The MLgraph Primer
Emmanuel CHAILLOUX*™ Guy COUSINEAU*

“LIENS, URA 1327 du CNRS
Ecole Normale Supérieure
“LITP, URA 248 du CNRS
Université Pierre et Marie Curie - Paris 6

LIENS - 92 - 15

September 1992

The MLgraph Primer

Emmanuel CHAILLOUX"? — Guy COUSINEAU!

About MLgraph

This documents describes the MLgraph system, a library for producing images in ML.
This library is currently available via ftp anonymous as an extension to Caml Light [9].

The graphical model which is used in MLgraph is basically that of PostScript [2].[1].
Various objects can be defined on the infinite cartesian plane and arbitrarily scaled,
translated and rotated by the application of linear transformations. Each category of
graphical objects corresponds to an ML type. A type picture is used to represent
all printable objects. Pictures have a “frame” and possibly a set of named “handles”
that are used for combination operations. Pictures are defined from more basic objects
such as geometric elements (lines, arcs and curves), texts and bitmaps. All operations
defined on these types are purely functional except for pixel editing in bitmaps.

Printing is obtained via a translation to PostScript. The philosophy of this trans-
lation has been to delegate as much work as possible to PostScript. In particular, all
applications of linear transformations to pictures are delegated to the PostScript inter-
pretor. This has two advantages: the efficiency of PostScript interpretors is fully used
and the sharing involved in the ML representation of pictures is preserved as much as
possible.

About this Manual

We have tried to keep this manual small and therefore, it is not strictly self-contained.
In particular some PostScript notions are used but not explained. The reader which
is not familiar with PostScript might have, at some points, to refer to the PostScript
Reference manual [2].

This manual is divided into three sections. The first section is a general presentation
of MLgraph. The second section details two extended examples. The third section
explains how to install the system and put it to real use. This manual also contains a
glossary of MLgraph functions with their types and an index of MLgraph notions .

'URA 1327 - Laboratoire d’Informatique de I’ Ecole Normale Supérieure - 45 rue d’Ulm, 75230 Paris
Cédex 05, France. Electronic mail: Emmanuel. Chailloux@ens.fr, Guy.Cousineau@ens.fr

2URA 248 - Laboratoire d’Informatique Théorique et Programmation - Institut Blaise Pascal - 4,
place Jussieu - UPMC - 75252 Paris Cédex 05, France. Electronic mail : ec@litp.ibp.fr

Acknowledgments

We are grateful to Yves Lafont and Pierre Crégut who have been the first MLgraph
users and made many useful suggestions. We also thank Michel Mauny for his comments
on a first version of this text.

Chapter 1

Description of the System

1.1 Basic Geometric Notions

Graphic objects are arbitrarily located in the cartesian plane a small part of which is
shown in figure 1.1. A point in this plane is represented by a Caml Light object of type
point defined by:

type point = {xc:float;yc:float}

origin:point is the origin of the coordinate system. Points coordinates are expressed
in typographic points (1/72 inch).

\

hY
&)
w
o

~+

[)
—~
N
w
=

&)
U1

~

_~
1Ry

1
[EEN

unit

Figure 1.1: Points in the cartesian plane

1.1.1 Geometric elements

A geometric element is either a polygonal line represented by a sequence of points or a
circle arc represented by a center, a radius and two angles or a Beziers curve represented
by a start point, two control points, and an end point. The corresponding type is the

following:

type point = {xc:float;yc:floatl};;
type geom_element =
Seg of point list
| Arc of point * float * float * float
| Curve of point * point * point * point;;

Given the points A=(-3.,-3.), B=(-3.,-1.), C=(-1.,-1.), D=(-1..-3.), E=(-3.,-4.), F=
(-2.,0.), G=(0.,5.), H=(1.,4.) and I=(3.,0.), the expressions Seg [A; B; C; D; A],
Curve(E, F, G, H) and Arc(I, 2., 30., 290.) correspond to the the three elements that
are drawn with thick lines in figure 1.2.

A

G

unit|=1 ‘ ‘
Figure 1.2: Geometric elements

1.1.2 Transformations

A transformation is represented by a 3 X 3 matrix which has shape:

M1 Mo M3

Mo Moo Mg

0 0 1

It operates on vectors

— <

that represent points with coordinates (x,y).

The library offers various functions to build transformations:

id_trans : transformation

translation : float * float —-> transformation

rotation : point -> float -> transformation

scaling : float * float -> tramnsformation

line_symmetry : point * point -> transformation

point_symmetry : point -> transformation

handle_transform : point * point -> point * point -> transformation
make_transformation : float * float * float * float * float * float ->
transformation

e id_trans is the identity transformation.

e translation(a,b) builds a transformation which performs displacement a on
the x-coordinate and displacement b on the y-coordinate.

e rotation pt alpha builds a rotation with center pt and angle alpha. Angles
are expressed in degrees.

e scaling (a,b) builds a scaling transformation which uses scale factor a on the
x-coordinate and scale factor b on y-coordinate.

e line_symmetry (pil,p2) builds a symmetry according to the line defined by the
two points p1l and p2. It fails if the two points are equal.

¢ point_symmetry p builds a symmetry according to point p.

e handle_transform (pt1,pt2) (pt3,pt4) builds a linear transformation that
maps ptl to pt3 and pt2 to pt4. It fails if pt1=pt2 or pt3=pt4. Normally, the
user will use this function only implicitly when performing higher level picture
composition. (cf. section 1.5.3).

e make_transformation(a,b,c,d,e,f) creates a transformation with matrix

(e S T
o o o
=~ 0

The available operations on transformations are the followings:

compose_transformations : transformation list -> transformation
prefix ctrans : transformation -> transformation -> transformation
inverse_transformation : transformation -> transformation

e compose_transformations tl produces the composition of transformation list
t1, computed from right to left.

e ctrans is an infix binary composition.

e inverse_transformation T produces the inverse of transformation T provided
that it is invertible.

ot

1.2 Sketches and Pictures

1.2.1 Sketches

A sketch is basically a sequence of geometric elements. It corresponds roughly to what
is called a “path” in the PostScript terminology.

Sketches are represented by a Caml Light type sketch which is used as an abstract
type. The representation of type sketch involves lists of geometric elements together
with additional information such as frame (cf. 1.2.5) and interface information (cf.
1.5.3).

The basic building function for sketches is:
make_sketch : geom_element list —> sketch

The sketches built by function make_sketch are connected sets of geometric elements.
When two consecutive geometric elements in the list are disconnected (i.e. the end
point of the first one does not match the start point of the second one), then a line is
added to connect them. Therefore, given four points A, B ,C, D, the two expressions
make_sketch [Segl[A;B;C;D]] and make_sketch [Seg[A;B];Segl[C;D]]

define equivalent sketches.

It is however possible to make sketches which are formed of several disconnected parts
by using function

group_sketches : sketch list -> sketch

The two expressions make_sketch [Seg[A;B];Seg[C;D]]
and group_sketches [make_sketch [Segl[A;Bl]; make_sketch [Seg[C;D]]1] corre-
spond to non equivalent sketches since line BC exists in the first but not in the second.

Figure 1.3 shows a text defining a sketch together with its graphical representation.

let skp=
group_sket ches i\
[(make_sketch ‘
[Arc({xc=5.;yc=7.},2.,-90.,90.);
Seg [{xc=5.;yc=9.};{xc=3.;yc=9.}; 4/

{xc=3.;yc=1.}; {xc=4.;yc=1.};
{xc=4.;yc=5.},;{xc=5.;yc=5.}1)1;
(make_sket ch
[Arc({xc=5.;yc=7.},1.,-90.,90.);
Seg [{xc=5.;yc=8.};{xc=4.;yc=8.};

{xc=4.;yc=6.},;{xc=5.,yc=6.}])])] unitk 1 v

Figure 1.3: A sketch representing letter P

1.2.2 Painting Information

Sketches are in fact made of pure lines. To be visualized as images, they must be
transformed into pictures using painting information. This information is represented
by values of the following types.

type linecap = Buttcap | Squarecap | Roundcap;;
type linejoin = Beveljoin | Roundjoin | Miterjoin;;
type linestyle = {linewidth:float;
linecap:linecap;
linejoin:linejoin;
dashpattern:int list};;
type fillstyle = Nzfill | Eofill;;
type clipstyle = Nzclip | Eoclip;;
type color = Rgb of float * float * float
| Hsb of float * float * float
| Gra of float;;

We do not detail here the meaning of these types which refer exactly to PostScript

notions.

1.2.3 Pictures

The type picture is used for all visual objects in the system. Pictures can be built
from sketches using painting information. As will be shown later, they can also be built
from bitmaps and texts.

Here are the three main functions that make pictures from sketches:

make_draw_picture : linestyle * color -> sketch -> picture
make_closed_draw_picture : linestyle * color -> sketch -> picture
make_£fill_picture : fillstyle * color -> sketch -> picture

e make_draw_picture produces a picture from a sketch by giving uniformly a
linestyle and a color to its elements.

e make_closed_draw_picture is similar to make_draw_picture but it closes each
of its connected parts as does make_fill_picture. Closing the connected parts
of a sketch means making sure that each connected part ends at its starting point.
It also makes line joins correct at this point.

e make_fill_picture produces a picture from a sketch by first closing each of its
connected parts (those that were obtained by function make_sketch). This is
done by adding a line from the start point to the end point. Then the “interior”
of the sketch is filled according to the given fillstyle with the paint of the given

color.

Given the sketch skp described in figure 1.3, it is possible to define how to draw it or
to fill it as shown in figure 1.4.
It is also possible to use a sketch to “clip” part of a picture.

(* To obtain a draw picture *)
let P1=
let Isty = {linew dth=0.2;!inecap=Buttcap;
|'i nej oi n=Bevel j oi n; dashpattern=[]} /
in make_cl osed_draw picture (Isty,Ga 0.0) skp;;

(* To obtain of fill picture *)
let P2=
meke_fill_picture (Eofill,Ga 0.5) skp;; Y e

,_.

Figure 1.4: Two pictures obtained from the same sketch
clip_picture : clipstyle -> sketch -> picture -> picture

e clip_picture clipsty sk pict builds a picture containing the part of the
picture pict which is in the “interior” of sketch sk according to clipping rule
clipsty. As for function make_£fill_picture, the interior of sketch sk is com-
puted after closing its connected parts.

Pictures can be grouped together using the function :
group_pictures : picture list -> picture

The grouping is performed from left to right. Each new picture can cover previous
ones partially or totally. Figure 1.5 shows what is obtained by grouping the two pictures
of figure 1.4.

(* To superpose Pl and P2 *)

let P3=
group_pi ctures [P2; P1]

unit}=1

Figure 1.5: A superposition of pictures P1 and P2

1.2.4 Applying transformations to sketches and pictures

Transformations are applied to sketches and pictures using functions

transform_sketch : transformation -> sketch -> sketch
transform_picture : transformation -> picture -> picture

Figure 1.6 describes the effect of applying successively transformations T1= translation (2.,-9.)
T2= scaling (0.5,0.5) and T3= rotation {xc=-2.;yc=-2.} 60.0 to our basic pic-
ture.

unit

Figure 1.6: Transformations T1,T2 and T3

1.2.5 Frames

The MLgraph system maintains a frame information for sketches and pictures. The
frame of an object which contains the object is a rectangle with sides parallel to the
axes. It is represented by a value of the following type:

type frame = {xmin:float; xmax:float;
ymin:float; ymax:floatl};;

Frame information is obtained through the following functions:

picture_frame : picture -> frame
sketch_frame : sketch -> frame
picture_center : picture -> point
sketch_center : sketch -> point
picture_width : picture -> float
picture_height : picture -> float
sketch_width : sketch -> float
sketch_height : sketch -> float

Normally, the frame of an object is the smallest rectangle containing the object.
However, when curves are used, the frame includes the control points as well as the
curve itself. Also, when transformations are used, the frame of the transformed object
is computed using only the frame of the initial object. This leads to frames that are
sometimes larger than one would expect. In future versions, tools will be given to
compute frames in a more accurate way.

Sometimes, it is useful for the user to determine the frame of an object by himself
and under his own responsibility for instance to add blank space around an object.
The following functions enable him to do so:

force_picture_in_frame : frame -> picture -> picture

type extension = All_ext | Horiz_ext | Vertic_ext | Left_ext
| Right_ext | Top_ext | Bottom_ext;;

extend_picture_frame : extension -> float -> picture -> picture
extend_sketch_frame : extension -> float -> sketch -> sketch

e force_picture_in_frame fr pict arbitrarily assigns frame fr to picture pict.

e extend_picture_frame ext k pict extends the frame of picture pict using
proportion k in the direction(s) specified by parameter ext.

Some local picture transformations are computed using the frame such as the following
ones:

rotate_picture : float -> picture -> picture
vilip_picture : picture -> picture

hflip_picture : picture -> picture

scale_picture : float * float -> picture -> picture

e rotate_picture a pict rotates picture pict around its frame center by angle
a.

e vflip_picture and hflip_picture perform a symmetry with respect with the
vertical and horizontal medians of the frame.

e scale_picture scales a picture inside its frame using the left bottom corner as
the scaling center.

Figure 1.7 shows the effect of these functions on our favorite example.

An object can also be transformed to fit into a new frame using function:

fit_picture_in_frame : picture -> frame -> picture
fit_sketch_in_frame : sketch -> frame -> sketch

The figure 1.8 shows the result of fitting a given picture in a given frame.
A simple way to place a picture in a given position is to use the function center_picture.

unit|=1 unit|=1 ‘ ‘ unit|=1 ‘ ‘ ‘ ‘

rotation by 45 vertical flip horizontal flip

Figure 1.7: Transformations using frames

‘ unitf=1 - unitf=1 ‘

unit|=1 ‘

Our Example A frame Example fit into frame

Figure 1.8: Fitting a picture into a given frame

center_picture : picture -> point -> picture

e center_picture p pt translates picture p in such a way that its frame center
coincides with pt.

Let us also mention that it is possible to define a picture that has a frame but nothing
in it i.e. a “blank” picture:

make_blank_picture : float * float -> picture

e make_blank_picture (h,w) produces a blank rectangle having height h and
width w and its bottom left corner at the origin. Such pictures can be useful
for composition operations defined in section 1.5.

1.3 Text Pictures

Text pictures are strings of characters that are displayed in a given font and with a
given color.

Fonts have a style and a size. The corresponding types for these notions are:

11

type font_style =

Courier | Courier_Oblique | Courier_Bold | Courier_BoldOblique
| Times_Roman | Times_Bold | Times_Italic | Times_BoldItalic
| Helvetica | Helvetica_Bold | Helvetica_Oblique | Helvetica_BoldOblique
| Symbol
|

Other_font_style of string;;

type font = { Style : font_style ; Size : float };;

The first 13 font styles are predefined for the PostScript interpretor of the Next com-
puter. The associated frame (bounding box) of each character can change between
two PostScript interpretors because the resolution or the drawing are different. The
building of new font descriptions is explained in the chapter 3.

Fonts can be defined using function:

make_font : font_style -> float -> font

The font description is automatically loaded at the first use of a font. If you have some
trouble to load fonts, use the change_graphics_directory function to indicate the
right place of the font descriptions.

The user can ask for the dimensions of any string in any font using functions :

text_width : font -> string -> float
text_height : font -> string -> float
text_frame : font -> string -> frame

e text_width and text_height give the width and height of the given string in
the given font.

e text_frame gives the frame of the given string assuming that the character origin
of its first character is at the origin of the coordinate system. This provides all
the necessary information to place the text accurately. In particular, it gives a
way to compute how much the text spans under and over the reference text line.

Text pictures are defined using functions:

make_text_picture : font -> color -> string -> picture
make_textblock_picture : alignment -> float -> font -> color -> string
list -> picture

e make_text_picture ft c¢ s places the character “origin” of the first character
of string s at the origin of the coordinate system and draws it with font £t and
color c.

e make_textblock_picture align sp ft ¢ sl produces a vertically aligned se-
quence of text lines s1 with regular spacing defined by the sp parameter and
alignment mode defined by the align parameter (see subsection 1.5.1 for a defi-
nition of type alignment).

The character “origin” of the first character of the first string is placed at the

origin.

12

Fonts are classified into two categories :

fixed width (Courier) and variable width

(Times, Helvetica or Symbol). The figures 1.9 and 1.10 show respectively the charac-

ters associated with their frame for the Courier font and the Helvetica_BoldOblique

fonts.

QL]
Iels

| |
o O

SBOOoS (1o o]l
OB o] @
S0 [

RO a0 |

=sao=Q [][1¥
coG 2o R D‘Iilm

2 N X

€A 00 [T
s OO0 S D0 & 0 O

R ZO8 00 = 0]
=ADmaX]

O O
Bﬁn
OO
g &[]
|Dm
oo™

R
)

D= 1 [O8 &s

PV NN IS o]0
~SOSE oy

ENNY)] (o Rmntum] vo LN
OMNS O 50 OQ
L= (1A 0

| DGO~ [KS
OOXDT [1D§
Bmx3 1]

~nQeS o= — 0O
° @Eo=008 =00

Figure 1.9: A fixed width font : Courier

i

QDEI:‘
®oom o[] O

8]
I
s
0

oo g [IF]
Sm MEE I:IDE

I

NOD-O [~ =[]
o=l =
Zim=

#E =~
& ZOIS [=H

SO o] |

el] 0o O] @ cell
oot Edagoon
o= o= g0
D®, o™ 9 bl g
ifiislia

U oUCHHoe
vedly=_
eflghti | kIl mmo
QRIS TIUVIWKX YIZI[]
= > ?] @A BICID EIF/ G
) ¥, -. 10123

Figure 1.10: A variable width font : Helvetica-BoldOblique

Fixed width does not mean fixed frame. When using a fixed width font, characters

in a string can have different widths but they are placed in such a way that their

starting points ares uniformly spaced.

1.4 Bitmaps

A bitmap is basically a bidimensional array of pixels. It has a height, a width and a

depth. The depth is the number of bits used for pixels. Possible values are 1,2,4 or 8.

13

1.4.1 Creation

Bitmaps can be created from scratch and manipulated at the pixel level using the
following functions :

create_bitmap : int -> int -> int -> bitmap
set_pixel : bitmap -> int -> int -> int -> unit
get_pixel : bitmap -> int -> int -> int

e create_bitmap w h d creates a bitmap with width w, height h and depth d (1,2,4
or 8 bits). Each pixel has value zero corresponding to the black color.

e get_pixel b x y gives the value of the pixel (x,y).
set_pixel b x y v modifies the value of the pixel (x,y) by the new value v.

Pixel values for a bitmap of depth d range from 0 (representing black) to 2¢ — 1
(representing white).

However usually, bitmaps are read from an external string representation.

read_bitmap : int -> string -> bitmap
write_bitmap : bitmap -> string -> unit

e read_bitmap d name reads a bitmap from a file name using the integer argument
d in order to know its depth.

e write_bitmap name writes a bitmap to the file name.

1.4.2 Modification

Functions are provided to uniformly modify a bitmap or extract a sub_bitmap such as

map_bitmap : (int -> int) -> bitmap -> bitmap
convert_bitmap : int * (int -> int) -> bitmap -> bitmap
sub_bitmap : bitmap -> int * int -> int * int -> bitmap
copy_bitmap : bitmap —-> bitmap

e map_bitmap transforms a bitmap into another bitmap having the same width,
height and depth by applying a given function to each pixel.

e convert_bitmap transforms a bitmap into another bitmap having the same width
and height but possibly a new depth given by the first argument.

e sub_bitmap (x,y) (w,h) b extracts the sub bitmap of bitmap b having left
bottom corner at point (x,y) and (w,h) as width and height.

e copy_bitmap b produces a copy of bitmap b. This can be useful when using
function set_pixel which operates destructively.

Figure 1.11 shows an example of a bitmap of depth 1 and its inverted image.

14

caml_bitmap map_bitmap (fun 0-> 1| 1->0) caml_bitmap
Figure 1.11: A bitmap transformation

1.4.3 Bitmaps as pictures

To be visualized, a bitmap must be converted into a picture. The following functions

perform this translation :

make_bitmap_picture : bitmap -> picture
make_bitmap_mask_picture : bitmap -> color -> bool -> picture

e make_bitmap_picture produces a picture from a gray-level bitmap. All pixels
in the bitmap are significant (even “white” pixels will be painted when printing

the picture).

e make_bitmap_mask_picture b ¢ bool works only for bitmaps with depth 1. If
bool is true, then only the pixels with value one (white pixels) are significant
and painted with bitmap color c. If bool is false, only the pixels with value
zero (black pixels) are significant and painted with color c.

For example, the figure 1.12 shows the famous caml_bitmap visualized over gray
rectangles by the following call :make_bitmap_mask_picture caml_bitmap (Gra 0.0) true.

Figure 1.12: A camel with its feet wet

1.5 Building complex pictures

It is possible to build complex pictures by grouping more elementary ones using the
function group_pictures. However, in that case, the user usually has to transform
the more basic pictures in order to make them appear in correct relative positions. We
now present new grouping functions that incorporate the necessary transformations.
Using these composition functions, the users can forget completely about the cartesian
plane in which pictures are built. Only the relative sizes of pictures are relevant.

1.5.1 Alignments

Frames can be used to align pictures either horizontally or vertically. Alignment spec-
ifications are values of the following type

type alignment = Align_Right | Align_Left | Align_Center
| Align_Top | Align_Bottom;;

The alignment functions are:

align_horizontally : alignment -> picture list -> picture
align_vertically : alignment -> picture list -> picture

Figure 1.13 shows an alignment together with the program to obtain it.

‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘ﬁ‘h‘ﬁ‘ﬁ‘n‘n‘n\n

(* To obtain a bottom alignment of camels *)
let small = transform_picture (scaling (0.9,0.9));;

letrec iterate fn x =
if n=0 then []
else x:iterate f (n-1) (f x);;

align_horizontally Align_Bottom (iterate small 12 camel)

Figure 1.13: An alignment

1.5.2 Alignments with scaling

The following functions also perform horizontal or vertical alignments but moreover,
they also scale pictures in such a way that their frames fit nicely together either hori-
zontally or vertically.

compose_horizontally : picture list -> picture
compose_vertically : picture list -> picture

16

Theses functions also have prefix binary variants:

prefix besides : picture -> picture —-> picture
prefix over : picture -> picture -> picture

Figure 1.14 shows on the upper row three pictures P1, P2, P3 with different ver-
tical sizes and at the bottom the picture compose_horizontally [P1;P2;P3].

Figure 1.14: Horizontal Composition

1.5.3 More complex picture compositions

Composing pictures horizontally and vertically is not enough and it is often useful to
“attach” pictures together in more complex ways. In order to achieve this, pictures can
be given handles. A handle is an oriented segment defined by two points. The most
simple case is when pictures have one input handle and one output handle but more
generally, pictures can also have sets of named handles in input and output. Sets of
handles are represented by the following type:

= No_handle
| One_handle of point * point
| Handles of (string * (point*point)) list;;

type interface

Pictures have an input interface and an output interface that can be accessed and
modified using functions:

picture_input_interface : picture -> interface
picture_output_interface : picture -> interface

set_picture_interfaces : picture -> interface * interface -> picture

By default, both input and output interfaces are set to “No_handle”. The following
functions can be used to combine pictures with respect to specified handles:

17

attach_pictures : picture * picture -> picture
named_attach_pictures : picture * picture -> string * string -> picture

e attach_pictures (pl,p2) combines pictures pl and p2 by transforming p2 in
such a way that its (unique) input handle coincides with the (unique) output
handle of p1. The input and output handles of the result are the input handle of
pl and the (transformed) output handle of p2.

e named_attach_pictures (pl,p2) (al,a2) combines picturespl and p2 by trans-
forming p2 in such a way that its input handle a2 coincides with output handle
al of p1. The input handles of the result are the input handles of p1 augmented
with the (transformed) input handles of p2 except a2. The output handles of the
result are the output handles of p1 except al augmented with the (transformed)

output handles of p2 .

Figure 1.15 demonstrates the use of handles. We start with a square bitmap with each
side equal to one. It has two handles. The input handle is the segment ((0,0),(1,0)) at
the bottom of the picture. The output handle is the segment ((1,1),(1,2-¢)) where ¢ is
the golden number :(1 + v/5)/2. The result is obtained by applying to it the function
gold_spiral defined in the figure.

3

caml _pict is the canl bitmap on the square unit *)

(* phi is the gold nunber

let canl _picture =
set_picture_interfaces canl _pict
(One_handl e ({xc=0.;yc=0.},{xc=1.;yc=0.}),
One_handl e ({xc=1.;yc=1.},{xc=1.;yc=2.-phi}));;

let rec gold_spiral =
function O -> canl _picture
| n -> attach_pictures (gold_spiral (n-1))
canl _picture;;

Figure 1.15: Golden camels

18

1.6 Using defaults

Giving all the information required to defined pictures is sometimes boring. For in-
stance, after having defined a sketch, the user may want to visualize it without having
to bother about a linestyle. In order to simplify things for him, functions using default
information have been defined:

make_default_draw_picture : sketch -> picture
make_default_closed_draw_picture : sketch -> picture
make_default_fill_picture : sketch -> picture
make_default_text_picture : string -> picture

Some other functions use default information such as:
add_frame : picture -> picture

which makes the frame of a picture visible.

Default information can be accessed and modified using the following functions:

default_linewidthcoef : unit -> float
default_linecap : unit -> linecap
default_linejoin : unit -> linejoin
default_miterlimit : unit -> float
default_dashpattern : unit -> int list
default_color : unit -> color
default_fillstyle : unit -> fillstyle
default_font : unit -> font
set_default_linewidthcoef : float -> unit
set_default_linecap : linecap -> unit
set_default_linejoin : linejoin -> unit
set_default_miterlimit : float -> unit
set_default_dashpattern : int list -> unit
set_default_color : color -> unit
set_default_fillstyle : fillstyle -> unit
set_default_font : font -> unit

All the default values mentioned have a straightforward meaning except for linewidthcoef

and miterlimit.

linewidthcoef is a coefficient that will be multiplied by the average of the height and
width of a given picture to determine the linewidth to be used.

miterlimit is a PostScript notion which is used to limit the extent of miter joins.

1.7 Producing PostScript Files

The following functions produce a PostScript level 1 file for a picture.

ps_file : picture -> string -> unit
eps_file : picture -> string -> unit

19

Function ps_file produces plain PostScript whereas function eps_file produces En-
capsulated PostScript. Encapsulated PostScript includes information about the frame
(bounding box) of the picture. This is the format to use when pictures are to be in-
cluded in IATEX documents [8] or to be visualized using an interpretor understanding
the Encapsulated PostScript format (e.g. Preview on NeXT machines). The main ad-
vantage of using Encapsulated PostScript is that there is no need to worry about the
picture position on the cartesian plane.

To include pictures in IATRX documents, use the epsf macro described in appendix
3.4.

Plain PostScript is the format to use when the picture is to be sent directly to a
printer. In that case, only the part of the picture which is included in the visible region
(a rectangle with left bottom corner at the origin, height = 846 and width = 596 for
the A4 format) will be printed. When using plain PostScript translation of pictures,
the user has normally to be aware of its picture position. However, using functions
scale_picture and center_picture, it is very easy to position correctly a picture in
the visible region.

Chapter 2

Extended Examples

We describe two extended examples to show more complex programs and some direct
applications of the library. You can find others applications of this library in the

=

following papers [5], [7] and [3].

2.1 Drawing Binary Trees

Drawing binary trees in a pleasant way requires some computation. The main con-
straint to satisfy is that subtrees should not overlap. Another constraint, almost equally
important, is that space should be rather uniformly occupied i.e. given two subtrees
with the same father, the respective space to dedicate to each of them depends on their
size and shape. Figure 2.1 shows two rather different kinds of binary trees.

Figure 2.1: Two examples of binary trees

The design principles we have adopted for drawing binary trees are the following :

o At each level of a binary tree, the distance between brother nodes should be
constant.

e The distance between brother nodes at level (n+1) should at most equal to the
distance at level n.

e Two brother subtrees should be drawn is such a way that at each level, the
distance between the rightmost node of the left subtree and the leftmost node of

21

the right subtree should be at least equal to the standard distance between two
brother nodes at that level.

These constraints are taken into account by a function compute_coef_list which
computes for each binary tree a list of coefficients which indicates the ratio that should
be adopted between the distance between two brother nodes at level (n+1) and the
distance between two brother nodes at level n.

The function compute_coef_list recursively computes for each subtree an infor-
mation which has shape (c1,trl)

e cl is the list of reduction coefficients to be applied at each level. Tt is the infor-
mation which will finally by used by function draw_btree (see below).

e trlis a list of triples (1,r,c) where

— 1is the horizontal distance between tree root and leftmost node at the given
level

— r is the horizontal distance between tree root and rightmost node at the
given level

— c is the ratio between distance between brother nodes at the given level and
distance between brother nodes at level 1

For a given binary tree t= Node(t1l,t2) the function compute_coef_list first
computes (¢11,trll) and (c12,trl2) for t1 and t2. Then ¢11 and ¢12 are combined
by taking the minimum coefficient at each level giving a new list c1. Then, using this
new coefficient list, trll and trl2 are recomputed by function recompute_triples
giving trll’ and trl2’. Then, the function compute_head_coef computes for each
level what should be the reduction coefficient to be applied at the root of tree in order
to have the rightmost node of t1 and the leftmost node of t2 be separated by distance
¢ and takes the minimum of all these coefficients. The method is the following: if t1
and t2 were drawn using c11 and c12, then the distance between their roots should be
at least r1-12+c for t1 and t2 to behave nicely at the given level. Therefore the root
coefficient should be 1/(r1-12+c)

Here are the functions:

let recompute_triples cl = recomp (hd cl,tl cl)
where rec recomp (n,cl) =
function [] -> [
| ((1,r,c)::11) -> (1*.n/.c,r*.n/.c,n):: recomp (n*.(hd cl),tl cl) 11;;

let compute_head_coef (trll,trl2) =
it_list min 1.0 (comp_coef (trll,trl2))
where rec comp_coef =
function ([],_) -> 1
| , -> (]
| ((_,r1,c)::111,(12,_,_)::112)
-> (1.0/.(r1-.12+.c)) :: comp_coef (111,112);;

22

let combine_triples x (trll,trl2) =
(-.0.5,0.5,1.0)::comb (trlil,trl2)
where rec comb =
function 1,0 -> []
| (11,r1,c)::111 , [1 -> (-.0.5+.x*.11,-.0.5+.x*.r1,c*.x) :: comb(11l1,[])
| [0, (12,r2,c)::112 -> (0.5+.x*.12,0.5+.x*.r2,c*.x) :: comb([],112)
| (11,r1,c)::111 , (12,r2,_)::112
-> (-.0.5+.x*.11,0.5+.x*.r2,c*.x) :: comb(111,112);;

let compute_coef_list
where rec comp =
function Node {left=Nil;right=Nil;_} -> [1.0],[]
| Node {left=ti;right=Nil;_3}
-> let (cl,trl) = comp t1
in (1.0::¢1,(-.0.5,-.0.5,1.0)
::map (fun (1,r,c) -> (-.0.5+.1,-.0.5+.r,c))
trl)

fst o comp

| Node {left=Nil;right=t2;_}
-> let (cl,trl) = comp t2
in (1.0::¢1,(0.5,0.5,1.0)
::map (fun (1,r,c) -> (0.5+.1,0.5+.r,c))
trl)
| Node {left=ti;right=t2;_}
-> let (cli,trll) = comp t1
and (cl2,trl2) = comp t2
in let cl = minl(cli,cl2)
in let trll’ = recompute_triples cl trill
and trl2’ = recompute_triples cl trl2
in let x = compute_head_coef (trlil’,trl2’)
in (1.0::x::tl cl,combine_triples x (trlil’,trl2’));;

Given this list of coefficients, the drawing of a binary tree becomes straightforward.
The drawing function draw_btree is a standard recursive function on binary tree which
uses the following parameters:

e drn is a function for drawing nodes (it is assumed to operates in “fill” mode) *)
e h is the height (distance between tree levels)

d is the distance between 2 brother nodes at level 1

cl is a coeflicient list

e pt is the point where the root should be placed

Function make_btree_picture first calls compute_coef_list then uses the result
is a call to draw_btree.

let draw_btree drn (h,d,cl,pt) =

23

let LS = {linewidth= h*.0.01;linecap=Buttcap;
linejoi=Miterjoin;dashpattern=[]1}
in let rec draw_r (d,cl, ({xc=x; yc=y} as pt)) =
function
Nil -> failwith "Cannot draw an empty tree"
| Node{info=a;left=Nil;right=Nil}
-> center_picture (drn a) pt
| Node{info=a;left=t1;right=t2}
-> let d=d*.(hd cl)
in let ptl = {xc=x-.d/.2.0;yc=y-.h}
and pt2 = {xc=x+.d/.2.0;yc=y-.h}
in match (t1,t2) with
(_,Nil) -> group_pictures

[make_draw_picture
(LS,black)
(make_sketch [Seg [pt;pt1ll);
center_picture (drn a) pt;
draw_r (d,tl cl,ptl) t1i]
| (Nil,_) -> group_pictures
[make_draw_picture
(LS,black)
(make_sketch [Seg [pt;pt2]11);
center_picture (drn a) pt;
draw_r (d,tl cl,pt2) t2]
| _ -> group_pictures
[make_draw_picture
(LS,black)
(make_sketch [Seg [pt;pt1ll);
make_draw_picture
(LS,black)
(make_sketch [Seg [pt;pt2]1);
center_picture (drn a) pt;
draw_r (d,tl cl,ptl) t1;
draw_r (d,tl cl,pt2) t2]

in draw_r (d,cl,pt)
let make_btree_picture drn (height,d_min,root) t =
let coef_list = compute_coef_list t
in let total_coef = it_list mult_float 1.0 coef_list
in let d= d_min/.total_coef
in draw_btree drn (height,d,coef_list,root) t;;

Different functions can therefore be used to draw nodes. For instance, if trees are

AV trees, it is possible to indicate in each node whether the subtree corresponding to
each node is balanced, or heavier on the left or on the right as shown in figure 2.2.

24

Figure 2.2: An AVL tree

2.2 Escher’s Square Limit Picture

Picture composition using alignments is nicely exemplified by the construction of an
Escher picture called “Square limit”. A programmed version of this picture has been
given by Henderson in [6]. A detailed account of Henderson’s approach is also given in
Course Notes by Cousot [4]. The version presented here uses the same basic pictures
but builds the final picture in a different way.

The building blocks of the final picture are four basic pictures A,B,C,D and three
functions named trio, quartet and cycle.

Here the four basic pictures:

I

%
7Y

B
\

Picture A Picture B

Ve

N e
——g<

The 4 basic pictures

The three basic functions are defined in the following way:

#let rot = rotate_picture 90.0;;

rot : picture -> picture = <fun>

#let trio(pl,p2,p3) =

(pl besides p2) over p3;;

trio : picture * picture * picture -> picture = <fun>
#let quartet (pl,p2,p3,p4) =

(pl besides p2) over (p3 besides p4);;

quartet : picture * picture * picture * picture -> picture = <fun>
#let cycle p =

(p besides (rot (rot (rot p))))

over

((rot p) besides (rot(rot p)));;

cycle : picture -> picture = <fun>

Here is a description of what these functions do:

A|B Al B Al >
C Cl| D <|V

trio(A,B,C) quartet(A,B,C,D) cycle(A)

The Caml Light definition of the picture construction is:

let small = scale_picture (0.5,0.5);;
let square_limit n (P,Q,R,S) =
let TT=quartet(P,Q,R,S)
and UU=cycle (rot Q)
in
let step(C,L,T) =
(quartet(small C
,small(L besides T)
,small((rot T) over (rot L))
,UU)
,trio(small L,small T,rot TT)
,trio(small L,small T, TT))

and final_step(C,L,T) =
quartet (small C,small L, small(rot T),rot Q)
in
cycle(final_step(iterate step n (TT,rot TT,UU)));;

Here are TT and UU for basic picture A.B,C,D:

26

/

\X?

< N
g A — =

quartet(A,B,C,D) cycle(rot B)

The picture corresponding to the original Escher etching is
square_limit 2 (A,B,C,D). It is shown together with its structural description in
figure 2.3.

@O0 AB®OABEOABOOABEOABDOABOOABOROABSOABSOAB
€0CD<UCD<OCDCVUCD<OCDLXOCDL<OCDLOCDLVCDLOCD

0O ABOMOAB®®MOABO®XOAB
< oOCDb<<OCD<OCDS<OTCD

m O A B
< O C D

B

m}@? //?.w @K
NS i
’I 2

\\

d

aoso>»
gV T w

ao%2o0o»Add20>»addo0o>»ddo0>»no
d VOoOwdgdVOoOwdgVvV owdyVOo®sd

\n\

m B mO A B o B
d m < O CDd w
m B dOJOO X>» o B
d @ dV U wm g w

o
el
A
Cc
(9]
o
A
C
O
o
A
[}
(9]
o
A
[}
[¢]
o

o BomOAB®®MOABO®XOAUBOMOAIBDB
g mc O CD<OCD<<OCDZSOCDZSgw
g w gV owedgVowdyVowdyVowsdguw
50>350>090>090>000%>000»000>000>020>0505>a8
VO®EVO®EYO®EVOOEVOOEVOBEEYORIVORIVORAYO®E®

«.J/ \’, 7= \ I) ff \”

Fgﬂ*#ﬂ* !#m‘

B
/ms Sy

‘\ ‘
S, \//\ //
?m.‘:._ /,/lﬁ;» ’”%Jm‘-” (f‘/lTT' /l//"”

>020>020>000%>000>020>A206>A20>020>020>a8
5E8vYoO®IVO®IVOEEVYOOEYOPEYO®AEVO®AVO®EYO®E O

@B @OAB®OABBOABGOABGOABGOAB®OOABOCAB@OAB®OABGE
§®<0CD<0OCD<UCDILCDIOCDIOCDI<OCDIOCDIOCDLOCDE®

ao

Square Limit Square Limit structure

Figure 2.3: Final Square Limit

27

28

Chapter 3

Installation, Parameterization
and Tools

3.1 Installation

The distributed version of the MLgraph library is localized on the ftp server spi.ens.fr
(Département d’Informatique et de Mathématique de I’Ecole Normale Supérieure). Con-
nect yourself onto the anonymous account of this computer and go to the /pub/unix/lang
directory to get the MLgraph.tar.Z file. Don’t forget to be in binary mode during the
transfer because this file is compressed.

The installation is very easy because the distributed package is pre-installed. The
compressed file MLgraph.tar.Z contains the hierarchical graphics library directory.

To install it :

1) create a new directory, push the MLgraph.tar.Z inside and go on :

mkdir MYDIR
mv MLgraph.tar.Z MYDIR
cd MYDIR

2) uncompress and untar the MLgraph.tar.Z file as follow
zcat MLgraph.tar.Z | tar -xvf -

3) copy the MLgraph.z? files and the MLgraph-1ib directory to /usr/local/lib/caml-1light
directory :

cp MLgraph.z? /usr/local/lib/caml-light
cp -r MLgraph-lib /usr/local/lib/caml-light

Or if you prefer to select another localization, for example MYDIR, don’t forget

to change the graphics library directory after loading the MLgraph code by using
the change_graphics_directory function in Caml Light.

29

3.2 Calling MLgraph

You have two ways to use the MLgraph library. The first one is interactive and runs
with the Caml Light toplevel. The second one creates an executable file.

3.2.1 interactive session

The library is contained in only one file. This choice facilitates its use.

% camllight
> Caml Light version 0.5

#load_object "MLgraph";;
- : unit = ()

##open '"MLgraph';;

#

If you have chosen another directory than the usual /usr/local/lib/caml-light
directory, change the graphics directory as follow :

% camllight
> Caml Light version 0.5

#load_object "./MYDIR/MLgraph";;

- : unit = O

##open "./MYDIR/MLgraph";;
#change_graphics_directory ", /MYDIR";;
- : unit =

#

3.2.2 independent executable file

If you prefer to work by command line, you need to add the MLgraph.zo file to your

own code :
camlc -o work.exe MLgraph.zo work.ml

where work.ml is your working file.
Be careful, you are not independent of the MLgraph-1ib directory which contains
font descriptions, several commands and the PostScript headers.

3.3 Using fonts

The predefined font descriptions correspond to the Next computer fonts Courier,
Times, Helvetica and Symbol. They are correct only for this computer and its
printer. For the other PostScript interpretors, and for the other PostScript printers,
you need to compute the font description for these 4 fonts and their derived fonts.
For that the PostScript program createfonts.ps, included in the package in the

30

MLgraph-1ib/Bin directory, creates (after uncommenting the last lines) new font de-
scriptions which you can use to replace the predefined ones. Note that all this is
important only if you really need to know the exact sizes of characters.

If you want to use other fonts, it is necessary to create them with the createfonts.ps
program. After that, in your Caml Light program, you need to add the new names of
these fonts in the font_list. For example, if you want to use the Ohlfs font, then :

1) create the font description, called Ohlfs.font, and move it to the MLgraph-1ib/Fonts
directory

2) in Caml Light, add the new font as follow

#add_font (Other_font_style "Ohlfs",
{Name="0hlfs";Height=12.0;Width=12.0;Descr=[||];Descr_bbox=[111});;

to create its entry point.

All font descriptions are automatically loaded at first use.

3.4 Including Pictures inside TEX or EIpX

A new epsf TEX macro is given with the MLgraph library (Headers directory). It is
due to Michel Mauny and Emmanuel Chailloux. TEX performs itself the recognition
of the Bounding Box of the included PostScript file. For that, this file must contain in
its header a correct Bounding Box.

The macro is \epsf{filename} possibly with a specification of the picture size
which can have one the following forms :

[xscale=<number>/<number>,yscale=<number>/<number>]
or (hsize=<number>,vsize=<number>)

The first form indicates the scale factors by two rational numbers. The second one
gives in points the exact size of the drawing. A null hsize indicates the hsize scaled
by the vsize scaling. A null vsize indicates the vsize scaled by the hsize scaling.

For example the figure 2.2 is building as follows :

\begin{figure} [hbt]
\begin{center?}

\epsf{AVL2.ps} (hsize=300,vsize=0)
\end{center}

\caption{An AVL tree}
\label{avl}

\end{figure}

This macro runs for different dvi translators : OzTeX, Dvi2ps and dvips. It is necessary
to indicate which is used : \1et\DVITOPS=\dvips selects the dvips translator.

31

32

Bibliography

ADOBE. PostScript Language : Tutotial and Cookbook. Addison-Wesley, 1985.
ADOBE. PostScript Reference Manual. Addison-Wesley, 1985.

CHAMBERT-LOIR, A., GRANBOULAN, L., AND LEMAIRE, C. Une ceuvre d’Escher
en CAML. Tech. rep., "Ecole normale supérieure”, 1991. Rapport de projet de
Magistere.

CousoTt, P. Cours d’ Informatique de 1'Ecole Polytechnique. Paris, 1988.

CREGUT, P. An Abstract Machine for the Normalization of A-terms. In Lisp and
Functional Programming (1990), ACM.

HENDERSON, P. Functional Geometry. In Symposium on Lisp and Functional
Programming (1982), ACM.

LAFONT, Y. Penrose diagrams and 2-dimensional rewriting. In Symposium on
Applications of categories in Computer Science (1992), Cambridge University Press.
LMS Lecture Notes Series.

LAMPORT, L. BTpXUser’s Guide and Reference Manual. Addison-Wesley, 1986.

MauUNY, M. Functional Programming using CAML Light. Tech. rep., INRIA, Sept.
1991.

33

Glossary

List of the MLgraph predefined values

addframe : picture — picture e 19
align_horizontally : alignment — picture list — picture 16
align_vertically : alignment — picture list — picture 16
attach_pictures : picture * picture — picturecciiiiiiiiieiiein.n. 17
besides : picture — picture — pictureol 17
center_picture : picture — point — picture 10
change_graphics_directory : string — unit 12, 30
clip_picture : clipstyle — sketch — picture — picture 7
compose_horizontally : picture list — picture 16
compose_transformations : transformation list — transformation 5
compose_vertically : picture list — picture L. 16
convert_bitmap : int * (int — int) — bitmap — bitmap 14
copy_bitmap : bitmap — bitmap 14
create_bitmap : int — int — int — bitmap 14
ctrans : transformation — transformation — transformation)
default_color : unit — color ... 19
default_dashpattern : unit — int list i i i i 19
default fillstyle : unit — fillstyle 19
default font : unit — font 19
default linecap : unit — linecapo e 19
default linejoin : unit — linejoin 19
default linewidthcoef : unit — float 19
default _miterlimit : unit — float 19
epsfile : picture — string — unit ... 19
extend_picture_ frame : extension — float — picture — picture 10
extend_sketch _frame : extension — float — sketch — sketch 10

34

fit_picture_in_frame : picture — frame — picture il 10

fit_sketch_in_frame : sketch — frame — sketch il 10
force_picturein_frame : frame — picture — picture 10
get_pixel : bitmap — int —int —int 14
group_pictures : picture list — picture 8
group_sketches : sketch list — sketch ... o 6
handle_transform : point * point — point * point — transformation)
hflip_picture : picture — picture i e 10
id_trans : transformation e 5
inverse_transformation : transformation — transformation 5]
line_symmetry : point * point — transformation i)
make_bitmap_mask_picture : bitmap — color — bool — picture 15
make_bitmap _picture : bitmap — picture 15
make_blank _picture : float * float — picture 11
make_closed_draw _picture : linestyle * color — sketch — picture 7
make_default _closed_draw _picture : sketch — picture 19
make_default_draw_picture : sketch — picture 19
make_default fill_picture : sketch — picture 19
make_default_text_picture : string — pictureo 19
make_draw_picture : linestyle * color — sketch — picture 7
make_fill_picture : fillstyle * color — sketch — picturecoovi.L. 7
make_font : font_style — float — font 12
make_sketch : geom_element list — sketch o 6

make_textblock picture : alignment — float — font — color — string list — picture .
12

make_text_picture : font — color — string — picture 12
make_transformation : float * float * float * float * float * float — transformation . 5
map_bitmap : (int — int) — bitmap — bitmap 14
named_attach_pictures : picture * picture — string * string — picture 17
over : picture — picture — pPIiCture e 17
picture_center : picture — POINE ... e 9
picture frame : picture — frame 9
picture_height : picture — float 9
picture_input_interface : picture — interface 17
picture_output_interface : picture — interface L 17
picture_width : picture — float 9

point_symmetry : point — transformation i)

psfile : picture — string — unit ... e 19
read_bitmap : int — string — bitmap e 14
rotate_picture : float — picture — picture i 10
rotation : point — float — transformation i 5
scale_picture : float * float — picture — pictureo, 10
scaling : float * float — transformation i i 5
set_default_color : color — unit ... i 19
set_default_dashpattern : int list — unit L. 19
set_default fillstyle : fillstyle — unit 19
set_default_font : font — unit 19
set_default linecap : linecap — unit i e 19
set_default linejoin : linejoin — Unit i 19
set_default linewidthcoef : float — unit 19
set_default_miterlimit : float — unit 19
set_picture_interfaces : picture — interface * interface — picture 17
set_pixel : bitmap — int - int = int —unit 14
sketch_center : sketch — point 9
sketch_frame : sketch — frame 9
sketch height : sketch — floato i 9
sketch_width : sketch — float 9
sub_bitmap : bitmap — int * int — int * int — bitmap 14
text_frame : font — string — frame e 12
text_height : font — string — float 12
text_width : font — string — float 12
transform_picture : transformation — picture — picture, 8
transform sketch : transformation — sketch — sketch oo 8
translation : float * float — transformation i 5
vilip_picture : picture — PIiCtUreuvrr e e e e e 10
write_bitmap : bitmap — string — unit e 14

36

Index

alignment o o o 16
alignments with scaling 16
bitmapccoiiiiiiiii 13
cartesian plane 3
clipping 7.8
COlOT « ot 7
defaults L. 19
epst oo 20
fonts ... 11
frame 9
frame extension 10
frame modifications 10
geometricelement 3
GLOUPINE .+ttt ieee 6. 8
handles oo il 17
interfaces L. 17
linestyle il 7
linesymmetry 5
picture ... i 7
point 3
point_symmetry L. 5
postscript filesl 19
rotation ol)
scaling ... 5
sketch ... 6
text ..o 11
text block L. 13
transformation 4
transformation composition)
translation oL 5

37

Contents

1 Description of the System

1.1 Basic Geometric Notions
1.1.1 Geometric elementso oL
1.1.2 Transformations

1.2 Sketches and Pictures o o
1.2.1 Sketches
1.2.2 Painting Information oo
1.2.3 Pictures
1.2.4 Applying transformations to sketches and pictures
1.2.5 Frames oL

1.3 Text Pictures

1.4 Bitmaps e e e e e e
1.4.1 Creation e
1.4.2 Modification L
1.4.3 Bitmaps as pictureso

1.5 Building complex pictures oo
1.5.1 Alignments e
1.5.2 Alignments with scaling
1.5.3 More complex picture compositions.

1.6 Usingdefaults oo

1.7 Producing PostScript Files. oo o

2 Extended Examples
2.1 Drawing Binary Trees
2.2 Escher’s Square Limit Picture . . .

3 Installation, Parameterization and Tools

3.1 Imstallation

3.2 Calling MLgraph
3.2.1 interactive session
3.2.2 independent executable file

3.3 Using fonts

3.4 Including Pictures inside TEX or IWTRX

Bibliography

38

= O 00 ~J =~ O O kW w W

29
29
30
30
30
30
31

33

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15

2.1
2.2
2.3

Points in the cartesian plane oo 0oL 3
Geometric elementso 0oL Lo 4
A sketch representing letter P 0000000000 6
Two pictures obtained from the same sketch 8
A superposition of pictures Pland P2 8
Transformations T1, T2 and T3 9
Transformations using frameso L0000 11
Fitting a picture into a given frame 11
A fixed width font : Courier Lo 13
A variable width font : Helvetica-BoldOblique 13
A bitmap transformation Lo Lo 15
A camel withitsfeet weto oL oo 15
An alignment L 0000 16
Horizontal Composition L. 17
Golden camels oL 18
Two examples of binary trees 21
An AVL tree o 25
Final Square Limit o0 27

39

