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Abstract

We consider algebraic speci�cations with observational fea-

tures. Axioms as well as observations are formulae of full (Many-

Sorted) First Order Logic with Equality. The associated semantics is

based on a non standard interpretation of equality called observational

equality. We study the adequacy of this semantics for software speci�-

cation and the relationship with behavioural equivalence of algebras.

We show that this framework de�nes an institution.

Keywords: algebraic speci�cation, observability, semantics.

1 Introduction

Within an observational approach the loose semantics of a speci�cation

may either be de�ned as a class of algebras observationally equivalent to

models satisfying the speci�cation in the usual sense or as a class of algebras

observationally satisfying the speci�cation. The former way has already

been deeply explored in [13] while in the latter one, the following problems

remains open:

1. How to de�ne an observational satisfaction relation w.r.t. more sophis-

ticated observation techniques than sort observation ?

2. How to generalize the observational satisfaction relation of equational

axioms of [10], positive conditional axioms of [14], [8] or [11], �rst order
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axioms without existential quanti�er nor predicate symbols of [1] or

[3] to the full (Many Sorted) First Order Logic with Equality ?

3. Is it possible to provide an observational institution

1

in such a general

framework ?

All these questions are investigated in the present paper. For the �rst one

the answer was partially given in [14] and [1] where observable signatures are

considered

2

and in [3] where observable terms (possibly with variables) are

considered. In the present paper, observable (�rst order) formulae are con-

sidered. More precisely, a set of formulae represents available experiments.

An experiment consists of checking the validity of a formula in an algebra for

a given assignment of variables. Thus each value is involved only in some

experiments. We assume that only the results of such experiments pro-

vide an information on what an algebra resembles. It is then impossible to

distinguish some values from the others. This is represented by an indistin-

guishability relation de�ned according to the following Indistinguishability

Assumption:

Two values are indistinguishable with respect to some experi-

ments when it is impossible to see if they are di�erent using the

results of these experiments.

We show that our indistinguishability relation is neither a congruence nor

an equivalence relation. We do not think that this is unfortunate. This fact

seems rather necessary in order to model the real situations in a better way,

for instance the following ones:

1. A speci�cation of sets of natural numbers may be additionally

equipped with an operation choose which takes a set as argument and

returns an element of the set. Sequences over IN should clearly be con-

sidered as a correct realization of this speci�cation, choose being for

instance an operation which returns the head of a sequence. Then the

sequences mn and nm are indistinguishable since they represent the

same set fm; ng. But when n 6= m we want the results of choose(nm)

and choose(mn) (i.e. n and m) to be distinguishable.

2. Given a speci�cation of something like a metric space, we may want

to consider as indistinguishable two elements which are very close, (let

1

See [7] for more details about institutions.

2

In fact these approaches combine signature and sort observations.
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us say a and b indistinguishable i� jja � bjj � ", for some �xed ").

Such a relation is clearly non transitive.

Another surprising fact is that the indistinguishability relation is not com-

patible with the predicates as illustrated by the following example:

spec : OPT-SET

use : CONST

sort : set

generated by :

�: ! set

add: Const set ! set

predicates :

2 : Const set

axioms :

optional(e)) add(e; s) = s

:(e 2 �)

:optional(e) )

(e 2 add(e

0

; s),

e = e

0

_ e 2 s)

observations :

optional(e) _ e 2 s

spec : CONST

sort : Const

generated by :

a

1

; : : : ; a

n

: ! Const

b

1

; : : : ; b

m

: ! Const

predicates :

optional : Const

particular : Const

axioms :

optional(a

1

); : : :

: : : ; optional(a

n

)

:optional(b

1

); : : :

: : : ;:optional(b

m

)

\Some axioms about

particular"

observations :

x=y

Figure 1.1: Speci�cation OPT-SET

Example 1.1

Figure 1.1 is an attempt to specify a data type (sort set) whose ele-

ments are sets of some constants (sort Const). Some of these constants

should be considered as optional in the sense that if optional(c) holds then

add(c; fc

1

; : : : ; c

n

g) does not necessarily returns fc; c

1

; : : : ; c

n

g; it may also

return fc

1

; : : : ; c

n

g. We may then consider a realization by the sets with

the usual membership but unusual add: non optional constants are always

added while the optional ones are added only if some other properties are

satis�ed (e.g. particular(c)). We will show later that in this realization two

sets are indistinguishable if they have the same non optional elements. Con-

sequently, the indistinguishability relation is not compatible with \2" since,
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for instance, � and any singleton set feg with an optional e are indistin-

guishable, whereas the realization under consideration satis�es e 2 feg but

not e 2 �.

In contrast to the non transitivity and the non compatibility with oper-

ations or with predicate symbols, another property causes a serious problem

for the indistinguishability relation. In general, the indistinguishability re-

lation is not \transported" through the forgetful functor. This, in part,

provides an answer for the third question mentioned at the beginning of

the introduction: an institution may be established under some restrictions

on the category of signatures. Our institution for observational speci�ca-

tions requires signature morphisms to be injective. However without such

a restriction our formalism is still a \semi-institution" (only the if part of

the Satisfaction Condition holds). This is probably our main contribution

since with all the de�nitions of observational satisfaction relation preceding

[3], such a result requires at least the restriction to positive conditional ax-

ioms with observable preconditions. In our approach such a restriction is

not necessary anymore, due to the following idea. We de�ne observational

algebras as usual algebras equipped with an additional equivalence relation

called observational equalitywhich is used as a non standard interpretation

of equality. Moreover, we require an observational equality to be included

in the indistinguishability relation. (Thus, in our example of metric-like

space, observational equality provides a tiling of space such that the longest

distance between two points in a same tile is less than ".) Unlike the indis-

tinguishability relation, an observational equality is of course \transported"

by the forgetful functor.

It is important to notice that, similarly to the indistinguishability rela-

tion, an observational equality is not necessarily a congruence. This choice

allows more realistic realizations of observational speci�cations and may be

motivated by examples such as sets with choose or similar to 1.1. Conse-

quently with our observational semantics, if in a speci�cation one writes

the axiom a = b together with f(a) 6= f(b), such a speci�cation may have

a model. This points out that approaches with an observational satisfac-

tion relation may have the advantage to be fully observational over the

approaches based on the observational equivalence of algebras, where unfor-

tunately some observational features are directly based on the usual ones.

In particular, in these approaches observational consistency always coincide

with the usual one whereas in ours, a speci�cation being inconsistent (in
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the usual sense) may still have observational models. (An example of such

speci�cations may be found in [3] or [2].)

In this paper some proofs have been presented in a reduced form. Com-

plete proofs may be found in [2].

2 Algebraic and Logic Preliminaries

We assume that the reader is familiar with algebraic speci�cations (see

e.g. [6] or [9]). A signature � consists of a �nite set S of sorts and a �nite

set of operation and predicate names with arities, ambiguously denoted by

�. We assume that each signature � is provided with an S-sorted set of

variables X such that X

s

is countable for each s 2 S. We use the following

conventions. Given a signature � (resp. �

0

), S (resp. S

0

) denotes the sorts

of � (resp. �

0

) and X (resp. X

0

) denotes the variables of � (resp. �

0

). A

signature morphism � : � ! �

0

maps each sort of S to a sort of S

0

, each

operation (f : s

1

: : :s

n

! s) 2 � to an operation �(f) of �

0

with the arity

�(s

1

) : : :�(s

n

) ! �(s), each predicate (q : s

1

: : :s

n

) 2 � to a predicate �(q)

of �

0

with the arity �(s

1

) : : :�(s

n

) and each variable of X

s

to a variable of

X

0

�(s)

. Moreover, we assume that a signature morphism is always injective

on variables

1

.

Remark 2.1

Our approach to variables is slightly di�erent than the one of [7] (page

36, De�nition 55 of [7]) where the authors consider an S-sorted set of vari-

ables as a map X : X ! S from a �xed set X of variable symbols to sorts.

In presence of � : � ! �

0

, variables used for �

0

-formulae are de�ned in [7]

as X

0

= X;�. In other words, the authors of [7] assume that signature mor-

phisms are always bijective on variables. Consequently, in their approach,

there are no variables of sorts S

0

c

�(S). This seems to us a bit restrictive.

Since we deal with predicate symbols, our �-algebras are usual (total)

�-algebras equipped additionally with relations q

A

� A

s

1

� : : : � A

s

n

for

each predicate symbol (q : s

1

: : : s

n

) 2 �. Consequently, a �-morphism in

our sense is any usual �-morphism � : A ! B which additionally satis�es

1

Without this assumption, which in a stronger form appears in [7], it would be impossi-

ble to establish that A

0

j= �(x = y) i� A

0

j

�

j= x = y, for instance with �(x = y) = (x

0

= x

0

).
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the following condition:

8 a

1

2 A

s

1

; : : : ; a

n

2 A

s

n

ha

1

; : : : ; a

n

i 2 q

A

) h�(a

1

); : : : ; �(a

n

)i 2 q

B

The category of �-algebras is denoted by Alg[�]. Given a signature mor-

phism � : � ! �

0

the �-reduct of a �

0

-algebra A

0

, written A

0

j

�

is de-

�ned in the usual way (with q

A

0

j

�

= �(q)

A

0

for each predicate symbol

q 2 �) and extending it on �

0

-morphisms we obtain the forgetful func-

tor

j

�

: Alg[�

0

]! Alg[�].

Given an S-sorted set E, we denote by T

�

(E) the free �-algebra over E.

For instance T

�

(resp. T

�

(X)) denotes the �-algebra of ground terms (resp.

terms with variables), T

�

(A) (resp. T

�

(A[X)) denotes the �-algebra of

ground terms (resp. terms with variables) over the carriers of a �-algebra

A. Notice that if A is a free algebra then we have necessarily q

A

= � for

any predicate symbol q.

A valuation is a morphism � : X ! A which maps each x 2 X

s

to a

value x� 2 A

s

. A partial valuation is a valuation preceded by an inclu-

sion X

0

� X. The set of all valuations (resp. partial valuations) from X to

A is written Val[X;A] (resp. PVal[X;A]). From the freeness of T

�

(X) any

valuation (resp. partial valuation) � followed by the inclusion A � T

�

(A)

(resp. A � T

�

(A [ X)) extends to a unique morphism (written ambigu-

ously �) from T

�

(X) to T

�

(A) (resp. T

�

(A [ X)) which maps each term

t 2 (T

�

(X))

s

to a valued term t� 2 (T

�

(A))

s

(resp. partially valued term

t� 2 (T

�

(A[X))

s

). The evaluation morphism from T

�

(A) to A is de�ned

as the unique �-morphism which maps each element of (T

�

(A))

s

\ A

s

to

itself. This morphism maps a valued term � to its evaluation result written

� .

From T

�

(X), predicate symbols (including equality), connectives

(:;^;_;), etc.) and quanti�ers (8; 9), we construct the set W�

�

(X) of

well formed �-formulae. Given ' 2 W�

�

(X) among the variables of '

(written Var[']) we distinguish between free and bound variables, both

being de�ned in the usual way. We assume that there are no clashes be-

tween them in a formula (otherwise variables are properly renamed). A

valuation � : X ! A may also be applied to a formula '. We then de�ne
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valued formulae (resp. partially valued formulae) as follows

W�

�

(A) = f'� j ' 2W�

�

(X); � 2 Val[X;A]g

(resp: W�

�

(A[ X) = f'� j ' 2W�

�

(X); � 2 PVal[X;A]g)

Satisfaction relation between �-algebras and �-formulae is the usual one of

(Many Sorted) First Order Logic with Equality. We may also write A j= #

for # 2 W�

�

(A) and A 2 Alg[�], that is we extend the usual notion of

satisfaction relation on valued formulae in the following way: elements of A

appearing in # are considered as constants interpreted by themselves. The

extension of a signature morphism � : � ! �

0

on formulae is ambiguously

denoted by �. Given a �

0

-algebra A

0

we also use � to denote the extension of

a signature morphism on valued formulae, namely � : T

�

(A

0

j

�

)! T

�

0

(A

0

).

De�nition 2.2

Given a signature morphism � : � ! �

0

and a �

0

-algebra A

0

, we de�ne

a �-reduct of a valuation �

0

: X

0

! A

0

as a valuation �

0

j

�

: X ! A

0

j

�

satisfying:

8 x 2 X �(x)�

0

= x�

0

j

�

Moreover given � : X ! A

0

j

�

we denote by �(�) the class of all valuations

�

0

: X

0

! A

0

such that �

0

j

�

= �.

Remark 2.3

Since our approach to variables is slightly di�erent than the one of [7]

(see Remark 2.1) we do not have a one to one map between Val[X;A

0

j

�

] and

Val[X

0

;A

0

]. In order to reuse the results of [7] about Satisfaction Condition

in various institutions we translate our approach to variables in the Goguen's

and Burstall's one as follows: we consider the quotient of Val[X

0

;A

0

] by the

equivalence relation determined by �

0

j

�

= �

0

j

�

. Consequently there is a one to

one map between Val[X;A

0

j

�

] and this quotient. Thus any \logical system"

which is an institution in a [7]-like approach to variables is also an institution

in our approach to variables due to the following lemma:

Lemma 2.4

Let ' be a �-formula with Var['] = X

0

and A be a �-algebra. Two

valuations which di�er on X

c

X

0

have the same e�ect on the truth of '.

In particular for a signature morphism � : � ! �

0

and a �

0

-algebra A

0

,

7



any valuations �

0

; �

0

2 Val[X

0

;A

0

] such that �

0

j

�

= �

0

j

�

are both solutions

(that is valuations which make the formula true) of the same formulae of

�(W�

�

(X)). In other words for any � : X ! A

0

j

�

and any ' 2 W�

�

(X) we

have that either all elements of the class �(�) are solutions of �(') or none

of them are. 2

Also the following result may be deduced from Goguen's and Burstall's proof

of Satisfaction Condition for (Many-Sorted) Equational Logic:

Fact 2.5

Let � : � ! �

0

be a signature morphism and A

0

be a �

0

-algebra. For

any valued term � 2 T

�

(A

0

j

�

) we have �(�) = � . 2

3 Indistinguishable Elements

As mentioned in the introduction we need to de�ne an indistinguisha-

bility relation on the carriers of an algebra in order to loosen the satisfaction

relation. Usually this is done using the concept of observable contexts. Since

we observe formulae, we consider contextual formulae instead of contexts.

The de�nition of contextual formula requires some additional notations. We

assume that a formula ' can be represented by a tree. A term position p

in ' is a sequence of integers which describe the path from the topmost

position of ' to the considered term in ' written 'j

p

. The replacement of

'j

p

by a term t in ' is written '[t]

p

.

De�nition 3.1

Given sorts S = fs

1

; : : : ; s

n

g the set of contextual variables is the (S-

indexed) set � = f�

s

1

; : : :�

s

n

g with f�

s

i

g being called the contextual vari-

able of sort s

i

. A contextual formula over a �-algebra A is a partially

valued formula # with only one variable being both contextual and free.

Consequently, the set of all contextual formulae over A, written Cf

�

(A) is

de�ned as follows:

Cf

�

(A) =

[

s2S

W�

�

(A [ f�

s

g)

The application of � 2W�

�

(A [ f�

s

g) on a 2 A

s

is written �[a].

Our meta-concept of observation is that for each element a of an algebra,

there is a set of experiments in which a may be involved. We call such a set

8



observers of a. Here, an observer of a is some contextual formulae � and

the corresponding experiment is the truth of �[a]. In order to de�ne what

the observers of a are, we �rst need two auxiliary de�nitions:

De�nition 3.2

Let A be a �-algebra. We de�ne the partial evaluation relation, written

!

pEv

, onW�

�

(A) as follows. We say that a formula #

2

2W�

�

(A) is the result

of the partial evaluation of #

1

2W�

�

(A), written #

1

!

pEv

#

2

, if there is a term

position p in #

1

satisfying Var[#

1

j

p

] = � and such that #

1

[#

1

j

p

]

p

= #

2

.

The requirement Var[#

1

j

p

] = � may seem strange. This is necessary, since

given ' 2 W�

�

(X) only the free variables of ' can be mapped to A. Con-

sequently we assume that when applied to ', a valuation � is implicitly

preceded by the inclusion \free variables of '" � X. For instance if � which

maps x to a and y to b is applied on a formula 9 y x � y we obtain 9 y a � y

and not 9 b a � b. Thus given a valued formula #, in general we do not

have Var[#] = �.

De�nition 3.3

Let � �W�

�

(X) be a set of formulae and A be a �-algebra. The closure

by partial evaluations of � in A, written

e

�

A

, is de�ned as follows:

e

�

A

= f# 2W�

�

(A) j 9 ' 2 � 9 � : X! A '�

�

!

pEv

#g

where

�

!

pEv

denotes the re
exive-transitive closure of !

pEv

.

Now if � is a set of observable formulae,

e

�

A

provides an information about

experiments in which a may by involved:

De�nition 3.4

Let � �W�

�

(X) be a set of formulae which we call observable formulae

and a be an element of a �-algebra A. We say that a contextual formula

� 2 Cf

�

(A) is a �-observer of a (an observer of a, in short) if �[a] 2

e

�

A

.

The set of �-observers of a is written obs

�

(a).

Once we know which experiments can be made on a value a, we want to

know how to compare their results with the ones made on another value b.

We claim that only common observers of a and b (called comparators) may

be used for this purpose:
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De�nition 3.5

A �-comparator (comparator, in short) of elements a and b of a given

carrier of a �-algebra, is any �-observer of a and b. The set of all compara-

tors of both a and b is denoted by cmp

�

(a; b). We say that a �-comparator

� distinguishes a and b i� A 6j= �[a], �[b].

We can now state the following de�nition of indistinguishability:

De�nition 3.6

We say that two elements a and b of a given carrier of a �-algebra

are indistinguishable w.r.t. a set of formulae � 2 W�

�

(X) (or �-

indistinguishable) written a �

�

b, if there is no �-comparator which dis-

tinguishes them.

We illustrate these concepts by the following example:

Example 3.7

Consider an algebra L of sets over the signature of OPT-SET (see Figure

1.1) with the usual membership test and with the following add:

add

L

(c; fc

1

; : : : ; c

n

g) =

(

fc; c

1

; : : : ; c

n

g if c 2 particular

L

or c 62 optional

L

fc

1

; : : : ; c

n

g otherwise

that is any non optional constant is always added to a set and optional ones

are added only if they are particular. The set of observable formulae Opt of

this speci�cation is foptional(x) _ x 2 sg. Applying the de�nition we obtain

g

Opt

L

= foptional(c) _ c 2 l j c 2 L

Const

; l 2 L

Set

g

Consequently any l 2 L

Set

has the same observers foptional(c) _ c 2 � j c 2

L

Const

g. Such an observer may only distinguish two sets which di�er on non

optional elements.

As mentioned in Introduction, we would like to present an institution

for observational speci�cations. Since our observational satisfaction relation

(which will be de�ned further) strongly depends on observers we must �rst

study their properties w.r.t. the forgetful functor and the translation of

observable formulae. In this way, we shall provide tools which will be useful

to show that the Satisfaction Condition holds in our formalism. Below we

give the �rst important theorem. It is a good occasion to establish some

interesting lemmas about partial evaluation.
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Theorem 3.8

Let � : � ! �

0

be a signature morphism, � � W�

�

(X) and �

0

�

W�

�

0

(X

0

) be sets of formulae such that �(�) � �

0

and A

0

be a �

0

-algebra.

For any element a 2 A

0

j

�

and any contextual formula � 2 Cf

�(A

0

j

�

)

we have

� 2 obs

�

(a) ) �(�) 2 obs

�

0

(a)

We need the following lemmas for the proof:

Lemma 3.9

Let � : � ! �

0

be a signature morphism, and A

0

be a �

0

-algebra. For

any #

1

; #

2

2W�

�

(A

0

j

�

) we have:

#

1

�

!

pEv

#

2

) �(#

1

)

�

!

pEv

�(#

2

)

Proof

Follows directly from De�nition 3.2 and Fact 2.5. 2

Lemma 3.10

Let � : � ! �

0

be a signature morphism, � � W�

�

(X) and �

0

�

W�

�

0

(X

0

) be sets of formulae such that �(�) � �

0

and A

0

be a �

0

-algebra.

For any # 2W�

�

(A

0

j

�

) we have:

# 2

e

�

A

0

j

�

) �(#) 2

f

�

0

A

0

Proof

Assume # 2

e

�

A

0

j

�

. By De�nition 3.3 we have 9 ' 2 � 9 � : X! A

0

j

�

'�

�

!

pEv

#.

By Lemma 3.9 we obtain

9 ' 2 � 9 � : X! A

0

j

�

�('�)

�

!

pEv

�(#) (i)

It is obvious from De�nition 2.2 that for any �

0

2 �(�) we have �('�) = �(')�

0

.

Let '

0

= �(') then from (i), we deduce: 9 '

0

2 �

0

9 �

0

: X ! A

0

'

0

�

0

�

!

pEv

�(#).

By De�nition 3.3 this yields �(#) 2

f

�

0

A

0

. 2

11



Proof of Theorem 3.8

Let � : � ! �

0

be a signature morphism, � � W�

�

(X) and �

0

� W�

�

0

(X

0

)

be sets of formulae such that �(�) � �

0

and A

0

a be �

0

-algebra. Let a 2 A

0

j

�

and

assume � 2 obs

�

(a). By De�nition 3.4 we have �[a] 2

e

�

A

0

j

�

, hence by Lemma 3.10

we deduce �(�[a]) 2

f

�

0

A

0

. By De�nition 3.4 this yields �(�) 2 obs

�

0

(a). 2

Note that the converse of the above theorem does not hold even if �(�) =

�

0

:

Example 3.11

Consider the signatures � = fq

1

; q

2

: sg and �

0

= fq

0

: s

0

g. Let � =

fq

1

(x)g. Consider � : �! �

0

such that �(s) = s

0

and �(q

1

) = �(q

2

) = q

0

. It

is clear that for any �

0

-algebra A

0

, q

2

(�) is not a �-observer of any element

a 2 A

0

j

�

, whereas �(q

2

(�)) = q

0

(�) and q

0

(�) 2 obs

�(�)

(a).

However, for injective signature morphisms the converse of Theorem 3.8

holds:

Theorem 3.12

Let � : �! �

0

be an injective signature morphism, � �W�

�

(X) be a set

of formulae and A

0

be a �

0

-algebra. For any a 2 A

0

j

�

and any � 2 Cf

�

(A

0

j

�

)

we have:

� 2 obs

�

(a) , �(�) 2 obs

�(�)

(a)

Proof sketch

Since � is injective, the implications in lemmas 3.9, 3.10 become equivalences

when �

0

= �(�). Consequently, we obtain the proof we are looking for, by replacing

the implications in the proof of 3.8 by equivalences. 2

The former example shows the real source of problems in our approach.

More generally a signature morphism � : � ! �

0

may map two (or more)

di�erent sorts s

1

; s

2

2 S to the same sort s

0

2 S

0

. By de�nition of �-reduct

we then have (A

0

j

�

)

s

1

= (A

0

j

�

)

s

2

= A

s

0

but the indistinguishability relations

may be di�erent on these three carrier sets even if �(�) = �

0

. Consequently,

given �

�

on an algebra A

0

j

�

, we often need to mention the carrier we are

working on. This makes the statements of some theorems and their proofs

unusually complicated.

12



4 Properties of the Indistinguishability Relation

The de�nition 3.6 expresses a situation in which two elements of a �-

algebra are indistinguishable. Indeed, it de�nes an S-sorted relation �

�

=

(�

�

)

s2S

on an algebra, called the indistinguishability relation. Since this

relation is the next step toward a complete description of our institution for

observational speci�cations, we must study its properties w.r.t. the forgetful

functor and the translation of observable formulae. This will be subsequently

necessary for establishing the Satisfaction Condition (see [7]). The following

proposition is devoted to this purpose and next we study other interesting

properties of the indistinguishability relation.

Proposition 4.1

Let � : � ! �

0

be a signature morphism, let � � W�

�

(X) and �

0

�

W�

�

0

(X

0

) be sets of formulae such that �(�) � �

0

and A

0

be a �

0

-algebra.

For any s

0

2 �(S), for all a; b 2 A

0

s

0

we have that if a �

�

0
b then for any

s 2 �

�1

(s

0

), a and b are �-indistinguishable in (A

0

j

�

)

s

.

We need the following lemma for the proof:

Lemma 4.2

Let � : � ! �

0

be a signature morphism and A

0

be a �

0

-algebra. For

any valued formula # 2W�

�

(A

0

j

�

) we have A

0

j

�

j= # i� A

0

j= �(#).

Proof sketch

This lemma is a slightly modi�ed version of the Satisfaction Condition (see [7])

for (Many Sorted) First Order Logic with Equality and is proved similarly. 2

Proof of Proposition 4.1

Assume by contradiction that there exists s 2 S and a; b 2 A

0

�(s)

such that

a �

�

0

b and a 6�

�

b in (A

0

j

�

)

s

. By De�nition 3.5 there exists � 2 cmp

�

(a; b) such

that A

0

j

�

6j= �[a], �[b]. Hence from Lemma 4.2 we have:

A

0

6j= �(�)[a], �(�)[b] (i)

But according to Theorem 3.8, �(�) is a �

0

-observer for both a and b. Thus

according to (i), �(�) distinguishes a and b. This is in contradiction with the

assumption a �

�

0

b. 2

As mentioned at the end of the previous section the converse of this propo-

sition does not hold even if �(�) = �

0

. But once again this converse holds

13



for injective signature morphisms.

The following fact is obvious from the de�nition of the indistinguisha-

bility relation.

Fact 4.3

The indistinguishability relation is re
exive and symmetric. 2

The next fact fully agrees with our claims:

Fact 4.4

The indistinguishability relation is neither compatible with operations

nor with predicates.

Proof sketch

It is enough to consider the examples given in Introduction. 2

We have already announced the following fact which is a consequence of our

Indistinguishability Assumption together with general form observations we

use:

Fact 4.5

The indistinguishability relation is not transitive in general.

Proof

Consider � = fa; b; c :! Trans; q : Transg, � = fq(a); q(c)g and a �-algebra

A such that q

A

= fa

A

g. In this algebra we have obs

�

(a

A

) = obs

�

(c

A

) = fq(�)g

and obs

�

(b

A

) = �. Since a

A

and b

A

(resp. b

A

and c

A

) have no comparator they

are indistinguishable. On the other hand, a

A

and c

A

are distinguished by q(�).

Consequently, in this example the indistinguishability relation is not transitive. 2

More generally, the above result has the following explanation: since we

did not impose any restriction on the set of observable formulae, nothing

ensures that all the elements of a given data type can be observed in the

same way. On the contrary, when all the elements of a carrier set have the

same observers, the indistinguishability relation is transitive on this carrier

set. This may be illustrated as follows:

Example 4.6

The indistinguishability relation from Example 3.7 is transitive.

14



One may think that Fact 4.5 is quite unfortunate and claim that two

elements should be indistinguishable if they are in the sense of De�nition

3.6 and if additionally they have the same observers. But in our opinion

such de�nition would not be adequate, due to the reason detailed in the

following example:

Example 4.7

Consider a signature � and assume that we need to provide a set � of

observable formulae which induces on any �-algebra A the following indis-

tinguishability relation

8 a; b 2 A a �

�

b i� 6 9 t 2 T

�

t = a

With De�nition 3.6 we obtain this relation by taking � = fl = r j l; r 2

(T

�

)

s

; s 2 Sg. Now if we add to this de�nition the additional requirement

mentioned above, we do not obtain the desired indistinguishability relation

whatever � we consider.

This example points out that the discussed modi�cation of the De�nition

3.6 would decrease the expressive power of our approach. Consequently we

are not enthusiastic about such a modi�cation. Moreover, as we will see in

the sequel (De�nition 6.4), Fact 4.5 raises no particular problem.

5 Observational Algebras

As mentioned in the introduction, in this paper, an observational equal-

ity does not necessarily coincide with the indistinguishability relation. This

choice was dictated by the fact that the indistinguishability relation is not

\transported" by the forgetful functor (the converse of Proposition 4.1 does

not hold even if �

0

= �(�)) whereas an observational equality should be

\transported" through the forgetful functor as the usual equality does. For

this reason we introduce in this section a 
exible concept of observational

algebras.

De�nition 5.1

Given a signature �, an observational �-algebra is a pair hA;

�

=

i where

A is a �-algebra and

�

=

is an S-sorted equivalence relation on A, called

observational equality on A. We denote the class of all observational �-

algebras by OAlg[�].

15



According to the above de�nition we consider the equality symbol \=" as

a particular predicate symbol. This symbol is explicitly interpreted in an

algebra by a particular relation, namely an observational equality.

Example 5.2

Let L and �

Opt

be respectively the algebra and the indistinguishability

relation described in Example 3.7. Since �

Opt

is an equivalence relation (c.f.

4.6), the pair hL;�

Opt

i is an observational algebra.

De�nition 5.3

An observational �-morphism � : hA;

�

=

A

i ! hB ;

�

=

B

i is any �-

morphism from A to B which preserves observational equalities i.e:

8a; b 2 A

s

a

�

=

A

b ) �(a)

�

=

B

�(b)

It is obvious that OAlg[�] equipped with the observational �-morphisms

forms a category.

De�nition 5.4

Let � : � ! �

0

be a signature morphism. The �-reduct of an observa-

tional �

0

-algebra hA

0

;

�

=

0

i is the observational �-algebra

hA

0

;

�

=

0

i

j

�

= hA

0

j

�

;

�

=

0

j

�

i

where A

0

j

�

is the usual �-reduct of the �

0

-algebra A

0

and (

�

=

0

j

�

)

s

= (

�

=

0

)

�(s)

.

The mapping

j

�

extends to observational morphisms as in the usual frame-

work. Consequently, it de�nes the forgetful functor from OAlg[�

0

] to

OAlg[�] associated to �. Thus OAlg is a functor from the category of

signatures Sig to the dual of the category of all categories Cat

op

. OAlg

maps an object � of Sig to the category of the observational �-algebras and

a signature morphism � to the corresponding forgetful functor

j

�

. This

provides components upon which an institution can be built.

6 Validity of Observational Formulae

Before introducing observational formulae and de�ning their validity in

observational algebras we give some additional de�nitions and results.
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De�nition 6.1

A solution of an equation l = r (resp. atomic formula q(t

1

; : : : ; t

n

))

in an observational �-algebra hA;

�

=

i is a valuation � : X ! A such that

l�

�

=

r� (resp. ht

1

�; : : : ; t

n

�i 2 q

A

). The set of solutions of a formula ',

written [']

hA;

�

=

i

, is de�ned recursively as follows:

� if ' = : then [']

hA;

�

=

i

= Val[X;A]

c

[ ]

hA;

�

=

i

� if ' =  ^  

0

then [']

hA;

�

=

i

= [ ]

hA;

�

=

i

\ [ 

0

]

hA;

�

=

i

� if ' = 8x then [']

hA;

�

=

i

=

= f� 2 Val[X;A] j 8 � 2 Val[X;A] (8 y 2 X

c

fxg y� = y�) ) � 2

[ ]

hA;

�

=

i

g

where  ;  

0

are �-formulae.

Since all the connectives of the classical logic as well as the existential quan-

ti�er can be expressed by means of :, ^ and 8, the solutions of an arbitrary

�rst order logic �-formula are well de�ned by the above de�nition.

Before putting our formalism into an institutional framework we need to

investigate the solutions across the forgetful functor and the translation of

formulae. This is done in the following theorem:

Theorem 6.2

Let � : �! �

0

be a signature morphism and hA

0

;

�

=

0

i be an observational

�

0

-algebra. For any �-formula ' we have:

� 2 [']

hA

0

;

�

=

0

i

j

�

i� �(�) � ([�(')]

hA

0

;

�

=

0

i

)

j

�

(i)

Proof sketch

The proof is based on the fact that (Many-Sorted) First Order Logic is an

institution. The Goguen's and Burstall's proof of this fact establishes a one to one

map between Val[X;A

0

j

�

] and Val[X

0

;A

0

] which is shown to be solution preserving

w.r.t. formula translation, that is (i) holds (replacing� by 2) in the usual framework

of (Many-Sorted) First Order Logic. According to Remark 2.3 which is justi�ed by

Lemma 2.4, (i) also holds for (Many-Sorted) First Order Logic with our approach

to variables. Our \logical system" is not exactly (Many-Sorted) First Order Logic

but may be mapped into this in the following way:

� We consider the equality symbol as an S-indexed family of ordinary predicate

symbols =

s

.
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� Since in our approach (=

s

)

s2S

are interpreted by equivalence relations we

consider an S-indexed set of axioms E = fx =

s

x; x =

s

y ) y =

s

x; x =

s

y ^ y =

s

z ) x =

s

zg.

Since (i) holds in the usual framework of (Many-Sorted) First Order Logic, it also

holds for a particular class of �rst order �-formulae of the form  ^E . Consequently,

in the axiomatic theory E underlying our \logical system" (i) holds for any �rst

order �-formula '. 2

An elementary and complete proof of this theorem may be found in [2].

De�nition 6.3

An observational �-formula is a pair h�;�i where � 2 W�

�

(X) is a

�-formula and � �W�

�

(X) is a set of formulae. We note OW� [�] the set

of all observational �-formulae.

Notice that observational formulae are only atomic ones. We have nei-

ther \observational connectives" nor \observational quanti�ers". It may be

interesting to investigate the possibility of including such features to our

approach.

As in the usual framework, OW� is extended to a functor from the cat-

egory of signatures Sig to Set (the category of sets). This functor maps an

objet � of Sig to the set of all observational �-formulae. An arrow � of

Sig(�;�

0

) is mapped by OW� to the corresponding translation of observa-

tional formula: OW�[�](h�;�i) = h�('); �(�)i. (We write shortly � instead

of OW�[�].)

We have already all the elements necessary to de�ne an observational

satisfaction relation:

De�nition 6.4

We say that an observational �-algebra hA;

�

=

i satis�es an observational

formula h ;�i, written hA,

�

=

i

O

j= h ,�i, i�:

[ ]

hA;

�

=

i

= Val[X;A] (i)

�

=

� �

�

(ii)

Notice that in the above we have de�ned a family of relations f

O

j=

�

g

�:Sig

with

O

j=

�

� OAlg[�]�OW�[�]
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We examine now how our satisfaction relation behaves w.r.t. the variance

of observational formulae (translation) and the covariance of algebras (�-

reduct). We start by the �rst requirement of De�nition 6.4:

Proposition 6.5

Let � : � ! �

0

be a signature morphism. For any set of formulae

� � W�

�

(X), any observational �

0

-algebra hA

0

;

�

=

0

i and any �-formula '

we have:

[�(')]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] i� [']

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

]

Proof

We have [�(')]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] which is equivalent to ([�(')]

hA

0

;

�

=

0

i

)

j

�

=

(Val[X

0

;A

0

])

j

�

, which by Theorem 6.2 is equivalent to:

[']

hA

0

;

�

=

0

i

j

�

= (Val[X

0

;A

0

])

j

�

(i)

Since

j

�

is surjective on valuations we have (Val[X

0

;A

0

])

j

�

= Val[X;A

0

j

�

]. Thus,

the formula (i) is equivalent to [']

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

]. 2

The next step is to study the second condition of De�nition 6.4 w.r.t. formula

translation and the forgetful functor.

Proposition 6.6

Let � : � ! �

0

be a signature morphism. For all sets of formulae

� �W�

�

(X), �

0

�W�

�

0

(X

0

) such that �(�) � �

0

and for any observational

�

0

-algebra hA

0

;

�

=

0

i we have:

�

=

0

� �

�

0

)

�

=

0

j

�

� �

�

where �

�

0

and �

�

are the indistinguishability relations on A

0

and A

0

j

�

re-

spectively.

Proof

Assume that 8 a; b 2 A

0

a

�

=

0

b ) a �

�

0

b. Applying De�nition 5.4 we

obtain

8 a; b 2 A

0

j

�

a

�

=

0

j

�

b ) a �

�

0

b

But from Proposition 4.1 it follows that a �

�

0

b ) a �

�

b. Consequently

�

=

0

j

�

� �

�

. 2
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The next step would be to prove the converse of the above proposition when

restricted to �

0

= �(�). Unfortunately this is not true in general. The

following example illustrates this fact:

Example 6.7

Consider � = fa; b :! s; p; q : sg and �

0

= fc; d :! s; r : sg. Let

� = fp(a); q(b)g. Notice that in any �-algebra A we have

a

A

�

�

b

A

(i)

because a

A

and b

A

have no comparator. Consider � : � ! �

0

de�ned by:

�(s) = s, �(a) = c, �(b) = d, �(p) = �(q) = r. Notice that in any �

0

-algebra

A

0

we have

cmp

�(�)

(c

A

0

; d

A

0

) = fr(�)g (ii)

since �(�) = fr(c); r(d)g. Consider then a reachable observational �

0

-

algebra hA

0

;

�

=

0

i such that

A

0

6j= r

A

0

(c

A

0

) , r

A

0

(d

A

0

) (iii)

c

A

0

�

=

0

d

A

0

(iv)

Notice that

�

=

0

j

�

= f(a

A

j

�

; b

A

j

�

)g. Therefore, according to (i) we have

�

=

0

j

�

� �

�

but

�

=

0

6� �

�(�)

since from (ii) and (iii) we have c

A

0

6�

�(�)

d

A

0

while (iv) holds.

From this negative result we may conclude that, in order to de�ne institu-

tions within our approach, we will be constrained to restrict somehow our

formalism. This will be the subject of Section 9.

7 Observational Speci�cations

This section is devoted to some general notions about observational

speci�cations.

De�nition 7.1

An observational speci�cationOSP is a triplet h�;�;�i, where � is the

signature of OSP, � the (�nite) set of its axioms and � is a set of formulae,

� �W�

�

(X), called observations of OSP.
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The models are de�ned as in the usual approach except that we use the

observational satisfaction instead of the usual one:

De�nition 7.2

Let OSP = h�; f�

1

; : : : ; �

n

g;�i be an observational speci�cation. We say

that an observational �-algebra hA;

�

=

i is a model of OSP i�:

hA;

�

=

i

O

j= h�

1

^ : : :^ �

n

;�i

We note OAlg[OSP] the class of all observational models of OSP.

OAlg[OSP] with observational �-morphisms is a full subcategory of

OAlg[�].

Fact 7.3

The observational algebra hL;�

Opt

i, described in Example 5.2, is a model

of the observational speci�cation OPT-SET.

Proof

Since the observational equality on hL;�

Opt

i is just the indistinguishability

relation, we only need to prove that for any axiom � of OPT-SET we have

[�]

L

= Val[X;L] (i)

� For the �rst axiom the requirement (i) is satis�ed because for any set

fc

1

; : : : ; c

n

g 2 L

Set

and any optional constant c the result of add

L

(c; fc

1

; : : : ; c

n

g)

is either fc; c

1

; : : : ; c

n

g or fc

1

; : : : ; c

n

g (depending on whether c is particular or

not) and we know (see 3.7) that fc; c

1

; : : : ; c

n

g and fc

1

; : : : ; c

n

g are in the same

equivalence class of the observational equality �

Opt

.

� Since 2

L

is the usual membership, it is clear that the requirement (i) is also

satis�ed by the second and the third axiom. 2

The next result points out that our observational speci�cations gener-

alize the usual approach. On one hand an algebra A can be viewed as the

observational algebra hA;=i. On the other hand, an algebraic speci�ca-

tion h�;�i can be considered as an observational one in the straightforward

way:

Proposition 7.4

Let h�;�i be an algebraic speci�cation. Each model of h�;�;�i with

� = fx

s

= y

s

j s 2 Sg is of the form hA;=i with A 2 Alg[h�;�i].
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Proof

Note �rst that �

�

is the identity relation on any �-algebra. This is obvious

since all a; b 2 A

s

, a 6= b, are distinguished by e.g. (� = a) 2 cmp

�

(a; b). According

to De�nition 6.4 for any hA;

�

=

i 2 OAlg[h�;�;�i] we should have

�

=

� �

�

. Thus

�

=

is just the usual equality. From the requirement [�]

hA;=i

= Val[X;A] we deduce

that A 2 Alg[h�;�i]. Conversely, it is clear that for any B 2 Alg[h�;�i] we have

hB ;=i 2 OAlg[h�;�;�i]. 2

Up to now, we have not been studying modularity issues. We have only

de�ned the semantics of \
at" speci�cations. In fact, as in [1], our semantics

extends to an observational strati�ed loose semantics [4] without additional

assumptions. For instance, the next theorem shows that our approach ful�lls

the requirement of \reusing by restriction" of [4].

Theorem 7.5

Let � : � ! �

0

be a signature morphism. For all observational speci�-

cations OSP = h�;�;�i and OSP

0

= h�

0

;�

0

;�

0

i such that �(�) � �

0

and

�(�) � �

0

we have:

OAlg[OSP

0

]

j

�

� OAlg[OSP]

Proof

From de�nitions 7.2 and 6.4 it is enough to prove:

[�

0

]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] ) [�]

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

] (i)

and

�

=

0

� �

�

0

)

�

=

0

j

�

� �

�

(ii)

for all hA

0

;

�

=

0

i 2 OAlg[�

0

].

� Proof of (i)

Let hA

0

;

�

=

0

i 2 OAlg[�

0

] such that [�

0

]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

]. Since �(�) is in-

cluded in �

0

, by de�nition of solution of a conjunction of formulae (c.f. 6.1) we

have �(�)

hA

0

;

�

=

0

i

� �

0

hA

0

;

�

=

0

i

. Hence [�(�)]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] which according to

Proposition 6.5 implies that [�]

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

].

� Proof of (ii) follows directly from Proposition 6.6. 2

This result corresponds to a very fundamental property which holds in most

non observational frameworks. With all the de�nitions of observational sat-

isfaction relation preceding [3], such a result holds only for equational ax-

ioms or positive-conditional axioms with observable preconditions which is

a rather strong restriction. It may be then surprising that in our approach
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the former theorem holds without restrictions even if the axioms are arbi-

trary �rst order formulae. The reason is that our observational equality

is not �xed by observations, even though the indistinguishability relation

is �xed. Unlike [1], [14], [8], [10] and [11], our observational equality does

not coincide with the indistinguishability relation. This choice was dictated

by the fact that the indistinguishability relation is \disconnected" from the

forgetful functor. On the contrary, our observational equality, similarly to

the usual equality, is always \transported" through the forgetful functor. In

short, the main di�erence of our approach with the above-mentioned works

is that our satisfaction relation is based on an observational equality which

does not coincide with the indistinguishability relation. This situation (in

part) guarantees such a general result as Theorem 7.5.

We may also consider a particular case of this theorem with �

0

= �(�).

This points out that observations act on the semantics of a speci�cation in

a similar way as the axioms do: by adding observations we diminish the

class of the observational models. This is yet another reason for introduc-

ing observational formulae, especially in context of the next section. We

argue that in any approach with an observational satisfaction relation, the

Satisfaction Condition may hold only if the translation of observations is

considered at the same level as the translation of axioms.

8 Relationship with Behavioural Equivalence

In this section we investigate deeper the relationship of our approach

with behavioural equivalence of algebras.

Several papers dealing with an observational satisfaction relation provide

also a de�nition of a behavioural equivalence �

Obs

of algebras which aims

at re
ecting the situation when algebras behave in the same way w.r.t.

some observations Obs. One may then de�ne the class of behaviours of a

speci�cation SP, written Beh

Obs

[SP] as the closure of the usual class of the

models of SP by the equivalence �

Obs

:

Beh

Obs

[SP] = fA 2 Alg[�] j 9 B 2 Alg[SP]; A �

Obs

Bg (8{i)

In such a framework it is interesting to establish that the class of the be-

haviours of SP = h�;�i coincides with the class of observational models of
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SP:

Beh

Obs

[h�;�i] = OAlg[h�;�;Obsi]

This result cannot hold in our approach since, according to (8{i), for an in-

consistent speci�cation SP (Alg[SP] = �) we have always Beh

Obs

[SP] = �,

whereas the class of the observational models of SP may be nonempty. This

is due to the fact that our observational satisfaction relation is based on

an observational equality which is not necessarily a congruence. But this

phenomenon disappears when we restrict to observational equalities being

congruences. It is then interesting to investigate the relationship between be-

havioural equivalence on algebras and our approach in this restricted frame-

work.

We assume for the scope of this section that observational equal-

ities are congruences. Consequently, in this section an element

of OAlg[�] is any pair hA;

�

=

i such that A is a �-algebra and

�

=

is a congruence.

Under this assumption it is always possible to consider the quotient A

=

�

=

.

This allows to provide an adequate to our approach de�nition of behavioural

equivalence of observational algebras w.r.t. a set of formulae.

De�nition 8.1

We say that two observational �-algebras hA;

�

=

A

i and hB ;

�

=

B

i are be-

haviourally equivalent w.r.t. a set of �-fromulae �, written hA;

�

=

A

i �

�

hB ;

�

=

B

i, i�

�

=

A

� �

A

�

,

�

=

B

� �

B

�

(i)

A

=

�

=

A

= B

=

�

=

B

(ii)

where �

A

�

and �

B

�

are the indistinguishability relations on A and B respec-

tively.

The formula (8{i) which de�nes the class of behaviours is adapted to obser-

vational algebras:

De�nition 8.2

Given an observational speci�cation h�;�;�i, the class of its behaviours,

written Beh

�

[h�;�i], is de�ned as follows

Beh

�

[h�;�i] = fhA;

�

=

i 2 OAlg[�] j 9 B 2 Alg[h�;�i]; hA;

�

=

i �

�

hB;=ig
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The result we are interested in may be stated as follows:

Theorem 8.3

For any observational speci�cation h�;�;�i we have

Beh

�

[h�;�i] = OAlg[h�;�;�i]

We need an auxiliary de�nition as well as some lemmas for the proof.

Lemma 8.4

For any speci�cation h�;�;�i and any observational �-algebra hA;

�

=

i

we have hA;

�

=

i 2 Beh

�

[h�;�i] i� A

=

�

=

j= � and

�

=

��

A

�

.

Proof

Let hA;

�

=

i 2 Beh

�

[h�;�i]. By De�nition 8.2 this is equivalent to

9 B 2 Alg[h�;�i] hA;

�

=

i �

�

hB ;=i

Since = ��

B

�

by De�nition 8.1 this is equivalent to

9 B 2 Alg[�] A

=
�

=

= B ; B j= � and

�

=

��

A

�

which is equivalent to A

=
�

=

j= � and

�

=

��

A

�

. 2

De�nition 8.5

Let

�

=

be a congruence on a �-algebra A and let � : X ! A be a

valuation. Then �

=

�

=

: X! A

=

�

=

is de�ned as a valuation such that if x� = a

then x�

=

�

=

= [a]

�

=

where [a]

�

=

is the equivalence class of a w.r.t.

�

=

.

Lemma 8.6

Let

�

=

be a congruence on a �-algebra A and let � : X! A and � : X!

A

=

�

=

be valuations such that � = �

=

�

=

. For any ' 2W�

�

(X) we have

� 2 [']

hA;

�

=

i

i� � 2 [']

hA

=
�

=

; =i

Proof

Obvious from the fact that if �

1

=
�

=

= �

2

=
�

=

then �

1

2 [']

hA;

�

=

i

, �

2

2 [']

hA;

�

=

i

for

any formula '. 2
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Lemma 8.7

Let

�

=

be a congruence on a �-algebra A. For any ' 2W�

�

(X) we have

[']

hA;

�

=

i

= Val[X;A] i� [']

hA

=
�

=

; =i

= Val[X;A

=

�

=

]

Proof

Obvious from the previous lemma. 2

Proof of Theorem 8.3

Let hA;

�

=

i 2 Beh

�

[h�;�i]. By Lemma 8.4 this is equivalent to

[�]

hA

=�

=

; =i

= Val[X;A

=
�

=

] and

�

=

��

A

�

which by Lemma 8.7 and De�nition 7.2 is equivalent to hA;

�

=

i 2 OAlg[h�;�;�i].

2

Theorem 8.3 shows that, when observational equalities are restricted to con-

gruences, the class of such observational models may be characterized as the

closure of the usual class of the models by an appropriate behavioural equiv-

alence.

9 Towards an Institution of Observational Spec-

i�cations

In this section, based on the formalism we have developed so far, we pro-

pose an institution for observational speci�cations. As mentioned in Section

6, this task requires to introduce some restrictions in our general formalism.

According to the de�nition of [7] the quadruple hSig;OW� ;OAlg;

O

j=i

could be an institution provided that it would ful�ll the Satisfaction Condi-

tion which in our formalism is expressed by the following property:

Property 9.1

For any � : � ! �

0

, any observational �-formula h�;�i and any obser-

vational �

0

-algebra we have:

hA

0

;

�

=

0

i

O

j= �(h�;�i) i� hA

0

;

�

=

0

i

j

�

O

j= h�;�i
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To show that this property holds, by de�nition 6.4, it is enough to prove

that for any observational �

0

-algebra the following conditions hold:

[�(')]

hA

0

;

�

=

0

i

= Val[X

0

;A

0

] , [']

hA

0

;

�

=

0

i

j

�

= Val[X;A

0

j

�

] (i)

and

�

=

0

� �

�(�)

,

�

=

0

j

�

� �

�

(ii)

for all hA

0

;

�

=

0

i 2 OAlg[�

0

]. The �rst requirement is guaranteed by 6.5. From

Proposition 6.6 we have the if part of the second requirement. Unfortunately,

we know from Example 6.7 that its converse part does not hold without ad-

ditional assumptions. The following is the necessary and su�cient condition

of the converse part of (ii).

Property 9.2

Let � : � ! �

0

be a signature morphism and � � W�

�

(X) be a

set of formulae. For any �

0

-algebra A

0

, any s

0

2 �(S) and all a; b 2 A

0

s

0

�(�)-distinguishable, there exist s 2 �

�1

(s

0

) such that a and b are �-

distinguishable when considered as elements of (A

0

j

�

)

s

.

Proposition 9.3

Let � : � ! �

0

be a signature morphism. The property 9.2 holds for a

set � of �-formulae if and only if

�

=

0

j

�

� �

�

)

�

=

0

� �

�(�)

holds on all hA

0

;

�

=

0

i 2 OAlg[�

0

].

Proof

� )

Let hA

0

;

�

=

0

i 2 OAlg[�

0

]. Assume that

8 a; b 2 A

0

j

�

a

�

=

0

j

�

b ) a �

�

b (i)

By contradiction assume that there exist a

0

; b

0

2 A

0

�(s)

such that a

0

6�

�(�)

b

0

and

a

0

�

=

0

b

0

(ii)

Using Property 9.2, we �nd that there exist s

0

2 �

�1

(�(s)) such that a

0

6�

�

b

0

in (A

0

j

�

)

s

0

. But according to (ii) we conclude that a

0

�

=

0

j

�

b

0

. Therefore

a

0

�

=

0

j

�

b

0

6) a

0

�

�

b

0

which is a contradiction to the assumption (i).
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� ( (We use the contrapositive method for the proof.)

Let � : � ! � and � � W�

�

(X) for which the property 9.2 does not hold.

Consequently, there is a �

0

-algebra A

0

with elements a; b 2 A

0

�(s

0

)

(for some s

0

2 S)

�(�)-distinguishable, such that for any s 2 S satisfying �(s) = �(s

0

), a and b are �-

indisintguishable in (A

0

j

�

)

s

. Let A

0

be provided with

�

=

0

so that c

�

=

0

d ) c �

�(�)

d

for all c; d 2 A

0

except for a; b where a

�

=

0

b and as assumed a 6�

�(�)

b. It is clear

from the proof of 6.6 that for all of these c; d we have also:

c

�

=

0

j

�

d ) c �

�

d

It follows from the above formula that

�

=

0

j

�

��

�

, since by De�nition 5.4 we have

a

�

=

0

j

�

b and we assumed that a �

�

b. Now

�

=

0

6��

�(�)

because a

�

=

0

b and we have

assumed that a 6�

�(�)

b. 2

We can conclude from the above that in our approach, the Satisfaction

Condition does not hold in general. Only the if part of Property 9.1 holds.

Consequently, according to [12], our approach de�nes a reduction-preserving

pre-institution. The converse part of 9.1 holds only for the signature mor-

phisms and the observations which preserve 9.2. Therefore our approach

is another motivation for more liberal formalizations than institutions of

the notion of \logical system" such as e.g. speci�cation logic [5] or pre-

institutions [12].

Since the Satisfaction Condition holds only for some signature mor-

phisms, in order to de�ne an institution in our framework, one could ignore

the problematic arrows of Sig and consider as a category of signatures a

category which has the same objects as Sig but less arrows. Then the ques-

tion is which signature morphisms we should eliminate in order to obtain an

institution. It is easy to see that examples similar to 6.7 can be constructed,

as soon as we have an non injective signature morphism. We conclude that

an observational institution can be provided within our formalism under the

restriction of the arrows of Sig to injective morphisms only.

Proposition 9.4

Consider the quadruple OAlgSpec = hISig;OW� ;OAlg;

O

j=i where ISig

is the category whose objects are the usual signatures and whose arrows are

the injective signature morphisms. Then OAlgSpec is an institution.

Proof

It is su�cient to prove that Property 9.2 holds for injective signature mor-

phisms.
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Let � : � ! �

0

be an injective signature morphism, let � � W�

�

(X) be a

set of formulae, A

0

a �

0

-algebra and let a; b 2 A

0

�(s)

�(�)-distinguishable. Let

�

0

2 cmp

�(�)

(a; b) be a comparator which distinguishes a from b. Since � is

injective, there is a unique � 2 Cf

�

(A

0

j

�

) such that �(�) = �

0

. According to Theorem

3.12, � is an observer of a and b. So � 2 cmp

�

(a; b). Since A

0

6j= �

0

[a] , �

0

[b],

from Lemma 4.2 we deduce that A

0

j

�

6j= �[a], �[b]. Therefore, by De�nition 3.5

we have a 6�

�

b. 2

A drawback of our approach is the necessity to restrict the category

of signatures to ISig, in order to have an institution. However, except for

some particular examples of parameter-passing morphisms, non injective

signature morphisms seem to be not very useful. In spite of this restriction,

OAlgSpec may be used for modular speci�cations with no parameterized

modules. (Observational semantics of parameterized speci�cations is one of

our current research topics.)

10 Conclusions

We have presented an observational semantics of algebraic speci�ca-

tions supporting full �rst order axioms and full �rst order formulae as ob-

servations. This has been achieved by de�ning an observational satisfaction

relation whose cornerstone is the use of a non standard interpretation of

equality. We have shown that our formalism is a reduction-preserving pre-

institution and may, under some restrictions, even provide an institution.

This work may continue along di�erent lines. Since our observational

formulae are in some sense only atomic ones, one may want to de�ne some

observational connectives or quanti�ers together with their semantics. This

may lead to an \Observational Model Theory". A much more problematic,

still missing contribution, would be the corresponding \Observational Proof

Theory". However, the results of this research area are crucial for most

applications of observational speci�cations in software engineering.
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