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Abstract. In this paper, we show that the FFT-Hash function proposed

by Schnorr [2] is not collision free. Finding a collision requires about 2

24

computation of the basic function of FFT. This can be done in few hours

on a SUN4-workstation. In fact, it is at most as strong as a one-way hash

function which returns a 48 bits length value. Thus, we can invert the

proposed FFT hash-function with 2

48

basic computations. Some simple

improvements of the FFT hash function are also proposed to try to get

rid of the weaknesses of FFT.

History

The �rst version of FFT-Hashing was proposed by Schnorr during the rump

session of Crypto'91 [1]. This function has been shown not to be collision free

at Eurocrypt'92 [3]. An improvement of the function has been proposed the

same day [2] without the weaknesses discovered. However, FFT-Hashing has

still some other weaknesses as it is proved in this paper.

1 FFT-Hash-II, Notations

The FFT-hash function is built on a basic function < : > which takes one 128-

bits long hash block H and one 128-bits long message block M , and return

a 128-bits long hash block < H;M >. The hash value of n message blocks

M

1

; : : : ;M

n

is < : : : << H

0

;M

1

>;M

2

>; : : : ;M

n

> where H

0

is a constant

given in hexadecimal by :

H

0

= 0123 4567 89ab cdef fedc ba98 7654 3210

The basic function is de�ned by two one-to-one functions Rec and FT2 on

the set (GF

p

)

16

where p = 2

16

+ 1. The concatenation HM de�nes 16 16-bits

numbers which represents 16 numbers in GF

p

between 0 and p�2. (Rec�FT2�

Rec)(HM ) de�nes 16 numbers of GF

p

. The last 8 numbers taken modulo 2

16

are the result < H;M >.
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We de�ne the following notations :

A(M ) = H

0

M

B(M ) = Rec(A(M ))

C(M ) = FT2(B(M ))

D(M ) = Rec(C(M ))

So, < H

0

;M > is the last 8 numbers of D(M ) taken modulo 2

16

. We de�ne X

i

the i-th number of X (from 0 to 15), and X[i; j] the list of the i-th to the j-th

number of X.

If x

i

2 GF

p

, i = 0; : : : ; 15, we de�ne y

�3

= x

13

, y

�2

= x

14

, and y

�1

= x

15

.

Then, following Schnorr :

y

i

= x

i

+ y

�

i�1

y

�

i�2

+ y

i�3

+ 2

i

(1)

where y

�

= 1 if y = 0 and y

�

= y otherwise. Then, we let :

Rec(x

0

; : : : ; x

15

) = y

0

; : : : ; y

15

If x

i

2 GF

p

, i = 0; : : : ; 7, we de�ne :

y

j

=

7

X

i=0

!

ij

x

i

where ! = 2

4

. Then, we de�ne FT (x

0

; : : : ; x

7

) = y

0

; : : : ; y

7

.

If x

i

2 GF

p

, i = 0; : : : ; 15, we de�ne y

0

; y

2

; : : : ; y

14

= FT (x

0

; x

2

; : : : ; x

14

)

and y

1

; y

3

; : : : ; y

15

= FT (x

1

; x

3

; : : : ; x

15

). Then, we de�ne FT2(x

0

; : : : ; x

15

) =

y

0

; : : : ; y

15

.

2 Basic Remarks

If we want to �nd a collision to the hash function, we may look for a pair (x; x

0

)

of two 128-bits strings such that < H

0

; x >=< H

0

; x

0

>. In fact, we will look

for x and x

0

such that D(x)[8; 15] = D(x

0

)[8; 15].

First, we notice that we have necessarily C(x)[11; 15] = C(x

0

)[11; 15]. In one

direction, we show that C(x)

i

= C(x

0

)

i

for i = 11; : : : ; 15. This is due to the

equation :

C

i

= D

i

�D

�

i�1

D

�

i�2

�D

i�3

� 2

i

Conversely, if we have both C(x)[11; 15] = C(x

0

)[11; 15] and D(x)[8; 10] =

D(x

0

)[8; 10], then we have D(x)[8; 15] = D(x

0

)[8; 15].

Moreover, we notice on the equation 1 that B(x)[0; 7] is a function of x[5; 7]

only. Let us denote :

B(x)[0; 7] = g(x[5; 7])

Finally, we notice that FT2 is a linear function.



3 Breaking FFT

3.1 Outlines

If we get a set of 3:2

24

strings x such that C(x)[11; 15] is a particular string R

chosen arbitrarily

2

, we will have a collision on D(x)[8; 10] with probability 99%

thanks to the birthday paradox. We will describe an algorithm which gives some

x with the de�nitively chosen R for any x[5; 7] = abc.

Given abc = x[5; 7], we can compute B(x)[0; 7] = g(abc). If we denote

y = B(x)[8; 15], the following equation is a linear equation in y ;

FT2(g(abc)y)[11; 15] = R (2)

We can de�ne a function �

R

and three vectors U

e

, U

o

, U

0

e

such that :

(2)() 9�; �

0

; � y = �

R

(abc) + �U

e

+ �

0

U

0

e

+ �U

o

(see section 3.2).

Finally, the system :

�

x[5; 7] = abc

C(x)[11; 15] = R

is equivalent to the system :

8

<

:

x[5; 7] = abc

y = �

R

(abc) + �U

e

+ �

0

U

0

e

+ �U

o

H

0

x = Rec

�1

(g(abc)y)

Which is equivalent to :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

y = �

R

(abc) + �U

e

+ �

0

U

0

e

+ �U

o

y

13

= a + y

�

12

y

�

11

+ y

10

+ 2

13

y

14

= b + y

�

13

y

�

12

+ y

11

+ 2

14

y

15

= c + y

�

14

y

�

13

+ y

12

+ 2

15

x[5; 7] = abc

x[0; 4] = Rec

�1

(g(abc)y)[8; 12]

(3)

Is we substitute y by the expression of the �rst equation in the other equations,

we obtain a system of three equations of three unknown �, �

0

, �. This system

can be shown linear in � and �

0

by a good choice of U

e

, U

o

and U

0

e

. Then,

this system can have some solutions only if the determinant, which is a degree

2 polynomial in � is 0. This can gives some �. Then, the number of (�; �

0

) is

almost always unique. For more details, see section 3.3.

Finally, this gives 0 or 2 solutions x, with an average number of 1 for a given

abc. If we try 1 � a < p, 1 � b � 768 and c = 2, we have 3:2

24

abc.

2

For the collisions found in this paper, R is the image of my phone number by FT2.



3.2 Solving (2)

The function X 7�! FT2(X)[11; 15] is linear, and has a kernel of dimension 3.

If we de�ne :

U = (0; 0; 0; 0; 4081;256; 1;61681)

U

0

= (0; 0; 0; 0; 65521; 4352;1; 0)

we notice that :

FT (U ) = (482; 56863; 8160; 57887; 7682;0;0; 0)

FT (U

0

) = (4337; 61202; 65503;544; 61170;3855;0; 0)

Let us introduce the following notation :

(x

0

; : : : ; x

7

)� (y

0

; : : : ; y

7

) = (x

0

; y

0

; : : : ; x

7

; y

7

)

We have FT2(X � Y ) = FT (X) � FT (Y ). Thus, we can can de�ne :

U

e

= U � 0

U

o

= 0� U

U

0

e

= U

0

� 0

So, we have :

U

e

= (0; 0; 0; 0; 0;0;0; 0; 4081;0; 256;0;1; 0; 61681;0)

U

o

= (0; 0; 0; 0; 0;0;0; 0; 0;4081; 0; 256;0; 1; 0;61681)

U

0

e

= (0; 0; 0; 0; 0;0;0; 0; 65521;0;4352; 0;1;0;0; 0)

These vectors are a base of the kernel of X 7�! FT2(X)[11; 15].

If M denotes the matrix of FT , we can write it using four 4� 4 blocks :

M =

�

M

11

M

12

M

21

M

22

�

If x and y are two vectors of 4 elements, we have :

FT (xy)[4; 7] = 0() y = �M

�1

22

M

21

x

Let us de�ne :

N = �M

�1

22

M

21

=

0

B

B

@

65281 4335 289 61170

3823 8992 53012 65248

8447 61748 56545 4335

4369 57090 3823 256

1

C

C

A

Now, if x and y are two vectors of 8 elements, we have :

FT2(xy)[8; 15] = 0() y = Nx

0

� Nx

1

Where x = x

0

� x

1

. Let us de�ne :

�

R

(abc) = 0(Nx

0

� Nx

1

+ y

0

)

where g(abc) = x

0

� x

1

and R = FT2(0y

0

)[11; 15] for an arbitrary y

0

(one's

phone number for instance). Then, �

R

(abc) is a vector which begins by g(abc),

and such that FT2(�

R

(abc)) ends by a constant vector R.

So, we have :

(2)() 9�; �

0

; � y = �

R

(abc) + �U

e

+ �

0

U

0

e

+ �U

o



3.3 Solving (3)

If we hope that no y

i

(i = 11; 12; 13; 14) is equal to 0 (we may ultimately test

this condition, and forget the solutions y which do not pass this test, but this

will be very rare), the system :

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

y = �

R

(abc) + �U

e

+ �

0

U

0

e

+ �U

o

y

13

= a+ y

�

12

y

�

11

+ y

10

+ 2

13

y

14

= b+ y

�

13

y

�

12

+ y

11

+ 2

14

y

15

= c+ y

�

14

y

�

13

+ y

12

+ 2

15

x[5; 7] = abc

x[0; 4] = Rec

�1

(g(abc)y)[8; 12]

imply :

z

13

+ � = a + (z

12

+ �+ �

0

)(z

11

+ 256�) + z

10

+ 256�+ 4352�

0

+ 2

13

z

14

+ 61681� = b+ (z

13

+ �)(z

12

+ �+ �

0

) + (z

11

+ 256�) + 2

14

z

15

+ 61681� = c+ (z

14

+ 61681�)(z

13

+ �) + (z

12

+ �+ �

0

) + 2

15

where z = �

R

(abc). If we de�ne :

a

0

= a+ z

12

z

11

+ z

10

+ 2

13

� z

13

b

0

= b+ z

13

z

12

+ z

11

+ 2

14

� z

14

c

0

= c + z

14

z

13

+ z

12

+ 2

15

� z

15

we have :

 

z

11

+ 256� + 256 z

11

+ 256� + 4352 a

0

� (1� 256z

12

)�

z

13

+ � � 61681 z

13

+ � b

0

+ (256 + z

12

)�

61681 (z

13

+ �) + 1 1 c

0

� (61681 � z

14

)�

! 

�

�

0

1

!

= 0

This is a linear system of unknown � and �

0

. If this system has an equation,

which determinant has to be 0.

3.4 Discussion

This condition may be su�cient in most of the cases. The determinant should

be a degree 3 polynomial. However, the coe�cient of �

3

is the determinant of

the following matrix :

0

@

256 256 (1� 256z

12

)

1 1 �(256 + z

12

)

61681 0 (61681� z

14

)

1

A

which is 0 since the �rst line is 256 time the second.

The coe�cient of �

2

is 0 with probability 1=p, this is rare. In this case, we

have one solution if the equation has a degree one, and zero or p solutions in the

other cases.



� has to satisfy a degree 2 equation. If the discriminant is di�erent from 0,

it has a square root with probability 50%. So, we have two di�erent � or no

solution with probability 50%, and a single solution with probability 1=p.

For each �, we are likely to have a uniq solution (�; �

0

). However, it is possible

to have 0 or p solutions, but it is rare. So, for each solution (�; �

0

; �), we can

compute y in the system (3), then x. Finally, we have zero or two solutions x in

almost all cases.

3.5 Reduction of the Function FFT

To sum up, we have a function f

R

such that for a given abc :

f

R

(abc) = fD(x)[8; 10];x[5; 7] = abc ^ C(x)[11; 15] = Rg

f

R

(abc) is a list of 0 or 2 D(x)[8; 10] for each x such that x[5; 7] = abc and

C(x)[11; 15] = R. The average of number of x is 1, so f

R

is almost a function.

The function f

R

is a kind of reduction of FFT since a collision for f

R

gives

a collision for FFT . We can use the birthday paradox with f

R

to get some

collision. The expected complexity is O(2

24

).

We can invert FFT with f

R

to. If we are looking for x such thatD(x)[8; 15] =

z, we can compute R = Rec

�1

(z)[11; 15] and look for abc such that f

R

(abc) =

z[0; 2]. The complexity is 2

48

. Then, we get the x required.

4 Finding Collisions with the Birthday Paradox

If we suppose that f

R

is like a real random function, the probability that a set

ff

R

(x

i

)g for k di�erent x

i

have k elements is next to :

e

�

k

2

2n

where n is the cardinality of the image of f

R

, when k is next to

p

n. So, with

n = 2

48

and k = 3:2

24

, the probability is 1%.

Two collisions have been found in 24 hours by a SUN4 workstation with

k = 3:2

24

di�erent x. With the choice :

R = 5726 17fc b115 c5c0 a631

We got :

FFT (17b3 2755 4e52 b915 2218 1948 00a8 0002) =

FFT (9c70 504e 834c b15c f404 94e2 02a7 0002) =

0851 393d 37c9 66e3 d809 d806 5e8c 05b8

and :

FFT (8ccc 23a4 086d fbb9 85f4 70b2 029e 0002) =

FFT (9d53 45ae 3286 ada7 8c77 9877 02b4 0002) =

10e5 49f5 9df0 d91b 0450 afcc fba4 2063



Conclusion

The main weakness of FFT-Hash-II are described in section 2. First, the begin-

ning of the computation depends on too few information of the input : B(x)[0; 7]

is a function of x[5; 7]. Second, the output allows to compute too much informa-

tion of the computations in FFT : D(x)[8; 15] allows to compute C(x)[11; 15].

The connection between B(x) and C(x) is linear, this makes our attack possible.

To get rid of the �rst weakness, we might mix H

0

and x in A(x) before

applying Rec. Similarly, the result of < H

0

; x > should be the set of D(x)

2i+1

instead of the right side.
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