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Abstract. In this paper, we show that the FFT-Hash function proposed
by Schnorr [2] is not collision free. Finding a collision requires about 2*
computation of the basic function of FFT. This can be done in few hours
on a SUN4-workstation. In fact, it is at most as strong as a one-way hash
function which returns a 48 bits length value. Thus, we can invert the
proposed F'FT hash-function with 2*® basic computations. Some simple
improvements of the FFT hash function are also proposed to try to get

rid of the weaknesses of FFT.

History

The first version of FFT-Hashing was proposed by Schnorr during the rump
session of Crypto’91 [1]. This function has been shown not to be collision free
at Eurocrypt’92 [3]. An improvement of the function has been proposed the
same day [2] without the weaknesses discovered. However, FFT-Hashing has
still some other weaknesses as 1t 18 proved in this paper.

1 FFT-Hash-II, Notations

The FFT-hash function is built on a basic function < . > which takes one 128-
bits long hash block H and one 128-bits long message block M, and return
a 128-bits long hash block < H, M >. The hash value of n message blocks
My, ..., M, is < ... << Ho, My >, My >,..., M, > where Hy is a constant
given in hexadecimal by :

Hy = 0123 4567 89ab cde f fedc ba98 7654 3210

The basic function is defined by two one-to-one functions Rec and FT2 on
the set (GF,)'® where p = 2% + 1. The concatenation HM defines 16 16-bits
numbers which represents 16 numbers in GF,, between 0 and p—2. (RecoFT20
Rec)(H M) defines 16 numbers of GF,. The last 8 numbers taken modulo 2'°
are the result < H, M >.
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We define the following notations :

A(M) = HoM

B(M) = Rec(A(M))
C(M) = FT2(B(M))
D(M) = Rec(C(M))

So, < Hg, M > is the last 8 numbers of D(M) taken modulo 21°. We define X;
the é-th number of X (from 0 to 15), and X[7, j] the list of the i-th to the j-th
number of X.

If x; € GFp, ¢ = 0,...,15, we define y_3 = x13, y_2 = 14, and y_1 = z15.
Then, following Schnorr :

i =T+ Yyt uis + 2 (1)
where y* = 1 if y = 0 and y* = y otherwise. Then, we let :
RCC(IQ, ey xlS) = Yo,---, Y15

If z; € GFp, 1 =0,...,7, we define :

7
—_ if
yi =y wiz
=0

where w = 2%, Then, we define FT(zq,...,27) = yo,..., Y7

If ; € GFp, i = 0,...,15, we define yo,y2, ..., 14 = FT(x0,22,...,214)
and yi,ys,...,015 = FT(x1,25,...,215). Then, we define FT2(zq,...,215) =
Yo, .-, Y15-

2 Basic Remarks

If we want to find a collision to the hash function, we may look for a pair (x, ')
of two 128-bits strings such that < Hg,z >=< Hp, 2’ >. In fact, we will look
for # and @’ such that D(x)[8, 15] = D(z)[8, 15].

First, we notice that we have necessarily C'(z)[11,15] = C(2")[11, 15]. In one
direction, we show that C'(z); = C'(2'); for ¢ = 11,...,15. This is due to the
equation :

Ci=D;—D;_Di_y—Dij_3—2
Conversely, if we have both C(2)[11,15] = C(2)[11,15] and D(x)[8,10] =
D(2)[8,10], then we have D(x)[8, 15] = D(z')[8, 15].

Moreover, we notice on the equation 1 that B(x)[0,7] is a function of #[5,7]

only. Let us denote :

B(2)[0,7] = g(«[5,7])

Finally, we notice that F7'2 is a linear function.



3 Breaking FFT

3.1 Outlines

If we get a set of 3.2?% strings @ such that C(z)[11, 15] is a particular string R
chosen arbitrarily?, we will have a collision on D(z)[8, 10] with probability 99%
thanks to the birthday paradox. We will describe an algorithm which gives some
x with the definitively chosen R for any «[b,7] = abe.

Given abe = z[5,7], we can compute B(x)[0,7] = g(abe). If we denote
y = B(x)[8,15], the following equation is a linear equation in y ;

FT2(g(abe)y)[11,15] = R (2)
We can define a function ¢g and three vectors U,, U,, U such that :
(2) <= I\ XN, p y=o¢r(abe) + AU, + NU. + pU,

(see section 3.2).
Finally, the system :
z[5,7] = abe
{C’(a:)[ll, 15]=R

1s equivalent to the system :

z[5,7] = abe
y = ¢r(abe)+ AU, + XU, + pU,
Hox = Rec™(g(abe)y)

Which is equivalent to :

y = ¢r(abe) + AU, + XU, + pU,
Y13 = a + yiayi) + yio + 217
y1a = b+ yisyis + y11 + 21
Yis = ¢+ Yiayis + yio + 217
z[5,7] = abe
2[0,4] = Rec ™ (g(abe)y)[8, 12]

Is we substitute y by the expression of the first equation in the other equations,
we obtain a system of three equations of three unknown A, A, pu. This system
can be shown linear in A and X by a good choice of U,, U, and U/. Then,
this system can have some solutions only if the determinant, which is a degree
2 polynomial in g is 0. This can gives some p. Then, the number of (A, ) is
almost always unique. For more details, see section 3.3.

Finally, this gives 0 or 2 solutions z, with an average number of 1 for a given
abe. fwetry 1 <a < p, 1 <b<768 and ¢ = 2, we have 3.22% abe.

2 For the collisions found in this paper, R is the image of my phone number by F71'2.



3.2 Solving (2)

The function X —— FT2(X)[11,15] is linear, and has a kernel of dimension 3.

If we define :

U = (0,0,0,0,4081, 256, 1,61681)
0,0,0,0

(0,0,0,0,65521, 4352, 1, 0)

we notice that :

FT(U7) = (482, 56863, 8160, 57887, 7682, 0,0, 0)
FT(U') = (4337,61202, 65503, 544, 61170, 3855, 0, 0)

Let us introduce the following notation :
(IOa"'ax7) X (yOa"'ay7) = (anyOa"'ax7ay7)
We have FT2(X xY) = FT(X) x FT(Y). Thus, we can can define :

Ue=Ux0
Upy=0xU
U'=U"x0

So, we have :
U. =(0,0,0,0,0,0,0,0,4081,0,256,0,1,0,61681,0)
U, =(0,0,0,0,0,0,0,0,0,4081,0, 256,0,1,0,61681)
Ul =(0,0,0,0,0,0,0,0,65521,0,4352,0,1,0,0,0)
These vectors are a base of the kernel of X — FT2(X)[11,15].
If M denotes the matrix of F'T', we can write it using four 4 x 4 blocks :

v= (i)
If # and y are two vectors of 4 elements, we have :
FT(xy)[4,7] = 0 <>y = —My,' Moz
Let us define :

65281 4335 289 61170
3823 8992 53012 65248
8447 61748 56545 4335
4369 57090 3823 256

Now, if  and y are two vectors of 8 elements, we have :
FT2(xy)[8,15] = 0 <=y = Nz" x Na!
Where z = 2% x z!. Let us define :
or(abc) = 0(Nz® x Nzt + %)

where g(abe) = 2° x 2! and R = FT2(0y°)[11, 15] for an arbitrary y° (one’s
phone number for instance). Then, ¢r(abe) is a vector which begins by g(abe),
and such that FT2(¢gr(abc)) ends by a constant vector R.

So, we have :

(2) <= I\ XN, p y=o¢r(abe) + AU, + NU! + pU,

N=—-Mp' My =



3.3 Solving (3)

If we hope that no y; (i = 11,12,13,14) is equal to 0 (we may ultimately test
this condition, and forget the solutions y which do not pass this test, but this
will be very rare), the system :

y = ¢r(abe)+ AU, + XU + pU,
Y13 = a+ Yl + yio + 217
y1a = b+ yisyis + y11 + 21
Yis = ¢+ Yiais + y1o + 217
z[b,7] = abe
z[0,4] = Rec_l(g(abc)y)[& 12]

imply :

13

zia + o= a4 (z12 + X+ X ) (211 4 256p) + 210 + 256X 4 4352 + 2
214 4 61681X = b4 (212 4 p) (212 + A+ X)) + (211 + 256p) + 2™
215 + 616810 = ¢+ (214 + 61681A) (215 + p) + (212 + A+ A ) +2"°

where z = ¢pr(abe). If we define :
a' = a+ zia211 + 210 + 2% — 213

b =b4 213219 + 211 + 28 — 214

/ 15
¢ =c+zaz1a+ 212+ 27 — 215

we have :
z11 + 2564 + 256 211 + 2564 + 4352 o’ — (1 — 256z12)p A
Z13 —|— n— 61681 Z13 —|— H b/ —|— (256 —|— Z12)u )\/ =
61681 (z1a + p) + 1 1 ¢ — (61681 — zma)p) \ 1

This is a linear system of unknown A and A’. If this system has an equation,
which determinant has to be 0.

3.4 Discussion

This condition may be sufficient in most of the cases. The determinant should
be a degree 3 polynomial. However, the coefficient of p® is the determinant of
the following matrix :

256 256 (1 — 256215)
1 1 —(256—1—212)
61681 0 (61681 — z14)

which is 0 since the first line is 256 time the second.

The coefficient of p? is 0 with probability 1/p, this is rare. In this case, we
have one solution if the equation has a degree one, and zero or p solutions in the
other cases.



1 has to satisfy a degree 2 equation. If the discriminant is different from 0,
it has a square root with probability 50%. So, we have two different p or no
solution with probability 50%, and a single solution with probability 1/p.

For each i, we are likely to have a uniq solution (A, A"). However, it is possible
to have 0 or p solutions, but it is rare. So, for each solution (A, X, p), we can
compute y in the system (3), then . Finally, we have zero or two solutions z in
almost all cases.

3.5 Reduction of the Function FFT
To sum up, we have a function fg such that for a given abc :
fr(abe) = {D(x)[8, 10]; 2[5, 7] = abe A C'(x)[11,15] = R}

fr(abe) is a list of 0 or 2 D(2)[8,10] for each x such that z[5,7] = abe and
C(z)[11,15] = R. The average of number of z is 1, so fg is almost a function.

The function fg is a kind of reduction of F F'T since a collision for fg gives
a collision for FFT. We can use the birthday paradox with fr to get some
collision. The expected complexity is O(2%4).

We can invert F'F'T with fg to. If we are looking for = such that D(x)[8, 15] =
z, we can compute R = Rec™!(2)[11, 15] and look for abe such that fr(abc) =
2[0,2]. The complexity is 2%, Then, we get the x required.

4 Finding Collisions with the Birthday Paradox

If we suppose that fr is like a real random function, the probability that a set
{fr(z;)} for k different z; have k elements is next to :

where n is the cardinality of the image of fr, when k is next to v/n. So, with
n = 2% and k = 3.2?4, the probability is 1%.
Two collisions have been found in 24 hours by a SUN4 workstation with

k = 3.22% different x. With the choice :
R =5726 17fc 6115 ¢5c0 ab631

We got :
FFT(1763 2755 4e52 5915 2218 1948 00a8 0002) =
FFT(9¢70 504¢e 834c¢ b15e f404 94e2 02a7 0002) =
0851 393d 37¢9 663 d809 d806 He8c 0558
and :

FFT(8cce 23a4 086d fbb9 85f4 7062 029¢ 0002) =
FFT(9d53 45ae 3286 ada7 8¢77 9877 0264 0002) =
10e5 4915 9df0 d91b 0450 afec fbad 2063



Conclusion

The main weakness of FFT-Hash-II are described in section 2. First, the begin-
ning of the computation depends on too few information of the input : B(x)[0, 7]
is a function of «[5, 7]. Second, the output allows to compute too much informa-
tion of the computations in FFT : D(z)[8, 15] allows to compute C(x)[11,15].
The connection between B(x) and C'(x) is linear, this makes our attack possible.

To get rid of the first weakness, we might mix Hy and # in A(z) before
applying Rec. Similarly, the result of < Hg,# > should be the set of D(#)2;41
instead of the right side.
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