras which satisfy them \up to observations". For

this reason, in our approach, we loosen this too restrictive usual satisfaction relation, in order

to obtain an observational satisfaction relation \

O

j=", more permissive than \j=" in the sense

that

O

j= contains j=.

Assume now that the elements of some data type can only be observed via some available

observations. In this situation, it is impossible to distinguish some data type elements from

the others. This fact can be re
ected by an indistinguishability relation, written \�", de�ned

on a carrier of an algebra according to the following Indistinguishability Assumption:

Two values are indistinguishable with respect to some observations when it is

impossible to establish that they are di�erent, using these observations.

Now, the idea to loosen the satisfaction relation is to use \�" instead of \=" in the de�nition

of the satisfaction relation. The usual satisfaction A j= (t = t

0

) of an equational axiom is

based on the set-theoretical equality \=" of the results of the evaluation of both t and t

0

in

A, while an observational satisfaction should be based on whether these results are indistin-

guishable (i.e. related by \�") or not. Then the crucial point is to de�ne the \�" relation,

according to the Indistinguishability Assumption. Obviously, such a relation does not coin-

cide with \=". Unlike in [16], [17] or [10] but similarly to [1] and [5] we want to consider

more general observations than sort observation since sort observation does not provide the

satisfactory expressive power (as shown in [2]). Unfortunately, an indistinguishability rela-

tion de�ned w.r.t. such general observations is not a congruence in general (see [5]). It may

even not be an equivalence relation. As a matter of fact, according to the Indistinguishability

Assumption, the observations only allow to decide that two elements should be distinct but

not to decide that they are equal. We overcome this problem by introducing an observational

equality \

�

=

" included in \�". This leads us to the concept of observational algebras which

are of the form hA;

�

=

i where A is an algebra (in the usual sense) equipped with an equivalence

relation

�

=

.

We discuss the conditions which make our formalism provide an institution [8], [9]. A

�rst obvious condition is to attach the observations to some institution component. Since

the observations act on the semantics of a speci�cation in the same way as the axioms, we

believe that the observations should be attached to the formulae part. Beside observational

algebras, we also introduce observational formulae which are of the form h';Wi with ' a

(usual) formula and W a set of observable terms attached to it. In order to de�ne an institu-

tion in such an approach, we investigate the relations between the variance (translation) of

observational formulae and the covariance (\�-reduct") of observational algebras.

In [2], the existing observational techniques have been classi�ed in decreasing order of

expressive power as follows: formula, atom, term, operation and sort observation. Thus we

should justify why we restrict now to term observation, while formula observation is the most

powerful. The reason is that it is hard to de�ne an indistinguishability relation w.r.t. formula

or atom observation and requires a more elaborated framework [14]. In our opinion this is

due to the fact that formula and atom observations have no direct meaning at the (imple-
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menting) software level. On the contrary, observing some chosen terms may be viewed at this

level as observing the results of some computations, since the evaluation of an instantiated

term clearly corresponds to a computation. This is probably the reason why we did not �nd

practical examples which would motivate the necessity of formula or atom observations.

The approach we develop in this paper attempts to extend the class of the models of an

algebraic speci�cation by loosening the satisfaction relation. On the other hand there are

approaches where this extension is made by means of an equivalence relation �

Obs

on algebras

(called behavioural equivalence) depending on some observations Obs. In these approaches,

the class of \observational models" (also called behaviours), denoted by Beh[SP;Obs], which

should correspond to the correct realization of a speci�cation SP, is usually de�ned in the

following way:

Beh[SP;Obs] = fB 2 Alg[Sig[SP]] j 9 A 2 Alg[SP];A �

Obs

Bg (1:i)

Based on this notion, in [19] Sannella and Tarlecki have developed an institution independent

formalism.

Even if very general, in our opinion, these approaches do not provide a satisfactory ob-

servational semantics. It turns out that in some cases, we know of some realizations that we

would like to consider as being correct, but unfortunately these realizations cannot be shown

to be behaviourally equivalent to any of the (usual) models of the speci�cation at hand. A

typical example of such a situation, namely when Alg[SP] = �, is given in the next section.

2 A Motivating Example

Let SWC (see Figure 2.1) be a usual speci�cation of sets of natural numbers with an

additional operation choose : Set! Nat, de�ned by the axiom s 6= �) choose(s) 2 s = true.

By this axiom we require choose to return an arbitrary element of an nonempty set. Consider

a usual algebra L of lists of natural numbers. Clearly, lists behaves like sets provided that we

do not observe them directly but only via the membership operation. For this reason we can

consider L as an \observational model" of SWC, choose being realized by car. In this realiza-

tion the lists nm and mn (with n 6= m) are observationally equal, since they are viewed as the

same set fn;mg. However choose(nm) and choose(mn) produces two Nat values which should

not be observationally equal. Accordingly, we should not request the indistinguishability re-

lation to be a congruence. This opens new perspectives in writing speci�cations because some

inconsistent speci�cations (in the usual sense) can be \observationally consistent" provided

that the inconsistencies are not observed. This allows some data types to be speci�ed in a

straightforward way with less risk of introducing unexpected inconsistencies. For instance in

Figure 2.1, sets of natural numbers with an operation enum, which enumerates a set to a list,

have been speci�ed in a very natural way. Unfortunately this speci�cation is inconsistent

in the usual sense. Thus in the approaches based on behavioural equivalence, from (1.i), we

have Beh[SP;Obs] = � for any set of observations Obs. On the contrary, in an approach with

an observational satisfaction relation this speci�cation can have models (sets can be realized

by list, enum being the identity), provided that the inconsistencies are not observed (i.e. the

terms in which enum occurs are not observable). Notice by the way that sort observation is

not su�cient in this case.

As a summary we state the following claims:

1. An observational equality depends on observations. Since they are proper to a data

type, each data type owns its proper observational equality.
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spec : SWE

use : LIST, NAT, BOOL

sort : Set

generated by :

� : ! Set

ins: Nat Set ! Set

operations :

2 : Nat Set ! Bool

del : Nat Set ! Set

enum : Set ! List

axioms :

 

1

: ins(x,ins(x,s)) = ins(x,s)

 

2

: ins(x,ins(y,s)) = ins(y,ins(x,s))

 

3

: del(x,�) = �

 

4

: del(x,ins(x,s)) = del(x,s)

 

5

: x 6= y ) del(x,ins(y,s)) = ins(y,del(x,s))

 

6

: x 2 � = false

 

7

: x 2 ins(x,s) = true

 

8

: x 6= y ) x 2 ins(y,s) = x 2 s

 

9

: enum(�) = nil

 

10

: enum(ins(x,s)) = cons(x,enum(s))

spec : SWC

use : NAT, BOOL

sort : Set

generated by :

� : ! Set

ins: Nat Set ! Set

operations :

2 : Nat Set ! Bool

del : Nat Set ! Set

choose : Set ! Nat

axioms :

ins(x,ins(x,s)) = ins(x,s)

ins(x,ins(y,s)) = ins(y,ins(x,s))

del(x,�) = �

del(x,ins(x,s)) = del(x,s)

x 6= y ) del(x,ins(y,s)) = ins(y,del(x,s))

x 2 � = false

x 2 ins(x,s) = true

x 6= y ) x 2 ins(y,s) = x 2 s

s 6= �) choose(s) 2 s = true

Figure 2.1: Speci�cation of sets with enum and with choose

2. The operations do not necessarily preserve observational equalities (i.e. \� " is not

necessarily a congruence).

3. Two distinguishable elements cannot be equal. Two indistinguishable elements are not

necessarily equal.

3 Basic De�nitions

We assume that the reader is familiar with algebraic speci�cations (see e.g. [7] or [11]).

A signature � consists of a �nite set S of sort symbols and a �nite set of operation names

with arities ambiguously denoted by �. We assume that each signature � is provided with

an S-sorted set of variables X such that X

s

is countable for each s 2 S. We use the following

conventions. Given a signature � (resp. �

0

), S (resp. S

0

) denotes the sorts of � (resp. of �

0

)

and X (resp. X

0

) denotes the variables of � (resp. of �

0

). A signature morphism � : �! �

0

maps each sort of S to a sort of S

0

, each operation (f : s

1

: : : s

n

! s) 2 � to an operation

�(f) of �

0

with the arity �(s

1

) : : :�(s

n

)! �(s) and each variable of X

s

to a variable of X

0

�(s)

.

Moreover, we assume that a signature morphism is always injective on variables

1

. Signatures

with signature morphisms form the usual category of signatures, written Sig.

From T

�

(X), the \=" symbol, connectives (:, _, ^, ), etc.) and quanti�ers (8, 9) we

construct the set W� [�] of well formed �-formulae. The de�nition of (total) �-algebras

and �-morphisms is the standard one, as well as the satisfaction relation between �-algebras

1

Without this assumption, which under a stronger form appears in [9] (page 36, De�nition 55), it would

be impossible to establish the satisfaction condition for most institutions.
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and �-formulae. The category of all �-algebras is denoted by Alg[�]. Given an S-sorted

set E, we denote by T

�

(E) the free �-algebra over E. For instance T

�

(resp. T

�

(X)) denotes

the �-algebra of ground terms (resp. terms with variables), T

�

(A) (resp. T

�

(A[X)) de-

notes the �-algebra of ground terms (resp. terms with variables) over the carriers of a

�-algebra A. Given a signature morphism � : � ! �

0

the �-reduct of a �

0

-algebra A

0

,

written A

0

j

�

is de�ned in the usual way and extending it on �

0

-morphisms we obtain the

forgetful functor

j

�

: Alg[�

0

] ! Alg[�]. In the particular case of an inclusion � � �

0

, the

corresponding forgetful functor is written

j

�

.

A valuation is a morphism � : X ! A which maps each x 2 X

s

to a value x� 2 A

s

.

The set of all valuations from X to A is written Val[X;A]. A partial valuation is a valu-

ation preceded by an inclusion X

0

� X. From the freeness of T

�

(X) any valuation (resp.

partial valuation) � followed by the inclusion A � T

�

(A) (resp. A � T

�

(A [ X)) extends to

a unique morphism (written ambiguously �) from T

�

(X) to T

�

(A) (resp. T

�

(A[X)) which

maps each term t 2 (T

�

(X))

s

to a valued term t� 2 (T

�

(A))

s

(resp. partially valued term

t� 2 (T

�

(A [ X))

s

). The evaluation morphism from T

�

(A) to A is de�ned as the unique

�-morphism which maps each element of (T

�

(A))

s

\ A

s

to itself. This morphism maps a

valued term � to its evaluation result written � .

A position p in a term t is a sequence of integers which describe the path from the

topmost position of t (denoted by the empty sequence) to the subterm of t at position p

written tj

p

. The set of all the positions of t is denoted by Pos(t). The replacement of tj

p

by a term r in t is written t[r]

p

. The multiple replacement at parallel positions p

1

; : : : ; p

n

is

written t[r

1

: : :r

n

]

p

1

:::p

n

.

De�nition 3.1

Given sorts S = fs

1

; : : : ; s

n

g the set of contextual variables is the (S-indexed) set

� = f�

s

1

; : : :�

s

n

g with f�

s

i

g called the contextual variable of sort s

i

. A multicontext (resp.

context) over a �-algebra A is a partially valued term � with only one (resp. only one oc-

currence of a) contextual variable. Consequently, the set of all multicontexts over A, written

MC

�

(A) (the set of all contexts over A is written C

�

(A)) is de�ned as follows:

MC

�

(A) =

[

s2S

T

�

(A[ f�

s

g)

Given � 2 MC

�

(A) (resp. � 2 C

�

(A)) we can write � : s! s

0

instead of � 2 (T

�

(A[f�

s

g))

s

0

.

Application of � : s! s

0

on a 2 A

s

is written �[a].

The following de�nitions and results are very technical and can be skipped at �rst reading.

De�nition 3.2

Given a signature morphism � : �! �

0

and a �

0

-algebra A

0

, we de�ne �

A

0

as the unique

application from A

0

j

�

to A

0

, which maps any element of (A

0

j

�

)

s

to the equal element of A

0

�(s)

.

De�nition 3.3

Let � : � ! �

0

be a signature morphism, A

0

be a �

0

-algebra. We de�ne

�

A

0

: T

�

(A

0

j

�

)! T

�

0

(A

0

) as the unique extension of both �

A

0

: A

0

j

�

! A

0

and � : T

�

! T

�

0

.

De�nition 3.4

Given a signature morphism � : � ! �

0

and a �

0

-algebra A

0

, we de�ne a �-reduct of a

valuation �

0

: X

0

! A

0

as a valuation �

0

j

�

: X! A

0

j

�

satisfying:

8 x 2 X �(x)�

0

= �

A

0

(x�

0

j

�

) (3:i)
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Notice that this de�nition makes sense, since � and �

A

0

are well de�ned. The notation �

0

j

�

suggests that the relation

j

�

de�ned on the valuations by Equation (3.i) is a function. The

following lemma points out this fact.

Lemma 3.5

Let � : �! �

0

be a signature morphism and A

0

be a �

0

-algebra. The relation

j

�

de�ned

by Equation (3.i) is a total and surjective function

j

�

: Val[X

0

;A

0

]! Val[X;A

0

j

�

].

Proof is given in the Appendix.

Lemma 3.6

Let � : � ! �

0

be a signature morphism and A

0

be a �

0

-algebra. For any valuation

�

0

: X

0

! A

0

and any term t 2 T

�

(X) we have:

�(t)�

0

= �

A

0

(t�

0

j

�

)

Proof is given in the Appendix.

Corollary 3.7

Let � : � ! �

0

be a signature morphism and A

0

be a �

0

-algebra. For any valued term

� 2 T

�

(A

0

j

�

) we have:

�

A

0
(�) = �

A

0
(�)

Proof

It is a trivial consequence of Lemma 3.6 since � can always be written t�

0

j

�

with t 2 T

�

(X) and

�

0

: X

0

! A

0

(c.f. Lemma 3.5). 2

4 How to Observe and How to Compare

As mentioned in the introduction we need to de�ne an indistinguishability relation on

the carriers of an algebra in order to relax the satisfaction relation. Usually this is done using

the concept of observable contexts. Since this concept was only de�ned for sort ([10], [12],

[16]) or signature

1

([1], [5]) observations, we should start by de�ning it in the situation when

we observe an arbitrary set of terms.

In the most usual framework one considers a set of observable sorts S

Obs

which is a subset

of the sorts of a speci�cation. Then an observable context is any context � : s ! s

0

with

s

0

2 S

Obs

. Given an element a 2 A

s

we can observe it via � by evaluating �[a]. Hence we

have the following trivial fact:

Fact 4.1

For sort observation, all the elements of a carrier of an algebra have the same observable

contexts w.r.t. a set of observable sorts.

Notice that it is unreasonable to hope that this fact could be extended to term observa-

tion. This a�rmation is justi�ed by the speci�cation THREE (c.f. Figure 4.1). Let A be a

Sig[THREE]-algebra. It is clear that g(a

A

) does not produce an observable value, since g(a)

is not an observable term. Consequently, we should consider g(�) as an observable context

of b

A

and c

A

only and, for a similar reason, f(�) as an observable context of a

A

and b

A

(but not of c

A

). It follows from the above that observable contexts cannot be taken into

1

In fact these approaches combine signature and sort observations.

6



account independently of the elements on which they apply. Therefore, we need to de�ne

the observable contexts of a given element of an algebra. Notice that such a de�nition is

super
uous for observable sorts.

spec : THREE

sort : Three, Visible

generated by :

a, b, c : ! Three

operations :

f, g: Three ! Visible

axioms :

a = b

b = c

observations : f(a), f(b), g(b), g(c)

spec : AD-HOC

use : Bool

sort : Hoc

generated by :

a, b, c : ! Hoc

operations :

f : Hoc Hoc ! Bool

g : Hoc ! Hoc

observations : f(a, c), f(b, g(c))

Figure 4.1: Two exotic speci�cations

Since Fact 4.1 cannot be extended to term observation we have a little trouble to declare

some a; b 2 A

s

indistinguishable. It seems reasonable to compare a and b with the same

observable contexts. Thus in the previous example we compare a

A

and b

A

(resp. b

A

and

c

A

) only via the context f(�) (resp. g(�)). We also notice that a

A

and c

A

have no common

observable context. Consequently, these two values cannot be compared. However, according

to our Indistinguishability Assumption, we do not consider that two elements can either be

indistinguishable, distinguishable or incomparable. Our point of view is close to �nal seman-

tics ([3], [13], [20]): we consider indistinguishable these pairs of elements, for which we do

not observe the contrary. This is stated in the undermentioned de�nition.

For a while assume already de�ned the notion of observable contexts w.r.t. a set W of

observable terms.

De�nition (comparator, version 1)

We call W-comparator (or shortly comparator) of elements a and b of a �-algebra, an

observable context of a and b w.r.t. a set W of �-terms. We say that a W-comparator �

distinguishes a and b i� �[a] 6= �[b].

We can now state the following de�nition of indistinguishability:

De�nition 4.2

We say that two elements a and b of a given carrier of a �-algebra are indistinguishable

w.r.t. a set of terms W � T

�

(X) (or W-indistinguishable) written a �

W

b, if there is no

W-comparator which distinguishes them.

Now, the crucial point is to de�ne the observable contexts of an element of an algebra. Below

we make a �rst attempt of such a de�nition. Next, this de�nition will be progressively

re�ned. In this way we are going to introduce the concept of continuations which is one of

the originalities of our approach.

De�nition (observable contexts version 1)

Let W � T

�

(X) be a set of terms and a 2 A be an element of a �-algebra. We say that a

context � 2 C

�

(A) is an observable context of a, if there is a term w 2W and a valuation

7



true false

g

g

g
a b

f f

Bool

B

c

Hoc

Figure 4.2: A model of the speci�cation AD-HOC

� : X! A such that w� has a leaf l verifying �[l] = w� and such that l is either the constant

of � interpreted by A as a or l is already a itself.

The underlying intuition of this de�nition is that an instantiated observable term w� denotes

an \observable calculus" i.e. a calculus whose result can be directly observed. Consequently,

an observable context � of a, instantiated by a represents an observable calculus with in-

put a. Unfortunately, it is not adequate enough to rely only on input values. For instance

consider the speci�cation AD-HOC (c.f. Figure 4.1). According to the current de�nition, the

unique observable context of a

A

(resp. b

A

) is f(�; c) (resp. f(�; g(c))) independently of the

Sig[AD-HOC]-algebra A under consideration. Consequently, a

A

and b

A

are indistinguishable

(no comparator) in any algebra A. Consider now the algebra B given in Figure 4.2 and try

to partially evaluate in b the observable contexts of a

B

and b

B

. Since g(c) evaluates to c

B

,

the evaluations of both f(�; c) and f(�; g(c)) yield f(�; c

B

). Then the question whether it is

not preferable to consider f(�; c

B

) as a comparator of a

B

and b

B

clearly arises. Notice that

this comparator distinguishes these two values.

Our �rst version of the de�nition of observable contexts has also another drawback: the

entire carriers of some sorts can be, in an unreasonable way, devoid of observable context, as

in the case of the speci�cation PASS-BY (c.f. Figure 4.3). Here the elements of A

Hidden

have

no observable contexts in any algebra A. Thus they are all indistinguishable. Consequently,

the algebras with the carrier of Hidden reduced to a singleton should be present among the

observational models of PASS-BY. However, this could prevent from preserving the observable

properties of Nat. In fact, the speci�cation PASS-BY requires all reachable elements of Nat to
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spec : PASS-BY

sort : Nat, Hidden, Visible

generated by :

0: ! Nat

succ: Nat ! Nat

operations :

stage-one: Nat ! Hidden

stage-two: Hidden ! Visible

axioms :

0 6= succ(x)

x 6= succ(x) ) succ(x) 6= succ(succ(x))

observations : stage-two(stage-one(x))

spec : SYM

use : BOOL

sort : Sym

generated by :

a, b : ! Sym

operations :

f : Sym Sym ! Bool

observations : f(a, a), f(b, b)

Figure 4.3: Yet other exotic speci�cations

be distinguishable i.e.

stage-two(stage-one(succ

i

(0))) 6= stage-two(stage-one(succ

j

(0))) for i 6= j

should hold in any observational model. Of course, this is impossible when the carrier of Hid-

den is a singleton. We conclude that in the above example we should consider stage-two(�)

as an observable context of any element which is reachable by the evaluation of stage-one(x)

properly instantiated.

The examples PASS-BY and AD-HOC suggest that a better version of the de�nition of

observable contexts should somehow take into account the super-terms of observable terms

as well as their partial evaluations. Before to state this version, we need some reminders

about partial evaluation.

De�nition 4.3

Let A be a �-algebra. We de�ne the partial evaluation relation, written !

pEv

, on T

�

(A) as

follows. We say that a term �

2

2 T

�

(A) is the result of the partial evaluation of �

1

2 T

�

(A),

written �

1

!

pEv

�

2

, if there is a position p in �

1

such that �

1

[�

1

j

p

]

p

= �

2

.

Fact 4.4

The re
exive-transitive closure of !

pEv

, written

�

!

pEv

, is an order. 2

De�nition 4.5

Let W � T

�

(X) be a set of terms and A be a �-algebra. The closure by partial evalua-

tions of W in A, written

f

W

A

, is de�ned as follows:

f

W

A

= f� 2 T

�

(A) j 9 w 2W 9 � : X! A w�

�

!

pEv

�g

This de�nition can be used to state a better de�nition of observable contexts:

De�nition (observable contexts, version 2)

LetW � T

�

(X) be a set of observable terms and A be a �-algebra. We say that � 2 C

�

(A)

is an observable context of a 2 A

s

if �[a] 2

f

W

A

.

9



According to this de�nition, an observable context � of a 2 A

s

is obtained from some valued

observable term w� (� : X ! A), if a is an intermediate result of its evaluation. In fact,

the above de�nition requires the term �[a] to be obtained from w� as a result of its partial

evaluation. Thus the context � represents a calculus waiting for an input. If the value a is

given as input, then the carrying out of this calculus corresponds exactly to a \continuation"

of the evaluation of w�. However, the case of the speci�cation SYM (c.f. Figure 4.3) shows

that this approach is not yet satisfactory. For instance, let A be a Sig[SYM]-algebra such that

f

A

(a

A

; a

A

) = true

A

and f

A

(b

A

; b

A

) = false

A

. Applying the last de�nition we obtain:

observable contexts of a

A

: f(�; a); f(a; �)

observable contexts of b

A

: f(�; b); f(b; �)

Since the elements a

A

and b

A

have no comparator, they are declared indistinguishable. Nev-

ertheless, the evaluation of the terms f(a, a) and f(b, b) allows to distinguish a

A

and b

A

.

This motivates to consider f(�; �) as a comparator of a

A

and b

A

. Consequently, an adequate

de�nition of continuation should be based on multicontexts instead of contexts:

De�nition 4.6

Let W � T

�

(X) be a set of observable terms and a be an element of a �-algebra A. We

say that a multicontext � 2 MC

�

(A) is a W-continuation via a (a continuation via a, for

short) if �[a] 2

f

W

A

. The set of W-continuations via a is written cont

W

(a). (If there is no

ambiguity we omit the index W in this notation.)

The de�nition of indistinguishability (c.f. 4.2) remains unchanged provided that we modify

the de�nition of comparator which must be based on the notion of continuation.

De�nition 4.7

A W-comparator (comparator, for short) of elements a and b of a given carrier of �-

algebra, is any W-continuation via a and b. The set of all comparators of a and b is denoted

by cmp

W

(a; b). (If there is no ambiguity we omit the index W in this notation.) We say

that a W-comparator � distinguishes a and b i� �[a] 6= �[b].

We illustrate the concepts introduced so far by means of the speci�cation SWE (see Figure

2.1).

Example 4.8

Let �

SWE

be the signature of SWE except the enum operation. Consider the following set

of observable terms Obs

SWE

= (T

�

SWE

(X))

Bool

[ (T

�

SWE

(X))

Nat

. Assume that we enrich SWE

with the operation idl : List ! List de�ned by the axiom idl(l) = l. (This operation, without

any practical interest, aims at precisely de�ne an algebra as a �-reduct of another one.) Since

SWE is an enrichment of LIST we can write

Sig[SWE] = Sig[LIST] + ��

Then we consider the following signature morphism:

� = �

LIST

+�� with �

LIST

: Sig[LIST] ! Sig[LIST]

�� : �� ! Sig[LIST]

where �

LIST

is the identity morphism and

��(Set) = List ��(�) = nil ��(ins) = cons

��(2) = member ��(del) = remove ��(enum) = idl

10



Consider the Sig[LIST]-algebra L being the usual realization of lists. Then the Sig[SWE]-

algebra we are interested in is L

j

�

. The continuations of l 2 (L

j

�

)

List

are the following ones:

cont(l) = fcar(�);member(n; �) j n 2 (L

j

�

)

Nat

; � 2 (MC

�

SWE

(L

j

�

))

List

g

Therefore, �

Obs

SWE

is the set-theoretical equality on (L

j

�

)

List

. The continuations of

s 2 (L

j

�

)

Set

are the following ones:

cont(s) = fn2� j n 2 (L

j

�

)

Nat

; � 2 (MC

�

SWE

(L

j

�

))

Set

g

Thus s ; s

0

2 (L

j

�

)

Set

are indistinguishable if they contain the same elements.

We would like to propose an institution for observational speci�cations. Since our observa-

tional satisfaction relation (which will be de�ned further) strongly depends on continuations,

we must �rst study their properties w.r.t. the forgetful functor and the translation of observ-

able terms. In this way, we are going to provide tools which will be useful to show that the

satisfaction condition holds in our formalism. Below we give the �rst important theorem. It

is a good opportunity to establish some interesting lemmas about partial evaluation.

Theorem 4.9

Let � : �! �

0

be a signature morphism, W � T

�

(X) and W

0

� T

�

0

(X

0

) be sets of terms

such that �(W) �W

0

and A

0

be a �

0

-algebra. For any element a 2 A

0

j

�

and any multicontext

� 2 MC

�

(A

0

j

�

) we have:

� 2 cont

W

(a) ) �

A

0

(�) 2 cont

W

0

(�

A

0

(a))

We need the following lemmas for the proof:

Lemma 4.10

Let � : �! �

0

be a signature morphism, and A

0

be a �

0

-algebra. For all �

1

; �

2

2 T

�

(A

0

j

�

)

we have:

�

1

!

pEv

�

2

) �

A

0
(�

1

)!

pEv

�

A

0
(�

2

)

Proof

By De�nition 4.3 there exists a position p 2 Pos(�

1

) such that �

1

[�

1

j

p

]

p

= �

2

. By Corollary 3.7 we

have

�

A

0

(�

1

j

p

) = �

A

0

(�

1

j

p

) = �

A

0

(�

1

)j

p

Hence

�

A

0

(�

2

) = �

A

0

(�

1

[�

1

j

p

]

p

) = �

A

0

(�

1

)[�

A

0

(�

1

j

p

)]

p

= �

A

0

(�

1

)[�

A

0

(�

1

)j

p

]

p

This proves �

A

0

(�

1

)!

pEv

�

A

0

(�

2

). 2

Lemma 4.11

Let � : �! �

0

be a signature morphism, and A

0

be a �

0

-algebra. For any �

1

; �

2

2 T

�

(A

0

j

�

)

we have:

�

1

�

!

pEv

�

2

) �

A

0

(�

1

)

�

!

pEv

�

A

0

(�

2

)

Proof

Follows directly from the previous lemma. 2
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Lemma 4.12

Let � : �! �

0

be a signature morphism, W � T

�

(X) and W

0

� T

�

0
(X

0

) be sets of terms

such that �(W) �W

0

and A

0

be a �

0

-algebra. For any � 2 T

�

(A

0

j

�

) we have:

� 2

f

W

A

0

j

�

) �

A

0

(�) 2

f

W

0

A

0

Proof

Assume � 2

f

W

A

0

j

�

. By De�nition 4.5 we have

9 w 2W 9 � : X! A

0

j

�

w�

�

!

pEv

�

By Lemma 4.11 we obtain

9 w 2W 9 � : X! A

0

j

�

�

A

0

(w�)

�

!

pEv

�

A

0

(� ) (i)

By Lemma 3.5 we know that there exists a valuation �

0

: X

0

! A

0

such that �

0

j

�

= �. It is obvious

from De�nition 3.4 that �

A

0

(w�) = �(w)�

0

. Consequently, from (i), we deduce:

9 w 2W 9 �

0

: X! A

0

�(w)�

0

�

!

pEv

�

A

0

(� )

Now �(w) 2W

0

, hence

9 w

0

2W

0

9 �

0

: X! A

0

w

0

�

0

�

!

pEv

�

A

0

(� )

By De�nition 4.5 this yields �

A

0

(� ) 2

f

W

0

A

0

. 2

Proof of Theorem 4.9

Let � : � ! �

0

be a signature morphism, W � T

�

(X) and W

0

� T

�

0

(X

0

) be sets of terms such

that �(W) �W

0

and A

0

a be �

0

-algebra. Let a 2 A

0

j

�

.

Assume � 2 cont

W

(a). By De�nition 4.6 we have �[a] 2

f

W

A

0

j

�

, hence by Lemma 4.12 we deduce

�

A

0

(�[a]) 2

f

W

0

A

0

. By De�nition 4.6 this yields �

A

0

(�) 2 cont

W

0

(�

A

0

(a)). 2

Notice that the converse of the above theorem does not hold even if �(W) = W

0

:

Example 4.13

Consider the following signatures:

� = ff

1

; f

2

: s! sg �

0

= ff

0

: s

0

! s

0

g

Let W = ff

1

(x)g. Let � : �! �

0

be the following signature morphism:

�(s) = s

0

�(f

1

) = �(f

2

) = f

0

It is clear that for any �

0

-algebra A

0

, f

2

(�) is not a W-continuation via any element a 2 A

0

j

�

,

whereas �(f

2

(�)) = f

0

(�) 2 cont

�(W)

(�

A

0
(a)).

However, for injective signature morphisms the converse of Theorem 4.9 holds:

Theorem 4.14

Let � : �! �

0

be an injective signature morphism, W � T

�

(X) be a set of terms and A

0

be a �

0

-algebra. For any a 2 A

0

j

�

and any � 2 MC

�

(A

0

j

�

) we have:

� 2 cont

W

(a) , �

A

0

(�) 2 cont

�(W)

(�

A

0

(a))

Proof sketch

Since � is injective, �

A

0

is too. Then, for W

0

= �(W), the implications in lemmas 4.10, 4.11,

4.12 become equivalences. Consequently, we obtain the proof we are looking for, by replacing the

implications in the proof of 4.9 by equivalences. 2
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5 Properties of the Indistinguishability Relation

The de�nition 4.2 express in which situations two elements of a �-algebra are indistin-

guishable. Indeed, it de�nes an S-sorted relation �

W

= (�

W

)

s2S

on an algebra, called the

indistinguishability relation. Since this relation is the next step toward a complete descrip-

tion of our institution for observational speci�cations, we must study its properties w.r.t. the

forgetful functor and the translation of observable terms. This will be necessary for estab-

lishing the satisfaction condition (see [9]) in a further section. After the following proposition

devoted to this aim, we study other interesting properties of the indistinguishability relation.

Proposition 5.1

Let � : � ! �

0

be a signature morphism, let W � T

�

(X) and W

0

� T

�

0

(X

0

) be sets of

terms such that �(W) � W

0

and A

0

be a �

0

-algebra. For all a

0

; b

0

2 A

0

�(s)

and a; b 2 (A

0

j

�

)

s

verifying �

A

0

(a) = a

0

and �

A

0

(b) = b

0

we have:

a

0

�

W

0

b

0

) a �

W

b

Proof of Proposition 5.1

Let a

0

; b

0

2 A

0

�(s)

such that a

0

�

W

0

b

0

. Assume by contradiction that there exist a; b 2 (A

0

j

�

)

s

such that

�

A

0

(a) = a

0

�

A

0

(b) = b

0

and a 6�

W

b

According to De�nition 4.2 there exists � 2 cmp

W

(a; b) such that

�[a] 6= �[b] (i)

By de�nition of comparator (c.f. 4.7) � is an element of cont

W

(a) and cont

W

(b). On the other hand,

it is clear that

�

A

0

(�)[a

0

] = �

A

0

(�[a]) and �

A

0

(�)[b

0

] = �

A

0

(�[b]) (ii)

From Corollary 3.7 we have therefore

�

A

0

(�[a]) = �

A

0

(�[a]) and �

A

0

(�[b]) = �

A

0

(�[b]) (iii)

From (i), (ii) and (iii) we obtain

�

A

0

(�)[a

0

] 6= �

A

0

(�)[b

0

] (iv)

Now, from Theorem 4.9 we know that �

A

0

(�) is an element of cont

W

0

(a

0

) (resp. cont

W

0

(b

0

)). Accord-

ingly, it is a comparator of a

0

and b

0

and by (iv) it distinguishes a

0

and b

0

. This is in contradiction

with the starting hypothesis. 2

As a corollary of this proposition, we have the following fact which makes clear the decreasing

character of the indistinguishability relation w.r.t. the inclusion sets of observable terms.

Corollary 5.2

Let W

1

;W

2

be two sets of �-terms such that W

1

�W

2

. On any �-algebra, the indistin-

guishability relations �

W

1

and �

W

2

satisfy �

W

2

� �

W

1

.

Proof

It is enough to consider the previous proposition with � = �

0

, W = W

1

, W

0

= W

2

and � the

identity. 2

The following fact is obvious from the de�nition of the indistinguishability relation.

Fact 5.3

The indistinguishability relation is re
exive and symmetric. 2

The next fact fully agrees with our claims:
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Fact 5.4

The indistinguishability relation is not a congruence in general.

Proof

It is enough to go back to Example 4.8. Recall that in the algebra L

j

�

, sets are represented by

lists. Let then hn;mi and hm; ni be two representations of the set fn;mg in this algebra. On one

hand we have hn;mi �

Obs

SWE

hm; ni but on the other hand enum

L

j

�

(hn;mi) 6�

Obs

SWE

enum

L

j

�

(hm; ni)

because of the comparator car(�) which distinguishes them. 2

spec : TRANS

use : BOOL

sort : Trans

generated by :

a, b, c : ! Trans

operations :

f, g, h : Trans ! Bool

observations :

f(a), f(b), g(b), g(c), h(c), h(a)

true
false

A

Bool

Trans

a

b

c

h
f f

g g

h

Figure 5.1: Speci�cation TRANS and one of its models

We have also an unexpected negative result:

Fact 5.5

The indistinguishability relation is not transitive in general.

Consider the model A (see Figure 5.1) of the speci�cation TRANS. In this algebra we have

a

A

�

W

b

A

and b

A

�

W

c

A

, but not a

A

�

W

c

A

. The reason is that we did not impose

any restriction on the set of observable terms. Consequently, nothing ensures that all the

elements of a given data type can be observed in the same way. In the algebra A each of

the elements a

A

, b

A

, c

A

is observed di�erently, each pair among this elements is compared

in some proper way, di�erent from the others. This is the reason why the indistinguisha-

bility relation is not transitive. In fact, this surprising property results directly from our

Indistinguishability Assumption according to which we have built de�nitions 4.2, 4.6 and 4.7.

However, when all the elements of a given carrier of an algebra have the same continuations,

the indistinguishability relation is transitive:

Fact 5.6

Let A be a �-algebra and W be a set of �-terms. If cont

W

(a) = cont

W

(b) for all a; b 2 A

s

then the relation �

W

is transitive on A.

14



Proof

Obvious. 2

It is possible to have a de�nition of \�

W

" which is always transitive. One may state that

a and b are W-indistinguishable if they do in the sense of De�nition 4.2 and if additionally

cont

W

(a) = cont

W

(b). In our opinion, such a de�nition will distinguish too much. For

instance, if in a speci�cation we observe only some ground terms then, according to De�nition

4.2, a non reachable value will never be distinguished from any other value, whereas with the

modi�ed version of this de�nition, a non reachable value will always be distinguished from

any reachable value. Consequently we are not enthusiastic about such a modi�cation.

Fact 5.7

The relation �

Obs

SWE

from Example 4.8 is transitive.

Proof

Follows directly from the above proposition, since in Example 4.8 we have shown that the elements

of the same carrier of L

j

�

have the same continuations. 2

Fact 5.6 provides a semantical transitivity criterion of the indistinguishability relation.

There exist also some syntactical criteria. We describe them in the next section.

6 A Particular Case of Term Observation

An interesting case arises when the set of observable terms is described by a partial

subsignature de�ned precisely by the following de�nition:

De�nition 6.1

Let � be a signature. A partial subsignature of � (partial signature for short) is a pair

hS

1

;�

0

i such that �

0

is a subsignature of � and S

1

is a subset of sorts of �

0

. The set of terms

T

hS

1

;�

0

i

(X) of a partial signature hS

1

;�

0

i (the set of hS

1

;�

0

i-terms) is de�ned as follows:

T

hS

1

;�

0

i

(X) =

a

s2S

1

(T

�

0

(X))

s

This kind of sets of terms is interesting because the indistinguishability relation generated by

such a set is transitive on any algebra. In order to make this point clear, we �rst introduce

an auxiliary de�nition of hS

1

;�

0

i-indistinguishability. This is a transitive relation. We show

then that this relation is the same that the T

hS

1

;�

0

i

(X)-indistinguishability (in the sense of

De�nition 4.2). This last result allows to conclude that any T

hS

1

;�

0

i

(X)-indistinguishability

is transitive on all �-algebras.

De�nition 6.2

Let hS

1

;�

0

i be a partial subsignature of � and A be a �-algebra. We say that a; b 2 A

s

are hS

1

;�

0

i-indistinguishable, written a �

hS

1

;�

0

i

b, if for any term t 2 T

hS

1

;�

0

i

(X) with at

least one variable x

s

of sort s and for all the valuations �

1

; �

2

2 Val[X;A] which coincide

everywhere except at x

s

where x

s

�

1

= a and x

s

�

2

= b, we have

t�

1

= t�

2

Proposition 6.3

Let hS

1

;�

0

i a partial subsignature of �. The relation of hS

1

;�

0

i-indistinguishability is

transitive on all �-algebras.
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Proof

Consider a; b; c 2 A

s

such that a �

hS

1

;�

0

i

b and b �

hS

1

;�

0

i

c. From De�nition 6.2, this amounts

to say that t�

1

= t�

2

= t�

3

for any term t 2 T

hS

1

;�

0

i

(X) and all the valuations �

1

; �

2

; �

3

2 Val[X;A]

which coincide everywhere except at an x

s

2 Var[t] where x

s

�

1

= a, x

s

�

2

= b and x

s

�

3

= c. Hence,

we deduce immediately that

a �

hS

1

;�

0

i

c

2

Theorem 6.4

Let hS

1

;�

0

i be a partial subsignature of � and A be a �-algebra. For all a; b 2 A

s

we

have

a �

hS

1

;�

0

i

b i� a �

T

hS

1

;�

0

i

(X)

b

The proof of this theorem requires a technical de�nition as well as some additional results.

De�nition 6.5

Let A be a �-algebra and � 2 T

�

(A) be a valued term. Consider the following set of

positions.

fp

1

; : : : ; p

n

g = fp 2 Pos(�) j � j

p

2 Ag

We call � -derived, a term t 2 T

�

(X) obtained from � by replacement of all its leaves at

positions p

1

; : : :p

n

by distinct variables. In other words t = � [x

1

; : : : ; x

n

]

p

1

:::p

n

with x

i

6= x

j

when i 6= j. We note der(� ) the set of all � -derived terms.

Lemma 6.6

Let hS

1

;�

0

i be a partial subsignature of �, t be a term of T

hS

1

;�

0

i

(X), A be a �-algebra

and � : X! A be a valuation. If t�

�

!

pEv

� , where � 2 T

�

(A), then der(�) � T

hS

1

;�

0

i

(X).

Proof

Obvious, since the sort of any term of der(� ) is in S

1

and each operation occurring in it is in

�

0

. 2

Lemma 6.7

Let hS

1

;�

0

i be a partial subsignature of � and A be a �-algebra. For all � 2

g

T

hS

1

;�

0

i

(X)

A

we have

der(�) � T

hS

1

;�

0

i

(X)

Proof

Assume � 2

g

T

hS

1

;�

0

i

(X)

A

. By De�nition 4.5 we have

9 t 2 T

hS

1

;�

0

i

(X) 9 � : X! A t�

�

!

pEv

�

Hence, by Lemma 6.6 we deduce that der(� ) � T

hS

1

;�

0

i

(X). 2

Lemma 6.8

Let hS

1

;�

0

i be a partial subsignature of � and a be an element of a �-algebra A. For

any � 2 cont

T

hS

1

;�

0

i

(X)

(a) we have

der(�[a]) � T

hS

1

;�

0

i

(X)

16



Proof

Assume � 2 cont

T

hS

1

;�

0

i

(X)

(a). By De�nition 4.6 �[a] is an element of

g

T

hS

1

;�

0

i

(X)

A

. Hence,

applying Lemma 6.7, we obtain the result we are looking for. 2

Lemma 6.9

Let hS

1

;�

0

i be a partial subsignature of �, A be a �-algebra and let a; b 2 A

s

. For any

� 2 cmp

T

hS

1

;�

0

i

(X)

(a; b) there exists a term t 2 T

hS

1

;�

0

i

(X), and valuations �

1

; �

2

2 Val[X;A]

which coincide everywhere except at x

s

2 Var[t] where x

s

�

1

= a and x

s

�

2

= b and such that

�[a] = t�

1

and �[b] = t�

2

Proof

Let � 2 cmp

T

hS

1

;�

0

i

(X)

(a; b) and t

0

2 der(�[a]). It is obvious that der(�[a]) = der(�[b]), therefore

t

0

2 der(�[b]). Let fp

1

; : : : ; p

n

g be all positions of �

s

in � and let x

s

62 Var[t

0

]. Notice that Pos(�) =

Pos(t

0

). Consequently, we can consider a term t = t

0

[x

s

]

p

1

:::p

n

. Since by Lemma 6.8 t

0

is in

T

hS

1

;�

0

i

(X), we have also t 2 T

hS

1

;�

0

i

(X). By construction of t, there exists a valuation �

1

: X ! A

such that t�

1

= �[a]. Hence x

s

�

1

= a. It is obvious that there exists a valuation �

2

: X ! A which

coincides with �

1

everywhere except at x

s

where x

s

�

2

= b. Then we are done since t�

2

= �[b]. 2

Proof of Theorem 6.4

Let hS

1

;�

0

i be a partial subsignature of � and A be a �-algebra. We will proceed by an indirect

proof. We show that for all a; b 2 A

s

we have a 6�

hS

1

;�

0

i

b i� a 6�

T

hS

1

;�

0

i

(X)

b

� )

Let a; b 2 A

s

such that a 6�

hS

1

;�

0

i

b. By de�nition 6.2, there exists a term t 2 T

hS

1

;�

0

i

(X) and

valuations �

1

; �

2

2 Val[X;A] which coincide everywhere except at x

s

2 Var[t] where x

s

�

1

= a and

x

s

�

2

= b, such that

t�

1

6= t�

2

(i)

Let fp

1

; : : : ; p

n

g be the set of positions where x

s

occurs in t. Consider then a multicontext � =

t�

1

[�]

p

1

:::p

n

. It is obvious that � = t�

2

[�]

p

1

:::p

n

and that �[a] = t�

1

and �[b] = t�

2

. Now, by De�nition

4.5 we have t�

1

; t�

2

2

g

T

hS

1

;�

0

i

(X)

A

. So � 2 cmp

T

hS

1

;�

0

i

(X)

(a; b) and according to (i), � distinguishes

a and b, hence a 6�

T

hS

1

;�

0

i

(X)

b by De�nition 4.2.

� (

Let a; b 2 A

s

such that a 6�

T

hS

1

;�

0

i

(X)

b. By De�nition 4.2, there exists � 2 cmp

T

hS

1

;�

0

i

(X)

(a; b) such

that

�[a] 6= �[b] (ii)

But according to Lemma 6.9 there exists a term t 2 T

hS

1

;�

0

i

(X), and valuations �

1

; �

2

2 Val[X;A]

which coincide everywhere except at x

s

2 Var[t] where x

s

�

1

= a and x

s

�

2

= b and such that �[a] = t�

1

and �[b] = t�

2

. From (ii) we deduce that t�

1

6= t�

2

. Hence a 6�

hS

1

;�

0

i

b, by De�nition 6.2. 2

Corollary 6.10

Let hS

1

;�

0

i be a partial subsignature of �. The relation of indistinguishability w.r.t. a

set of terms T

hS

1

;�

0

i

(X) is transitive on all �-algebras.

Proof

Follows immediately from Theorem 6.4 and Proposition 6.3. 2

We give below an example of an observation of a partial signature:

Example 6.11

Consider the observations Obs

SWE

from Example 4.8. Recall that Obs

SWE

=

(T

�

SWE

(X))

Bool

[ (T

�

SWE

(X))

Nat

. In fact, this is an observation of a partial subsignature

of Sig[SWE], namely h�

SWE

; fBool;Natgi.
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Partial signatures are used as observations in [1]. Observational equality w.r.t. hS

1

;�

0

i

de�ned in this paper coincides with our hS

1

;�

0

i-indistinguishability on all reachable alge-

bras. However these two relations do not coincide on non reachable algebras, not even on

their reachable parts. If two elements are hS

1

;�

0

i-indistinguishable then they are also obser-

vationally equal w.r.t. hS

1

;�

0

i (in the sense of [1]) but the converse is true only for reachable

algebras. This is due to the fact that our comparators are elements of MC

�

(A) while these

used in [1] can be viewed as elements of MC

�

. Since MC

�

� MC

�

(A) we have more possi-

bilities than [1] to distinguish two elements.

7 Observational Algebras

In Section 5 we have shown that the indistinguishability relation is not transitive in

general. For this reason, an observational satisfaction relation cannot be directly based on

the indistinguishability relation in contrast with the usual satisfaction relation based on the

usual equality (of the elements of an algebra). Its non-transitive character (see 5.5) would

make impossible the replacement of equals by equals. On the contrary, the non-congruence

property (see 5.4) does not reject this possibility, provided that such exotic operations as

enum (see Figure 2.1) are treated with care. For instance in some term t of SWE we can

replace its subterm tj

p

= ins(s(0); ins(0;�)) by ins(0; ins(s(0);�)) except when there is some

enum in t over the position p.

1

In addition we believe that there is no reason to expect an

\observational equality" to be a congruence (as in [5]). This happens only in a particular

case of sort observation (see [10], [16]).

We can conclude that at this moment the only problem is due to the non-transitive char-

acter of the indistinguishability relation. For this reason, we introduce in this section the

notion of observational equality which, being transitive, is a step toward an observational

satisfaction relation.

At the end of Section 2 we have stated some claims as the result of the former discussion.

They lead us now to the following conclusions:

� Because of the second claim, an observational equality cannot be a congruence for the

same reason that the indistinguishability relation is not (c.f. 5.4).

� The last claim suggests that on a given algebra, an observational equality is not unique.

� The �rst claim suggests that observational equality should be an S-sorted relation.

Putting these conclusions together, we state the following de�nition:

De�nition 7.1

Given a signature �, an observational �-algebra is a pair \hA;

�

=

i" where A is a �-algebra

and

�

=

is an S-sorted equivalence relation on A, called observational equality on A. We note

OAlg[�] the class of all observational �-algebras.

Notice that:

� A �-algebra A can be considered in a straightforward way as an observational �-algebra

hA;=i.

1

More precisely, this replacement is impossible only if each node on the path from p to the closest enum

over p (if there is one) is of sort Set.
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� In general we can form an in�nity of observational algebras from a �-algebra. For this

reason we use the notation

�

=

�

or

�

=

�

in order to distinguish between two relations which

can form two observational algebras hA;

�

=

�

i and hA;

�

=

�

i from a given algebra A.

The reader certainly realizes that our de�nition of observational algebras is similar to the one

of structures in First Order Logic where each predicate symbol is interpreted by a relation.

We consider the equality symbol \=" in the axioms as a particular predicate symbol. This

symbol is explicitly interpreted in an algebra by a particular relation, namely an observational

equality.

Example 7.2

Consider L

j

�

and Obs

SWE

both de�ned in Example 4.8. Since �

Obs

SWE

is an equivalence

relation (c.f. 5.7), the pair hL

j

�

;�

Obs

SWE

i is an observational Sig[SWE]-algebra.

De�nition 7.3

An observational �-morphism � : hA;

�

=

A

i ! hB ;

�

=

B

i is any (usual) �-morphism from

A to B which preserves the observational equalities i.e:

8a; b 2 A

s

a

�

=

A

b =) �(a)

�

=

B

�(b)

It is obvious that OAlg[�] equipped with the observational �-morphisms forms a category.

De�nition 7.4

Let � : � ! �

0

be a signature morphism. The �-reduct of an observational �

0

-algebra

hA

0

;

�

=

0

i is the observational �-algebra

hA

0

;

�

=

0

i

j

�

= hA

0

j

�

;

�

=

0

j

�

i

where A

0

j

�

is the usual �-reduct of the �

0

-algebra A

0

and (

�

=

0

j

�

)

s

=

�

=

0

�(s)

for all s 2 S.

The mapping

j

�

extends to observational morphisms as in the usual framework. Conse-

quently, it de�nes the forgetful functor from OAlg[�

0

] to OAlg[�] associated to �. Thus we

can also view OAlg as a functor from the category of signatures Sig to the dual of the category

of all categories Cat

op

. OAlg maps an object � of Sig to the category of the observational

�-algebras and a signature morphism � to the corresponding forgetful functor

j

�

. Notice

that in the above we have provided components upon which an institution can be built.

8 Validity of Observational Formulae

Before introducing observational formulae and de�ning their validity in observational

algebras we give some additional de�nitions and results.

De�nition 8.1

A solution of an equation l = r in an observational �-algebra hA;

�

=

i is a valuation

� : X! A such that l�

�

=

r� . The set of all the solutions of an equation is written [l=r]

hA;

�

=

i

.

The set of solutions of a formula ' is de�ned recursively as follows:

� if ' = : then [']

hA;

�

=

i

= Val[X;A]

c

[ ]

hA;

�

=

i

� if ' =  ^  

0

then [']

hA;

�

=

i

= [ ]

hA;

�

=

i

\ [ 

0

]

hA;

�

=

i

� if ' = 8x then [']

hA;

�

=

i

=

= f� 2 Val[X;A] j 8 � 2 Val[X;A] (8 y 2 X

c

fxg y� = y�) ) � 2 [ ]

hA;

�

=

i

g
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where  ;  

0

are �-formulae.

Since all the connectives of the classical logic as well as the existential quanti�er can be

expressed by means of :, ^ and 8, the solutions of an arbitrary �rst order logic �-formula

(without predicate symbols) are well de�ned by the above de�nition.

Before to put our formalism in an institutional framework we need to investigate the

relationship between the solutions across the forgetful functor and the translation of formulae.

This is done in the following theorem:

Theorem 8.2

Let � : �! �

0

be a signature morphism and hA

0

;

�

=

0

i be an observational �

0

-algebra. For

any �-formula ' we have:

[']

hA

0

;

�

=

0

i

j

�

= ([�(')]

hA

0

;

�

=

0

i

)

j

�

The proof of this theorem requires the following lemmas:

Lemma 8.3

Let � : � ! �

0

be a signature morphism, hA

0

;

�

=

0

i be an observational �

0

-algebra and

� 2 Val[X;A

0

j

�

] be a valuation. For any �-formula  we have:

either f�

0

2 Val[X

0

;A

0

] j �

0

j

�

= �g � [�( )]

hA

0

;

�

=

0

i

or f�

0

2 Val[X

0

;A

0

] j �

0

j

�

= �g \ [�( )]

hA

0

;

�

=

0

i

= �

Proof

Consider two valuations �

0

1

; �

0

2

2 Val[X

0

;A

0

] such that �

0

1

j

�

= �

0

2

j

�

= �. According to De�nition

3.4, �

0

1

and �

0

2

di�er only on values they assign to variables of X

0

c

�(X). This di�erence cannot

have any e�ect on the fact whether these valuations are solutions of �( ), because Var[�( )] � �(X).

Consequently, either �

0

1

and �

0

2

are both solutions of �( ), or both are not. 2

Lemma 8.4

Let � : �! �

0

be a signature morphism and hA

0

;

�

=

0

i be an observational �

0

-algebra. For

any �-formula  we have:

Val[X

0

;A

0

]

j

�

c

([�( )]

hA

0

;

�

=

0

i

)

j

�

= (Val[X

0

;A

0

]

c

[�( )]

hA

0

;

�

=

0

i

)

j

�

Proof

� �

This is an obvious set-theoretical inclusion.

� �

Let � 2 (Val[X

0

;A

0

]

c

[�( )]

hA

0

;

�

=

0

i

)

j

�

. From Lemma 8.3 we have

f�

0

2 Val[X

0

;A

0

] j �

0

j

�

= �g \ [�( )]

hA

0

;

�

=

0

i

= �

Hence � 62 ([�( )]

hA

0

;

�

=

0

i

)

j

�

2

Lemma 8.5

Let � : � ! �

0

be a signature morphism, hA

0

;

�

=

0

i an observational �

0

-algebra and � 2

Val[X;A

0

j

�

] be a valuation. For all �-formulae ';  we have:

([�(')]

hA

0

;

�

=

0

i

)

j

�

\ ([�( )]

hA

0

;

�

=

0

i

)

j

�

= ([�(']

hA

0

;

�

=

0

i

\ [�( )]

hA

0

;

�

=

0

i

)

j

�

20



Proof

� �

Let � 2 ([�(']

hA

0

;

�

=

0

i

)

j

�

\ ([�( )]

hA

0

;

�

=

0

i

)

j

�

. From lemma 8.3 we have

f�

0

2 Val[X

0

;A

0

] j �

0

j

�

= �g � [�(')]

hA

0

;

�

=

0

i

and f�

0

2 Val[X

0

;A

0

] j �

0

j

�

= �g � [�( )]

hA

0

;

�

=

0

i

Thus

f�

0

2 Val[X

0

;A

0

] j �

0

j

�

= �g � [�(')]

hA

0

;

�

=

0

i

\ [�( )]

hA

0

;

�

=

0

i

Hence

� 2 ([�(')]

hA

0

;

�

=

0

i

\ [�( )]

hA

0

;

�

=

0

i

)

j

�

� �

This is an obvious set-theoretical inclusion. 2

Lemma 8.6

Let � : �! �

0

be a signature morphism, hA

0

;

�

=

0

i be an observational �

0

-algebra, x be a

variable of X and  be a �-formula. For any valuation �

0

2 Val[X

0

;A

0

] we have:

8 �

0

2 Val[X

0

;A

0

] (8 y

0

2 �(X)

c

f�(x)g y

0

�

0

= y

0

�

0

) ) �

0

2 [�( )]

hA

0

;

�

=

0

i

(i)

i� 8 �

0

2 Val[X

0

;A

0

] (8 y

0

2 X

0

c

f�(x)g y

0

�

0

= y

0

�

0

) ) �

0

2 [�( )]

hA

0

;

�

=

0

i

(ii)

Proof

We use the following notations in the proof:

M

�

0

= f�

0

2 Val[X

0

;A

0

] j 8 y

0

2 �(X)

c

f�(x)g y

0

�

0

= y

0

�

0

g

P

�

0

= f�

0

2 Val[X

0

;A

0

] j 8 y

0

2 X

0

c

f�(x)g y

0

�

0

= y

0

�

0

g

It is obvious that

M

�

0

� [�( )]

hA

0

;

�

=

0

i

(iii)

is equivalent to (i). It is also obvious that

P

�

0

� [�( )]

hA

0

;

�

=

0

i

(iv)

is equivalent to (ii). Consequently, it is enough to prove the equivalence between (iii) and (iv).

� (iii)) (iv)

Since in P

�

0

the quanti�cation domain corresponding to �(X)

c

f�(x)g of M

�

0

is extended to

X

0

c

f�(x)g, we have P

�

0

�M

�

0

, hence P

�

0

� [�( )]

hA

0

;

�

=

0

i

.

� (iii)( (iv)

Assume �

0

2 M

�

0

and show that �

0

2 [�( )]

hA

0

;

�

=

0

i

. It is clear that there exists %

0

2 P

�

0

which

coincides with �

0

on �(X). Since Var[�(�)] � �(X), either �

0

and %

0

are solutions of �( ) or none of

the both is. Now, by the hypothesis %

0

is a solution of �( ), therefore �

0

is also. 2

Lemma 8.7

Let � : �! �

0

be a signature morphism, hA

0

;

�

=

0

i be an observational �

0

-algebra, x be a

variable of X and  be a �-formula. For any valuation �

0

2 Val[X

0

;A

0

] we have:

8 �

0

2 Val[X

0

;A

0

] (8 y 2 X

c

fxg y

0

�

0

j

�

= y

0

�

0

j

�

) ) �

0

j

�

2 ([�( )]

hA

0

;

�

=

0

i

)

j

�

(i)

i� 8 �

0

2 Val[X

0

;A

0

] (8 y

0

2 X

0

c

f�(x)g y

0

�

0

= y

0

�

0

) ) �

0

2 [�( )]

hA

0

;

�

=

0

i

(ii)
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Proof

Notice �rst that the subformula y

0

�

0

j

�

= y

0

�

0

j

�

of (i) is equivalent to �

A

0

(y

0

�

0

j

�

) = �

A

0

(y

0

�

0

j

�

)

since �

A

0

is injective, when restricted to the carrier of a given sort. By de�nition 3.4 the last equation

is equivalent to �(y)�

0

= �(y)�

0

. We can therefore replace the left hand side of the implication in (i)

by 8 y 2 X

c

fxg �(y)�

0

= �(y)�

0

. Since � is injective on variables we can change the quanti�cation

domain and variable in order to obtain an equivalent formula:

8 y

0

2 �(X)

c

f�(x)g y

0

�

0

= y

0

�

0

(iii)

From Lemma 8.3, we can deduce that the right hand side of the implication in (i) is equivalent to

�

0

2 [�( )]

hA;

�

=

i

. By substituting it as well as formula (iii) into (i) we obtain the following formula

equivalent to (i)

8 �

0

2 Val[X

0

;A

0

] (8 y

0

2 �(X)

c

f�(x)g y

0

�

0

= y

0

�

0

) ) �

0

2 [�( )]

hA

0

;

�

=

0

i

By lemma 8.6 this last formula is equivalent to (ii). 2

Proof of Theorem 8.2

By structural induction on a formula ' 2W�[�] under the induction hypothesis that the theorem

holds for all subformula of '.

� Base step: ' is an equation l = r

From De�nition 8.1 we have � 2 [l = r]

hA

0

;

�

=

0

i

j

�

if and only if � : X! A

0

j

�

and

l�

�

=

0

j

�

r� (iv)

From Lemma 3.5 we know that any � : X ! A

0

j

�

has the form �

0

j

�

with �

0

: X

0

! A

0

and that �

0

j

�

exists for any �

0

: X

0

! A

0

. So (iv) is equivalent to l�

0

j

�

�

=

0

j

�

r�

0

j

�

, by De�nition 7.4 is equivalent to

�

A

0

(l�

0

j

�

)

�

=

0

�

A

0

(r�

0

j

�

) and by Lemma 3.6 is equivalent to �(l)�

0
�

=

0

�(r)�

0

. This last formula holds if

and only if �

0

2 [�(l) = �(r)]

hA

0

;

�

=

0

i

.

� Induction step

� ' = : 

[: ]

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

]

c

[ ]

hA

0

;

�

=

0

i

j

�

= (By the induction hypothesis)

= Val[X;A

0

j

�

]

c

([�( )]

hA

0

;

�

=

0

i

)

j

�

= (By the injectivity of

j

�

)

= (Val[X

0

;A

0

])

j

�

c

([�( )]

hA

0

;

�

=

0

i

)

j

�

= (By Lemma 8.4)

= (Val[X

0

;A

0

]

c

[�( )]

hA

0

;

�

=

0

i

)

j

�

= (By De�nition 8.1)

= ([:�( )]

hA

0

;

�

=

0

i

)

j

�

=

= ([�(: )]

hA

0

;

�

=

0

i

)

j

�

� ' =  

1

^  

2

[ 

1

^  

2

]

hA

0

;

�

=

0

i

j

�

= [ 

1

]

hA

0

;

�

=

0

i

j

�

\ [ 

2

]

hA

0

;

�

=

0

i

j

�

= (By the induction hypothesis)

= ([�( 

1

)]

hA

0

;

�

=

0

i

)

j

�

\ ([�( 

2

)]

hA

0

;

�

=

0

i

)

j

�

= (By Lemma 8.4)

= ([�( 

1

)]

hA

0

;

�

=

0

i

\ [�( 

2

)]

hA

0

;

�

=

0

i

)

j

�

= (By De�nition 8.1)

= ([�( 

1

) ^ �( 

2

)]

hA

0

;

�

=

0

i

)

j

�

=

= ([�( 

1

^  

2

)]

hA

0

;

�

=

0

i

)

j

�

� ' = 8x  

[8x  ]

hA

0

;

�

=

0

i

= f� 2 Val[X;A

0

j

�

] j 8 � 2 Val[X;A

0

j

�

] (8 y 2 X

c

fxg y� = y�) ) � 2 [ ]

hA;

�

=

i

g

(by the induction hypothesis)
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= f� 2 Val[X;A

0

j

�

] j 8 � 2 Val[X;A

0

j

�

] (8 y 2 X

c

fxg y� = y�) ) � 2 ([�( )]

hA;

�

=

i

)

j

�

g

(by injectivity of

j

�

on valuations)

= f�

0

2 Val[X;A

0

] j 8 �

0

2 Val[X

0

;A

0

] (8 y 2 X

c

fxg y

0

�

0

j

�

= y

0

�

0

j

�

) ) �

0

j

�

2 ([�( )]

hA

0

;

�

=

0

i

)

j

�

g

j

�

(by Lemma 8.7)

= f�

0

2 Val[X;A

0

] j 8 �

0

2 Val[X

0

;A

0

] (8 y

0

2 X

0

c

f�(x)g y

0

�

0

= y

0

�

0

) ) �

0

2 [�( )]

hA

0

;

�

=

0

i

g

j

�

(by De�nition 8.1)

= ([8�(x) �( )]

hA

0

;

�

=

0

i

)

j

�

= ([�(8x  )]

hA

0

;

�

=

0

i

)

j

�

2

De�nition 8.8

An observational �-formula is a pair h';Wi where ' 2 W�[�] is a �-formula and

W � T

�

(X) is a set of terms. We note OW� [�] the set of all observational �-formulae.

As in the usual framework, OW� is extended to a functor from the category of signatures

Sig to Set (the category of sets). This functor maps an objet � of Sig to the set of all

observational �-formulae. An arrow � of Sig(�;�

0

) is mapped by OW� to the cartesian

product of its usual extensions on W�[�] and T

�

(X). In other words:

OW�[�](h';Wi) = h�('); �(W)i

(We write ambiguously � instead of OW�[�].)

We have already all the elements necessary to de�ne an observational satisfaction relation:

De�nition 8.9

We say that an observational �-algebra hA;

�

=

i satis�es an observational formula h ;Wi,

written hA,

�

=

i

O

j= h ,Wi, i�:

[ ]

hA;

�

=

i

= Val[X;A] (i)

�

=

� �

W

(ii)

Notice that in the above we have de�ned a family of relations f

O

j=

�

g

�:Sig

with

O

j=

�

� OAlg[�]�OW�[�]

We examine now how our satisfaction relation behaves w.r.t. the variance of observa-

tional formulae (translation) and the covariance of algebras (�-reduct). We start by the �rst

requirement of De�nition 8.9:

Proposition 8.10

Let � : � ! �

0

be a signature morphism. For any set of terms W � T

�

(X), any

observational �

0

-algebra hA

0

;

�

=

0

i and any �-formula ' we have:

[�(')]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] i� [']

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

]

Proof

We have [�(')]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] equivalent to ([�(')]

hA

0

;

�

=

0

i

)

j

�

= (Val[X

0

;A

0

])

j

�

, which by

Theorem 8.2 is equivalent to:

[']

hA

0

;

�

=

0

i

j

�

= (Val[X

0

;A

0

])

j

�

(i)

According to Lemma 3.5,

j

�

is surjective on the valuations. Consequently, we have (Val[X

0

;A

0

])

j

�

=

Val[X;A

0

j

�

]. Thus, the formula (i) is equivalent to [']

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

]. 2
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The next step is to study the second condition of De�nition 8.9 w.r.t. term translation and

forgetful functor. We examine �rst the if part and then the converse part of this condition.

Proposition 8.11

Let � : �! �

0

be a signature morphism. For all sets of terms W � T

�

(X),W

0

� T

�

0

(X

0

)

such that �(W) �W

0

and for any observational �

0

-algebra hA

0

;

�

=

0

i we have:

�

=

0

� �

W

0

)

�

=

0

j

�

� �

W

where �

W

0

and �

W

are the indistinguishability relations on A

0

and A

0

j

�

respectively.

Proof

Assume that

8 a

0

; b

0

2 A

0

a

0

�

=

0

b

0

) a

0

�

W

0

b

0

(i)

This holds particularly for a

0

; b

0

2 A

0

�(s)

(for some s 2 S). Since �

A

0

: A

0

j

�

! A

0

with range

a

s2S

A

0

�(s)

,

from (i) we deduce that

8 a; b 2 A

0

j

�

�

A

0

(a)

�

=

0

�

A

0

(b) ) �

A

0

(a) �

W

0

�

A

0

(b)

By De�nition 7.4, �

A

0

(a)

�

=

0

�

A

0

(b) is equivalent to a

�

=

0

j

�

b. Hence

8 a; b 2 A

0

j

�

a

�

=

0

j

�

b ) �

A

0

(a) �

W

0

�

A

0

(b)

But from Proposition 5.1 it follows that �

A

0

(a) �

W

0

�

A

0

(b) ) a �

W

b. Consequently

8 a; b 2 A

0

j

�

a

�

=

0

j

�

b ) a �

W

0

b

2

The next step should be to prove the converse of the above proposition restricted to W

0

=

�(W). Unfortunately this is not true in general. The following example illustrates this fact:

Example 8.12

Consider the following signatures

� = f a; b : ! s �

0

= f c; d : ! s

true; false : ! Bool true; false : ! Bool

f ; g : s! Bool g h : s! Bool g

Let W = ff(a); g(b)g. Notice that in any �-algebra A we have

a

A

�

W

b

A

(i)

because a

A

and b

A

have no comparator. Consider � : �! �

0

de�ned by:

�(Bool) = Bool �(true) = true �(a) = c

�(s) = s �(false) = false �(b) = d

�(f) = �(g) = h

Notice that in any �

0

-algebra A

0

,

cmp

�(W)

(c

A

0

; d

A

0

) = fh(�)g (ii)

since �(W) = fh(c); h(d)g

24



Consider a reachable observational �

0

-algebra hA

0

;

�

=

0

i such that

h

A

0

(c

A

0

) 6= h

A

0

(d

A

0

) (iii)

c

A

0

�

=

0

d

A

0

(iv)

Notice that

�

=

0

j

�

= f(a

A

j

�

; b

A

j

�

)g. Therefore, according to (i) we have

�

=

0

j

�

� �

W

but we have not

�

=

0

� �

�(W)

since from (ii) and (iii) we have c

A

0

6�

�(W)

d

A

0

whereas from (iv)

we have c

A

0

�

=

0

d

A

0

.

From this negative result we may already conclude that, in order to establish institutions

within our approach, we will be constrained to restrict somehow our formalism. This will be

the subject of Section 10.

9 Observational Speci�cations

This section is devoted to some general notions about observational speci�cations.

De�nition 9.1

An observational speci�cation OSP is a triplet h�;�;Wi, where � is the signature of

OSP, � the set of its axioms and W is a set of terms with variables, W � T

�

(X), called

observations of OSP.

The models are de�ned as in the usual approach except that we use the observational satis-

faction instead of the usual one:

De�nition 9.2

Let OSP = h�;�;Wi be an observational speci�cation. We say that an observational

�-algebra hA;

�

=

i is a model of OSP i�:

hA;

�

=

i

O

j= h�;Wi

We note OAlg[OSP] the class of all observational models of OSP.

In the above de�nition we have considered a set � = f'

1

; : : : ; '

n

g of formulae as a con-

junction of formulae � = '

1

^ : : : ^ '

n

. Thus any pair h�;Wi can be viewed as a single

observational formula. One may also de�ne an observational speci�cation as a pair h�;OAxi

with OAx = fh�

1

;W

1

i; : : : ; h�

i

;W

i

i; : : :g. The possibility to associate observations separately

to each axiom would increase the expressive power. (In particular, it allows an in�nite set

OAx.) However, in all examples it seems preferable to attach a unique set of observable terms

to the whole speci�cation.

Fact 9.3

The observational algebra hL

j

�

;�

Obs

SWE

i, described in Example 7.2, is a model of the

observational speci�cation SWE.

Proof

Since the observational equality on hL

j

�

;�

Obs

SWE

i is just the indistinguishability relation, we only

need to prove that for any axiom � of SWE we have

[�]

hL

j

�

;�

Obs

SWE

i

= Val[X;L

j

�

]
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� Notice that (L

j

�

)

j

Sig[LIST]

= L. On the other hand from Example 4.8 we know that �

Obs

SWE

is the

usual equality on (L

j

�

)

j

Sig[LIST]

. We have therefore:

(hL

j

�

;�

Obs

SWE

i)

j

Sig[LIST]

= hL;=i

and since L is a model of LIST, hL

j

�

;�

Obs

SWE

i satis�es all the axioms of LIST.

� Since the elements observationally equal on (L

j

�

)

Set

are di�erent representations of the same set,

it is clear that for the \standard" axioms  

1

;  

2

; : : : ;  

8

of sets (c.f. Figure 2.1), we have

[ 

i

]

hL

j

�

;�

Obs

SWE

i

= Val[X;L

j

�

]

� Notice that  

9

and  

10

are translated by � (c.f. 4.8) in the following way:

�( 

9

) : idl(nil) = nil

�( 

10

) : idl(cons(x; l)) = cons(x; idl(l))

We have therefore

[�( 

9

)]

hL;=i

= [�( 

10

)]

hL;=i

= Val[X;L]

Then, according to the theorem 8.2, we obtain

[ 

9

]

hL

j

�

;=i

= [ 

10

]

hL

j

�

;=i

= Val[X;L

j

�

]

Hence we can conclude that

[ 

9

]

hL

j

�

;�

Obs

SWE

i

= [ 

10

]

hL

j

�

;�

Obs

SWE

i

= Val[X;L

j

�

]

The last step is justi�ed by the fact that the axioms  

9

and  

10

are equations and that = � �

Obs

SWE

.

Obviously, for any �-equation t = t

0

, any �-algebra A and the observational equalities

�

=

�

�

�

=

�

on

A, we have [t = t

0

]

hA;

�

=

�

i

� [t = t

0

]

hA;

�

=

�

i

2

In the above example we have considered a model of the form hA;�

W

i. Of course, this is

possible only when �

W

is transitive. Moreover this model has a particular status: it is a

terminal object in the category of all observational models formed with a given algebra A.

(This is quite analogous to the �nal data type of [13].) Notice that when �

W

is not transitive

this category has often no terminal object. For instance the category of observational models

of TRANS formed with the algebra A (see Figure 5.1) has no terminal object.

The next result points out that our observational speci�cations together with their se-

mantics generalize the usual approach. On one hand an algebra A can be viewed as the

observational algebra hA;=i. On the other hand, an algebraic speci�cation h�;�i can be

considered as an observational one in the straightforward way: we just take h�;�;Xi. The

relationship between the both is stated by the following proposition:

Proposition 9.4

Let h�;�i be an algebraic speci�cation. Each model of h�;�;Xi is of the form hA;=i

with A 2 Alg[h�;�i].

Proof

Notice �rst that �

X

is the identity relation on any �-algebra. This is obvious since a variable x 2 X

s

gives rise to an empty comparator �

s

which distinguishes all distinct a; b 2 A

s

and we have assumed

that X

s

is nonempty for any sort s. By De�nition 8.9, for any hA;

�

=

i 2 OAlg[h�;�;Xi] we have

�

=

� �

X

, thus

�

=

is just the usual equality. From the requirement [�]

hA;=i

= Val[X;A] we deduce that

A 2 Alg[h�;�i]. Conversely, it is clear that for any B 2 Alg[h�;�i] we have hB ;=i 2 OAlg[h�;�;Xi].

2
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Up to now, we have not been studying modularity issues. We have only de�ned the

semantics of \
at" speci�cations. In fact, as in [1], our semantics extends to an observational

strati�ed loose semantics without additional assumptions. For instance, the next theorem

shows that our approach ful�lls the requirement of \reusing by restriction" [4].

Theorem 9.5

Let � : � ! �

0

be a signature morphism. For all observational speci�cations OSP =

h�;�;Wi and OSP

0

= h�

0

;�

0

;W

0

i such that �(�) � �

0

and �(W) �W

0

we have:

OAlg[OSP

0

]

j

�

� OAlg[OSP]

Proof

From de�nitions 9.2 and 8.9 it is enough to prove:

8 hA

0

;

�

=

0

i 2 OAlg[�

0

] [�

0

]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] ) [�]

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

] (i)

and 8 hA

0

;

�

=

0

i 2 OAlg[�

0

]

�

=

0

� �

W

0

)

�

=

0

j

�

� �

W

(ii)

� Proof of (i)

Let hA

0

;

�

=

0

i 2 OAlg[�

0

] such that

[�

0

]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

]

Since �(�) � �

0

, by de�nition of solution of a conjunction of formulae (c.f. 8.1) we have

�(�)

hA

0

;

�

=

0

i

� �

0

hA

0

;

�

=

0

i

. Hence [�(�)]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] which according to Proposition 8.10

implies that

[�]

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

]

� Proof of (ii) follows directly from Proposition 8.11.

2

This result corresponds to a very fundamental property which holds in most non observational

frameworks. Except for our case, in the approaches with an observational satisfaction re-

lation the corresponding property holds only for equational speci�cations. It may also

hold for positive-conditional axioms under the hypothesis of observable preconditions. How-

ever, this is a rather strong restriction. It may be then surprising that in our approach the

former theorem holds without restriction even if the axioms are arbitrary �rst order formulae.

The reason is that our observational equality is not �xed by observations as the indistinguisha-

bility relation does. Unlike [1], [5], [10], [16] and [17], our observational equality does not

coincide with the indistinguishability relation. This choice was dictated by the fact that the

indistinguishability relation is \disconnected" from the forgetful functor. On the contrary,

our observational equality, similarly to the usual equality, is always \transported" through

the forgetful functor. The main di�erence of our approach with the above-mentioned works

is that our satisfaction relation is based on an observational equality which does not coincide

with the indistinguishability relation. This situation (partly) guarantees such a general result

as Theorem 9.5.

The following corollary of the former theorem formalizes the phenomenon: \more obser-

vations, less models".

Corollary 9.6

Let OSP

1

= h�;�;W

1

i and OSP

2

= h�;�;W

2

i be observational speci�cations such that

W

1

�W

2

. Then:

OAlg[OSP

2

] � OAlg[OSP

1

]
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Proof

Follows directly from the previous theorem. 2

We conclude from the above that observations acts on the semantics of a speci�cation in

a quite similar way than the axioms, since by adding axioms, we diminish the class of the

models.

10 Towards an Institution of Observational Speci�cations

In this section, based on the formalism we have developed so far, we de�ne an institution

for observational speci�cations. As mentioned in Section 8, this task requires to put some

restrictions on our general formalism.

Recall that an institution (see [9]) is a tuple hSign;W� ;Mod; j= i where

1. Sign is a category of \signatures",

2. W� : Sign ! Set is a functor which maps a signature to the set of well formed formulae

over the signature,

3. Mod : Sign ! Cat

op

is a functor which maps a signature to the category of the inter-

pretation structures (models),

4. j= is a (jSignj-sorted) satisfaction relation (j=

�

� Mod[�]�W�[�]) such that for each

� : �! � in Sign, each ' 2 W�[�] and each M

0

2 Mod[�

0

] the following satisfaction

condition holds:

M

0

j= W�[�](') i� Mod[�](M

0

) j= '

It is clear that the tuple hSig;OW� ;OAlg;

O

j=i could be an institution provided that it

would ful�ll the satisfaction condition which in our formalism is expressed by the following

property:

Property 10.1

For any � : �! �

0

, any observational �-formula h';Wi and any observational �

0

-algebra

we have:

hA

0

;

�

=

0

i

O

j= �(h';Wi) i� hA

0

;

�

=

0

i

j

�

O

j= h';Wi

By de�nition 8.9 in order to show that this property holds, it is enough to prove

8 hA

0

;

�

=

0

i 2 OAlg[�

0

] [�(')]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] , [']

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

] (i)

and 8 hA

0

;

�

=

0

i 2 OAlg[�

0

]

�

=

0

� �

�(W)

,

�

=

0

j

�

� �

W

(ii)

The �rst requirement is guaranteed by 8.10. From Proposition 8.11 we have the if condition

of the second requirement. Unfortunately, we know from Example 8.12 that its converse part

does not hold without additional assumptions. The following is the necessary and su�cient

condition of the converse part of (ii).

Property 10.2

Let � : � ! �

0

be a signature morphism and W � T

�

(X) be a set of terms. For all

�

0

-algebra A

0

and all a

0

; b

0

2 A

0

�(s)

�(W)-distinguishable, there exist a; b 2 (A

0

j

�

)

s

satisfying

�

A

0

(a) = a

0

and �

A

0

(b) = b

0

such that:

a 6�

W

b
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Proposition 10.3

Let � : �! �

0

be a signature morphism. The property 10.2 holds for a setW of �-terms

if and only if

�

=

0

j

�

� �

W

)

�

=

0

� �

�(W)

holds on all hA

0

;

�

=

0

i 2 OAlg[�

0

].

Proof

� )

Let hA

0

;

�

=

0

i 2 OAlg[�

0

]. Assume that

8 a; b 2 A

0

j

�

a

�

=

0

j

�

b ) a �

W

b (i)

By contradiction assume that there exist a

1

; b

1

2 A

0

j

�

such that

�

A

0

(a

1

) 6�

�(W)

�

A

0

(b

1

) (ii)

�

A

0

(a

1

)

�

=

0

�

A

0

(b

1

) (iii)

Using Property 10.2, from (ii) we deduce that there exist a

2

; b

2

2 A

0

j

�

such that

�

A

0

(a

2

) = �

A

0

(a

1

) (iv)

�

A

0

(b

2

) = �

A

0

(b

1

) (v)

a

2

6�

W

b

2

(vi)

But according to (iii), (iv) and (v) we conclude that a

2

�

=

0

j

�

b

2

. We have therefore

a

2

�

=

0

j

�

b

2

6) a

2

�

W

b

2

which is in contradiction with the assumption (i).

� (

(We prove it in an indirect way.) Let � : � ! � and W � T

�

(X) for which the property 10.2 does

not holds. Consequently, there is a �

0

-algebra A

0

with elements a

0

; b

0

2 A

0

�(s

0

)

(for some s

0

2 S)

�(W)-distinguishable, such that for any s 2 S satisfying �(s) = �(s

0

), all the elements a; b 2 (A

0

j

�

)

s

which verify �

A

0

(a) = a

0

and �

A

0

(b) = b

0

are W-indistinguishable. Equip A

0

with

�

=

0

such that

c

0

�

=

0

d

0

) c

0

�

�(W)

d

0

for all c

0

; d

0

2 A

0

except for a

0

; b

0

where a

0

�

=

0

b

0

. It is clear from the proof of

8.11 that for all these c

0

; d

0

we have also that for all the elements c; d 2 (A

0

j

�

)

s

which verify �

A

0

(c) = c

0

and �

A

0

(d) = d

0

the following holds

c

�

=

0

j

�

d ) c �

W

d

It follows from the above formula that

�

=

0

j

�

��

W

, since by De�nition 7.4 we have a

�

=

0

j

�

b and we

have assumed that a �

W

b. Now,

�

=

0

6��

�(W)

because a

0

�

=

0

b

0

and we have assumed that a

0

6�

�(W)

b

0

.

2

We can conclude from the above that in our approach, the satisfaction condition does not

hold in general. Only the if part of Property 10.1 holds. Consequently, according to [18], our

approach de�nes a reduction-preserving pre-institution. The converse part of 10.1 holds only

for these signature morphisms and these observations which preserve 10.2. Consequently our

approach could motivate more liberal formalizations than institutions of the notion of \logical

system" as e.g. speci�cation logic [6] or pre-institutions [18].

Since the satisfaction condition holds only for some signature morphisms, in order to

de�ne an institution in our framework, one could forget some problematic arrows of Sig and

consider as a category of signatures a category which has the same objects as Sig but less
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arrows. We retain this last solution. Then the question is which signature morphisms we

should eliminate in order to obtain an institution. It is easy to see that examples similar to

8.12 can be constructed as soon as we have a non injective signature morphism. We conclude

that an observational institution can be provided within our formalism under a restriction of

the arrows of Sig to injective morphisms only.

Proposition 10.4

Consider the tuple OAlgSpec = hISig;OW� ;OAlg;

O

j=i where ISig is the category whose

objects are the usual signatures and whose arrows are the injective signature morphisms.

Then OAlgSpec is an institution.

Proof

According to the discussion of this section, it is enough to prove that Property 10.2 holds for

injective signature morphisms.

Let � : �! �

0

be an injective signature morphism,W � T

�

(X) a set of terms, A

0

a �

0

-algebra and

let a

0

; b

0

2 A

0

�(s)

�(W)-distinguishable. Let �

0

2 cmp

�(W)

(a

0

; b

0

) a comparator which distinguishes a

0

and b

0

.

Since � is injective, �

A

0

and �

A

0

are too, there exists a unique a 2 A

0

j

�

(resp. b 2 A

0

j

�

) such that

�

A

0

(a) = a

0

(resp. �

A

0

(b) = b

0

) and a unique � 2 MC

�

(A

0

j

�

) such that �

A

0

(�) = �

0

. According to

Theorem 4.14, � is a continuation of a and b. So � 2 cmp

W

(a; b). From Corollary 3.7 we have

�

0

[a

0

] = �

A

0

(�[a]) = �

A

0

(�[a])

(resp. �

0

[b

0

] = �

A

0

(�[b]) = �

A

0

(�[b]))

Since �

0

[a

0

] 6= �

0

[b

0

], we have �

A

0

(�[a]) 6= �

A

0

(�[b]) and since �

A

0

is injective we conclude that �[a] 6=

�[b]. Thus a and b are distinguishable. 2

Notice that OAlgSpec denotes in fact a family of institutions. Recall that

OW�[�] = fh';Wi j ' 2W�[�]; W � T

�

(X)g

Accordingly, OAlgSpec is in some sense \parameterized" by W�. Recall that our approach

does not take into account predicate symbols (other than =). Thus the W� functors accept-

able for our purposes must send signatures to any subset of the Many-Sorted First Order

Logic with Equality without predicate symbols. Moreover, our approach can be easily en-

riched with predicate symbols without loss of the results (as shown in [14]).

11 Some Additional Examples

In this section we show on two examples how some (usual) algebraic speci�cation h�;�i

can be completed with observations W, in order to get some interesting observational models

corresponding to bounded realizations. Of course the examples of models we provide are

only in OAlg[h�;�;Wi] and not in Alg[h�;�i]. This motivates the use of an observational

approach to handle bounded implementations of speci�cations which (in the usual sense)

have no bounded models. In both examples we proceed as follows:

1. Given a speci�cation h�;�i we provide a �-algebra A which is not a model of h�;�i.

2. We equip A with an observational equivalence

�

=

and we show that hA;

�

=

i ful�lls the

�rst requirement of the de�nition of our observational satisfaction relation 8.9, that is

[�]

hA;

�

=

i

= Val[X;A] for all � 2 �.
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3. We give an appropriate set of observations W and we show that the second requirement

of the de�nition of our satisfaction relation holds, that is

�

=

��

W

.

As a �rst example consider the speci�cation INT= h�

1

;�

1

i of integers (see Figure 11.1).

The only reachable models of this speci�cation are ZZ and all the ZZ=nZZ. Assume that

spec : INT

sort : Int

generated by :

0 : ! Int

s, p : Int ! Int

axioms :

p(s(x)) = x

s(p(x)) = x

spec : STACK

use : NAT

sort : Stack

generated by :

emptystack : ! Stack

push : Nat Stack ! Stack

operations :

top : Stack ! Nat

pop : Stack ! Stack

axioms :

top(push( x, s)) = x

pop(push(x, s)) = s

Figure 11.1: Speci�cations INT and STACK

we need a realization of this speci�cation which behaves like ZZ at least inside an inter-

val between the constants minint and maxint. Consider the following Sig[INT]-algebra A:

p s s p

sssss

pppp p

minint
underflow

maxint
overflow

Obviously, this algebra is not a model of INT.

Let us equip A with the observational equality \

�

=

" de�ned as the re
exive-symmetric-

transitive closure of the relation

fhminint ; under
owi; hmaxint ; over
owig

It is easy to show that Val[X;A] is the set of solutions of both axioms of INT in hA;

�

=

i.

Assume now that we observe the set W

1

of all the ground terms which denote integers

between minint and maxint. In this situation the contextual variable �

Int

is a continuation of

all the elements of A between minint and maxint. On the contrary, under
ow and over
ow

have no continuations. Consequently

�

W

1

= f hb; bi; hc; di j b; c; d 2 A

Int

; fc; dg \ funder
ow ; over
owg 6= � g

Hence

�

=

� �

W

1

and we conclude that hA;

�

=

i is an observational model of h�

1

;�

1

;W

1

i.

As a second example, we are going to study bounded stacks. Consider the speci�cation

STACK= h�

2

;�

2

i (see Figure 11.1) and assume that we are only interested in stacks of a

height bounded by a constant maxheight. Then the following algebra should be correct for

our purposes: we consider an array-pointer realization with an array of length maxheight+1

starting at the index 0. A full stack is then represented by the couple ht ;maxheighti and an
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erroneous stack by ht ; s(maxheight)i (s(maxheight) points outside of t). For both erroneous

and correct stacks, the operation top is always realized in the standard way:

top(ht ; s(i)i) = t [i ]

On a correct stack the operations push and pop are also realized in the standard way:

i 6= s(maxheight)) push(x ; ht ; ii) = ht [i ]:=x ; s(i)i

i 6= maxheight ) pop(ht ; s(i)i) = ht ; ii

These operations act on an erroneous stack in the following way:

push(x ; ht ; s(maxheight)i) = ht [maxheight ]:=x ; s(maxheight)i

pop(ht ; s(maxheight)i) = ht ; s(maxheight)i

It is important to notice that it is impossible in this realization to make correct an erroneous

stack by means of combinations of pushes and pops only.

Let A be the above realization. We equip now the algebra A with the observational

equality \

�

=

" de�ned as a the re
exive-symmetric-transitive closure of the following relation

\�"

1. ht ; ni � ht

0

; ni if n � maxheight and t [i ] = t

0

[i ] for all i � n

2. ht ;maxheighti � ht

0

; s(maxheight)i if t and t

0

di�er only at the index maxheight.

Let us show that the set of solutions of any axiom of STACK in the observational algebra

hA;

�

=

i de�ned above is Val[X;A]. This is obvious for the non erroneous stacks. Consider

then a full stack ht ;maxheighti. We check the axiom top(push(x; s)) = x:

top(push(a; ht ;maxheighti)) = top(ht [maxheight ]:=a; s(maxheight)i) =

= (t [maxheight ]:=a)[maxheight ] = a

We check the axiom pop(push(x; s)) = s:

pop(push(a; ht ;maxheighti)) = pop(ht [maxheight ]:=a; s(maxheight)i) =

= ht [maxheight ]:=a; s(maxheight)i

But according to 2: ht [maxheight ]:=a; s(maxheight)i

�

=

ht ;maxheighti.

We check now both axioms for an erroneous stack ht; s(maxheight)i:

top(push(a; ht ; s(maxheight)i)) = top(ht [maxheight ]:=a; s(maxheight)i) =

= (t [maxheight ]:=a)[maxheight ] = a

On the other hand:

pop(push(a; ht ; s(maxheight)i)) = pop(ht [maxheight ]:=a; s(maxheight)i) =

= ht [maxheight ]:=a; s(maxheight)i

But according to 2 we have

ht ; s(maxheight)i � ht ;maxheighti � ht [maxheight ]:=a; s(maxheight)i

Since \

�

=

" is the re
exive-symmetric-transitive closure of \�", we have

ht ; s(maxheight)i

�

=

ht [maxheight ]:=a; s(maxheight)i
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In this way we have shown that in hA;

�

=

i, the solutions of both axioms of STACK are Val[X;A].

Assume now that we observe the set W

2

of all the ground terms of the form top(t) with

t generated by emptystack, push and pop and representing a stack of height least or equal to

maxheight. It is clear that for two non erroneous stacks ht ; ni and ht

0

; ni we have

ht ; ni �

W

2

ht

0

; ni i� ht ; ni

�

=

ht

0

; ni

Since an erroneous stack has no continuations, it is indistinguishable with any other stack.

Consequently

�

=

� �

W

2

and we have shown that hA;

�

=

i is an observational model of the speci�cation h�

2

;�

2

;W

2

i.

The reader have certainly realized that in both examples the corresponding observations

have been described in an informal way. In fact in this work we did not deal with a syntax for

describing sets of observable terms. It is clear that no syntax may exist allowing to describe

(in a �nite way) an arbitrary subset of T

�

(X).

1

Consequently the choice of a particular

syntax will impose strong restrictions on possible observations. Nevertheless, under such

restrictions, we can expect some additional results within this framework.

12 Concluding Remarks

We have developed a loose observational semantics of algebraic speci�cations. We have

shown that, under some restrictions, our formalism provides an institution. First, we have

investigated how the elements of a carrier of an algebra should be observed through terms.

We have pointed out that an adequate notion of observation requires to take into account

multicontexts and partial evaluations of observable terms. In this way, we have introduced

the concept of continuation underlying our de�nition of the indistinguishability relation. We

have shown that this relation is neither a congruence nor an equivalence relation. These both

results fully agree with our Indistinguishability Assumption. Notice that when we restrict to

sort observation, our indistinguishability relation becomes a congruence. Consequently, this

notion becomes close to the Nerode congruence [10]. However, unlike in [16], in our approach

two observational algebras di�ering on non observable junk do not satisfy the same observa-

tional formulae. We do not privilege reachable elements, since this is most suitable for the

observational semantics of parameterized speci�cations in the loose framework (which is one

of the topics of further research). Moreover, one might think that our indistinguishability

relation would coincide with the Reichel's I-indistinguishability (see [17]) when we restrict our

approach to sort observation and the Reichel's one to total algebras. This is not true, since

we use multicontexts from MC

�

(A) instead of MC

�

. Consequently, in our approach, non

observable junk can a�ect the indistinguishability of two elements of a carrier of an algebra

while it cannot in other works with observational satisfaction relation. Thus he have fully

followed our claim not to privilege reachable elements.

Being convinced that the possibility of replacements of equal by equal must be allowed,

we have introduced in our semantics an additional stage over the indistinguishability rela-

tion, namely observational equality. Then we have de�ned the observational algebras, the

observational formulae and the corresponding satisfaction relation. We have shown that the

restriction to injective signature morphisms is a reasonably weak condition which enables our

1

There exist non recursive subsets of T

�

(X).
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formalism to be extended to an institution.
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Appendix

Proof of Lemma 3.5

� Functionality

Let �

0

: Val[X

0

;A

0

]. We show that there exists the unique � : X! A

0

j

�

such that �(x)�

0

= �

A

0

(x�).

Assume that �(x)�

0

= a

0

for x 2 X

s

. Since �(s) is the sort of �(x), by de�nition of valuation

a

0

2 A

0

�(s)

. Since � is not necessarily injective on the sorts, �

A

0

�1

(a

0

) = fa

1

; :::; a

n

g, each a

i

having

di�erent sort of �

�1

(�(s)). Thus, there exists the unique a

k

of the sort s. The valuation �, we are

looking for, exists and maps x into its unique value a

k

. Consequently � is unique.

� Surjectivity

We show that for all � : X! A there exists �

0

: Val[X

0

;A

0

] such that �

0

j

�

= �.

Let a x

0

2 X

0

. Since � is injective on the variables there exists the unique x 2 X such that

�(x) = x

0

. Assume that x� = a, a 2 A

0

j

�

. Then the value that �

0

should map to x

0

is �

A

0

(a). This

proves the existence of �

0

. 2

Proof of Lemma 3.6

We prove it by induction on the size of t.

� Induction hypothesis

Lemma holds for any term with size less than n

� Base step

Obvious according to (3.i)

� Induction step

Let t

1

2 (T

�

(X))

s

1

: : : t

n

2 (T

�

(X))

s

n

all of size less than n having at least one with size n. Let

(f : s

1

; : : : ; s

n

! s) 2 �. From induction hypothesis we have:

�(t

1

)�

0

= �

A

0

(t

1

�

0

j

�

) : : : �(t

n

)�

0

= �

A

0

(t

n

�

0

j

�

)

By de�nition f

A

0

j

�

= �(f)

A

0

. Hence: �(f(t

1

; : : : ; t

n

))�

0

= �

A

0

(f(t

1

; : : : ; t

n

)�

0

j

�

)

2
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