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Abstract

We group in this paper, within a uni�ed framework, many applications

of the following polyhedra: cut, boolean quadric, hypermetric and metric

polyhedra. We treat, in particular, the following applications:

� `

1

- and L

1

-metrics in functional analysis,

� the max-cut problem, the Boole problem and multicommodity ow

problems in combinatorial optimization,

� lattice holes in geometry of numbers,

� density matrices of many-fermions systems in quantum mechanics.

We present some other applications, in probability theory, statistical data

analysis and design theory.
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1 Introduction

In this paper, we show that cut polyhedra are exceptional, among other

polyhedra, by the great diversity of their applications and connections. The

main �elds of applications include: `

1

-metrics in functional analysis, combi-

natorial optimization, geometry of numbers, quantum mechanics. We give

some other connections, in particular, with probability theory, statistical

data analysis, multicommodity ows, designs. Another purpose of this pa-

per is to present an extended bibliography on cut polyhedra and related

areas.

We present more extensively the applications which were not well doc-

umented outside of their speci�c context. For example, we treat at length

the connection with quantum mechanics and with the Boole problem.

Examples of important applications, but already well presented else-

where, include applications of the maximum cut problem to VLSI circuit

designs and spin glass problems.

The more peripheric applications are presented briey, but references are

always supplied in case of absence of de�nitions.

On the other hand, we do not cover at all generalizations of cut polyhedra

and their applications, as multicut polytopes (with applications to clustering

and qualitative data analysis) (see e.g. [56]) and cycle polytopes of binary

matroids (see e.g. [22]). Many complexity results are known on cut and

embeddings problems, but we do not survey them here.

Our central objects are the cut cone Cut

n

, the cut polytope CutP

n

and

the boolean quadric polytope BQP

n

, respectively de�ned by:

Cut

n

= Cone((jx

i

� x

j

j)

1�i<j�n

: x 2 f0; 1g

n

);

CutP

n

= Conv(jx

i

� x

j

j)

1�i<j�n

: x 2 f0; 1g

n

);

BQP

n

= Conv((x

i

x

j

)

1�i�j�n

: x 2 f0; 1g

n

);

(where "Cone" denotes the operation of taking the conic hull and "Conv"

that of taking the convex hull). In fact, the cut polytope CutP

n+1

and the

boolean quadric polytope BQP

n

are in one-to-one correspondence (via the

covariance linear bijective map, see section 2.4). Also, all the facets of the

cut polytope CutP

n

can be deduced from those of the cut cone Cut

n

(via

the switching map, see section 2.6).
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Cut polyhedra have been extensively studied, in particular, from the

following points of view: facets (see the survey [60] and references there),

simplicial faces (see the survey [58]), geometrical questions ([25], [54], [68]);

see section 2.4 for a detailed bibliography. We refer to section 1 for a cat-

alogue of de�nitions and basic facts about the objects considered in the

paper.

Cut polyhedra arise naturally in various contexts. We now list some of

the main �elds or questions in which cut polyhedra are directly involved.

This will also give a avor of the contents of the paper and of the type of

questions which have been considered about cut polyhedra.

`

1

-metrics. The points of the cut cone Cut

n

have the following inter-

pretation: a semi-metric d on n points belongs to Cut

n

if and only if it

is isometrically `

1

-embeddable, i.e. d

ij

=k u

i

� u

j

k

1

for all i; j, for some

vectors u

1

; : : : ; u

n

2 R

m

. Hence, characterizing `

1

-embeddable metrics by

inequalities amounts to �nd the valid inequalities for the cut cone Cut

n

.

More detailed connections with `

1

- and L

1

-metrics are described in section

3.

For rational metrics, `

1

-embeddability is equivalent to embeddability,

up to multiplicative factor, in a hypercube. For the case of graphic met-

rics, both concepts of `

1

- and hypercube embeddability (binary addressing)

have important applications, in particular, for the design of communication

networks and hypercube multiprocessors. For a graph, hypercube embed-

dability of its path metric means that the graph is an isometric subgraph of

a hypercube. See section 4.2 for details.

Combinatorial optimization. The cut polytope and the boolean

quadric polytope are used in combinatorial optimization. Indeed, the max-

cut problem can be formulated as a linear program on the cut polytope and,

thus, the polyhedral approach to the max-cut problem leads to the study

of the facet de�ning inequalities for the cut polytope. Similarly, the poly-

hedral approach to unconstrained boolean quadratic programming leads to

the study of the facets of the boolean quadric polytope. See section 5.1 for

details.

The Boole problem. Given n events in a probability space (
;A; �),

the Boole problem consists of �nding the best estimation of �(A

1

[ : : :[A

n

)

in terms of the joint probabilities p

ij

= �(A

i

\ A

j

) for 1 � i � j � n. In

fact, the answer relies directly on the knowledge of the facets of the boolean
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quadric polytope; namely, we have:

�(A

1

[ : : :[A

n

) � max(w

T

p : w

T

x � 1 is facet de�ning for BQP

n

)

where p = (p

ij

)

1�i�j�n

. See section 5.3 for details. The above fact relies

on the following probabilistic interpretation of BQP

n

: a point p belongs to

BQP

n

if and only if p

ij

= �(A

i

\ A

j

) for 1 � i � j � n, for some events

A

1

; : : : ; A

n

in some probability space (
;A; �) (see section 3.1).

Quantum mechanics. The physical state of a quantum mechanical

system of N particles is represented by a wavefunction  , which is a unit

vector of a Hilbert space H(N). For each wavefunction  is de�ned its

density matrix �

(2)

 

(xjx

0

) of second order. An important problem in quan-

tum mechanics is the N -representability problem: given a function �(xjx

0

),

when is � N -representable, i.e. �(xjx

0

) = �

(2)

 

(xjx

0

) for some wavefunction

 2 H(N) ? In fact, when restricted to the diagonal terms, i.e. asking only

that �(xjx) = �

(2)

 

(xjx), this problem is equivalent to the membership prob-

lem in the polytope Conv((x

i

x

j

)

1�i�j�n

: x 2 f0; 1g

n

;

P

1�i�n

x

i

= N). For

a variable number N of particles, the N -representability problem in its diag-

onal form leads to the membership problem in the boolean quadric polytope.

See section 7 for details. Moreover, the dual of BQP

n

can be interpreted as

the cone of positive semi de�nite two-body operators (see relation (56) in

section 7.2).

Multicommodity ows. Let (G;H; c; r) be an instance of the multi-

commodity ow problem, where G is the supply graph with capacities c

e

on its edges, and H is the demand graph with demands r

e

on its edges.

The instance is said to be feasible if there exists a multiow such that the

capacities are not exceded and the demands are ful�lled. The well known

so-called Japanese theorem asserts that the problem is feasible if and only if

(c� r)

T

d � 0 holds for all d 2Met

n

. Hence, the metric cone Met

n

, consist-

ing of all semi-metrics on n points, is the dual cone to the cone of feasible

multiows. When restricting the condition (c� r)

T

d � 0 to the cut metrics

d, we obtain the well known cut condition, which is always necessary, and

sometimes su�cient for some classes of graphs. See section 5.2 for details.

Hypermetrics and L-polytopes. The hypermetric inequalities are a

natural strengthening of the metric condition, which are still satis�ed by

the cuts. They de�ne the hypermetric cone Hyp

n

which is contained in

the metric cone Met

n

and contains the cut cone Cut

n

. The hypermetrics

d 2 Hyp

n

are in one-to-one correspondence with L-polytopes of holes in
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lattices. Therefore, the study of the extreme rays of the hypermetric cone

translates into the study of "rigid" L-polytopes (see Theorem 6.5). See

section 6 for details.

Designs. Each hypercube embedding of the equidistant metric 2td(K

n

) =

(2t; : : : ; 2t) corresponds to some design. The embeddings of minimum size,

i.e. in a hypercube of minimum dimension, correspond to special classes

of designs (Hadamard designs and projective planes), depending on the pa-

rameters. These connections are described in section 8.3.

Several additional applications are described, in particular, in section 8.

One more interesting application of cuts is for the disproval of the fol-

lowing conjecture by Borsuk: Every set of diameter one in the space R

d

can be partitioned into d + 1 subsets of diameter smaller than one. For

n = 4k with k prime power, consider the set X of the incidence vectors of

the equicuts, i.e. corresponding to a partition into two sets of size

n

2

, of the

complete graph K

n

. Then X cannot be partitioned into fewer than 1:1

n

parts so that each part has diameter smaller than the diameter of X . This

is a counterexample to Borsuk's conjecture; it is given in [106].

Finally, a curiosity about cuts is the link existing between the cut cone

and Fibonacci numbers. Namely, the number of cuts on one of its facets is

expressed directly in terms of the Fibonacci numbers [67].

2 Objects

2.1 Cut and intersection vectors

Set V

n

= f1; : : : ; ng, E

n

= f(i; j) : 1 � i < j � ng, then K

n

= (V

n

; E

n

)

denotes the complete graph on n nodes.

� For S � V

n

, �(S) � E

n

denotes the cut de�ned by S, with (i; j) 2 �(S) if

and only if jS \ fi; jgj= 1. The incidence vector of the cut �(S) is called a

cut vector and, by abuse of language, is also denoted as �(S). Hence, �(S) 2

f0; 1g

(

n

2

)

with �(S)

ij

= 1 if and only if jS \ fi; jgj = 1 for 1 � i < j � n.

Therefore, �(S) = �(V

n

� S) holds, i.e. a cut can be de�ned by any of its

two shores S or V

n

� S.

� For S � V

n

, �(S) 2 f0; 1g

(

n+1

2

)

is the intersection vector de�ned by S with

�(S)

ij

= 1 if and only if i; j 2 S for 1 � i � j � n.

� Let I be a collection of subsets of V

n

. For S � V

n

, we de�ne its I-

intersection vector �

I

(S) 2 f0; 1g

I

by �

I

(S)

I

= 1 if and only if I � S, for
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I 2 I. We shall consider, in particular, the following set families I: I

=m

consisting of all I � V

n

with jI j = m, and I

�m

consisting of all I � V

n

with

1 � jI j � m, for 1 � m � n. For instance, for I = I

=1

, �

I

(S) is simply

the incidence vector of S and, for I = I

�2

, �

I

(S) coincides with the usual

intersection vector �(S).

2.2 Inequalities

� For distinct i; j; k 2 V

n

, the inequalities:

x

ij

� x

ik

� x

jk

� 0 (1)

and

x

ij

+ x

ik

+ x

jk

� 2 (2)

are called triangle inequalities; (1) is homogeneous while (2) is not.

� Given n integers b

1

; : : : ; b

n

, we consider the inequality:

X

1�i<j�n

b

i

b

j

x

ij

� 0: (3)

When � :=

P

1�i�n

b

i

= 1, the inequality (3) is called a hypermetric in-

equality and denoted by Hyp

n

(b

1

; : : : ; b

n

). The triangle inequality (1) is the

special case b

i

= b

j

= 1, b

k

= �1, b

h

= 0 for h 2 V

n

� fi; j; kg, of the

hypermetric inequality (3). When

P

1�i�n

jb

i

j = 2k + 1, the inequality (3)

is called 2k + 1-gonal. The 5-gonal inequality is Hyp

5

(1; 1; 1;�1;�1).

When � = 0, the inequality (3) is called a negative type inequality and

when

P

1�i�n

jb

i

j = 2k, it is called 2k-gonal.

� More generally, let b

1

; : : : ; b

n

be integers such that � =

P

1�i�n

b

i

is odd

and such that there exists a subset A � V

n

with

P

i2A

b

i

=

��1

2

. Then, we

consider the inequality:

X

1�i<j�n

b

i

b

j

x

ij

�

�

2

� 1

4

(4)

refered to as the non homogeneous hypermetric inequality. The triangle

inequality (2) is the special case b

i

= b

j

= b

k

= 1, b

h

= 0 for h 2 V

n

�fi; j; kg

of the inequality (4).
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� Given integers b

1

; : : : ; b

n

, set � =

P

1�i�n

b

i

and  = min(j� � 2

P

i2S

b

i

j :

S � V

n

), called the gap of the b

i

's. The inequality:

X

1�i<j�n

b

i

b

j

x

ij

�

�

2

� 

2

4

(5)

is valid for the cut polytope CutP

n+1

; it is called a gap inequality [117].

The class of gap inequalities includes the negative type inequalities (for

� = 0), the hypermetric inequalities (for � = 1) and the non homogeneous

hypermetric inequalities (4) (for � odd and when there exists a subset A

such that

P

i2A

b

i

=

��1

2

).

2.3 `

1

, Voronoi and covariance maps

We introduce three useful maps:

� the `

1

-map '

`

: R

n

�! R

(

n

2

)

de�ned by '

`

(x) = (jx

i

� x

j

j)

1�i<j�n

for

x 2 R

n

.

� the Voronoi map '

v

: <

n

�! <

(

n+1

2

)

de�ned by '

v

(x) = (x

i

x

j

)

1�i�j�n

for

x 2 R

n

.

� the covariance map '

c

0

: R

(

n+1

2

)

�! R

(

n+1

2

)

de�ned by '

c

0

(x) = p, for

x = (x

ij

)

0�i<j�n

, p = (p

ij

)

1�i�j�n

, with

(

p

ii

= x

0i

for 1 � i � n

p

ij

=

x

0i

+x

0j

�x

ij

2

for 1 � i < j � n

(6)

The subscript "0" in '

c

0

refers to the fact that the index "0" has been

specialized in relation (6), but any other index i 2 f0; 1; : : : ; ng can be

specialized as well yielding the map '

c

i

.

The cut and intersection vectors are linked via these maps. Namely,

given a subset S � f1; : : : ; ng and its incidence vector 1

S

2 f0; 1g

n

, then

�(S) = '

`

(1

S

) and �(S) = '

v

(1

S

). Moreover, if S is a subset of f0; 1; : : : ; ng

with 0 62 S and if �(S) denotes the cut vector de�ned by S in K

n+1

, then

�(S) = '

c

0

(�(S)).

2.4 Polyhedra

We de�ne now a list of polytopes and cones to be considered in the paper.

For a general account of the theory of polyhedra, we refer e.g. to [145].
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� The cut cone Cut

n

is the cone generated by all cut vectors �(S) for S � V

n

.

� The cut polytope CutP

n

is the convex hull of all cut vectors �(S) for S � V

n

.

Both Cut

n

and CutP

n

are full dimensional polyhedra in R

(

n

2

)

.

� The boolean quadric cone BQ

n

is the cone generated by all intersection

vectors �(S) for S � V

n

.

� The boolean quadric polytope BQP

n

is the convex hull of all intersection

vectors �(S) for S � V

n

. Both BQ

n

and BQP

n

are full dimensional poly-

hedra in R

(

n+1

2

)

.

� More generally, given a family I of subsets of V

n

, the cone BQ

I

n

(resp.

the polytope BQP

I

n

) is de�ned as the conic hull (resp. convex hull) of the

I-intersection vectors �

I

(S) for S � V

n

. Hence, for I = I

=1

, BQP

I

n

is the

n-dimensional cube and, for I = I

�2

, BQP

I

n

coincides with BQP

n

.

� The hypermetric cone Hyp

n

is the cone de�ned by the hypermetric in-

equalities (3), i.e.

Hyp

n

= fx 2 R

(

n

2

)

:

P

1�i<j�n

b

i

b

j

x

ij

� 0

for all integers b

1

; : : : ; b

n

with

P

1�i�n

b

i

= 1g:

� The hypermetric polytopeHypP

n

is the polytope de�ned by the inequalities

(4).

� The negative type cone Neg

n

is the cone de�ned by the negative type

inequalities (3), i.e.

Neg

n

= fx 2 R

(

n

2

)

:

P

1�i<j�n

b

i

b

j

x

ij

� 0

for all integers b

1

; : : : ; b

n

with

P

1�i�n

b

i

= 0g:

� The metric cone Met

n

is the cone de�ned by the triangle inequalities

(1) and the metric polytope MetP

n

is the polytope de�ned by the triangle

inequalities (1) and (2).

� The cone Q

n

of the positive semi-de�nite quadratic forms can be de�ned

as

Q

n

= fx 2 R

(

n+1

2

)

:

X

1�i;j�n

b

i

b

j

x

ij

� 0 for all b

1

; : : : ; b

n

2 Rg:

There are several connections between the above polyhedra. An easy, but

fundamental, fact is that Cut

n+1

and BQ

n

(resp. CutP

n+1

and BQP

n

) are

in linear one-to-one correspondance via the covariance map '

c

0

, since their

generators are in one-to-one correspondance via '

c

0

. It was rediscovered,

independently, by several authors, e.g. [98], [47], [150].
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Namely, let Cut

n+1

and CutP

n+1

be de�ned on the n + 1 points of

f0; 1; : : : ; ng, then

BQ

n

= '

c

0

(Cut

n+1

); BQP

n

= '

c

0

(CutP

n+1

): (7)

It can be checked that

'

c

0

(Hyp

n+1

) = fp = (p

ij

)

1�i�j�n

:

P

1�i;j�n

b

i

b

j

p

ij

�

P

1�i�n

b

i

p

ii

� 0

for all integers b

1

; : : : ; b

n

g

(8)

'

c

0

(Neg

n+1

) = Q

n

(9)

since p 2 '

c

0

(Neg

n+1

) if and only if

P

1�i;j�n

b

i

b

j

p

ij

� 0 for all integers

b

1

; : : : ; b

n

.

We deduce the following inclusions.

(

Cut

n

� Hyp

n

�Met

n

; CutP

n

� HypP

n

�MetP

n

Cut

n

� Hyp

n

� Neg

n

; i.e. BQ

n

� '

c

0

(Hyp

n+1

) � Q

n

:

(10)

Some of the above cones and polytopes can be de�ned, more generally,

for an arbitrary graph G = (V

n

; E), where the edge set E is a subset of E

n

.

Given a subset S � V

n

, let �

G

(S) 2 R

E

denote the cut vector de�ned

by S in G, i.e. �

G

(S) is the projection of �(S) on the edge set E of G.

Similarly, let �

G

(S) denote the projection of the intersection vector �(S) on

R

E

, i.e. �

G

(S) = (�(S)

ij

)

1�i�j�n;(i;j)2E if i 6=j

. The corresponding cut cone,

cut polytope, boolean quadric cone, boolean quadric polytope, are denoted,

respectively, by Cut(G), CutP (G), BQ(G), BQP (G). For the complete

graph G = K

n

, they coincide, respectively, with Cut

n

, CutP

n

, BQ

n

, BQP

n

.

The projection of the metric cone Met

n

and of the metric polytope MetP

n

on the edge set E of G are the cone Met(G) and the polytope MetP (G)

de�ned, respectively, by

Met(G) = fx 2 R

E

: x

e

� x(C � e) � 0 for C cycle of G and e 2 C

0 � x

e

� 1 for e 2 Eg

(11)
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MetP (G) = fx 2 R

E

: x(F )� x(C � F ) � jF j � 1 for C cycle of G

and F � C; jF j odd

0 � x

e

� 1 for e 2 Eg:

(12)

We list now briey the main papers where the above cones and polytopes

have been considered. The papers are listed by alphabetic order.

The metric cone was considered in [12], [13], [92], [123], [124] (and refer-

ences there), [101], [122], [147] and the metric polytope in [68], [116], [118],

[119].

The hypermetric cone was considered in [7], [8], [17], [50], [51], [53], [55],

[112] and the negative type cone in [99].

The boolean quadric cone was considered in [47] and the boolean quadric

polytope in [31], [79], [127], [131], [135], [150].

The cut cone and polytope are considered in [2], [16], [19], [21], [23], [25],

[46], [47], [54], [58], [64], [65], [66], [68], [91], [152]. A detailed survey on the

valid inequalities and facets for the cut cone can be found in [60].

The uniform cut cone (generated by cuts with the same shore size) is

considered in [63], the uniform boolean quadric polytope BQP

n

(N) in [79]

(and references there), [127], [161], the equicut polytope in [40], [41], [49],

[153], and even cut polyhedra (generated by the cuts whose shores have both

an even cardinality) in [57].

2.5 Metric notions

Let d = (d

ij

)

1�i<j�n

2 R

(

n

2

)

. It may be convenient to view d as a symmetric

n � n-matrix by setting d

ij

= d

ji

and d

ii

= 0 for i; j 2 V

n

.

� d is a semi-metric if d satis�es the triangle inequalities (1), i.e. d 2Met

n

,

and d is a metric if, moreover, d

ij

6= 0 for distinct i; j 2 V

n

. However, we

often use the term "metric" even if d

ij

= 0 for some distinct i; j. We also

say that (V

n

; d) is a metric space.

� d 2Met

n

is said to be metrically rigid if d lies on a simplicial face ofMet

n

,

i.e. on a face whose generators (the extreme rays lying on it) are linearly

independent; d is an extreme metric if d lies on an extreme ray of Met

n

.

� d is hypermetric if d satis�es the hypermetric inequalities (3), i.e. d 2

Hyp

n

, and d is 2k + 1-gonal if it satis�es all 2k + 1-gonal hypermetric in-

equalities; d is of negative type if it satis�es the negative type inequalities,
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i.e. d 2 Neg

n

, and d is 2k-gonal if it satis�es all 2k-gonal negative type

inequalities.

� d is `

p

-embeddable if there exist n vectors x

1

; : : : ; x

n

2 R

m

for some

m � 1 such that d

ij

=k x

i

� x

j

k

p

for 1 � i < j � n, where k x k

p

=

(

P

1�h�m

jx

h

j

p

)

1

p

for x 2 R

m

. We consider here especially the cases p = 1; 2.

� d is hypercube embeddable (h-embeddable, for short) if d

ij

=k x

i

�x

j

k

1

for

1 � i < j � n, for some binary vectors x

1

; : : : ; x

n

2 f0; 1g

m

, m � 1.

� If d is rational valued, then d is `

1

-embeddable if and only if �d is h-

embeddable for some scalar � [10]. The smallest such � is called the scale of

d. This fact is easy, but crucial, since it permits to link combinatorial and

analytical aspects.

� For d 2 Cut

n

, any decomposition of d as d =

P

S

�

S

�(S) with �

S

� 0

(resp. �

S

� 0, integer) is called a R

+

-realization (resp. Z

+

-realization) of

d;

P

S

�

S

is its size. The minimum size of a R

+

-realization of d 2 Cut

n

is

denoted as s(d) and the minimum size of a Z

+

-realization (if exists) of d is

called its h-size and denoted by s

h

(d).

If d =

P

S

�

S

�(S) with �

S

� 0, then

P

1�i<j�n

d

ij

=

P

S

�

S

jSj(n� jSj),

with n � 1 � jSj(n � jSj) � b

n

2

cd

n

2

e for 1 � jSj � n � 1. Therefore, for

d 2 Cut

n

, we have the following bounds on its minimum size s(d):

P

1�i<j�n

d

ij

b

n

2

cd

n

2

e

� s(d) �

P

1�i<j�n

d

ij

n� 1

: (13)

� d 2 Cut

n

is said to be `

1

-rigid if it lies on a simplicial face of Cut

n

, i.e. d

has a unique R

+

-realization or, equivalently (in view of Theorem 3.3), d has

a unique `

1

-embedding. Similarly, if d is h-embeddable, d is said to be h-rigid

if d has a unique h-embedding or, equivalently, a unique Z

+

-realization.

2.6 Operations on faces

We saw above that the cut polytope Cut

n+1

and the boolean quadric poly-

tope BQP

n

are in one-to-one correspondance via the covariance map '

c

0

.

We now see in more detail how the covariance map acts on the valid inequal-

ities. Consider the inequalities:

X

0�i<j�n

c

ij

x

ij

� d (14)
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X

1�i�n

a

i

p

ii

+

X

1�i<j�n

b

ij

p

ij

� d (15)

where a; b; c are linked by

(

c

0i

= a

i

+

1

2

P

1�j�n;j 6=i

b

ij

for 1 � i � n

c

ij

= �

1

2

b

ij

for 1 � i < j � n:

(16)

Then, the inequality (14) is valid (resp. facet de�ning) for CutP

n+1

if and

only if the inequality (15) is valid (resp. facet de�ning) for BQP

n

.

The cut polytope enjoys a lot of symmetries, namely the symmetries

induced by the permutations of V

n

and the switching maps that we now

describe. The full symmetry group of the cut polytope CutP

n

is described

in [54].

Given a cut �(A) of K

n

and v 2 R

(

n

2

)

, we de�ne the maps R

�(A)

and

r

�(A)

from R

(

n

2

)

to <

(

n

2

)

by

R

�(A)

(v)

ij

=

(

�v

ij

if (i; j) 2 �(A)

v

ij

otherwise

(17)

r

�(A)

(v)

ij

=

(

1� v

ij

if (i; j) 2 �(A)

v

ij

otherwise.

(18)

Hence, r

�(A)

is an a�ne map, called switching map, whose associated

linear map is R

�(A)

. Then, the inequality v

T

x � v

0

is valid (resp. facet

de�ning) for CutP

n

if and only if the inequality R

�(A)

(v)

T

x � v

0

� v

T

�(A)

is valid (resp. facet de�ning) for CutP

n

. An important consequence is that

all the facets of the cut polytope can be deduced from those of the cut cone,

via the switching map [25].

For instance, the non homogeneous triangle inequality (2) is a switching

of the homogeneous triangle inequality (1) and the inequalities (4) are all

possible switchings of the hypermetric inequalities (3).

The switching operation was introduced in [47] for the cut cone Cut

n

and in [25] for the cut polytope CutP (G) of an arbitrary graph.
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Via the covariance map, we have also an analogue of switching for the

boolean quadric polytope, namely, the map '

c

0

r

�(A)

'

�1

c

0

which acts on the

boolean quadric polytope BQP

n

as follows. It transforms the inequality

X

1�i�n

a

i

p

ii

+

X

1�i<j�n

b

ij

p

ij

� d

into the inequality

X

1�i�n

a

0

i

p

ii

+

X

1�i<j�n

b

0

ij

p

ij

� d

0

where

d

0

= d�

P

i2A

a

i

�

1

2

P

1�i<j�n;i;j2A

b

ij

a

0

i

=

(

a

i

+

P

j2A

b

ij

if i 62 A

�a

i

�

P

j2A�fig

b

ij

if i 2 A

b

0

ij

=

(

�b

ij

if jA \ fi; jgj= 1

b

ij

if jA \ fi; jgj 6= 1:

Several other operations on the faces of the cut polytope were considered,

see e.g. [25], [63],[64], [151], [152].

3 Applications in functional analysis: `

1

- and L

1

-

metrics

3.1 The cut cone and `

1

-metrics

In this section, we mention how the members of the cut cone and polytope,

or of the boolean quadric cone and polytope, can be interpreted in terms of

metrics and measure spaces. We essentially follow [6] and [11].

Clearly, every member d 2 Cut

n

de�nes a semi-metric on n points.

Hence arises the question of characterizing the class of semi-metrics de�ned

by the cut cone. As stated in Theorems 3.1, 3.3 and 3.8, the semi-metrics

belonging to the cut cone are those that are L

1

-embeddable or, equivalently,

`

1

-embeddable or, equivalently, d 2 Cut

n

if and only if d

ij

= �(A

i

�A

j

), 1 �

i < j � n, for some non negative measure space (
;A; �) and some events

A

1

; : : : ; A

n

2 A. The corresponding statement for the boolean quadric cone

reads: p 2 BQ

n

if and only if p

ij

= �(A

i

\ A

j

), 1 � i � j � n, for some

non negative measure space (
;A; �) and some events A

1

; : : : ; A

n

2 A. The

polytope case corresponds to the case when (
;A; �) is a probability space,

i.e. �(
) = 1.
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Before stating the results, we recall some de�nitions.

A measure space (
;A; �) consists of a set 
, a �-algebra A of subsets

of 
, and a measure � de�ned on A which is additive, i.e. �(

S

n�1

A

n

) =

P

n�1

�(A

n

) for all pairwise disjoint sets A

n

2 A, and satis�es �(;) = 0.

The measure space is non negative if �(A) � 0 for all A 2 A. A probability

space is a non negative measure space with total measure �(
) = 1.

If (X; d) and (X

0

; d

0

) are two semi-metric spaces, (X; d) is said to be

isometrically embeddable into (X

0

; d

0

) if there exists a map � (the embedding)

from X to X

0

such that d(x; y) = d

0

(�(x); �(y)) for all x; y 2 X . One also

says that (X; d) is a subspace of (X

0

; d

0

).

Recall that k k

1

denotes the `

1

-norm, de�ned by k u k

1

=

P

1�j�m

ju

j

j

for u 2 R

m

.

Theorem 3.1 Let d = (d

ij

)

1�i<j�n

2 R

(

n

2

)

. The following assertions are

equivalent.

(i) d 2 Cut

n

(resp. d 2 CutP

n

).

(ii) There exist a non negative measure space (resp. a probability space)

(
;A; �) and A

1

; : : : ; A

n

2 A such that d

ij

= �(A

i

�A

i

) for all 1 �

i < j � n.

Theorem 3.2 Let p = (p

ij

)

1�i�j�n

2 R

(

n+1

2

)

. The following assertions are

equivalent.

(i) p 2 BQ

n

(resp. p 2 BQP

n

).

(ii) There exist a non negative measure space (resp. a probability space)

(
;A; �) and A

1

; : : : ; A

n

2 A such that p

ij

= �(A

i

\ A

j

) for all 1 �

i � j � n.

Theorem 3.1 was given in [6] and Theorem 3.2 was given in [133], [135].

This interpretation of BQP

n

is already used in [127] for describing the pair

distributions of particles in lattice sites. In fact, both Theorems 3.1 and 3.2

are easily seen to be equivalent using the covariance map. We give the proof

of Theorem 3.2, following [133].

Proof. Assume p 2 BQ

n

. Then, p =

P

S�f1;:::;ng

�

S

�(S) for some �

S

� 0.

We de�ne a non negative measure space (
;A; �) as follows. Let 
 denote

the family of subsets of f1; : : : ; ng, let A denote the family of subsets of 
 and

let � denote the measure on A de�ned by �(A) =

P

S2A

�

S

for each A 2 A
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(i.e. A is a collection of subsets of f1; : : : ; ng). De�ne A

i

= fS 2 
 : i 2 Sg.

Then, �(A

i

\ A

j

) = �(fS 2 
 : i; j 2 Sg) =

P

S2
:i;j2S

�

S

= p

ij

holds, for

all 1 � i � j � n. Moreover, if p 2 BQP

n

, then we have

P

S

�

S

= 1, i.e.

�(
) = 1, that is (
;A; �) is a probability space.

Conversely, assume p

ij

= �(A

i

\ A

j

) for 1 � i � j � n, where (
;A; �)

is a nonnegative measure space and A

1

; : : : ; A

n

2 A. Set A

S

=

T

i2S

A

i

\

T

i 62S

(
 � A

i

) for each S � f1; : : : ; ng. Then, A

i

=

S

S:i2S

A

S

, A

i

\ A

j

=

S

S:i;j2S

A

S

and 
 =

S

S

A

S

. Therefore, p =

P

S�f1;:::;ng

�(A

S

)�(S), showing

that p belongs to the boolean quadric cone BQ

n

. Moreover, if (
;A; �) is

a probability space, i.e. �(
) = 1, then

P

S

�(A

S

) = 1, implying that p

belongs to the boolean quadric polytope BQP

n

.

Another characterization of the cut cone is given in [6], [11] in terms of

`

1

�metrics.

Theorem 3.3 Let (X; d) be a semi-metric space with X = f1; : : : ; ng. The

following assertions are equivalent.

(i) d 2 Cut

n

.

(ii) (X; d) is `

1

-embeddable, i.e. there exist n vectors u

1

; : : : ; u

n

2 R

m

for

some m such that d

ij

=k u

i

� u

j

k

1

for all 1 � i < j � n.

Proof. (i) ) (ii). Let d 2 Cut

n

, then d =

P

1�k�m

�

k

�(S

k

) with

�

1

; : : : ; �

m

� 0. For 1 � i � n, de�ne the vector u

i

2 R

m

with compo-

nents (u

i

)

k

= �

k

if i 2 S

k

and (u

i

)

k

= 0 otherwise, for 1 � k � m. Then

d

ij

=k u

i

� u

j

k

1

holds, showing that (X; d) is `

1

-embeddable.

(ii) ) (i). Assume that (X; d) is `

1

-embeddable, i.e. there exist n

vectors u

1

; : : : ; u

n

2 R

m

for some m � 1 such that d

ij

=k u

i

� u

j

k

1

, for

1 � i < j � n. We show that d 2 Cut

n

. It su�ces to show the result for

the case m = 1 by additivity of the `

1

-norm. Hence d

ij

= ju

i

� u

j

j where

u

1

; : : : ; u

n

2 R. Without loss of generality, we can suppose that 0 = u

1

�

u

2

� : : :� u

n

. Then, d =

P

1�k�n�1

(u

k+1

� u

k

)�(f1; 2; : : : ; k� 1; kg) holds,

showing that d 2 Cut

n

.

There is an analogue characterization for h-embeddable metrics.

Theorem 3.4 Let (X; d) be a semi-metric space with X = f1; : : : ; ng. The

following assertions are equivalent.
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(i) d =

P

S

�

S

�(S) for some non negative integer scalars �

S

.

(ii) (X; d) is h-embeddable, i.e. there exist n vectors u

1

; : : : ; u

n

2 f0; 1g

m

for some m such that d

ij

=k u

i

� u

j

k

1

for all 1 � i < j � n.

Proof. The proof is analogous to that of Theorem 3.3. Namely, for

(i) ) (ii), assume d =

P

1�k�m

�(S

k

) (allowing repetitions). Consider the

binary n � m matrix M whose columns are the incidence vectors of the

sets S

1

; : : : ; S

m

. If u

1

; : : : ; u

n

denote the rows of M , then d

ij

=k u

i

� u

j

k

1

holds, providing an embedding of (X; d) in the hypercube of dimension m.

Conversely, for (ii) ) (i), consider the matrix M whose rows are the n

given vectors u

1

; : : : ; u

n

. Let S

1

; : : : ; S

m

be the subsets of f1; : : : ; ng whose

incidence vectors are the columns of M . Then, d =

P

1�k�m

�(S

k

) holds,

giving a decomposition of d as a non negative integer combination of cuts.

3.2 The cut cone and L

1

-metrics (in�nite case)

In fact, there is a deeper connection between the cut cone and functional

analysis, namely with L

1

-spaces. It was established in [6] (see also [11]).

For this, we need some more de�nitions. In what follows, we shall consider

a semi-metric space (X; d) where the set X may be �nite or in�nite, since

some results remain valid in the in�nite case.

Given a measure space (
;A; �) and given a function f : 
 �! R, its

L

1

-norm is de�ned by:

k f k

1

=

Z




jf(!)j�(d!):

Then L

1

(
;A; �) denotes the set of measurable functions f , i.e. with k

f k

1

<1. Hence the L

1

-norm de�nes a metric structure on L

1

(
;A; �).

Given a non negative measure space (
;A; �), another metric space

(A

�

; d

�

) can be de�ned, where A

�

= fA 2 A : �(A) < 1g and d

�

(A;B) =

�(A�B) for A;B 2 A

�

. In fact, (A

�

; d

�

) is the subspace of L

1

(
;A; �)

consisting of its 0-1 valued functions.

When 
 is a set of cardinality m, A = 2




is the collection of subsets

of 
 and � is the cardinality measure, i.e. �(A) = jAj for A � 
, then

L

1

(
; 2




; j:j) is simply denoted as `

1

(m), or `

1

. Hence, the m-dimensional
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hypercube (K

2

)

m

is the subspace of `

1

consisting only of the binary se-

quences.

A semi-metric space (X; d) is L

1

-embeddable if it is a subspace of some

L

1

(
;A; �) for some non negative measure space, i.e. there is a map � from

X to L

1

(
;A; �) such that d(x; y) =k �(x)� �(y) k

1

for x; y 2 X .

Lemma 3.5 For a semi-metric space (X; d), the following assertions are

equivalent.

(i) (X; d) is L

1

-embeddable.

(ii) (X; d) is a subspace of (A

�

; d

�

) for some non negative measure space

(
;A; �).

Proof. The implication (ii) ) (i) is clear, since (A

�

; d

�

) is a subspace

of L

1

(
;A; �). We check (i) ) (ii). It su�ces to show that each space

L

1

(
;A; �) is a subspace of (B

�

; d

�

) for some non negative measure space

(T;B; �). Set T = 
 � R, B = A � R where R is the family of Borel

subsets of R, and � = � 
 � where � is the Lebesgue measure on R. For

f 2 L

1

(
;A; �), let E(f) = f(!; s) 2 
�R : s > f(!)g denote its epigraph.

Then, the map f 7�! E(f)�E(0) provides an isometric embedding from

L

1

(
;A; �) to (B

�

; d

�

), since k f � g k

1

= �(E(f)�E(g)) holds.

The next theorem is an analogue of Theorem 3.3 for the general case

when the set X may be in�nite.

For each subset Y of X , let �

Y

denote the cut function induced by Y

de�ned by �

Y

(x; y) = 1 if jY \ fx; ygj = 1, �

Y

(x; y) = 0 otherwise, for

x; y 2 X ; so �

Y

is just the symmetrization of the usual cut metric �(Y ). Let

D(X) denote the set of all cut functions �

Y

for Y � X .

Theorem 3.6 Given a semi-metric space (X; d), the following assertions

are equivalent.

(i) (X; d) is L

1

-embeddable.

(ii) There exists a non negative measure � on D(X) such that d(x; y) =

R

D(X)

�(x; y)�(d�) for x; y 2 X.

Proof. (i) ) (ii). Assume (X; d) is L

1

-embeddable. Then, by Lemma

3.5, there exist a non negative measure space (
;A; �) and a map x 7�! A

x
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from X to A

�

such that d(x; y) = �(A

x

�A

y

) for x; y 2 X . For ! 2 
, set

A

!

= fx 2 X : ! 2 A

x

g. We de�ne a measure � on D(X) additively by

setting: �(f�

Y

g) = �(f! 2 
 : A

!

= Y g) for each Y � X .

Note that ! 2 A

x

if and only if x 2 A

!

and ! 2 A

x

�A

y

if and only if

jA

!

\ fx; ygj = 1. Therefore,

d(x; y) = �(A

x

�A

y

) = �(f! 2 
 : jA

!

\ fx; ygj = 1g)

= �(f! 2 
 : �

A

!

(x; y) = 1g)

= �(

S

Y�X :�

Y

(x;y)=1

f! 2 
 : A

!

= Y g)

=

R

D(X)

�(x; y)�(d�):

(ii) ) (i). Conversely, assume that d =

R

D(X)

��(d�) for some non

negative measure on D(X). Fix s 2 X and set A

x

= f� 2 D(X) : �(s; x) =

1g for each x 2 X . Then, d(x; y) = �(A

x

�A

y

) holds, since �(x; y) = 0 if

� 62 A

x

�A

y

and �(x; y) = 1 if � 2 A

x

�A

y

. This shows, using Lemma 3.5,

that (X; d) is L

1

-embeddable.

Let C(X) denote the set of all semi-metrics d on X for which (X; d) is

L

1

-embeddable.

Theorem 3.7 (i) C(X) is a convex cone.

(ii) The extremal rays of C(X) are the rays generated by the non zero cut

functions �

Y

for Y � X, ; 6= Y 6= X.

Proof. The proof of (i) is based on the fact that the direct sum of two

L

1

-subspaces is again an L

1

-subspace. Namely, assume that (X

i

; d

i

) is a

subspace of L

1

(


i

;A

i

; �

i

) for i = 1; 2. Consider their direct sum (X =

X

1

� X

2

; d = d

1

� d

2

), where d((x

1

; x

2

); (y

1

; y

2

)) = d

1

(x

1

; y

1

) + d

2

(x

2

; y

2

)

for x

1

; y

1

2 X

1

and x

2

; y

2

2 X

2

. Let (
 = 


1

[ 


2

;A; �) denote the

measure space obtained by extending A

i

and �

i

to 


1

[ 


2

. If �

i

denotes

the embedding of (X

i

; d

i

) into L

1

(


i

;A

i

; �

i

), then we obtain an embedding

� of (X

1

�X

2

; d

1

� d

2

) into L

1

(
;A; �) by setting �(x

1

; x

2

)(!) = �

i

(x

i

)(!)

if ! 2 


i

, for i = 1; 2. Indeed,

d

1

� d

2

((x

1

; x

2

); (y

1

; y

2

)) = d

1

(x

1

; y

1

) + d

2

(x

2

; y

2

)

=k �

1

(x

1

)� �

1

(y

1

) k + k �

2

(x

2

)� �

2

(y

2

) k

=k �(x

1

; x

2

)� �(y

1

; y

2

) k :

We check that d

1

+ d

2

2 C(X) if d

1

; d

2

2 C(X). Indeed, if (X; d

1

) and

(X; d

2

) are L

1

-embeddable, then (X; d

1

+ d

2

) is L

1

-embeddable, since it is

a subspace of (X � X; d

1

� d

2

) (via the embedding x 7�! (x; x)) which is

L

1

-embeddable by the previous argument.
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We now check (ii). It is easy to see that each cut function lies on an

extreme ray of C(X) (it lies, in fact, on an extreme ray of the metric cone).

Consider now d 2 C(X) which is not a cut function. We can suppose that

d(x

1

; x

2

) = 1, d(x

1

; x

3

) = � > 0 and d(x

2

; x

3

) = � > 0 for some x

1

; x

2

; x

3

2

X with � � �. Set d

1

=

R

D(X)

�(x

1

; x

2

)�(x

1

; x

3

)��(d�) and d

2

= d � d

1

.

Then, d

1

; d

2

2 C(X) by Theorem 3.6. But d

1

(x

1

; x

2

) =

1+���

2

> 0, since

2�(x

1

; x

2

)�(x

1

; x

3

) = �(x

1

; x

2

) + �(x

1

; x

3

) � �(x

2

; x

3

) for each cut function

�. Also, d

1

(x

2

; x

3

) = 0 and d

2

(x

2

; x

3

) = �. Therefore d does not lie on an

extreme ray of C(X) since d = d

1

+d

2

where d

1

and d

2

are not proportional

to d.

In the case X �nite, the following result is an immediate consequence of

Theorems 3.3 and 3.6.

Theorem 3.8 Let X = f1; : : : ; ng be a �nite set and let d be a semi-metric

on X. The following assertions are equivalent.

(i) (X; d) is L

1

-embeddable.

(ii) (X; d) is `

1

-embeddable.

(iii) d 2 Cut

n

.

In fact, even for X in�nite, the study of the L

1

-embeddable semi-metrics

on X can be reduced in some sense to the �nite case and thus to the study

of the cut cone. Indeed, based on the fact that C(X) is closed for the

topology of the pointwise convergence, it was shown in [33] that (X; d) is

L

1

-embeddable if and only if (Y; d

jY

) is L

1

-embeddable for each �nite subset

Y of X , where d

jY

denotes the restriction of d to the set Y .

Let d be de�ned on a set X ; d is said to be hypermetric if its restriction

to any �nite subset Y of X is hypermetric, i.e.

P

1�i<j�n

b

i

b

j

d(x

i

; x

j

) � 0

for all integers b

1

; : : : ; b

n

with

P

1�i�n

b

i

= 1, for all x

1

; : : : ; x

n

2 X and

all n � 1. Let Hyp(X) denote the set of the hypermetrics d on X . Then,

C(X) � Hyp(X) holds clearly. However, the inclusion is, in general, strict.

It is strict, for instance, if 7 � jX j < 1 or if X is the set of non negative

integers.

However, there are many examples of classes of semi-metric spaces (X; d)

for which the properties of being hypermetric and L

1

-embeddable are equiv-

alent. Such examples are given in section 4; see sections 4.3 and 4.4 for

examples with X in�nite.
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4 Metric properties

In this section, we give a hierarchy of metric properties, together with ex-

emples showing the irreversibility of the one-way implications. Then, we

consider three classes of metrics: graphic metrics, metrics from normed

spaces, metrics from lattices, for which the hierarchy partially collapses.

4.1 A hierarchy of metric properties

In this section, we consider several metric properties, in particular, hyper-

metricity, hypercube and `

1

-, `

2

-embeddability, ultrametricity, the negative

type, four point and rigidity conditions. We indicate which implications

exist among them.

We �rst recall some facts about the cut lattice, graphic metrics, ultra-

metrics and the four point condition.

Let L

n

denote the cut lattice, consisting of the integer combinations

P

S

�

S

�(S), �

S

integer, of the cut vectors of K

n

. It is easy to check that,

for d integral, d 2 L

n

if and only if d satis�es the following parity condition:

d

ij

+ d

ik

+ d

jk

� 0 ( mod 2) for i; j; k 2 V

n

: (19)

Therefore, every h-embeddable metric satis�es the above parity condi-

tion.

Given a graph G = (V;E), its path metric d

G

is de�ned by letting d

G

(i; j)

denote the length of a shortest path from i to j in G, for i; j 2 V . If non

negative weights w

e

are assigned to the edges e of G, the path metric of the

weighted graph (G;w) is de�ned similarly by de�ning the length of a path as

the sum of the weights of its edges. When its path metric is `

1

-embeddable,

we also say that the graph is an `

1

-graph. A metric is called graphic if it

is the path metric of some graph. Speci�c results on graphic metrics are

grouped in section 4.2.

A metric d is called ultrametric if it satis�es the condition:

d

ij

� max(d

ik

; d

jk

) (20)

for all distinct i; j; k, i.e. each triangle is isoceles with the third side shorter

or equal to the two others; this implies that any two distinct balls with the
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same radius are disjoint. See [4] and references there for a description of

applications of ultrametric spaces. An important class of ultrametric spaces

arises from valuated �elds (see e.g. [35]). Let F be a �eld and let j:j be a

non-archimedean valuation on F (e.g. the p-adic valuation on the �eld of

p-adic numbers), i.e. j:j is a map from F to R

+

satisfying:

� jaj = 0 if and only if a = 0, for a 2 F ,

� jabj = jajjbj for a; b 2 F ,

� ja + 1j � 1 for all a 2 F such that jaj � 1, or equivalently, ja + bj �

max(jaj; jbj) for a; b 2 F .

Then, d(a; b) = ja� bj de�nes an ultrametric on F .

Ultrametrics can be represented by weighted trees in the following way

(see [4]).

Let T = (V;E) be a rooted tree with root r 2 V and let X denote its

set of leaves (nodes of degree 1) other than the root. Let w

e

; e 2 E, be non

negative weights assigned to the edges of T and let d

T;w

denote the path

metric of the weighted tree (T; w). We suppose that d

T;w

(r; x) = h for all

leaves x 2 X , for some constant h, called the height of the tree; then, the

weighted tree is called a dendogram (or indexed hierarchy). The height h(v)

of a node v of T is de�ned as the length of a shortest path connecting v

to a leaf of T . A metric space (X; d

X

) is de�ned on the set X of leaves

by de�ning d

X

(x; y) as the height of the �rst predecessor of the leaves x; y.

Then, d

X

is ultrametric and, moreover, every ultrametric is of the form d

X

for some dendogram.

This tree representation for ultrametrics is used in classi�cation theory,

especially in taxonomy (see [88] and references there for details).

We give another connection with weighted trees. The following condition

is called the four point condition:

d

ij

+ d

kl

� max(d

ik

+ d

jl

; d

il

+ d

jk

) (21)

for i; j; k; l 2 V

n

. It implies the triangle inequality (1) (for k = l).

The metrics satisfying the four point condition (21) are exactly the path

metrics of weighted trees (with non negative weights); for this reason, they

also called tree metrics.
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It is easy to see that the condition (20) implies the condition (21), i.e.

every ultrametric satis�es the four point condition. Actually, every tree

metric can be characterized in terms of an associated ultrametric (see [20]).

Given r 2 V

n

and a constant c � max(d

ij

: i; j 2 V

n

), de�ne d

(r)

by:

d

(r)

ij

= c+

1

2

(d

ij

� d

ir

� d

jr

) for i; j 2 V

n

:

Then, d is a tree metric, i.e. satis�es the four point condition (21), if and

only if d

(r)

is ultrametric.

Observe that each ultrametric d is `

2

-embeddable (indeed, if d is ultra-

metric, then d

2

too is ultrametric and, thus, of negative type, implying that

d is `

2

-embeddable - see Table 1 for the implications). In fact, it is easy to

check that:

d is ultrametric () d

a

is ultrametric for all a 2 R

+

() d

a

is `

2

-embeddable for all a 2 R

+

() d

a

is a metric for all a 2 R

+

:

The inequality: min(m : d is `

2

-embeddable into R

m

) � n� 1, holds for

all `

2

-metrics with equality for ultrametrics [100].

We summarize in Table 1 below the implications existing between the

various metric properties considered here.

First, we add some examples showing that the one-way implications

shown in Table 1 are irreversible, and some additional remarks. P

n

denotes

the path on n nodes and C

n

the cycle on n nodes.

� If d is 2k + 1-gonal, then d is 2k + 2-gonal; if d is n + 3-gonal, then d is

n+1-gonal ([46]). Counterexamples to the reverse implications are given in

[11].

� The equivalence: d is `

2

-embeddable () d

2

2 Neg

n

, was proved in [144].

� Let d be the path metric of K

4

� P

3

, then d 2 Cut

n

, but d

2

62 Neg

n

; also,

d is metrically rigid, but not h-embeddable.

� Let d be the path metric ofK

7

�P

3

, orK

7

�P

4

, orK

7

�C

5

, then d 2 Hyp

n

,

but d 62 Cut

n

.

� Let d be the path metric of K

5

� K

3

, or K

9

� P

3

, then d 2 Neg

n

, but

d 62 Hyp

n

.

� Let d be the path metric of K

7

�K

5

, or K

11

� P

3

, then d (considered as

the symmetric matrix (d

ij

)

1�i;j�n

, with d

ij

= d

ji

and d

ii

= 0) has exactly

one positive eigenvalue, but d 62 Neg

n

. Note that the path metric of K

n+1

�

K

n�1

, n � 6, has eigenvalues 2n � 1;�1;�2 with respective multiplicities
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1,1,n�1 [159]. Also, the path metric ofK

n+2

�P

3

has one positive eigenvalue

if n � 9 and two otherwise [18].

� Let d be the path metric of P

3

, then d

2

2 Neg

n

and d satis�es the four

point condition, but d is not ultrametric.

� Let d be the path metric of K

5

� P

3

, or K

6

� P

3

, then d is `

1

-rigid, but

d is not metrically rigid. The path metric of K

4

is `

1

-embeddable, but not

`

1

-rigid.

� Let d be the path metric of K

6

� P

2

, then 2d 2 Cut

n

\ L

n

, but 2d is not

h-embeddable. The path metric of K

2;3

is not hypermetric, since it is not

5-gonal.

� For n = 7; 8, the path metric of K

n

� P

3

lies on a simplicial face (in fact,

on an extreme ray) of Hyp

n

, but it does not lie on a simplicial face ofMet

n

,

i.e. it is not metrically rigid; moreover, it does not belong to Cut

n

.

� Let d be the path metric of K

5

, then 2d is h-embeddable and h-rigid, but

not `

1

-rigid.
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d is `

2

� embeddable () d

2

2 Neg

n

(= d is ultrametric

+ + m

d is `

1

� embeddable () d 2 Cut

n

d

a

2Met

n

for all a 2 R

+

+ +

d 2Met

n

(= d 2 Hyp

n

d is the path metric

of a weighted tree

+ *

d has one (= d 2 Neg

n

d is the path metric

positive eigenvalue of a tree

+

d is metrically (= d is the path metric (= d is the path metric

rigid of a bipartite graph of an isometric subgraph

of a hypercube

+ +

d is `

1

� rigid d 2 Cut

n

\ L

n

(= d is h� embeddable

(if d 2 Cut

n

)

+ + +

d is h� rigid d 2 Cut

n

and () �d is h� embeddable

( if d is h-embeddable) d is rational valued for some integer � � 1

Table 1
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4.2 Metric properties of graphs

We group here several results on the metric properties of graphs.

A graph G = (V;E) is said to be an isometric subgraph of a graph

H = (W;F ) if there is a map (embedding)f from V toW such that d

G

(i; j) =

d

H

(f(i); f(j)) for all nodes i; j of G.

A typical question in the metric theory of graphs is whether G is an

isometric subgraph of another graph H , where H has a simpler structure,

e.g. H is a hypercube, a half-cube, or a product of complete graphs (see [90],

[160]). One of the motivations comes from the applications to the problem

of designing addressing schemes for computer communication networks (see

[28], [89]).

Recall that the n-dimensional hypercube is the graph (K

2

)

n

(also denoted

by H(n; 2)) whose node set is f0; 1g

n

with two nodes u; v 2 f0; 1g

n

adjacent

if their Hamming distance is equal to 1. The half-cube

1

2

H(n; 2) has node set

fu 2 f0; 1g

n

:

P

1�i�n

u

i

is even g with two nodes adjacent if their Hamming

distance is equal to 2. The cocktail party graphK

n�2

has 2n nodes: 1; : : : ; 2n

and its edges are all pairs except the n pairs (i; i+ n) for 1 � i � n.

It is clear from the de�nition that, for a graph G, its path metric d

G

is

h-embeddable if and only if G is an isometric subgraph of some hypercube.

Also, d

G

is `

1

-embeddable with scale 2, i.e. 2d

G

is h-embeddable, if and

only if G is an isometric subgraph of some half-cube. Note that, if d is the

path metric of the cocktail party graph K

n�2

and n � 5, then 2d 2 Cut

2n

(so K

n�2

is an `

1

-graph), 2d 2 L

2n

, but 2d is not h-embeddable.

The question of isometric embedding is directly linked to the problematic

of cuts; namely, by Theorem 3.4, G is an isometric subgraph of a hypercube

if and only if its path metric d

G

can be written as a non negative integer

combination of cut vectors.

The following results are known for graphic metrics.

Theorem 4.1 The graph G is an isometric subgraph of a hypercube if and

only if G is bipartite and, for all nodes a; b of G, the set G(a; b) := fu 2

V : d

G

(u; a) < d

G

(u; b)g is closed under taking shortest paths ([70]), or

equivalently, if and only if G is bipartite and d

G

is 5-gonal ([14]).

Theorem 4.2 Let G be a bipartite graph. The following properties are

equivalent [141]:

� d

G

is h-embeddable,
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� d

G

is `

1

-embeddable,

� d

G

is hypermetric,

� d

G

is 5-gonal,

� d

G

is of negative type,

� d

G

(as symmetric matrix with zero on its diagonal) has exactly one

positive eigenvalue.

Moreover, every bipartite graph is metrically rigid [122], implying that every

isometric subgraph of the hypercube is `

1

-rigid [62].

Theorem 4.3 [149]

(i) G is an `

1

-graph if and only if G is an isometric subgraph of a cartesian

product of half-cubes and cocktail party graphs.

(ii) If G is an `

1

-graph on n nodes, then its scale � is equal to 1, or is even

with � � n� 1. Moreover, if G is `

1

-rigid, then its scale � is equal to

1, or 2.

Theorem 4.4 [154] Let G be a graph. Then its path metric d

G

is hyper-

metric if and only if G is an isometric subgraph of a cartesian product of

half-cubes, cocktail party graphs and copies of the Gosset graph G

56

. (The

Gosset graph G

56

is a graph on 56 nodes arising as the 1-skeleton of the

Gosset polytope 3

21

[34].)

The following result gives a characterization of `

1

-graphs within the class

of graphs having a universal node. Given a graph G, rG denotes the graph

obtained by adding a node adjacent to all nodes of G. So the path metric

of rG takes only the values 1,2.

Theorem 4.5 [9] Let G be a connected graph on n nodes. The following

assertions are equivalent:

� rG is an `

1

-graph.

� G is an induced subgraph of a cocktail party graph, or G is a line graph

(i.e. G does not contain any of nine given graphs [26]).
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Moreover, if n � 37, then rG is an `

1

-graph if and only if its path metric

is 5-gonal and of negative type; if n � 28, then rG is an `

1

-graph if and

only if its path metric is hypermetric.

Theorem 4.6 [50] Let G be a regular graph of diameter 2. The following

assertions are equivalent:

(i) d

G

is of negative type,

(ii) d

G

is hypermetric,

(iii) d

rG

is of negative type,

(iv) the minimum eigenvalue of the adjacency matrix of G is greater or

equal to �2.

Moreover, the path metric d

G

of a regular graph G of diameter 2 is

hypermetric if and only if G = K

n�2

for some integer n, or G is an isometric

subgraph of a half-cube, or d

G

lies on an extreme ray of the hypermetric cone.

The classi�cation of hypermetricity, `

1

-embeddability, and `

1

-rigidity

was done for many classes of regular graphs (see, in particular, [50], [62],

[113]).

The following result is an analogue of Theorems 4.5 and 4.6 for the class

of (non necessarly graphic) metrics with values 1; 2; 3.

Theorem 4.7 (i) [10] Let d be a metric with values in f1; 2g. Then, d is h-

embeddable if and only if d is 5-gonal and satis�es (19), or equivalently,

if and only if d is the path metric of K

1;n�1

, K

2;2

, or

d

2

is the path

metric of K

n

.

(ii) [15] Let d be a metric on n � 9 points with values in f1; 2; 3g and

satisfying (19). The following assertions are equivalent:

� d is h-embeddable,

� d is `

1

-embeddable,

� d is hypermetric,

� d is 11-gonal.
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In [59], a characterization of h-embeddability is given for a larger class

of metrics including those whose values are all odd, or equal to 2.

We mention another application of isometric subgraphs of the cube in

terms of oriented matroids.

Theorem 4.8 [85] A graph G is isomorphic to the tope graph of an ori-

ented matroid of rank at most three if and only if G is planar, isometrically

embeddable in some hypercube, and antipodal (i.e. for each vertex v, there

is a unique vertex v

�

which is not closer to v than any neighboor of v

�

).

Finally, we mention a characterization of trees within `

1

-graphs, using

the notion of minimum size.

Proposition 4.9 [52] Let G be an `

1

-graph and let s(d

G

) denote the mini-

mum size of its path metric. Then, 2�

1

d

n

2

e

� s(d

G

) � n� 1. Equality holds

in the lower bound if and only if G = K

n

and in the upper bound if and only

if G is a tree.

Note also that, for d 2 Cut

n

, equality holds in the upper bound of (13),

i.e. s(d) =

P

1�i<j�n

d

ij

n�1

, if and only if d is the path metric of a weighted star

K

1;n�1

.

4.3 L

1

-metrics from normed spaces

A convex polytope is called a zonotope if it is the vector sum of some line

segments. A convex body which can be approximated by zonotopes with

respect to the Hausdor� metric is called a zonoid. Zonotopes and zonoids

are central objects in convex geometry and they are also relevant to many

other �elds (see e.g. [143] for a survey). They are, in particular, relevant to

the topic of L

1

-metrics as we now explain.

We �rst recall some de�nitions.

Let K be a convex body ( i.e. a convex compact set) in R

d

, K is centered

if it has a center of symmetry. Its support function is de�ned by:

h(K; x) = max(x

T

y : y 2 K)

for x 2 R

d

. It is easy to see that, if K is a centered convex body, then

k x k:= h(K; x) de�nes a norm on R

d

with K

�

as unit ball. Conversely,

every norm k : k on R

d

is of the form h(K; :), where K is the polar of the

unit ball. Each norm k : k on R

d

de�nes a metric d

k:k

on R

d

, called norm (or

Minkowski) metric, by setting d

k:k

(x; y) =k x � y k. The following results

give several equivalent characterizations for L

1

-embeddable normed spaces.
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Theorem 4.10 (see [1], [6], [143]). Let k : k be a norm on R

d

and let U

be its unit ball. The following assertions are equivalent:

(i) d

k:k

is of negative type.

(ii) d

k:k

is hypermetric.

(iii) (R

d

; d

k:k

) is L

1

-embeddable.

(iv) The polar of U is a zonoid, i.e. k : k= h(U

�

; :) is the support function

of a zonoid.

(v) There exists a positive Borel measure � on the hyperplanesets of R

d

such that the norm k : k is de�ned by the following formula (called

Crofton formula):

k x� y k= �([[x; y]])

where [[x; y]] denotes the set of hyperplanes meeting the segment [x; y].

Theorem 4.11 (see [6], [143]). Let k : k be a norm on R

d

for which the

unit ball U is a polytope. The following assertions are equivalent:

(i) k : k satis�es the Hlawkla inequality:

k x k + k y k + k z k + k x+ y+ z k�k x+ y k + k x+ z k + k y+ z k

for all x; y; z 2 R

d

.

(ii) d

k:k

is 7-gonal.

(iii) The polar of U is a zonotope.

(iv) (R

d

; d

k:k

) is L

1

-embeddable.

These results can be partially extended to the more general concept of

projective metrics. A continuous metric d on R

d

is called a projective metric

if it satis�es d(x; z) = d(x; y)+d(y; z) for any collinear points x; y; z lying in

that order on a common line. Clearly, every norm metric is projective. The

cone of projective metrics is the object considered by the unsolved fourth

Hilbert problem in R

n

(see [1], [3]).

We have the following characterization of L

1

-embeddability for projective

metrics.
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Theorem 4.12 [1] Let d be a projective metric on R

d

. The following as-

sertions are equivalent:

(i) d is hypermetric.

(ii) There exists a positive Borel measure � on the hyperplanesets of R

d

satisfying

�([[x]]) = 0 for all x 2 R

d

0 < �([[x; y]])<1 for all x 6= y 2 R

d

such that d(x; y) = �([[x; y]]) for x; y 2 R

d

. (As in Theorem 4.10,

[[x; y]] is the set of hyperplanes that meet the segment [x; y]):

(iii) (R

d

; d) is L

1

-embeddable (namely, d(x; y) = �([[x; y]]) = �([[0; x]]�[[0; y]])).

Remark that, for d = 2, Theorem 4.12 (ii) always holds, i.e. every

projective metric onR

2

is L

1

-embeddable. On the other hand, the projective

metric arising from the norm k x k= max(jx

1

j; jx

2

j; jx

3

j) in R

3

is not even

hypermetric (it is not 5-gonal).

4.4 L

1

-metrics from lattices

We give in this section results on the metrics arising from lattices. A good

reference on lattices is [27].

Let (L;�) be a lattice (possibly in�nite), i.e. a partially ordered set in

which any two elements x; y 2 L have a join x _ y and a meet x ^ y. A

valuation on L is a function v : L �! R

+

satisfying

v(x _ y) + v(x ^ y) = v(x) + v(y)

for all x; y 2 L. The valuation v is isotone if v(x) � v(y) whenever x � y

and it is positive if v(x) < v(y) whenever x � y; x 6= y. Set

d

v

(x; y) = v(x_ y)� v(x ^ y)

for x; y 2 L. Then, (L; d

v

) is a semi-metric space if v is an isotone valuation

on L and (L; d

v

) is a metric space if v is a positive valuation on L; in the

latter case, L is called a metric lattice (see [27]). Clearly, every metric lattice

is modular, i.e. satis�es: x ^ (y _ z) = (x ^ y) _ z for all x; y; z with z � x.

A lattice is called distributive if x^ (y _ z) = (x^ y) _ (x^ z) for all x; y; z.

The metric lattices which are distributive are characterized in [111]:
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Theorem 4.13 Let L be a metric lattice with positive valuation v. The

following assertions are equivalent:

(i) L is a distributive lattice.

(ii) (L; d

v

) is 5-gonal.

(iii) (L; d

v

) is hypermetric.

(iv) (L; d

v

) is L

1

-embeddable.

Proof. It su�ces to show the implications (ii)) (i) and (i)) (iv).

(ii) ) (i). Using the de�nition of the valuation v and applying the 5-

gonal inequality to the points t

1

= x_y, t

2

= x^y, t

3

= z, s

1

= x, s

2

= y, we

obtain the inequality: 2(v(x_y_z)�v(x^y^z))� v(x_y)+v(x_z)+v(y_z)

�v(x ^ y) � v(x ^ z) � v(y ^ z). By applying again the 5-gonal inequality

to the points t

1

= x, t

2

= y, t

3

= z, s

1

= x _ y, s

2

= x ^ y, we obtain

the reverse inequality. Therefore, the equality holds in the above inequality.

In fact, this condition of equality is equivalent to L being distributive (see

[27]).

(i) ) (iv). Take a �nite subset L

0

of L. We show that (L

0

; d

v

) is L

1

-

embeddable. Let K be the sublattice of L generated by L

0

. Suppose K

has length n. Then, K is isomorphic to a ring N of subsets of a set X ,

jX j = n ("ring" means closed under [ and \). Via this isomorphism, we

have a valuation, again denoted by v, de�ned on N . We can assume without

loss of generality that v(;) = 0. Then, v can be extended to a valuation v

�

on 2

X

satisfying: v

�

(S) =

P

x2S

v

�

(fxg) for S � X . Now, if x 7�! S

x

is

the isomorphism from K to N , then we have the embedding x 7�! S

x

from

(L

0

; d

v

) to (2

X

; v

�

) which is isometric. Indeed, d

v

(x; y) = v(x_ y)� v(x^ y)

= v(S

x

[ S

y

)� v(S

x

\ S

y

) = v

�

(S

x

[ S

y

)� v

�

(S

x

\ S

y

) = v

�

(S

x

�S

y

). This

shows that every �nite subset of (L; d

v

) is L

1

-embeddable, and thus (L; d

v

)

is L

1

-embeddable.

The following example was given in [5]. Let L be the set of positive

integers with order relation x � y if x divides y. Then, x ^ y is the g.c.d.

of x and y, x _ y is their l.c.m. and (L;�) is a distributive lattice. Hence,

(L; d

v

) is L

1

-embeddable for every positive valuation v on L. For instance,

v(x) = log x is a positive valuation on L, hence d

v

(x; y) = log(

l:c:m:(x;y)

g:c:d:(x;y)

) is

L

1

-embeddable.

The following result was proved in [5], [6]; it implies Theorem 4.13.
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Theorem 4.14 Let (S;_) be a commutative semi-group. Given v : S 7�!

R, set d

v

(x; y) = 2v(x_ y)� v(x_ x)� v(y _ y) for x; y 2 S. Suppose that,

either S is a group, or x_ : : :_x = x for all x 2 S, where the join x_ : : :_x

is repeated 2n times, for some integer n � 1. Then, the following assertions

are equivalent:

(i) (S; d

v

) is L

1

-embeddable.

(ii) (S; d

v

) is of negative type.

This result applies, in particular, to the case when S is a subset of a

lattice L which is stable under the join operation _ of L and contains the

least element of L. Therefore, when applied to S = L, it gives that, for

a metric lattice L, (L; d

v

) is of negative type if and only if (L; d

v

) is L

1

-

embeddable.

5 Applications in combinatorial optimization

5.1 The maximum cut problem

Given a graph G = (V

n

; E) and non negative weights w

e

, e 2 E, assigned to

its edges, the max-cut problem consists of �nding a cut �(S) whose weight

P

e2�(S)

w

e

is as large as possible. The max-cut problem is a notorious NP-

hard problem [87]. If we replace "as large" by "as small", then we obtain

the min-cut problem which can be solved using network ow techniques

[84]. Several classes of graphs are known for which the max-cut problem

can be solved in polynomial time. This is the case, for instance, for planar

graphs [96], for graphs not contractible to K

5

[21], for weakly bipartite

graphs, i.e. the graphs G for which the polytope fx 2 R

E

+

: x(C) � jCj �

1 for all odd cycles C of Gg has all its vertices integral [95]. In fact, the

class of weakly bipartite graphs includes the graphs not contractible to K

5

([83], or [136]).

For de�nitions of the terms used in this section, see e.g. [94], [145].

The max-cut problem can be reformulated as a linear programming prob-

lem over the cut polytope, namely,

max w

T

x

subject to x 2 CutP (G):

This is the polyhedral approach, classical in combinatorial optimization,

which leads to the study of the facets of CutP (G). This approach has been

used in practice for solving large instances of the max-cut problem (see
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e.g. [23], [24]). Its success depends, of course, on the degree of knowledge

about the facets needed for the problem at hand and of their tractability,

i.e. whether they can be separated in polynomial time or, at least, whether

a good separation heuristic is available.

For instance, CutP (G) =Met(G), i.e. the inequalities

x(F )� x(C � F ) � jF j � 1 for F � C cycle with jF j odd

are su�cient for describing CutP (G), if and only if G is not contractible to

K

5

[25]. Moreover, the above inequalities can be separated in polynomial

time, implying that the max-cut problem in graphs not contractible to K

5

is polynomially solvable [25].

The max-cut problem in an arbitrary graph G on n nodes can always be

formulated as

max w

T

x

subject to x 2 CutP

n

after setting w

e

= 0 if e is not an edge of G. This permits to fully exploit

the symmetry of the complete graph.

The max-cut problem has many applications in various �elds. For in-

stance, the problem of determining ground states of spin glasses with an

exterior magnetic �eld, or the problem of minimizing the number of vias

(holes on a printed circuit board) subject to pin assignment and layer pref-

erences, can both be formulated as instances of the max-cut problem; they

arise, respectively, in statistical physics and VLSI circuit design. We refer to

[23] for a detailed description of these two applications, together with a com-

putational treatment. In fact, the spin glass problem was already mentioned

in [127] as an optimization problem over the boolean quadric polytope.

Another application is to unconstrained quadratic 0-1 programming,

which consists of solving

max

P

1�i�j�n

c

ij

x

i

x

j

subject to x 2 f0; 1g

n

where c

ij

2 R. If we set p

ij

= x

i

x

j

for 1 � i � j � n, this problem can be

equivalently formulated as a linear programming problem over the boolean

quadric polytope

max c

T

p

subject to p 2 BQP

n

:

Just as the points of the boolean quadric polytope and of the cut poly-

tope are in one-to-one correspondence (via the covariance map; see section
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2.4), the max-cut problem and the unconstrained quadratic programming

problem are equivalent.

Other approaches, beside the polyhedral approach, have been proposed

for attacking the max-cut problem. In particular, an approach based on

eigenvalue methods is investigated in [45], [138]. We mention briey some

facts, permitting to connect it with polyhedral aspects.

The Laplacian matrix L of the graph G is the n � n matrix de�ned

by L

ii

= deg

G

(i) for i 2 V

n

and L

ij

= �a

ij

for i 6= j 2 V

n

, where A =

(a

ij

)

1�i;j�n

is the adjacency matrix of G. Set

'(G) =

n

4

min(�

max

(L+ diag(u)) : u 2 R

n

;

X

1�i�n

u

i

= 0)

where diag(u) is the diagonal matrix with diagonal entries u

1

; : : : ; u

n

and

�

max

(L+ diag(u)) is the largest eigenvalue of the matrix L+ diag(u). Set

 (G) = max(

1

2

Trace(AY ) :

1

2

J�Y is positive semi de�nite and Y

ii

= 0 for 1 � i � n)

where J is the n � n matrix with all entries equal to 1. Let mc(G) denote

the maximum cardinality of a cut in G. Then,

(i) mc(G) � '(G) [45]

(ii) mc(G) �  (G) [146]

The quantity  (G) can be easily reformulated as

 (G) = max(

X

1�i<j�n

a

ij

x

ij

: x satis�es the inequalities (22) for all integers b

1

; : : : ; b

n

);

X

1�i<j�n

b

i

b

j

x

ij

�

(

P

1�i�n

b

i

)

2

4

(22)

The inequalities (22) are clearly valid for the cut polytope CutP

n

, but they

are never facet de�ning since they are dominated by the gap inequalities (5)

(de�ned in section 2.2).

In fact, using general duality theory, it is shown that '(G) =  (G) holds

by [137].
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5.2 Multicommodity ows

An instance of the multicommodity ow problem consists of two graphs: the

supply graph G = (V

n

; E) together with a capacity function c : E �! R

+

,

and the supply graph H = (T; U) together with a demand function r : U �!

R

+

, where T � V

n

is the set of nodes spanned by U . Given a pair of nodes

(s; t), P

st

denotes the set of st-paths in G and we set P = [

(s;t)2U

P

st

. A

multiow is a function f : P �! R

+

. The instance (G;H; c; r) is said to

be feasible if there exists a feasible multiow, i.e. a multiow f : P �! R

+

satisfying the following capacity and demand requirements:

X

P2P ;e2P

f

P

� c

e

for e 2 E;

X

P2P

st

f

P

� r

st

for (s; t) 2 U:

Using Farkas lemma, it can be checked that:

Proposition 5.1 The problem (G;H; c; r) is feasible if and only if c

T

y �

r

T

z � 0 for all (y; z) 2 C(G;H), where C(G;H) is the cone de�ned by

C(G;H) = f(y; z) 2 R

E

+

�R

U

+

:

X

e2P

y

e

� z

st

� 0 for P 2 P

st

and (s; t) 2 Ug:

The cone C(G;H) is studied in detail in [109] and, in particular, the

fractionality of its extreme rays.

Without loss of generality, we can suppose that G is the complete graph

K

n

; then, r is extended to K

n

by setting r

e

= 0 for the edges e 62 U and

U = fe : r

e

> 0g is called the support of r and we simply say that the pair

(c; r) is feasible. An alternative characterization for feasible multiows is

given by the following so-called Japanese theorem (from [103], [130], restated

in [123], [124]).

Theorem 5.2 The pair (c; r) is feasible if and only if

(c� r)

T

d � 0 for all d 2Met

n

: (23)

Therefore, the metric cone Met

n

is the dual cone to the cone of feasible

multiows.

An obvious way for testing feasibility of the pair (c; r) is to solve the

linear program min((c� r)

T

d : d 2Met

n

) which has

�

n

2

�

variables and 3

�

n

3

�
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constraints (the triangle inequalities (1)). An alternative way is to check

the condition (23) for all extreme rays d of Met

n

. This approach leads to

the study of the extreme rays of the metric cone Met

n

(see references on it

in section 2.4).

There are other variants of the Japanese theorem, in particular, in the

more general setting of binary matroids (see [148]). In particular, the metric

cone Met(G) (de�ned in relation (11)) arises naturally when studying mul-

ticommodity ows. It is shown in [148] that all extreme rays ofMet(G) are

0; 1-valued (i.e. Met(G) = Cut(G)) if and only if G is not contractible to

K

5

. The graphs for which all extreme rays of Met(G) are 0; 1; 2-valued are

characterized in [147]. The graphs for which all the vertices of the metric

polytope MetP (G) (de�ned in relation (12)) are

1

3

-integral are studied in

[119] (x is said to be

1

3

-integral if 3x is integral).

Since the cut cone Cut

n

is contained in the metric cone Met

n

, a neces-

sary condition for the existence of a feasible multiow is the following cut

condition:

X

e2�(S)

(c

e

� r

e

) � 0 for all S � V

n

: (24)

The well known Ford-Fulkerson theorem [84] states that the cut condition

is, in fact, also su�cient for feasibility in the case of single commodity ows,

i.e. when jU j = 1. We give below some results of this type. An integral

multiow is a multiow f with integral values.

Theorem 5.3 Assume that the support of the demand function r is K

4

,

C

5

, or the union of two stars (i.e. all edges are covered by two nodes).

Then, the pair (c; r) is feasible if and only if the cut condition (24) holds

[132]. Moreover, if c; r are integral, (c � r)

T

�(S) is even for all cuts and

(24) holds, then there exists an integral multiow (see [124] and references

there).

Theorem 5.4 [108], [110]. If the support graph of the demand function r

is a subgraph of K

5

(including K

5

), c; r are integral and (c�r)

T

�(S) is even

for all cuts, then there exists an integral multiow if and only if (23) holds

or, equivalently, if and only if (24) holds and (c � r)

T

d � 0 holds for all

0-extensions of the path metrics of K

2;3

.
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There is a close connection between these results and L

1

-embeddability,

as noted in [16]. Given a semi metric d on V

n

, an extremal graph ([123],

[124]) for d is a minimal graph K = (V

0

;W ) such that, for each x; y 2 V

n

,

there exists (s; t) 2 W satisfying d

sx

+ d

xy

+ d

yt

= d

st

, and V

0

is the set

of nodes covered by W . The extremal graph is unique if d

ij

> 0 for all

i; j 2 V

n

. The notion of extremal graph is a key notion for testing feasibility

of multiows.

Proposition 5.5 ([123], [124]). The pair (c; r) is feasible if and only if

(c� r)

T

d � 0 holds for all d 2Met

n

having an extremal graph K = (V

0

;W )

such that W is a subset of the support of the demand function r.

Theorem 5.6 [107] If d 2 Met

n

has an extremal graph which is K

4

, C

5

,

or a union of two stars, then d 2 Cut

n

. Moreover, if d satis�es the parity

condition (19), then d is a non negative integer sum of cuts, i.e. d is h-

embeddable.

Note that the latter two results imply the �rst part of Theorem 5.3.

We conclude with some additional related results.

Given a supply graph G, a capacity function c and a demand graph

H , the maximum multiow problem consists of �nding a multiow f not

exceeding the capacity constraints whose value

P

P2P

f

P

is as large as pos-

sible. By linear programming duality, this problem is equivalent to the linear

programming problem:

min(c

T

y : y 2 R

E

+

; y(P ) � 1 for all P 2 P):

This leads to the study of the polytope P (G;H) = fy 2 R

E

+

: y(P ) �

1 for all P 2 Pg. The fractionality of the vertices of P (G;H) is studied in

detail in [109]; in particular, the demand graphs H for which all vertices of

P (G;H) are

1

4

-integral for an arbitrary demand graphG with V (H) � V (G),

are characterized.

5.3 The Boole problem

Let (
;A; �) be a probability space and let A

1

; : : : ; A

n

be n events of A. A

classical question, which goes back to Boole [30], is the following:

Suppose we are given the values p

i

= �(A

i

) for 1 � i � n, what is the

best estimation of �(A

1

[ : : :A

n

) ?
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It is easy to see that the answer is:

max(p

1

; : : : ; p

n

) � �(A

1

[ : : :A

n

) � min(1;

X

1�i�n

p

i

):

More generally, let I be a collection of subsets of f1; : : : ; ng.

Suppose we are given the values of the joint probabilities p

I

= �(\

i2I

A

i

),

for all I 2 I. What is the best estimation of �(A

1

[ : : : [ A

n

) in terms of

the p

I

's ?

In fact, the answer to this problem is given by the facet de�ning inequal-

ities for the polytope BQP

I

n

(de�ned in section 2.4). Namely,

�(A

1

[ : : :[A

n

) � max(w

T

p : w

T

z � 1 is facet de�ning for BQP

I

n

)

(see Proposition 5.8 and relation (29)). In particular, when I consists of all

pairs and singletons, then the lower bound for �(A

1

[ : : : [ A

n

) is in terms

of the facets of the boolean quadric polytope BQP

n

.

Estimations for �(A

1

[ : : :[ A

n

) via linear programming.

First, we observe that Theorem 3.2 remains valid for the polytope BQP

I

n

,

for an arbitrary non empty set family I.

Theorem 5.7 Let I be a non empty collection of subsets of f1; : : : ; ng and

let p = (p

I

)

I2I

2 R

I

. The following assertions are equivalent:

(i) p 2 BQ

I

n

(resp. p 2 BQP

I

n

).

(ii) There exist a non negative measure space (resp. a probability space)

(
;A; �) and A

1

; : : : ; A

n

2 A such that p

I

= �(\

i2I

A

i

) for all I 2 I.

Proof. It is identical to that of Theorem 3.2.

Given p 2 BQ

I

n

, consider the following two linear programming prob-

lems.

minimize

P

;6=S�f1;:::;ng

�

S

subject to

P

;6=S�f1;:::;ng

�

S

�

I

(S) = p

�

S

� 0 for ; 6= S � f1; : : : ; ng

(25)
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maximize

P

;6=S�f1;:::;ng

�

S

subject to

P

;6=S�f1;:::;ng

�

S

�

I

(S) = p

�

S

� 0 for ; 6= S � f1; : : : ; ng

(26)

Let z

min

(resp. z

max

) denote the optimum value of the program (25)

(resp. (26)).

So, the program (25) (resp. (26)) is evaluating the minimum value (resp.

the maximum value) of

P

S

�

S

for a decomposition p =

P

S

�

S

�

I

(S), �

S

� 0,

of p 2 BQ

I

n

. In particular, in the case I = I

�2

, if we set d = '

�1

c

0

(p), then

d 2 Cut

n+1

and z

min

coincides with the minimum size s(d) (de�ned in

section 2.5). This approach, in the case of I

�2

, is considered in [114], [135].

Proposition 5.8 z

min

� �(A

1

[ : : :[A

n

) � z

max

.

Proof. For S � f1; : : : ; ng, set A

S

=

T

i2S

A

i

\

T

i 62S

(
 � A

i

). Then,

\

i2I

A

i

= [

I�S�f1;:::;ng

A

S

, 
 = [

S

A

S

and A

1

[ : : :A

n

= [

S 6=;

A

S

. We have

p

I

= �(\

i2I

A

i

) for each I 2 I. Therefore, p =

P

S 6=;

�(A

S

)�

I

(S) holds,

with �(A

S

) � 0. Hence (�(A

S

) : ; 6= S � f1; : : : ; ng) is a feasible solution

to the program (25), or (26), with objective value �(A

1

[ : : : [ A

n

). This

proves the result.

The dual programs to (25) and (26) are the following programs (27) and

(28), respectively.

maximize w

T

p

subject to w

T

�

I

(S) � 1 for ; 6= S � f1; : : : ; ng

(27)

minimize w

T

p

subject to w

T

�

I

(S) � 1 for ; 6= S � f1; : : : ; ng

(28)

By linear programming duality, we have:

z

min

= max(w

T

p : w

T

z � 1 is a valid inequality for BQP

I

n

) (29)

and it is easily veri�ed that, in relation (29), it is su�cient to consider facet

de�ning inequalities. Similarly,
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z

max

= min(w

T

p : w

T

z � 1 is facet de�ning for the polytope

Conv(f�

I

(S) : ; 6= S � V

n

g):

(The latter polytope is distinct from BQP

I

n

since it does not contain the

origin).

Therefore, by (29), every valid inequality for BQP

I

n

yields a lower bound

for �(A

1

[ : : : [ A

n

) in terms of the joint probabilities p

I

= �(\

i2I

A

i

) for

I 2 I. Examples of such lower bounds are exposed below (after Proposition

5.9).

The case when the collection I of index sets is I

�m

is considered in [32].

The following estimations for �(A

1

[ : : :[ A

n

) are given there:

y

min

� �(A

1

[ : : :[A

n

) � y

max

(30)

where y

min

is the optimum value of the linear program (31) below and y

max

is the optimum value of (32) below, setting S

k

=

P

1�i

1

<i

2

<:::<i

k

�n

�(A

i

1

\

A

i

2

\ : : : \A

i

k

) for 1 � k � n.

minimize

P

1�i�n

v

i

subject to

P

1�i�n

�

i

k

�

v

i

= S

k

for 1 � k � m

v

i

� 0 for 1 � i � n

(31)

maximize

P

1�i�n

v

i

subject to

P

1�i�n

�

i

k

�

v

i

= S

k

for 1 � k � m

v

i

� 0 for 1 � i � n

(32)

In fact, the programs (25), (26) give sharper bounds than the programs

(31), (32), respectively. Namely, we have:

Proposition 5.9 In the case I = I

�m

for some integer m, 1 � m � n, we

have y

min

� z

min

� �(A

1

[ : : : [A

n

) � z

max

� y

max

:

Proof. Indeed, every feasible solution for (25) yields a feasible solution for

(31) with the same objective value. Namely, let (�

S

; ; 6= S � f1; : : : ; ng)

be a feasible solution for (25), i.e. �

S

� 0 and p =

P

S

�

S

�

I

�m

(S). Set

v

i

=

P

S:jSj=i

�

S

for 1 � i � n. Then,
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P

1�i�n

�

i

k

�

v

i

=

P

1�i�n

�

i

k

�

P

S:jSj=i

�

S

=

P

1�i

1

<:::<i

k

�n

P

S:i

1

;:::;i

k

2S

�

S

=

P

1�i

1

<:::<i

k

�n

p

fi

1

;:::;i

k

g

=

P

1�i

1

<:::<i

k

�n

�(A

i

1

\ : : :\ A

i

k

)

= S

k

:

Therefore, (v

1

; : : : ; v

n

) is a feasible solution for (31) with

P

1�i�n

v

i

=

P

S

�

S

.

This shows that y

min

� z

min

. The inequality z

max

� y

max

follows from the

same argument.

Examples of bounds for �(A

1

[ : : :[A

n

). The best lower bound for

�(A

1

[ : : :[A

n

) is given by z

min

, de�ned by relation (29), whose evaluation

relies on the knowledge of the facets of the polytope BQP

I

n

. In the case

I = I

�2

, the facet structure of the boolean quadric polytope BQP

n

has been

extensively studied (directly or indirectly, via the covariance map, through

the cut polytope). We describe below several examples of valid inequalities

for BQP

n

, together with the lower bounds they yield for �(A

1

[ : : :[ A

n

).

First, note that, if p =

P

S

�

S

�(S) with �

S

� 0, then n

P

1�i�n

p

i

�

2

P

1�i<j�n

p

ij

=

P

S

�

S

jSj(n + 1 � jSj), where n � jSj(n + 1 � jSj) �

b

n+1

2

cd

n+1

2

e if S 6= ;. Hence, we have:

n

P

1�i�n

p

i

�2

P

1�i<j�n

p

ij

b

n+1

2

cd

n+1

2

e

�

P

;6=S�f1;:::;ng

�

S

n

P

1�i�n

p

i

�2

P

1�i<j�n

p

ij

n

�

P

;6=S�f1;:::;ng

�

S

(33)

and, therefore, from the de�nition of z

min

, z

max

and from Proposition 5.8,

n

P

1�i�n

p

i

� 2

P

1�i<j�n

p

ij

b

n+1

2

cd

n+1

2

e

� �(A

1

[ : : : [A

n

) �

n

P

1�i�n

p

i

� 2

P

1�i<j�n

p

ij

n

:(34)

Note that the inequalities equivalent to (33) in the context of the cut

cone are the bounds on the minimum size of d 2 Cut

n+1

given in (13).

The inequality:

2k

X

1�i�n

p

i

� 2

X

1�i<j�n

p

ij

� k(k + 1) (35)
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is valid for the boolean quadric polytope BQP

n

, for 1 � k � n � 1; it is

facet de�ning if 1 � k � n � 2 and n � 4. Setting b

0

= 2k + 1 � n and

b

1

= : : : = b

n

= 1, the inequality (35) corresponds (via the covariance map)

to the inequality:

X

0�i<j�n

b

i

b

j

x

ij

� k(k + 1) (36)

which is valid for the cut polytope CutP

n+1

; (36) is a switching of the

hypermetric inequality Hyp

n+1

(2k+1�n; 1; : : : ; 1;�1; : : : ;�1) (with n� k

coe�cients +1 and k coe�cients -1). (See e.g. [60].) Therefore, we have the

following lower bound for �(A

1

[ : : :[ A

n

):

2

k + 1

X

1�i�n

p

i

�

2

k(k + 1)

X

1�i<j�n

p

ij

� �(A

1

[ : : :[ A

n

) (37)

for each k, 1 � k � n � 1; it was found independently by several authors,

including [36], [44], [86]. Note that (37) coincides with the lower bound of

(34) in the case n = 2k.

More generally, given integers b

1

; : : : ; b

n

and k � 0, the inequality:

X

1�i�n

b

i

(2k+ 1� b

i

)p

i

� 2

X

1�i<j�n

b

i

b

j

p

ij

� k(k + 1) (38)

is valid for BQP

n

. This yields the bound:

1

k(k + 1)

(

X

1�i�n

p

i

b

i

(2k+ 1� b

i

)� 2

X

1�i<j�n

b

i

b

j

p

ij

) � �(A

1

[ : : :[A

n

):

The programs (31), (32) provide weaker bounds than the programs (25),

(26), but they present the advantage of being easier to handle, especially

for small values of m. Exploiting their special structure, the bounds y

min

and y

max

were explicitely described in [32] in terms of the S

k

's (de�ned in

relation (30)).

Let M denote the matrix corresponding to the program (25) or (26). its

columns are the n vectors a

i

, where a

i

= (

�

i

1

�

;

�

i

2

�

; : : : ;

�

i

m

�

), for 1 � i � n.
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Set b = (S

1

; : : : ; S

m

). The matrix M is full rank, hence a basis B consists

of a set of m linearly independent vectors among a

1

; : : : ; a

n

. The basis

B is called dual feasible if the vector y = 1

T

m

M

�1

B

is feasible for the dual

program of (31), i.e. y

T

a

i

� 1 for i 2 f1; : : : ; ng � B, since equality holds

for the indices i 2 B (M

B

is the submatrix of M whose columns are those

vectors a

i

belonging to the basis B; 1

m

has m coordinates equal to 1). If

M is dual feasible, then the inequality 1

T

B

M

�1

B

b � �(A

1

[ : : : [ A

n

) holds.

The dual feasible bases are explicitely described in [32] together with the

corresponding bounds for �(A

1

[ : : : [A

n

).

For example, form even, fa

1

; a

2

; : : : ; a

m

g is a dual feasible basis, yielding

the bound:

�(A

1

[ : : :[ A

n

) � S

1

� S

2

+ S

3

� S

4

: : :+ (�1)

m�1

S

m

which was �rst given in [29]. For m = 2, this is the special case k = 1 of the

bound (37); another choice of basis yields the general bound (37).

In fact, the method from [32] also works for �nding estimates of the

probabilities �(f� � rg) and �(f� = rg), where � denotes the random

variable counting the number of events that occur among A

1

; : : : ; A

n

.

The inequality (38) can alternatively be written as

(

X

1�i�n

b

i

p

i

� k)(

X

1�i�n

b

i

p

i

� k � 1) � 0 (39)

with the convention that, when developing the product, the expression p

i

p

j

is replaced by the variable p

ij

(setting p

ii

= p

i

). This inequality (or special

cases of it) was considered under this form by many authors (e.g. [79], [114],

[127], [135], [161]). This suggests naturally the following generalization of

the inequality (39) in the case I

�m

, when m is an even integer. Given

integers b

1

; : : : ; b

n

and k

1

; : : : ; k

m

� 0, the inequality

Y

1�l�m

(

X

1�i�n

b

i

p

i

� k

l

)(

X

1�i�n

b

i

p

i

� k

l

� 1) � 0 (40)

is clearly valid for the polytope BQP

I

�2m

n

. Thus arises the question of

determining the parameters b

1

; : : : ; b

n

; k

1

; : : : ; k

m

for which (40) de�nes a

facet of BQP

I

�2m

n

. This problem is, however, already di�cult for the case

m = 1 of the boolean quadric polytope.
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6 Hypermetrics and geometry of numbers

6.1 L-polytopes

We recall here some de�nitions about lattices and L-polytopes. A detailed

treatment can be found in [42], [55].

Given x; y 2 R

k

, we set d

0

(x; y) = (k x � y k

2

)

2

(the square of the

euclidian distance). Recall that the hypermetric cone Hyp

n

is de�ned by

the hypermetric inequalities:

X

1�i<j�n

b

i

b

j

x

ij

� 0 for b

1

; : : : ; b

n

integers with

X

1�i�n

b

i

= 1: (41)

For d 2 Hyp

n

, (V

n

= f1; : : : ; ng; d) is called a hypermetric space. It is

convenient to work with the hypermetric cone Hyp

n+1

de�ned on the n+ 1

points 0; 1; 2; : : : ; n.

A subset L � R

k

is a lattice if, up to translation, L is a discrete subgroup

of R

k

. So, the notion of lattice considered in this section is distinct from

the notion of lattice (as partially ordered set) used in section 4.4. A subset

B = fv

0

; v

1

; : : : ; v

m

g � L is generating for L if, for each v 2 L, there exist

integers z

0

; z

1

; : : : ; z

m

such that

P

0�i�m

z

i

= 1 and v =

P

0�i�m

z

i

v

i

. If,

moreover, there is unicity of the integers z

i

, then B is an (a�ne)basis of L;

in this case, m = jBj � 1 is called the dimension of L.

Let L be a k-dimensional lattice in R

k

. Let S = S(c; r) denote the

sphere with center c and radius r. The sphere S is called an empty sphere

(in Russian literature), or hole (in English literature), in L if the following

two conditions hold:

� k v � c k

2

� r holds for all v 2 L,

� S \ L has a�ne rank k + 1.

Then, the polytope P de�ned as the convex hull of S \ L is called an

L-polytope (or Delaunay polytope, or constellation); S is its circumscribed

sphere and c is its center. The L-polytope P is generating if its set of vertices

V (P ) generates L, and basic if V (P ) contains an a�ne basis of L. Actually

all known generating L-polytopes are basic.

For v 2 S, let v

�

= 2c�v denote its antipode on S. Every L-polytope P

is either asymmetric, i.e. v

�

62 V (P ) for each vertex v 2 V (P ), or centrally

symmetric, i.e. v

�

2 V (P ) for each v 2 V (P ).
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Two L-polytopes P; P

0

have the same type if they are a�nely equivalent,

i.e. P

0

= T (P ) for some a�ne bijective map T .

Examples of L-polytopes include the n-dimensional simplex �

n

, hyper-

cube 

n

, cross polytope �

n

:= Conv(�e

i

: 1 � i � n) (where e

1

; : : : ; e

n

are

the unit vectors in R

n

). Both �

n

and 

n

are centrally symmetric, �

n

is asym-

metric. All types of L-polytopes in dimension k � 4 have been classi�ed in

[80]:

� for k = 1, there is only �

1

= �

1

= 

1

,

� for k = 2, they are: �

2

and �

2

= 

2

,

� for k = 3, they are: �

3

, �

3

, 

3

, the prism (with triangular base) and

the pyramid (with square base),

� for k = 4, there are 19 types.

The following polytope P

m

p;q

was studied and named repartitioning poly-

tope by Voronoi (see also [17]). Let P be a polytope and let v be a point

which does not lie in the a�ne space spanned by P ; the convex hull of P and

v is called the pyramid with base P and apex v and is denoted by Pyr(P ).

We de�ne iteratively Pyr

m

(P ) as Pyr(Pyr

m�1

(P )), setting Pyr

0

(P ) = P .

Let S

p

, S

q

be two simplices of respective dimensions p; q and lying in a�ne

spaces which intersect in one point. Then, P

m

p;q

:= Pyr

m

(Conv(S

p

[ S

q

)) is

called a repartitioning polytope; it has dimension m+p+q and m+p+q+2

vertices. In fact, P

m

p;q

does not denote a concrete polytope, but corresponds

to a class of a�nely equivalent polytopes of the same type.

A construction of symmetric L-polytopes is given in [51]. Let L be an

integral lattice (i.e. u

T

v integer for all u; v 2 L) and set m = min(u

T

u : u 2

L; u 6= 0). For c 2 L; c 6= 0, set P

c

= Conv(fu 2 L : u

t

u = m and 2u

T

c =

(k c k

2

)

2

g). Then, P

c

is a symmetric L-polytope. Moreover, under some

condition, the set of diagonals of P

c

is a set of equiangular lines. (See

section 6.4 below.)

Finally, we mention the connection between L-polytopes and Voronoi

polytopes. Given v

0

2 L, the Voronoi polytope P

V

(v

0

) is the set fx 2 R

k

: k

x� v

0

k

2

�k x� v k

2

for all v 2 Lg. The vertices of P

V

(v

0

) are exactly the

centers of the L-polytopes in L which contain v

0

.
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6.2 Hypermetrics and L-polytopes

We state here the beautiful connection existing between hypermetrics and

L-polytopes.

Theorem 6.1 [7]

(i) Let P be an L-polytope with set of vertices V (P ). Then, (V (P ); d

0

) is

a hypermetric space.

(ii) Let d 2 Hyp

n+1

. Then, there exist a lattice L

d

� R

k

of dimension

k � n, an L-polytope P

d

in L

d

and a map f

d

: f0; 1; : : : ; ng �! V (P

d

),

f

d

(i) = v

i

for 0 � i � n, such that

� fv

0

; v

1

; : : : ; v

n

g generates L

d

,

� d

ij

= d

0

(v

i

; v

j

) = (k v

i

� v

j

k

2

)

2

for 0 � i � j � n.

Moreover, the triple (L

d

; P

d

; f

d

) is unique, up to translation and or-

thogonal transformation.

Therefore, hypermetrics on n + 1 points correspond to generating L-

polytopes of dimension k � n.

Proof. (i) Let S(c; r) denote the empty sphere circumscribed to P . Let

b

v

, v 2 V (P ), be integers with

P

v2V (P )

b

v

= 1. Then,

P

u;v2V (P )

b

u

b

v

d

0

(u; v) =

P

u;v2V (P )

b

u

b

v

(k (u� c) + (c� v) k

2

)

2

=

P

u;v2V (P )

b

u

b

v

(2r

2

+ 2(u� c)

T

(c� v))

= 2r

2

� 2(k

P

u2V (P )

b

u

u � c k

2

)

2

� 0;

because

P

u2V (P )

b

u

u 2 L.

We now give a sketch of the proof of (ii). One of the basic tools used in the

proof is the covariance map '

c

0

. De�ne p = '

c

0

(d), p = (p

ij

)

1�i�j�n

. By

relation (8), d 2 Hyp

n+1

if and only if

P

1�i;j�n

b

i

b

j

p

ij

�

P

1�i�n

b

i

p

ii

� 0 for

all integers b

1

; : : : ; b

n

. Therefore, if d 2 Hyp

n+1

, then the symmetric matrix

(p

ij

)

1�i;j�n

is positive semi de�nite and, thus, p

ij

= v

T

i

v

j

, 1 � i � j � n, for

some vectors v

1

; : : : ; v

n

2 R

k

, where k is the rank of the matrix (p

ij

)

1�i;j�n

,

k � n.

Moreover, one can show the existence of c 2 R

k

such that 2c

T

v

i

=

(k v

i

k

2

)

2

for 1 � i � n. Therefore, v

0

= 0; v

1

; : : : ; v

n

lie on the sphere

S(c; r :=k c k

2

). Remains only to show that fv

1

; : : : ; v

n

g generates a lattice

L and that the sphere S is empty in L.



48 M. Deza and M. Laurent

Proposition 6.2 [55] Let P be an L-polytope and let V be a subset of its set

of vertices V (P ). Let P

0

be the L-polytope associated with the hypermetric

space (V; d

0

). Then, V (P

0

) � V (P ) with equality if and only if V is a

generating subset of V (P ).

In particular, every face of an L-polytope is an L-polytope.

We summarize in Table 2 below the correspondences between some spe-

cial hypermetrics and their associated L-polytopes. Given d 2 Hyp

n+1

,

F (d) denotes the smallest face of Hyp

n+1

containing d.

hypermetric d associated L-polytope P

[7]

d 2 Cut

n+1

() V (P ) is contained in the set of

vertices of a parallepiped

d is a cut () P = �

1

[7]

F (d) = Hyp

n+1

() P = �

n

[17]

F (d) is a facet () P is a repartitioning polytope

[55]

F (d) is an extreme ray () P is extreme

[55]

F (d) = F (d

0

) () P; P

0

are a�nely equivalent

Table 2

The hypermetric cone is de�ned by an in�nite list of inequalities. Thus

arises naturally the question of deciding whether it is a polyhedral cone, i.e.

whether among the in�nite list of inequalities (41) only a �nite number is

non redundant. The answer is yes, as stated in the following result.

Theorem 6.3 [53] The hypermetric cone Hyp

n

is polyhedral.

The proof given in [53] is based on the following two facts:
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� the correspondence between the hypermetrics of Hyp

n+1

and the L-

polytopes of dimension k � n,

� the fact that, in given dimension, the number of types of L-polytopes

is �nite [157], [158] (a direct proof is given in [53]).

Let b

n

max

denote the largest value of max

i

jb

i

j for which the inequality

(41) de�nes a facet of Hyp

n

. Then, b

n

max

<

2

n�2

(n�1)!

n+1

is shown in [17].

6.3 Rank of an L-polytope

Let d 2 Hyp

n+1

and let F (d) denote the smallest face of Hyp

n+1

containing

d. The dimension of F (d) is called the rank of d and denoted as r(d),

or r(V

n+1

; d). Hence, r(d) = 1 if d lies on an extreme ray of Hyp

n+1

,

r(d) =

�

n+1

2

�

if d lies in the interior of Hyp

n+1

and r(d) =

�

n+1

2

�

� 1 if F (d)

is a facet of Hyp

n+1

.

Let P be an L-polytope. The rank r(P ) of P is de�ned as the rank of

the hypermetric space (V (P ); d

0

). In fact, the rank of a hypermetric d is an

invariant of the associated L-polytope P

d

, namely, r(d) = r(P

d

).

Proposition 6.4 [55] Let P be an L-polytope and let V � V (P ) be a gen-

erating subset. Then, r(V; d

0

) = r(V (P ); d

0

) = r(P ) holds.

Proposition 6.5 [55] Let P be an L-polytope. Then, r(P ) = 1 if and only

if the only a�ne bijective transformations T (up to translation and orthog-

onal transformation) for which T (P ) is an L-polytope are the homotheties.

The extreme L-polytopes, i.e. those having rank 1, are of special impor-

tance since they correspond to the extreme rays of the hypermetric cone.

For n � 5, Hyp

n+1

= Cut

n+1

, i.e. the only extreme rays are the cut vectors.

Therefore, the only extreme L-polytope of dimension k � 5 is �

1

.

Proposition 6.6 [55] Let P

i

, i = 1; 2, be an L-polytope in R

k

i

. Then,

P

1

� P

2

is an L-polytope in R

k

1

+k

2

with rank r(P

1

� P

2

) = r(P

1

) + r(P

2

).

For instance, r(

k

) = kr(

1

) = k. An important consequence of Propo-

sition 6.6 is that, if P is an extreme L-polytope in a lattice L, then L must

be irreducible.

Proposition 6.7 [55] Let P be a basic L-polytope of dimension k. Then,
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(i)

�

k+2

2

�

� r(P ) �

�

k+2

2

�

� jV (P )j,

(ii) for P centrally symmetric, r(P ) �

�

k+1

2

�

�

jV (P )

2

+ 1.

For instance, for �

k

, r(�

k

) = k+ 1 yielding equality in both inequalities

of (i); for �

k

, r(�

k

) =

�

k+1

2

�

� k + 1 yielding equality in (ii).

6.4 Extreme L-polytopes

A direct application of Proposition 6.7 yields the following bounds for an

extreme basic L-polytope of dimension k:

jV (P )j �

k(k + 3)

2

(42)

jV (P )j � k(k + 1) if P is centrally symmetric: (43)

There is a striking analogy between the bounds (42) and (43) and some

known upper bounds (see [121]) for the number N

p

of points in a spherical

two-distance set of dimension k and the number N

l

of lines in a set of

equiangular lines of dimension k, namely,

N

p

�

k(k + 3)

2

and N

l

�

k(k + 1)

2

:

Moreover, if N

l

=

k(k+1)

2

, then k + 2 = 4; 5, or k + 2 = q

2

for some odd

integer q � 3 (see [121]). The �rst case of equality is for q = 3, k = 7,

N

l

= 28; it corresponds to the set of 28 equiangular lines de�ned by the

diagonals of the Gosset polytope 3

21

. The next case of equality is for q = 5,

k = 23, N

l

= 276; it corresponds to the set of 276 equiangular lines de�ned

by the diagonals of the extreme L-polytope P

23

constructed from the Leech

lattice (see below). For q = 7, k = 47, N

l

= 1128, it is not known whether

such set of equiangular lines exists.

However, there are examples of extreme L-polytopes realizing equality

in the bounds (42) or (43), but not arising from some spherical two-distance

set or from some equiangular set of lines; this is the case for the polytopes

P

8

, P

16

constructed from the Barnes-Wall lattice (see below). There are

also examples of extreme L-polytopes not realizing equality in the bounds

(42), or (43).
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We have given in [55] several examples of extreme L-polytopes achieving

or not equality in the bounds (42) or (43). We refer to [55] for a detailed

account and to [42] for details on lattices.

Extreme L-polytopes in root lattices. All the extreme L-polytopes

in root lattices are classi�ed. Indeed, by Witt's theorem, the only irreducible

root lattices are A

n

(n � 0), D

n

(n � 4) and E

n

(n = 6; 7; 8). All types of

L-polytopes in a root lattice are given in [154], or [75]. They are the half-

cube h

n

, the cross polytope �

n

, the simplex �

n

, the Gosset polytope 3

21

and the Schl�ai polytope 2

21

(whose 1-skeletons are, respectively, the half-

cube graph

1

2

H(n; 2), the cocktail party graph K

n�2

, the complete graph

K

n+1

, the Gosset graph G

56

and the Schl�ai graph G

27

). Among them,

the extreme polytopes are: the segment �

1

, the Schl�ai polytope 2

21

and

the Gosset polytope 3

21

, of respective dimensions 1,6,7. The polytope 2

21

is asymmetric with 27 vertices, realizing equality in the bound (42). The

polytope 3

21

is centrally symmetric with 56 vertices, realizing equality in the

bound (43). Both are basic. We do not known any other extreme L-polytope

of dimension k � 7 beside �

1

, 2

21

, 3

21

.

Extreme L-polytopes in sections of the Leech lattice �

24

. The

Leech lattice �

24

is a lattice of dimension 24. By taking suitable sections

of the sphere of minimal vectors of �

24

, two extreme L-polytopes are con-

structed in [55]:

� P

23

, centrally symmetric, with 552 vertices, dimension 23, realizing

equality in the bound (43),

� P

22

, asymmetric, with 275 vertices, dimension 22, realizing equality in

the bound (42).

Extreme L-polytopes in sections of the Barnes-Wall lattice �

16

.

The Barnes-Wall lattice �

16

is a lattice of dimension 16. Several examples

of extreme L-polytopes are constructed from �

16

in [55]:

� P , centrally symmetric (constructed from a deep hole of �

16

), with

512 vertices, dimension 16 (equality does not hold in (43)),

� Q, centrally symmetric, with 272 vertices, dimension 16, realizing

equality in the bound (43),

� P

8

; P

16

, asymmetric, with 135 vertices, dimension 15, realizing equal-

ity in the bound (42),
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� Q

0

, asymmetric, with 1080 vertices, dimension 15 (equality does not

hold in (42)).

Extreme hypermetric graphs. Let G be a hypermetric graph on n

nodes, i.e. whose path metric d

G

is hypermetric, and let P

G

denote the

L-polytope associated with d

G

. It is shown in [50] that, if G is an extreme

hypermetric graph, i.e. d

G

lies on an extreme ray of the hypermetric cone

Hyp

n

and if G 6= K

2

, then G is of one of the following two types:

Type I: P

G

= 3

21

, implying that 8 � n � 56 and G has diameter 2 or 3,

Type II: P

G

= 2

21

, implying that 7 � n � 27 and G has diameter 2.

Moreover, for G of diameter 2, G is extreme of type II if and only if its

suspension rG is extreme of type I.

In particular, the number of extreme hypermetric graphs is �nite.

7 Applications in quantum mechanics

7.1 Preliminaries on quantum mechanics

The object of (non relativistic) quantum mechanics is to study microscopic

objects, e.g. molecules, atoms, or any elementary particles. One of the

fundamental di�erences with classical (Newtonian) mechanics is that many

physical quantities can take only discrete values at the microscopic level and

that the state of microscopic objects is disturbed by observations. More-

over, identical particles, i.e. with the same physical characteristics as mass,

size, charge,etc, can be distinguished in classical mechanics (for instance,

by following their trajectories) but they are undistinguishable within quan-

tum mechanics. J. von Neumann [156] laid the foundations for a rigorous

mathematical account of quantum mechanics. We recall below some basic

de�nitions and facts from quantum mechanics needed for our treatment.

Useful references containing a detailed account of these facts include [81],

[93], [125], [127], [161].

Consider a system of N � 2 identical particles. Each particle is repre-

sented by a vector x = (r; s) composed by a space coordinate r 2 R

3

and a

spin coordinate s 2 Z

2

; X = R

3

�Z

2

denotes the space of the coordinates.

Let H(N) denote the set of the measurable complex valued functions de�ned

on X

N

; H(N) is a Hilbert space, called the Fock space, with inner product
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<  

1

;  

2

>=

Z

x2X

N

 

�

1

(x) 

2

(x)dx

for  

1

;  

2

2 H(N). The physical state of the system is represented by a unit

vector  2 H(N), called the wavefunction. Using the fact that no physical

observation can be made that permits to distinguish the particles, it can be

shown that, either all functions of H(N) are symmetric, or all of them are

antisymmetric. In the symmetric case, the particles are called bosons and

in the antisymmetric case, they are called fermions. We consider here the

case of a system of N fermions, i.e. the wavefunctions are antisymmetric

functions  2 H(N) with <  ;  >= 1. In fact, the case of bosons can

be treated in a similar way if the antisymmetry condition is replaced by

the symmetry condition and the determinants by permanents in the Slater

determinants (de�ned below).

A physical quantity of the system, or observable, is represented by a

Hermitian operator A of the space H(N) and the expected value of A in the

state  is given by

< A >

 

:=<  ;A >=

Z

 

�

(x)A (x)dx:

Among the observables of the system, the simplest ones are those that the

system may have (then the expected value of the observable is equal to one),

or lack (then the expected value is zero). Such observables are represented

by orthogonal projections on subspaces of H(N).

Every observable A being a Hermitian operator admits a spectral de-

composition. For simplicity, we assume that A can be decomposed as

A =

P

i�1

�

i

E

i

, where the �

i

's are the eigenvalues of A and E

i

denotes

the projection on the eigenspace associated with the eigenvalue �

i

. So, the

projection E

i

corresponds to the property "The observable A has value �

i

".

If the system is in the state  , then it has the property associated with E

i

if

< E

i

>

 

= 1, i.e. if A = �

i

 , that is  is an eigenvector of A corresponding

to the eigenvalue �

i

.

The standard deviation of the observable A in the state  is given by

�

 

(A) = j < A

2

>

 

�(< A >

 

)

2

j

1

2

:

Heisenberg's uncertainty principle states that, if A;B are two observables of

the system in the state  , then �

 

(A)�

 

(B) �

1

2

j <  ; (AB � BA) > j,
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i.e. A;B cannot be simultaneously measured with precision if they do not

commute.

An important observable of the system is its energy, represented by the

Hamiltonian operator and denoted by 
. The average energy of the system

in the state  is given by < 
 >

 

. A fundamental problem in quantum

mechanics is to derive bounds on the average energy of the system without

knowing explicitely the state  of the system. In fact, as we shall explain

below, this problem has some tight connections with the problem of �nding

the linear description of the boolean quadric polytope.

The density matrix of order p of  2 H(N) is the complex valued func-

tion �

(p)

 

de�ned on X

p

�X

p

by:

�

(p)

 

(x

0

1

: : :x

0

p

jx

1

: : : x

p

) =

 

N

p

!

Z

y2X

N�p

 

�

(x

0

1

; : : : ; x

0

p

; y) (x

1

; : : : ; x

p

; y)dy(44)

Density matrices were introduced in [102] (see also [125]); Dirac [69] already

considered density matrices of order p = 1. Density matrices have a simpler

and more direct physical meaning than the wavefunction itself, in particu-

lar, the diagonal elements �

(p)

 

(x

1

: : : x

p

jx

1

: : : x

p

) which are of special impor-

tance. Indeed, N

�1

�

(1)

 

(x

1

jx

1

)dv

1

is the probability of �nding a particle with

spin s

1

within the volume dv

1

around the point r

1

, when all other particles

have arbitrary positions and spins. Similarly,

�

N

2

�

�1

�

(2)

 

(x

1

x

2

jx

1

x

2

)dv

1

dv

2

is the probability of �nding a particle with spin s

1

within the volume dv

1

around the point r

1

, and another particle with spin s

2

within the volume

dv

2

around the point r

2

, when all other particles have arbitrary spins and

positions, etc...

From the antisymmetry of the wavefunction  , �

(p)

 

(x

1

: : : x

p

jx

1

: : : x

p

) =

0 if x

i

= x

j

for distinct i; j. In other words, particles with parallel spins are

kept apart. This phenomenon is a consequence of the Pauli principle.

Density matrices have been widely studied. In particuler, they were the

central topic of several conferences held at Queen's University, Kingston,

Canada, yielding three volumes of proceedings ([39], [78], [81]).

Every Hermitian operator A of H(N) can be expanded as

A = A

0

+

X

1�i�N

A

i

+

1

2!

X

1�i 6=j�N

A

ij

+ : : : (45)
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where the n-th term is an (n�1)-particle operator. Therefore, the expected

value of A in the state  can be expressed, in terms of the density matrices,

as follows:

< A >

 

= A

0

+

Z

fA

1

�

(1)

 

(x

0

1

jx

1

)g

x

0

1

=x

1

dx

1

+

+

Z

fA

12

�

(2)

 

(x

0

1

x

0

2

jx

1

x

2

)g

x

0

1

=x

1

;x

0

2

=x

2

dx

1

dx

2

+ : : : (46)

with the following convention for the notation fA

1

�

(1)

 

(x

0

1

jx

1

)g

x

0

1

=x

1

: A

1

operates only on the unprimed coordinate x

1

, not on x

0

1

, but after the action

of A

1

has been carried out, one sets again x

0

1

= x

1

. The same convention

applies to the other terms.

By the Hartree-Fock approximation (see [93]), one can assume that the

expansion of the Hamiltonian 
 in relation (45) has only terms involving

two particles at most, i.e. 
 = 


0

+

P

1�i�N




i

+

1

2

P

i 6=j




ij

. In other words,

one takes only into account pairwise interactions between the particles and

the interaction of each particle with an exterior potential. Observe that 


can then be expressed as 
 =

1

2

P

i 6=j

G

ij

, where G

ij

= 


ij

+

1

N�1

(


i

+




j

) +

2

N(N�1)




0

. Therefore, from relation (46), the average energy depends

only on the second order density matrices �

(2)

 

. Hence, the question of

�nding bounds on the average energy reduces to the question of �nding

the boundary conditions on the second order density matrices. In fact, the

density matrices of �rst and second order contain already most of the useful

information about the physical state of the system accessible to physicists.

Let �

k

; k � 1, be an orthonormal set (assumed to be discrete for the sake

of simplicity) of functions of H(1) such that each function f 2 H(1) can be

expanded as

f =

X

k�1

< �

k

; f > �

k

: (47)

The functions �

k

are called the spin-orbitals. Given a set K = fk

1

; : : : ; k

N

g,

with 1 � k

1

< : : : < k

N

, the Slater determinant �

K

is de�ned by

�

K

(x

1

; : : : ; x

N

) =

1

p

N !

det(�

k

1

(x); : : : ;�

k

N

(x)) (48)
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where �

k

(x) denotes the vector (�

k

(x

1

); : : : ;�

k

(x

N

)). Equivalently,

�

K

(x

1

; : : : ; x

N

) =

1

p

N !

X

�2Sym(n)

sign(�)�

k

�(1)

(x

1

) : : :�

k

�(N)

(x

N

): (49)

Then, each wavefunction  2 H(N) can be expanded as

 (x

1

; : : : ; x

N

) =

X

K=fk

1

;:::;k

N

g;1�k

1

<:::<k

N

C

K

�

K

(50)

where

C

K

= < �

K

;  >

=

p

N !

Z

 (x

1

; : : : ; x

N

)�

�

k

1

(x

1

) : : :�

�

k

N

(x

N

)dx

1

: : : dx

N

(51)

with

P

K

jC

K

j

2

=<  ;  >= 1.

A usual assumption consists in selecting a �nite set of n spin-orbitals

f�

1

; : : : ;�

n

g so that the �nite sum

X

K�f1;:::;ng;jKj=N

C

K

�

K

(52)

constitutes a good approximation of the wavefunction  . From now on,

we assume that  is, in fact, equal to the �nite sum in (52). It can be

shown ([125]) that the 2nd-order density matrix �

(2)

 

can also be expanded

in terms of the Slater determinants. Namely, if  is given by (52) where the

coe�cients C

K

are given by (51), then

�

(2)

 

(x

0

1

x

0

2

jx

1

x

2

) =

X

1�i<j�n;1�h<k�n



 

(ijjhk)�

�

fi;jg

(x

0

1

; x

0

2

)�

fh;kg

(x

1

; x

2

) (53)

The coe�cients 

 

(ijjhk) are given by



 

(ijjhk) =

X

C

�

I

C

K

�

I

i;j;I�fi;jg

�

K

h;k;K�fh;kg

(54)
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where the sum is over all subsets I;K � f1; : : :ng of cardinality N such that

i; j 2 I , h; k 2 K and I � fi; jg = K � fh; kg, and we set �

j

1

:::j

p

i

1

:::i

p

= sign(�)

if there is a permutation � mapping i

1

on j

1

, : : : , i

p

on j

p

and �

j

1

:::j

p

i

1

:::i

p

= 0

otherwise. In particular, the diagonal terms are given by



 

(ijjij) =

X

i;j2K�f1;:::;ng;jKj=N

jC

K

j

2

(55)

They have the following physical meaning:

�

N

2

�

�1



 

(ijjij) is the probability

of �nding a particle in the i-th spin-orbital and another one in the j-th

spin-orbital while all other particles occupy arbitrary spin-orbitals.

7.2 The N-representability problem

Given a complex valued function � de�ned on X

2

�X

2

, � is said to be N -

representable if there exists a wavefunction  2 H(N) such that � = �

(2)

 

.

The pure state representability problem consists of �nding the conditions

that � must satisfy in order to be N -representable. This problem can be

relaxed to the ensemble representability problem as follows. Instead of asking

whether � is the second order density matrix of a single wavefunction  , one

may ask whether there exists a convex combination

P

w

 

 (w

 

� 0,

P

w

 

=

1) of wavefunctions such that � =

P

w

 

�

(2)

 

is the convex combination of

their second order density matrices.

Note that, from the point of view of �nding a state of minimum energy,

it is equivalent to consider pure states or ensembles (mixtures) of states. In-

deed, both < 
 >

 

and

P

w

 

< 
 >

 

have the same minimum (equal to the

minimum eigenvalue of the Hamiltonian 
 and attained at a corresponding

eigenvector).

Let P

(2)

N

denote the convex set consisting of the convex combinations

P

 

w

 

�

(2)

 

(w

 

� 0,

P

 

w

 

= 1) of second order density matrices of nor-

malized wavefunctions  2 H(N). The question of �nding a characterization

of P

(2)

N

was formulated in [37] as the ensemble N -representability problem.

The convex structure of P

(2)

N

was studied e.g. in [38], [43], [76].

The N -representability problem can be formulated similarly for density

matrices of any order p � 1. The ensemble N -representability problem for

density matrices of order p = 1 was solved in [37] (see also [115]). Namely,

a matrix �(x

0

1

jx

1

) is is of the form

P

w

 

�

(1)

 

(x

0

1

jx

1

) for w

 

� 0,

P

w

 

= 1,
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<  ;  >= 1 and  2 H(N) if and only if Tr(�) =

R

�(x

1

jx

1

)dx

1

= N

and the eigenvalues of � satisfy 0 � � � 1. However, the ensemble N -

representability problem is already di�cult for density matrices of order

p = 2. In fact, as stated in the next Theorem 7.1, the representability

problem for their diagonal elements is equivalent to the membership problem

in the boolean quadric polytope and hence it is NP -hard. For p � 2,

the representability problem involves not only conditions on the eigenvalues

but also on the interrelations of the eigenvectors. On the other hand, no

satisfactory solution exists for the pure N -representability problem even for

the case p = 1.

Let BQP

I

=2

n

(N) denote the polytope de�ned as the convex hull of the

vectors �

I

=2

(K) for K � f1; : : : ; ng of cardinality N . From relation (55), if

 = �

K

is a Slater determinant, then 

 

(ijjhk) = 0 except if (i; j) = (h; k)

and i; j 2 K in which case 

 

(ijjij) = 1. Therefore, the diagonal terms

of 

�

K

coincide with the vector �

I

=2

(K). For that reason, the polytope

BQP

I

=2

n

(N) is sometimes called the N -Slater hull (e.g. in [77],[79]).

From (53), theN -representability problem amounts to �nding the bound-

ary conditions on the coe�cients 

 

(ijjhk). In fact, the boundary conditions

for the diagonal terms 

 

(ijjij) are precisely the valid inequalities for the

N -Slater hull BQP

I

=2

n

(N).

Theorem 7.1 Given  = ((ij))

1�i<j�n

, the following assertions are equiv-

alent:

(i) There exists a normalized wavefunction  2 H(N) such that (ij) =



 

(ijjij) for all 1 � i < j � n.

(ii) There exists a convex combination

P

w

 

 (w

 

� 0,

P

w

 

= 1) of

normalized wavefunctions  2 H(N) such that (ij) =

P

w

 



 

(ijjij)

for 1 � i < j � n.

(iii) The vector  belongs to BQP

I

=2

n

(N).

Proof. (i)) (ii) is clear.

(ii) ) (iii): Suppose �rst that (ij) = 

 

(ijjij) for some normalized  2

H(N) given by (52). Then, from (55),  =

P

K�f1;:::;ng;jKj=N

jC

K

j

2

�

I

=2

(K)

with

P

jC

K

j

2

=<  ;  >= 1. Hence  2 BQP

I

=2

n

(N). Suppose now that

(ij) =

P

w

 



 

(ijjij) with w

 

� 0,

P

w

 

= 1,  2 H(N) and <  ;  >= 1.
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Then,  =

P

K

t

K

�

I

=2

(K), where t

K

=

P

 

w

 

jC

 

K

j

2

� 0 and

P

K

t

K

= 1.

Therefore,  2 BQP

I

=2

n

(N).

(iii) ) (i): Assume  =

P

K

t

K

�

I

=2

(K) for t

K

� 0 and

P

K

t

K

= 1. Set

C

K

=

p

t

K

and  =

P

K

C

K

�

K

. Then,  = 

 

holds.

Therefore, the pure and ensemble representability problems are the same

when restricted to the diagonal terms. However, in their general form, they

are distinct problems. For instance, P

(2)

N

has additionnal extreme points

besides the second order density matrices of the Slater determinants (even

though those are the only extreme points when restricted to the diagonal

terms). Other extreme points for P

(2)

N

are given in [38], [76].

We conclude with some additional remarks.

� The N -representability problem for variable N leads to the study of the

boolean quadric polytope BQP

n

.

� The polytopes BQP

I

=2

n

(N) and BQP

n

(N) = BQP

I

�2

n

(N), lying respec-

tively in R

(

n

2

)

and R

(

n+1

2

)

, are in one-to-one correspondance. Indeed, each

point x 2 BQP

n

(N) satis�es the equations:

P

1�i<j�n

x

ij

=

�

N

2

�

;

P

1�j�n;j 6=i

x

ij

= (N � 1)x

ii

for 1 � i � n:

Hence both polytopes have the dimension

�

n

2

�

� 1.

� The combinatorial interpretation of the N -representability problem from

Theorem 7.1 was given in [162]. Actually, this paper treats the general prob-

lem of N -representability for density matrices of arbitrary order p � 1. We

have exposed only the case p = 2 for the sake of simplicity and because this

is the case directly relevant to our problematic of cuts. For arbitrary p � 2,

the analogue of Theorem 7.1 leads to the study of the polytope BQP

I

=p

n

(N)

in R

(

n

p

)

, de�ned as the convex hull of the I

=p

-intersection vectors �

I

=p

(K),

for K � f1; : : : ; ng, jKj = N .

The facial structure of the polytope BQP

I

=p

n

(N) is studied in [161]; in

particular, the full description of its facets in the cases: p = 2, N = 3,

n = 6; 7 and partial results in the case: p = 2, N = 3, n = 8 are given there.

� An additional alternative interpretation of the boolean quadric polytope

BQP

n

is given in [79], in terms of positive semi-de�nite two-body operators.
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Let a

i

denote the annihilation operator of the Fock space [

N�1

H(N)

and a

y

i

, its adjoint, the creation operator (see [93]). Both are de�ned by

their action on the Slater determinants. Namely, for K = fk

1

; : : : ; k

N

g with

1 � k

1

< : : : < k

N

,

a

i

(�

K

) =

(

0 if i 62 K

(�1)

j�1

�

K�fig

if i = k

j

2 K

a

y

i

(�

K

) =

(

0 if i 2 K

(�1)

j�1

�

K[fig

if i 62 K and k

j�1

< i < k

j

Hence, a

y

i

a

i

(�

K

) = jK \ figj�

K

, for each K � f1; : : : ; ng. Therefore, the

Slater determinants �

K

are common eigenvectors for the operators a

y

i

a

i

and

thus for any two-body operator of the form

B = b

0

+

X

1�i�n

b

i

a

y

i

a

i

+

X

1�i�j�n

b

ij

a

y

i

a

i

a

y

j

a

j

: (56)

The cone Q

+

(I

n

), consisting of the two-body operators B of the form

(56) which are positive semi-de�nite, is considered in [79]. Since any such

operator has the same eigenvectors �

K

associated with the eigenvalues b

0

+

P

i2K

b

i

+

P

i;j2K

b

ij

, the cone Q

+

(I

n

) can be equivalently de�ned as the cone

of the vectors b := (b

0

; b

i

1 � i � n; b

ij

1 � i � j � n) for which b(x) := b

0

+

P

1�i�n

b

i

x

i

+

P

1�i�j�n

b

ij

x

i

x

j

� 0 for each x 2 f0; 1g

n

. Therefore, Q

+

(I

n

)

is the dual cone to BQP

n

, i.e. b 2 Q

+

(I

n

) if and only if the inequality

b(x) � 0 is valid for BQP

n

.

The cone Q

+

(Z

n

) := fb : b(x) � 0 for all x 2 Z

n

g, which corresponds

to the case of a system of bosons (when several particles may occupy the

same spin-orbital) while Q

+

(I

n

) corresponds to a system of fermions (with

at most one particle per spin-orbital), is also considered in [79].

Let us �nally mention a connection between the hypermetric coneHyp

n+1

and the cone Q

+

(Z

n

). It can be established via the covariance map '

c

0

.

Namely,

'

c

0

(Hyp

n+1

) = fa = (a

ij

)

1�i�j�n

:

X

1�i;j�n

a

ij

x

i

x

j

�

X

1�i�n

a

ii

x

i

� 0 for x 2Z

n

g

and, therefore,

'

c

0

(Hyp

n+1

) = Q

+

(Z

n

) \ fb : b

0

= 0; b

i

= �b

ii

for 1 � i � ng

is a section of the cone Q

+

(Z

n

).
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7.3 The quantum correlation polytope

We address in this section a connection between the boolean quadric poly-

tope BQP

n

and the quantum correlation polytope, considered in [133], [134].

Recall that the boolean quadric polytope BQP

n

arises naturally in the

theory of probability. Namely, from Theorem 3.2, given p = (p

ij

; 1 � i �

j � n) 2 R

(

n+1

2

)

, then p 2 BQP

n

if and only if there exist a probability

space (
;A; �) and n events A

1

; : : : ; A

n

2 A such that

p

ij

= �(A

i

\ A

j

) for all 1 � i � j � n:

For that reason, the polytope BQP

n

is also called the correlation polytope in

[133], [134], [135]. For n = 3, BQP

n

is also called the Bell-Wigner polytope.

As an extension, [133] introduces the quantum correlation polytope whose

points represent the probability that a quantum mechanical system has the

properties associated with two projection operators in a given state. We �x

some notation.

As we saw before, the state of a quantum mechanical system is repre-

sented by a unit vector  of a Hilbert space H (H = H(N) if the system

has N particles). Let E

 

denote the projection operator from H to the line

spanned by  , i.e. E

 

(�) =<  ; � >  for � 2 H . Equivalently, a state of

the system is given by such a projection operator E

 

; such a state is called a

pure state. More generally, we consider also non pure states, namely convex

combinations of pure states: W =

P

 

�

 

E

 

(�

 

� 0,

P

 

�

 

= 1,  2 H

with <  ;  >= 1). Such states W are called ensemble states, or mixtures.

Pure and ensemble states were already considered in section 7.2. Alterna-

tively, a state of the system is a bounded linear operator W of H which is

Hermitian, positive semi-de�nite and has trace one.

Given p = (p

ij

; 1 � i � j � n) 2 R

(

n+1

2

)

, we say that p has a quantum

mechanical representation if there exists a Hilbert space H , a state W , n

projections E

1

; : : : ; E

n

(not necessarly distinct, nor commuting) such that

p

ij

= trace(WE

i

^E

j

) for 1 � i � j � n

where E

i

^ E

j

denotes the projection from H to the subspace E

i

(H) \

E

j

(H). So p

ij

represents the probability that the system has the properties

associated with the projections E

i

and E

j

when it is in the state W . Let

QCP

n

denote the polytope in R

(

n+1

2

)

consisting of those p which admit a

quantum mechanical representation; QCP

n

is called the quantum correlation

polytope.
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Finally let T

n

denote the set of the vectors p 2 R

(

n+1

2

)

satisfying

0 � p

ij

� min(p

ii

; p

jj

) � max(p

ii

; p

jj

) � 1

for 1 � i � j � n. It is easy to see that the extreme points of T

n

are exactly

the vectors p 2 T

n

with 0-1 coordinates.

Theorem 7.2 (i) BQP

n

� QCP

n

� T

n

.

(ii) QCP

n

is is a convex set which contains the interior of T

n

.

(iii) The subset of QCP

n

consisting of those p admitting a quantum me-

chanical representation in which the state W = E

 

is pure is also

convex and contains the interior of T

n

.

For clarity, we give the proof of the statement (i) of Theorem 7.2.

Proof. The inclusion QCP

n

� T

n

follows from the fact that each state

W is positive semi-de�nite with trace 1. We check the inclusion BQP

n

�

QCP

n

. Let p 2 BQP

n

. Hence p =

P

K�f1;:::;ng

�

K

�(K) where �

K

� 0

and

P

K

�

K

= 1. Let H be a Hilbert space of dimension 2

n

and let ( 

K

,

K � f1; : : : ; ng) be an orthonormal basis of H indexed by the subsets of

f1; : : : ; ng. Let W be the operator of H de�ned by W ( 

K

) = �

K

 

K

for all

K. Let E

i

denote the projection from H to the subspace H

i

spanned by

the vectors  

K

with i 2 K; then E

i

^ E

j

is the projection on the subspace

spanned by  

K

for i; j 2 K. Note that the trace of the operator WE

i

^ E

j

is equal to

P

i;j2K

�

K

= p

ij

. This shows that p belongs to QCP

n

.

Note that, if p 2 QCP

n

has a quantum mechanical representation in

which the operators E

i

commute then, in fact, p 2 BQP

n

.

Note also that every p 2 L

n

with 0 < p

ij

< 1 for all i; j belongs to QCP

n

.

Therefore, except for some boundary cases, every p 2 T

n

has a quantum

mechanical representation, i.e. the only requirements for joint probabilities

in the quantum case are that probabilities be numbers between 0 and 1 and

that the probability of the joint be less or equal to the probability of each

event. Hence the probabilities of quantum mechanical events do not obey

the laws of classical probability theory. New theories of quantum probability

and quantum logic have been developped; see, for instance, [133], [134].

The region QCP

n

� BQP

n

is called the interference region. Several

examples of physical experiments are described in ([133], [134]) that yield

some pair distributions p lying in the interference region. For example,
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the classical Einstein-Podolsky-Rosen experiment ([74]) yields p 2 QCP

3

�

BQP

3

.

We conclude this section with a concrete example in the simplest case

n = 2. Consider the vector p = (p

11

= p

22

= (cos �)

2

; p

12

= 0). Then, p 62

BQP

2

if 1 > (cos �)

2

>

1

2

, since it violates the inequality p

11

+p

22

�p

12

� 1.

On the other hand, p 2 QCP

2

. Indeed, let H = R

3

be a Hilbert space

with canonical basis (e

1

; e

2

; e

3

), W be the projection on the line spanned

by e

3

and let E

i

be the projection on the line spanned by u

i

, for i = 1; 2,

where u

1

= (sin �; 0; cos�) and u

2

= (� sin �; 0; cos�). Then, trace(WE

i

) =

(cos �)

2

= p

ii

for i = 1; 2 and E

1

^E

2

= 0.

The vector p has the following physical interpretation. Consider a source

of photons all polarized in the e

3

direction in the space. Let  = e

3

be

the quantum mechanical wavefunction associated with these photons, so

W = E

 

is the state of the system. The projection E

i

corresponds to the

property "the photon is polarized in the direction u

i

"; this corresponds to the

experiment where a polarizer is located in front of the source, oriented in the

direction u

i

and p

ii

counts the frequency of the photons which pass through

the polarizer . The relation p

12

= 0 should be understood as follows. There

may be some photons having both properties E

1

and E

2

, but no experiment

exists which could detect the simultaneous existence of the properties E

1

and E

2

.

Note thatBQP

2

has the following extreme points: (0,0,0), (1,0,0), (0,1,0),

and (1,1,1), while T

2

has one more extreme point (1,1,0). In fact, QCP

2

=

T

2

� f(1; 1; 0)g.

8 Other applications

8.1 The L

1

-metric in probability theory

Let (
;A; �) be a probability space and let X : 
 �! R be a random

variable with �nite expected value E(X) =

R




jX(!)j�(d!) < 1, i.e. X 2

L

1

(
;A; �). Let F

X

denote the distribution function of X , i.e. F

X

(x) =

�(f! 2 
 : X(!) = xg) for x 2 R; when it exists, its derivative F

0

X

is

called the density of X . A great variety of metrics on random variables are

studied in the monography [140]; among them, the following are based on

the L

1

-metric:

� the usual L

1

-metric between the random variables:

L

1

(X; Y ) = E(jX � Y j) =

R




jX(!)� Y (!)j�(d!),
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� the Monge-Kantorovich-Wasserstein metric (i.e. the L

1

-metric be-

tween the distribution functions): k(X; Y ) =

R

R

jF

X

(x)� F

Y

(x)jdx,

� the total valuation metric (i.e. the L

1

-metric between the densities

when they exist): �(X; Y ) =

1

2

R

R

jF

0

X

(x)� F

0

Y

(x)jdx,

� the engineer metric (i.e. the L

1

-metric between the expected values):

EN(X; Y ) = jE(X)� E(Y )j,

� the indicator metric:

i(X; Y ) = E(1

X 6=Y

) = �(f! 2 
 : X(!) 6= Y (!)g).

In fact, the L

p

-analogues (1 � p � 1) of the above metrics, especially of

the �rst two, are also used in probability theory.

Several results are known, establishing links among the above metrics.

One of the main such results is the Monge-Kantorovich mass-transportation

theorem which shows that the second metric k(X; Y ) can be viewed as a

minimum of the �rst metric L

1

(X; Y ) over all joint distributions of X and

Y with �xed marginal. A relationship between the L

1

(X; Y ) and the engi-

neer metric EN(X; Y ) is given by [140] as solution of a moment problem.

Similarly, a connection between the total valuation metric �(X; Y ) and the

indicator metric i(X; Y ) is given in Dobrushin's theorem on the existence

and uniqueness of Gibbs �elds in statistical physics. See [140] for a detailed

account of the above topics.

We mention another example of use of the L

1

-metric in probability the-

ory, namely for Gaussian random �elds. We refer to [128], [129] for a detailed

account. Let B = (B(x); x 2 M) be a centered Gaussian system with pa-

rameter space M , 0 2M . The variance of the increment is denoted by:

d(x; y) := E((B(x)� B(y))

2

) for x; y 2M:

When (M; d) is a metric space which is L

1

-embeddable, the Gaussian system

is called a L�evy's Brownian motion with parameter space (M; d). The case

M = R

n

and d(x; y) =k x � y k

2

gives the usual Brownian motion with n-

dimensional parameter. By Lemma 3.5, (M; d) is L

1

-embeddable if and only

if there exist a non negative measure space (H; �) and a map x 7! A

x

� H

with �(A

x

) < 1 for x 2 M , such that d(x; y) = �(A

x

�A

y

) for x; y 2 M .

Hence, a Gaussian system admits a representation called of Chentsov type

B(x) =

Z

A

x

W (dh) for x 2M
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in terms of a Gaussian random measure based on the measure space (H; �)

with d(x; y) = �(A

x

�A

y

) if and only if d is L

1

-embeddable.

This Chentsov type representation can be compared with the Crofton

formula for projective metrics from Theorem 4.12. Actually both come

naturally together in [3] (see parts A.8-A.9 of Appendix A there).

8.2 The `

1

-metric in statistical data analysis

A data structure is a pair (I; d), where I is a �nite set, called population,

and d : I � I �! R

+

is a symmetric map with d

ii

= 0 for i 2 I , called

dissimilarity index. The typical problem in statistical data analysis is to

choose a "good representation" of a data structure; usually, "good" means a

representation allowing to represent the data structure visually by a graphic

display. Each sort of visual display corresponds, in fact, to a special choice

of the dissimilarity index as a distance and the problem turns out to be the

classical isometric embedding problem in special classes of metrics.

For instance, in hierarchical classi�cation, the case when d is ultrametric

corresponds to the possibility of a so-called indexed hierarchy (see [104]).

A natural extension is the case when d is the path metric of a weighted

tree, i.e. d satis�es the four point condition (see section 4.1); then the data

structure is called an additive tree. Also, data structures (I; d) for which

d is `

2

-embeddable are considered in factor analysis and multidimensional

scaling. These two cases together with cluster analysis are the main three

techniques for studying data structures. The case when d is `

1

-embeddable

is a natural extension of the ultrametric and `

2

cases.

An `

p

-approximation consists of minimizing the estimator k e k

p

, where

e is a vector or a random variable (representing an error, deviation, etc. ).

The following criteria are used in statistical data analysis:

� the `

2

-norm, in the least square method; or its square,

� the `

1

-norm, in the minimax or Chebychev method,

� the `

1

-norm, in the least absolute values (LAV) method.

In fact, the `

1

criterion has been increasingly used. Its importance can be

seen, for instance, from the volume [72] of proceedings of a conference enti-

tled "Statistical data analysis based on the L

1

norm and related methods";

we refer, in particular, to [71], [82], [120], [155].
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8.3 Hypercube embeddings and designs

In this section, we describe how some questions about the existence of special

classes of designs are connected with questions about Z

+

-realizations of the

equidistant metric 2td(K

n

) and, in particular, about its minimum h-size.

We recall some de�nitions.

Given integers n; t � 1, d(K

n

) denotes the path metric of the com-

plete graph K

n

and 2td(K

n

) is the equidistant metric with components all

equal to 2t. The metric 2td(K

n

) is clearly h-embeddable, since 2td(K

n

) =

P

1�i�n

t�(fig), called its starcut realization. Any decomposition of 2td(K

n

)

as

P

S2B

�(S), where B is a collection of (non necessarly distinct) subsets of

V

n

= f1; : : : ; ng, is called a Z

+

-realization of 2td(K

n

) and jBj (counting the

multiplicities) is its size. The Z

+

-realization is called k-uniform if jSj = k

holds for all S 2 B. Let z

t

n

denote the minimum size of a Z

+

-realization of

2td(K

n

). The metric 2td(K

n

) is h-rigid if the starcut realization is its only

Z

+

-realization, i.e. z

t

n

= nt.

In fact, the set families B giving Z

+

-realizations of 2td(K

n

), i.e. for

which 2td(K

n

) =

P

S2B

�(S), correspond to some designs. Let us �rst recall

some notions about designs; for details about designs, see e.g. [142].

Let B be a collection of (non necessarly distinct) subsets of V

n

, the sets

B 2 B are called blocks. Let r; k; � be integers.

Then, B is called a (r; �;n)-design if each point i 2 V

n

belongs to r blocks

and any two distinct points i; j 2 V

n

belong to � common blocks.

B is called a (n; k; �)-BIBD (BIBD standing for balanced incomplete

block design) if any two distinct points i; j 2 V

n

belong to � common blocks

and each block has cardinality k. This implies that each point i 2 V

n

belong

to r =

�(n�1)

k�1

blocks and the total number of blocks is b := jBj =

rn

k

. It is

well known that b � n holds. The BIBD is called symmetric if b = n or,

equivalently, r = k holds. Two important cases of symmetric BIBD are

� the projective plane PG(2; t), i.e. (t

2

+ t+ 1; t+ 1; 1)-BIBD,

� the Hadamard design of order 4t� 1, i.e. (4t� 1; 2t; t)-BIBD.

It is well known that a Hadamard design of order 4t � 1 corresponds to a

Hadamard matrix of order 4t (i.e. a matrix with �1 entries whose rows are

pairwise orthogonal).

We have the following links between the Z

+

-realizations of 2td(K

n

) and

designs [61]:
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(i) There is a one-to-one correspondence between the Z

+

-realizations of

2td(K

n

) and the (2t; t;n� 1)-designs.

(ii) There is a one-to-one correspondence between the k-uniformZ

+

-realizations

of 2td(K

n

) and the (n; k; �)-BIBD, where the parameters satisfy: r =

t(n�1)

n�k

, � = r� t =

t(k�1)

n�k

.

(iii)[142] If there exists a symmetric (n; � + t; t)-BIBD with n 6= 4t, n =

2t+ �+

t(t�1)

�

, then z

t

n

= n.

In the cases � = 1, t, the implication of (iii) is, in fact, an equivalence.

Namely, we have:

(iv)

[97] and [142]

PG(2; t) exists () z

t

t

2

+t+1

= t

2

+ t+ 1

[48]

() 2td(K

t

2

+t+2

) is not h� rigid;

i.e. z

t

t

2

+t+2

< t(t

2

+ t + 2)

[61]

() z

t

t

2

+t+2

= t

2

+ 2t if t � 3

t

2

+ t+ 1 if t = 1; 2

(v) [142]

There exists a Hadamard matrix of order 4t () z

t

4t�1

= 4t� 1

() z

t

4t

= 4t� 1:

The following bounds hold for z

t

n

:

(vi) by (13), z

t

n

� nt, with equality if and only if 2td(K

n

) is h-rigid,

(vii) [142] z

t

n

� n � 1, with equality if and only if n = 4t and there exists

a Hadamard matrix of order 4t,

(viii) z

t

n

� n, if we are not in the case of equality of (vii),

(ix) by (13), z

t

n

� a

t

n

:= d

n(n�1)t

b

n

2

cd

n

2

e

e = 4t� b

2t

d

n

2

e

c.
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Observe that a

t

4t

= a

t

4t�1

= 4t� 1, and a

t

t

2

+t+1

= a

t

t

2

+t+2

= 4t if t � 3.

From (iv), there exists a projective plane PG(2; t) if and only if equality

holds in the bound (viii) for n = t

2

+ t+ 1 or, equivalently, there is a strict

inequality in the bound (vii) for n = t

2

+ t + 2. From (v), there exists a

Hadamard matrix of order 4t if and only if equality holds in the bounds (vii)

and (ix) for n = 4t or, equivalently, equality holds in the bounds (viii) and

(ix) for n = 4t� 1.

Therefore, the Z

+

-realizations of minimum size of 2td(K

n

) provide a

common generalization of the twomost interesting cases of symmetric BIBD,

namely projective planes and Hadamard designs.

Finally, we mention a conjecture which generalizes the implication (iii)

in the case � = t; it is stated and partially proved in [61].

Conjecture 8.1 � For n � 4t, if there exists a Hadamard matrix of order

4t, then z

t

n

= a

t

n

.

� If d

n

2

e divides 2t and there exists a Hadamard matrix of order 4t, then

z

t

n

= a

t

n

.

8.4 Miscelleneous

The variety of uses of the `

1

-metric is very vast as we already saw in sections

8.1 and 8.2. We group here several other examples where `

1

-embeddable

metrics are useful.

On the integers, beside the usual `

1

-metric ja � bj, we have, for in-

stance, the well known Hamming distance between the binary expansions

of a; b, and log(

l:c:m:(a;b)

g:c:d:(a;b)

) (mentioned after Theorem 4.13) which are both

`

1

-embeddable.

Two examples of `

1

-embeddable metrics are used in biology:

� The Prevosti's genetic distance:

1

2r

P

1�j�r

P

1�i�k

j

jp

ij

� q

ij

j between

two populations P and Q, where r is the number of loci or chromo-

somes, p

ij

(resp. q

ij

) is the frequency of the chromosomal ordering i

in the locus or chromosome j within the population P (resp. Q); the

litterature on this distance started in [139].

� The biotope distance:

jA�Bj

jA[Bj

between biotopes A;B (sets of species in,

say, forests); it was introduced in [126] and it is shown in [5] to be

`

1

-embeddable.
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The Hamming distance jf(a; b) 2 G

2

: a � b 6= a � bgj between the mul-

tiplication tables of two groups A = (G; �) and B = (G; �) on the same

underlying set G is used in [73].

Given compact subsets A;B of the plane R

2

, the `

1

-distance aire(A�B)

is used in the treatment of images; see, for instance, [105].
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