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Abstract

The number of factors of length m of Sturmian words is known to

be 1 +

P

m

1

(m� i+ 1)�(i): We give a geometric proof of this formula,

based on duality and on Euler's relation for planar graphs.

R�esum�e

Le nombre de facteurs de longueur m des mots de Sturm est connu

pour être donn�e par la formule 1 +

P

m

1

(m� i+ 1)�(i): Nous donnons

une preuve g�eom�etrique de ce resultat bas�ee sur la dualit�e et la relation

d'Euler pour les graphes planaires.

�
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1 Introduction

The Sturmian word with real parameters �; � 2 [0; 1[ is de�ned as the 0-1

bi-in�nite sequence

(b�(n+ 1) + �c � b�n + �c)

n2Z

: (1)

Sturmian words have a long history. A clear exposition of early work

by J. Bernoulli, Christo�el, and A. A. Markov is given in the book by

Venkov [19]. The term \sturmian" has been used by Hedlund and Morse in

their development of symbolic dynamics [7, 8, 9]. There is a large literature

about properties of these sequences (see for example Series [17], Fraenkel et

al. [6], Stolarsky [18]). From a combinatorial point of view, they have been

considered by Rauzy [13, 14, 15], Brown [2], Ito, Yasutomi [10] in particu-

lar in relation with iterated morphisms, and by S�e�ebold [16], Mignosi [11].

Sturmian words appear in ergodic theory [12], in computer graphics [1], and

in cristallography. Duluc and Gouyou-Beauchamps [4] considered the set

of all �nite words that are factors of some Sturmian word. They proved

that the complement, say S, of this set is a context-free language, and they

conjectured that S is inherently ambiguous. To show this, they in fact con-

jectured Theorem 1 below. Since the generating series of these numbers is

transcendental, the Chomsky-Sch�utzenberger theorem would prove inherent

ambiguity (see Flajolet [5] for a systematic exposition).

The set S admits a nice combinatorial description due to Coven and

Hedlund [3], and Luc Boasson (personal communication) uses this descrip-

tion to prove directly that S is inherently ambiguous by applying Ogden's

Lemma.

Mignosi [11] proved the following result.

Theorem 1 The number of factors of length m of Sturmian words is given

by the sum

1 +

m

X

1

(m� i+ 1)�(i); (2)

where � is the Euler function, i.e., �(n) is the number of natural integers

less than n and coprime to n.

Mignosi's proof is based on a delicate analysis of the structure of Stur-

mian words. The aim of the present note is to give another, and we think

simpler proof, based on a completely di�erent argument. Since each Stur-

mian word is de�ned by a line, it is natural to consider the geometric dual
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of the plane. The dual of any set of lattice points is an arrangement of lines.

It appears that the factors of �xed length of Sturmian words are in bijection

with the faces of some speci�c arrangement restricted to the unit square.

We exploit Euler's relation on planar graphs for gaining an expression

for the number of faces which, by a simple counting argument, gives the

desired result. In order to keep the proof elementary, we considered duality

on the plane rather than on the torus which might be more natural.

The next section contains a brief account of duality; then Euler's formula

is used to give the proof.

2 Duality

We call a factor of length m of a Sturmian word, a Sturmian m-factor. It

is easily veri�ed that the sequence

(b�(n+ 1) + �c � b�n + �c)

0�n<m

(3)

ranges over all Sturmian m-factors when � and � range over [0; 1[. We say

that the Sturmian m-factor (3) is de�ned by the straight line ` with equation

y = �x+ �.

Let (O; x; y) be a coordinate system for the Eucidean plane P . Let H

be the set of straight lines with �nite slope and let L be the set of straight

lines with equation y = �x + � with � and � in [0; 1[. Given a line ` 2 H

with equation y = �x+ � we denote by `

+

the half-plane y � �x+ �: Let

H

m

= f (x; y) j x; y 2 N; 0 � x � m g: (4)

We prove now the following \geometric" result.

Proposition 1 Two lines ` and `

0

of L de�ne the same Sturmian m-factor

if and only if

`

+

\H

m

= `

0+

\H

m

:

Proof. The set `

+

\H

m

is clearly de�ned by the lattice points (n; b�n+�c)

for n = 0; : : : ; m, and consequently by the Sturmian m-factor de�ned by `

since � 2 [0; 1[.

To exploit the previous proposition it will be convenient to represent a

line by a point. At this end we use the duality transform x 2 H[P 7! x

�

2

H [ P . Duality maps the line ` 2 H with equation y = �x+ � to the point

`

�

2 P with coordinates (�;��) and the point p with coordinates (�; �) to
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Figure 1: The duality transform of L.

the line p

�

with equation y = �x��. It can be easily verify that the duality

transform is an involution, and that it preserves the incidence relation i.e.,

p 2 `, `

�

2 p

�

; p 2 `

+

, `

�

2 (p

�

)

+

: (5)

The set L is mapped (see Figure 1), by the duality transform, onto the

square

C = f (�; �) j 0 � �;�� < 1 g: (6)

The extreme points A(0; 0), B(1; 0), C(�1; 1), D(0;�1) of the topological

closure C of C are, respectively, the dual images of the lines y = 0; y = x; y =

x+1, y = 1; its edges ]A;B[; ]B;C[; ]C;D[; ]D;A[ are, respectively, the dual

images of the lines fy = �xg; fy = x + �g; fy = �x + 1g and fy = �g, and

its interior is the dual image of the set fy = �x+ �g with 0 < �; � < 1 .

We now de�ne the arrangement A

m

of the square C induced by the dual

lines in H

�

m

: there are m(m+ 1)=2 lines in H

�

m

which intersect the interior

of C and yield a segment; these m(m+ 1)=2 lines are precisely the duals of

the lattice points (x; y) such that 1 � y � x � m: We add, to this set of

segments, the four line segments enclosing the square C. By de�nition the

arrangement A

m

is the cell decomposition of the square C whose vertices,

edges and faces are respectively the intersection points of all these segments,

the maximal connected components of the union of the segments minus the

4



s s s s s

s s s s

s s s

s s

s

q q q q q q

q q q q q q

q

q q

q q q

q q q q

q q q q q

q q q q q q

q q q q q q

-

x

-

A

�

D

�

6

y

�

�

�

�

�

�

�

�

�

�

�

�

��

B

�

�

�

�

�

�

�

�

�

�

�

�

�

��

C

�

A

D

B

C

-

�

6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 2: The arrangement A

5

vertices, and the maximal connected components of the square C minus

the segments. The arrangementt A

5

is depicted in Figure 2: there are 19

segments, 29 vertices, 52 edges and 24 faces. Observe that in our de�nition

we don't count the external face.

We de�ne the upper enveloppe of a set X of the plane to be the set of

points (x; y) of the topological closure of X such that (x+ �; y � �) 2 X for

some positive �. The relation between A

m

and the Sturmian m-factors is

given in the following proposition (See Figure 3).

Proposition 2 Two lines `; `

0

of L de�ne the same Sturmian m-factor if

and only if `

�

and `

0�

belong to the upper envelope of the same face of the

arrangement A

m

.

Proof. This is the dual formulation of the previous proposition.

The following corollary gives the �rst step in the proof of the enumeration

formula.

Corollary 1 The number of Sturmian m-factors is equal to the number of

faces of the arrangement A

m

.
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Figure 3: A line and its corresponding dual face

3 Proof of the formula

For any line ` 2 H, let c(`) = Card(`\H

m

), and let L

0

be the lines in L with

positive slope and such that c(`) � 2. We start by proving the following

formula.

Lemma 1 The number f of faces of A

m

is

f = 1 +m+

X

`2L

0

(c(`)� 1) (7)

Proof. Let e; v be respectively the number of edges and vertices of the

arrangements A

m

. According to Euler's relation for planar graphs

f � e+ v = 1: (8)

Remember that we don't count the external face. Let V be the set of vertices

of the arrangement A

m

. As in any graph, the number e of edges satis�es

the relation

2e =

X

s2V

deg(s) (9)

where deg(s) is, as usual, the number of edges incident to s. We partition

the set vertices V into

V = fA;B;C;Dg[ V

0

[ V

1

[W (10)
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where V

0

and V

1

are the set of vertices lying on ]A;B[ and on ]C;D[ respec-

tively, and where W is the set of vertices in the interior of C.

It can be easily veri�ed that deg(A) = deg(C) = 2 and deg(B) =

deg(D) = m+ 2; furthermore according to (5)

deg(s) =

(

2 c(s

�

) if s 2W

c(s

�

) + 1 if s 2 V

0

[ V

1

;

(11)

Observe also that (�; 0) 7! (�;�1) is a degree preserving bijection from V

0

to V

1

; consequently

X

s2V

0

[V

1

deg(s) = 2

X

s2V

0

deg(s): (12)

From (8) and (9), we get

f = 1 + e� v

= 1 +

X

s2V

(deg(s)=2� 1)

= 1 +m+ 2

X

s2V

0

(deg(s)=2� 1) +

X

s2W

(deg(s)=2� 1)

The last equality follows from (12). In view of (11)

f = 1 +m+

X

s2V

0

[W

c(s

�

)� 1: (13)

Since V

0

[W and L

0

are dual sets the formula follows.

Proof of the theorem. In view of Lemma 1 it su�ces to evaluate the sum

X

`2L

0

c(`)� 1: (14)

Assume that the slope of the line ` is q=p with p and q coprime. Then c(`)�1

is the number of points (x; y) 2 H

m

such that (x+ p; y + q) also belongs to

H

m

, and such that the line de�ned by (x; y) and (x+ p; y + q) is precisely

the line `. Hence, the sum (14) is equal to the number of 4-tuples (x; y; p; q)

of integers such that

1. 0 � x � m and 0 � x + p � m

2. 1 � q < p and p and q coprime
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3. the ordinate of the intersection point of the line trough (x; y) with

slope q=p and the y-axis belong to [0; 1[.

Straightforward calculations show that the last condition is equivalent to

0 � y � qx=p < 1 which shows that y = dqx=pe is uniquely determinated

by the triples (x; p; q). It follows that the number of 4-tuples (x; y; p; q) is

the number of triples (x; p; q) such that conditions 1 and 2 above hold. This

number is equal to

P

m

p=2

(m� p+ 1)�(p). This proves the formula.
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