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Département de Mathématiques et d’Informatique
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Abstract. Abstract interpretation is a theory of semantics approximation which is used for the con-
struction of semantics-based program analysis algorithms (sometimes called “data flow analysis”), the
comparison of formal semantics (e.g., construction of a denotational semantics from an operational one),
the design of proof methods, etc.

Automatic program analysers are used for determining statically conservative approximations of dy-
namic properties of programs. Such properties of the run-time behavior of programs are useful for
debugging (e.g., type inference), code optimization (e.g., compile-time garbage collection, useless occur-
check elimination), program transformation (e.g., partial evaluation, parallelization), and even program
correctness proofs (e.g., termination proof).

After a few simple introductory examples, we recall the classical framework for abstract interpretation
of programs. Starting from a standard operational semantics formalized as a transition system, classes
of program properties are first encapsulated in collecting semantics expressed as fixpoints on partial
orders representing concrete program properties. We consider invariance properties characterizing the
descendant states of the initial states (corresponding to top/down or forward analyses), the ascendant
states of the final states (corresponding to bottom/up or backward analyses) as well as a combination
of the two. Then we choose specific approximate abstract properties to be gathered about program
behaviors and express them as elements of a poset of abstract properties. The correspondence between
concrete and abstract properties is established by a concretization and abstraction function that is a
Galois connection formalizing the loss of information. We can then constructively derive the abstract
program properties from the collecting semantics by a formal computation leading to a fixpoint expression
in terms of abstract operators on the domain of abstract properties. The design of the abstract interpreter
then involves the choice of a chaotic iteration strategy to solve this abstract fixpoint equation. We insist
on the compositional design of this abstract interpreter, which is formalized by a series of propositions for
designing Galois connections (such as Moore families, decomposition by partitioning, reduced product,
down-set completion, etc.). Then we recall the convergence acceleration methods using widening and
narrowing allowing for the use of very expressive infinite domains of abstract properties.

We show that this classical formal framework can be applied in extenso to logic programs. For sim-
plicity, we use a variant of SLD-resolution as the standard operational semantics. The first example is
groundness analysis, which is a variant of Mellish mode analysis. It is extended to a combination of
top/down and bottom/up analyses. The second example is the derivation of constraints among argument
sizes, which involves an infinite abstract domain requiring the use of convergence acceleration methods.
We end up with a short thematic guide to the literature on abstract interpretation of logic programs.

Keywords: Abstract interpretation, fixpoint approximation, abstraction, concretization, Galois con-
nection, compositionality, chaotic iteration, convergence acceleration, widening/narrowing, operational
and collecting semantics, top/down, bottom/up and combined analyses, logic programming, groundness
analysis, argument sizes analysis.
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1. INTRODUCTION

Program manipulators (such as programmers who write, debug, and attempt to understand
programs or computer programs which interpret, compile, or execute programs) reason upon or
are constructed by relying on the syntax but mainly on the semantics of these programs. The
semantics of a program describes the set of all possible behaviors of that program when executed
for all possible input data. For logic programs, the input data are questions. The behaviors can
be non-termination, termination with a run-time error, failure, or correct termination delivering
one or more output answers.

For a given type of reasoning about programs, not all aspects and details about their possible
behaviors during execution have to be considered. Each program manipulation is facilitated
by reasoning upon a well-adapted semantics, abstracting away from irrelevant matters. For
example, logical programs debugging often refers to a small-step operational semantics with
backtracking. On the contrary, programs explanation often refers to the declarative aspect of
a logic program providing the relation between questions and answers. Therefore, there is no
universal general-purpose semantics of programs, and, in everyday life, more or less formal, more
or less precise, special-purpose semantics are in current use. Abstract interpretation is a method
for relating these semantics.

We will explain the abstract interpretation framework that we introduced in [25], [26], [28],
[29], [32], [34] and illustrate it for logic programs. Thanks to examples, we will consider two es-
sential utilizations of abstract interpretation: (a) The first utilization is the design of an abstract
semantics in order to show off an underlying structure in a concrete, more detailed semantics.
Hence, properties of programs are induced, without loss of indispensable information, from a
concrete into a more abstract setting. A typical example consists in designing a proof method
starting from a collecting semantics [27]. (b) The second utilization of abstract interpretation
is the design of an abstract semantics in order to specify an automatic program analyser for
the static determination of dynamic properties of programs. Here, properties of programs are
approximated, with an inevitable loss of information, from a concrete to a less precise abstract
setting. Such semantics-based sound but approximate information is indispensable to identify
errors in a program, as performed by program debuggers and type checkers. Another use is in
program transformers such as compilers, partial evaluators, and parallelizers, where the analysis
determines the applicability of various transformations.

After a presentation of abstract interpretation, we will consider its application to static
analysis of logic programs starting from a variant of SLD-resolution as operational semantics.
We will illustrate the design of abstract interpretations by the typical example of groundness
analysis (which will be extended to a bi-directional combination of top/down and bottom/up
analyses) and the atypical example of argument size relation (involving an infinite domain).
Finally, we will very briefly review the main applications to logic programs that have been
considered in the already abundant literature.

2. SIMPLE EXAMPLES OF ABSTRACT INTERPRETATION

As a first approximation, abstract interpretation can be understood as a nonstandard semantics,
i.e., one in which the domain of values is replaced by a domain of descriptions of values, and in
which the operators are given a corresponding nonstandard interpretation.

2.1. Rule of Signs

For example, rather than using integers as concrete values, an abstract interpretation may use
abstract values −1 and +1 to describe negative and positive integers, respectively [138]. Then by
reinterpreting operations like addition or multiplication according to the “rule of signs” due to
the ancient Greek mathematicians, the abstract interpretation may establish certain properties
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of a program such as “whenever this loop body is entered, variable x is assigned a positive value
(or perhaps is uninitialized).”

2.1.1. The Rule of Signs Calculus

For example, (x× x) + (y × y) yields the value 25 when x is 3 and y is −4 and when × and +
are the usual arithmetical multiplication and addition. But when applying the “rule of signs”:

+1 + +1 = +1
−1 + −1 = −1

+1 × +1 = +1
+1 × −1 = −1

−1 × +1 = −1
−1 × −1 = +1

(where the abstract value +1 represents any positive integer, while −1 represents any negative
integer) one concludes that the sign of (3 × 3) + (−4 × −4) is always +1 since (+1 × +1) +
(−1 × −1) = (+1) + (+1) = +1. However, this simple abstract calculus fails to prove that
x2 + 2 × x× y + y2 is always positive.

Although very simple, this example shows that abstract interpretations may fail. To avoid
errors due to such failures in a partial abstract calculus, we choose to use a total abstract calculus
where an abstract value ⊤ is introduced to represent the fact that nothing is known about the
result:

+1 + −1 = ⊤
−1 + +1 = ⊤
⊤ + +1 = ⊤
⊤ + −1 = ⊤

+1 + ⊤ = ⊤
−1 + ⊤ = ⊤
⊤ + ⊤ = ⊤

⊤ × +1 = ⊤
⊤ × −1 = ⊤
+1 × ⊤ = ⊤

−1 × ⊤ = ⊤
⊤ × ⊤ = ⊤

Now, several abstract values can be used to approximate a given concrete value. For example,
the concrete value 5 can be approximated by +1 or ⊤. A partial order relation � can be
introduced to compare the precision of abstract values ([155], [95]). For example, −1 � ⊤ and
+1 � ⊤ since −1 or +1 are more precise than ⊤, whereas −1 and +1 are not comparable since
no one can always safely replace the other.

A concrete value may be approximated by several minimal values. For example, 0 can be
approximated by minimal abstract values −1 or +1. In this case, the best choice may depend
upon the expression to be analysed. For example, when analysing 0+x it is better to approximate
0 by +1 if x is known to be positive and by −1 when x is negative. In order to avoid having to
do the choice during the abstract calculus or to explore all alternatives, it is always possible to
enrich the abstract domain so that the set of upper approximations of any given concrete value
has a best element [34]. For our example, this leads to the introduction of an abstract value 0:

0 + +1 = +1
0 + −1 = −1
0 + ⊤ = ⊤
0 + 0 = 0

+1 + 0 = +1
−1 + 0 = −1
⊤ + 0 = ⊤

0 × +1 = 0
0 × −1 = 0
0 × ⊤ = 0
0 × 0 = 0

+1 × 0 = 0
−1 × 0 = 0
⊤ × 0 = 0

2.1.2. Generalization to Interval Analysis

In [28], this “rule of signs” idea was generalized to interval analysis, i.e., to properties of the form
l ≤ x ≤ u where l, u ∈ Z∪{−∞,+∞}, Z is the set of integers, and l ≤ u. The main innovations
were the idea of soundness proof by relating the abstract interpretations to an operational
semantics and the use of infinite abstract domains, which led to very powerful analyses, as
shown by the following results (where the comments have been generated automatically [7]):

function F(X : integer) : integer;
begin
if X > 100 then begin
F := X − 10
{ X∈ [101, maxint] ∧ F∈ [91, maxint - 10] }

end else begin
F := F(F(X + 11))
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{ X ∈ [minint, 100] ∧ F = 91 }

end;
end;

This analysis supersedes the most sophisticated methods based upon data flow analysis. Let us
consider the following program given in [76]:

program AnOldLookAtOptimizingArrayBoundChecking;
var
i, j, k, l, m : integer;
a : array[1..100] of real;

begin
read(i, j);
{ i∈⋆[1, 99]⋆ ∧ j∈ [-maxint-1, maxint] }

k := i;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 99] }

l := 1;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 99] ∧ l∈ [1, 1]}

while l <= i do begin
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [1, 99] }

m := i;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [1, 99] ∧ m∈ [1, 99] }

while m <= j do begin
{ i∈ [1, 99] ∧ j∈ [1, maxint] ∧ k∈ [1, maxint-1] ∧ l∈ [1, 99] ∧ m∈ [1, maxint-1] }

k := k + m;
{ i∈ [1, 99] ∧ j∈ [1, maxint] ∧ k∈ [2, maxint]# ∧ l∈ [1, 99] ∧ m∈ [1, maxint-1] }

m := m + 1;
{ i∈ [1, 99] ∧ j∈ [1, maxint] ∧ k∈ [2, maxint] ∧ l∈ [1, 99] ∧ m∈ [2, maxint] }

end;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, maxint] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

a[l] := k;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, maxint] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

if k < 1000 then begin
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

write(k);
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

end else begin
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1000, maxint] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

k := i;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 99] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

end;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

a[l + 1] := a[l] / 2;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [1, 99] ∧ m∈ [1, maxint] }

l := l + 1;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [2, 100] ∧ m∈ [1, maxint] }

end;
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [2, 100] ∧ m∈ [1, maxint] }

write(a[i]);
{ i∈ [1, 99] ∧ j∈ [-maxint-1, maxint] ∧ k∈ [1, 999] ∧ l∈ [2, 100] ∧ m∈ [1, maxint] }

end.

The invariants given in comments have been discovered automatically. They hold during any
execution of the program without run-time error. If any one of these invariants is violated during
execution, then a later run-time error is inevitable. To detect these run-time errors before they
occur, it is shown automatically that only two bound checks (marked ⋆) are necessary upon
initialization as well as an overflow check (marked #) within the loop. This analysis seems well
out of reach of the data flow analysis of [76] based upon the syntactical elimination, propagation,
and combination of range checks.
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2.2. Dimension Calculus

Let us now consider a familiar example from elementary physics.

2.2.1. The Dimension Calculus

The dimension calculus uses the abstract values length, surface, volume, time, speed , acceler-
ation, mass, force, . . . , nodimension. The abstract version ōp of an operator op is defined as
follows:

length +̄ length = length

length ×̄ length = surface

length /̄ length = nodimension

length /̄ time = speed

speed /̄ time = acceleration

mass ×̄ acceleration = force
. . .

x /̄ yn+1 = (̄x/̄yn̄ )̄ /̄ y

y1̄ = y

(̄x)̄ = x
. . .

The correspondence between concrete values and abstract values can be formalized by an ab-
straction function α mapping units to dimensions:

α(meter) = length

α(mile) = length

α(acre) = surface

α(second) = time

α(minute) = time

α(hour) = time

α(kilogram) = mass

α(pound) = mass

α(ton) = mass

α(Newton) = force

α(nounit) = nodimension
. . .

α(E1 op E2) = α(E1) ōp α(E2)

α((E)) = (̄α(E))̄

The abstract interpretation of an expression can be done in two distinct steps: it begins
with the derivation of an abstract expression from the concrete expression and goes on with
the evaluation of the abstract expression using the definition of the abstract operators. In our
example, the abstract expression is first obtained using the abstraction operator α:

α(kg × (m/s2)) = α(kg) ×̄ α((m/s2))

= mass ×̄ (̄α(m / s2))̄

= mass ×̄ (̄α(m) /̄ α(s2))̄

= mass ×̄ (̄length /̄ α(s)2̄ )̄

= mass ×̄ (̄length /̄ time 2̄ )̄

Since, in general, the abstraction function α is not computable, this first phase, which is usually
done by hand, can be understood as the design of an abstract compiler. Then, the abstract
expression can be evaluated using an abstract interpreter:

mass ×̄ (̄length /̄ time 2̄ )̄ = mass ×̄ (̄ (̄length /̄ time )̄ /̄ time )̄

= mass ×̄ (̄ (̄speed )̄ /̄ time )̄

= mass ×̄ (̄speed /̄ time )̄

= mass ×̄ (̄acceleration )̄

= mass ×̄ acceleration
= force

This second phase of abstract execution must always be finitely computable, hence must only
involve the finite iterated application of computable abstract operations on finitely representable
abstract values.

The main interest of this example is to illustrate the idea of proving the correctness of the
abstract interpretation relatively to a semantics via an abstraction operator as introduced in
[28] and [29]. The importance of this idea was that by relating abstract interpretations not to
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programming languages but to their operational semantics, one was able to define abstract inter-
pretation independently of any programming language, thus obtaining a theory applicable to all
programming languages. This can also be understood as meaning that abstract interpretations
designed for a language can systematically be transferred to any other language. Moreover,
by making clear the relationships between analysis and semantics [34], independently of any
program property, a theory of discrete approximation emerged, which has a very broad scope
since it is applicable from the design of semantics to that of low-level data flow analyses.

2.2.2. Generalization to Type Checking and Type Inference

Computer scientists would understand the dimension calculus as a type checking ensuring the
correct use of units of measure. The idea of using a calculus for type-checking programs is due
to Naur ([127], [128]) in the GIER ALGOL III compiler: “The basic method is a pseudo-
evaluation of the expressions of the program. This proceeds like a run-time evaluation as far as
the combining of operators and operands is concerned, but works with descriptions of the types
and kinds of the operand instead of with values.” Pseudo-evaluation is an abstract interpretation
where the abstract operators are:

integer + integer = integer
integer + real = real

real + integer = real
real + real = real

integer≤ integer = Boolean
integer≤ real = Boolean

real ≤ integer = Boolean
real ≤ real = Boolean

Errors were handled using an “error” (“undeclared” in [128]) abstract value. An error message
was produced when it appeared for the first time in the abstract interpretation of an expres-
sion. Thereafter, “error” was accepted as abstract operand in order to prevent redundant error
messages:

integer + Boolean = error
Boolean + integer = error
Boolean + Boolean = error

real + Boolean = error
Boolean + real = error
integer + error = error

error + integer = error
real + error = error
error + real = error

Boolean + error = error
error + Boolean = error
error + error = error

In total, 25 abstract values were used, in fact much more since the number of dimensions of
arrays and the number of parameters (not their type) of procedures and functions was taken
into account.

2.3. Casting Out of Nine

Our last introductory example is well known by French pupils who use casting out of nine
to check their additions and multiplications. To check the correctness of the multiplication
217 × 38 = 8256, one computes the respective rests r1 = (2 + 1 + 7) mod 9 = 1, r2 = (3 +
8) mod 9 = 2 and r = (8 + 2 + 5 + 6) mod 9 = 3 of the division by 9 of the sum of the digits of
the first factor 217, of the second factor 38 and of the result 8256. Then one computes the rest
p = (r1 × r2) mod 9 = (1 × 2) mod 9 = 2 of the division by 9 of the product r1 × r2 of the rests.
The disposition of the calculation on paper is shown in Figure 1. If r 6= p, then one concludes
that the multiplication was done incorrectly. This is the case in our example. Whenever r = p,
one cannot conclude that the operation is correct (although most pupils get very confident in
their result; the unfortunate French name of “proof by nine” certainly enforcing this undue
conviction).
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2.3.1. The Casting Out of Nine Calculus

Since casting out of nine is a rather simple abstract interpretation, we will design it formally so
as to justify the above rule. To do this, we follow the systematic approach introduced in [25],
[26], [29], and [34].

2.3.1.1. Syntax of Expressions. The syntax of expressions is given by the following
grammar where E is an expression, P a product, N a number, and D a digit:

E ::= P = N

P ::= N1 ×N2

N ::= D | ND

D ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

2.3.1.2. Operational Semantics of Expressions. The operational semantics of ex-
pression E is a boolean E [[E]] ∈{true, false}, defined as follows:

E [[P = N ]] = true if E [[P ]] = E [[N ]]
E [[P = N ]] = false if E [[P ]] 6= E [[N ]]
E [[N1 ×N2]] = E [[N1]] × E [[N2]]
E [[ND]] = (10 × E [[N ]]) + E [[D]]
E [[0]] = 0
. . .
E [[9]] = 9

2.3.1.3. Abstraction by Casting Out of Nine. The approximation consists in com-
puting modulo nine ([x]9 denotes the remainder upon division by 9 of integer x ∈ Z):

α(X) = [E [[X]]]9 if X is P , N , or D
α(P = N) = error if [E [[P ]]]9 6= [E [[N ]]]9
α(P = N) = unknown if [E [[P ]]]9 = [E [[N ]]]9

The intuition behind this formal definition is that [x]9 6= [y]9 implies x 6= y so that whenever
the abstract value error is found, the multiplication is incorrect.

2.3.1.4. Systematic Design of the Abstract Interpreter. The design of the ab-
stract interpreter consists in expressing α(E) in an equivalent form involving only arithmetic
modulo 9, i.e., operations on the abstract values unknown, error, 0, 1, . . . , 8. Such abstract
operations are effective since they involve a finite domain. We proceed by induction on the
syntax of expressions. For the basis, we have:

�
�
�
�❅

❅
❅
❅

r1

r p

r2 �
�
�
�❅

❅
❅
❅

1

2 3

2

FIGURE 1. Casting out of nine calculation.
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α(0) = [E [[0]]]9 by definition of α;
= [0]9 by definition of E ;
= 0 by definition of remainders.

. . . = . . . . . .
α(9) = [E [[9]]]9 by definition of α;

= [9]9 by definition of E ;
= 0 by definition of remainders.

Now, for the induction hypothesis, we assume that we have already expressed α(ti) by com-
position of operators on abstract values for subterms ti, i ∈ [1, n]. To do the same for term
f(t1, . . . , tn), we look for an abstract operator f̄ such that we can prove α(f(t1, . . . , tn)) =
f̄(α(t1), . . . , α(tn)) and insist upon the fact that f̄ should be effectively computable using only
abstract values:

α(ND)
= [E [[ND]]]9 by definition of α;
= [(10 × E [[N ]]) + E [[D]]]9 by definition of E ;
= [[(10 × E [[N ]])]9 + [E [[D]]]9]9 since [x+ y]9 = [[x]9 + [y]9]9;
= [[[10]9 × [E [[N ]]]9]9 + [E [[D]]]9]9 since [x× y]9 = [[x]9 × [y]9]9;
= [[1 × [E [[N ]]]9]9 + α(D)]9 since [10]9 = 1 and by definition of α;
= [[[E [[N ]]]9]9 + α(D)]9 since 1 × x = x;
= [[E [[N ]]]9 + α(D)]9 since [[x]9]9 = [x]9;
= [α(N) + α(D)]9 by definition of α;

= (α(N) +̄ α(D)) by letting x +̄ y
def
= [x+ y]9.

α(N1 ×N2)
= [E [[N1 ×N2]]]9 by definition of α;
= [E [[N1]] × E [[N2]]]9 by definition of E ;
= [[E [[N1]]]9 × [E [[N2]]]9]9 since [x× y]9 = [[x]9 × [y]9]9;
= [α(N1) × α(N2)]9 by definition of α;

= (α(N1) ×̄ α(N2)) by letting x ×̄ y
def
= [x× y]9.

α(P = N)
= error if [E [[P ]]]9 6= [E [[N ]]]9,
= unknown if [E [[P ]]]9 = [E [[N ]]]9;

whence, by definition of α,
= error if α(P ) 6= α(N),
= unknown if α(P ) = α(N);

and letting x =̄ y
def
= if x = y then unknown else error,

= α(P ) =̄ α(N).

2.3.1.5. Abstract Interpretation by Casting Out of Nine. The above design
leads to an automatic semantic analyser that consists of a compiler and an interpreter, organized
as follows:

1. The abstract compiler reads an expression E and produces (a computer representation of)
an abstract expression C[[E]] defined as follows:

C[[P = N ]] = (C[[P ]] =̄ C[[N ]])
C[[N1 ×N2]] = (C[[N1]] ×̄ C[[N2]])
C[[ND]] = (C[[N ]] +̄ C[[D]])
C[[0]] = 0
. . .
C[[8]] = 8
C[[9]] = 0
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2. An abstract interpreter I is written to evaluate abstract expressions, as follows:

I[[(v1 =̄ v2)]] = unknown if I[[v1]] = I[[v2]]
= error if I[[v1]] 6= I[[v2]]

I[[(v1 ×̄ v2)]] = [I[[v1]] × I[[v2]]]9
I[[(v1 +̄ v2)]] = [I[[v1]] + I[[v2]]]9

I[[0]] = 0
. . .
I[[8]] = 8

The correctness of our semantic analyser follows from its design since we have:

α(E) = I[[C[[E]]]]

For example, the abstract interpretation of the concrete expression E = 217 × 38 = 8256 first
consists in compiling into:

Ē = C[[E]] = ((((2 +̄ 1) +̄ 7) ×̄ (3 +̄ 8)) =̄ (((8 +̄ 2) +̄ 5) +̄ 6))

Then evaluation of the abstract expression Ē results into:

I[[Ē]] = [[[2 + 1]9 + 7]9 × [3 + 8]9]9 =̄ [[[8 + 2]9 + 5]9 + 6]9

= [1 × 2]9 =̄ 3

= 2 =̄ 3

= error

thus proving that the equality does not hold.

2.3.2. Generalization to Congruence Analysis

Abstract interpretations of integers modulo some given integer can be applied to the analysis
of programs, such as the parity analysis considered in [34]. They have been generalized to the
automatic discovery of invariants that are conjunctions of arithmetical congruences of the form
αx ≡ β (mod γ) where α, β, and γ are integer constants automatically discovered during the
analysis and x denotes the value of an integer variable of the program [74] and then to the
discovery of linear congruences of the form α1x1 + · · ·+αnxn ≡ β (mod γ) where α1, . . . , αn, β,
and γ are integer constants automatically discovered during the analysis and x1, . . . , xn denote
the values of integer variables of the program [75]. For example, this last analysis, automatically
discovers the invariant given after the loop of the program below, which computes the integer
root x of n ≥ 0:

x := 0; y := 1; z := 1;
while y <= n do begin
x := x + 1; z := z + 2; y := y + z;

end;
{ 2x− z + 1 ≡ 0 (mod 0) ∧ x+ y ≡ 1 (mod 2) }

3. PRINCIPLES OF ABSTRACT INTERPRETATION

The abstract interpretation framework that we introduced, illustrated and explained in a series
of papers [28], [29], [31], [32], [30], [25], [44], [34], [35] and [26] was motivated by the desire
to justify the specification of program analysers with respect to some formal semantics. The
guiding idea is that this process is a discrete inducing or approximation of properties from the
exact or concrete semantics onto an approximate or abstract semantics that explicitly exhibits
an underlying particular structure implicitly present in the richer concrete structure associated
to program executions. Hence, abstract interpretation has a constructive aspect, as opposed to
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a mere a posteriori justification, in that the abstract semantics can be derived systematically
from the concrete one, with the hope that this process will be ultimately computer-aided. We
think here, for example, to the partly automatic generation of program analysers. Therefore,
the subject of abstract interpretation involves the study of program semantics, of program
proof methods, and of program analyser’s specification, realization, and experimentation with
the underlying idea that these different descriptions, views, facets, or abstractions of run-time
behaviors of programs are all linked together by an inducing or approximation, i.e., abstraction
process. Clearly, this involves the deep understanding and creation of mathematical structures
to describe program executions and the study of their relationships, which is a vast subject
mainly remaining to be explored when considering, for a provocative example, what is known in
algebra about numbers and the simplicity of this structure when compared to that of computer
programs.

The classical framework summarized in [26] starts from an operational semantics describing,
for example, small program execution steps using a transition system (for example, flowcharts
in [29]) or execution traces (example 7.2.0.6 in [34]). Then a static or collecting semantics, often
described using fixpoints on ordered structures, is designed that is minimal, sound, and relatively
complete for the program properties of interest. Intuitively, the collecting semantics is the most
precise of the semantics that can be conceived to describe a certain class of so-called concrete
program properties without referring to other program properties out of the scope of interest.
It can be used for example to design proof methods [37], [45], [38]. The design of program
analysers is based on abstract semantics that are approximations of the collecting semantics.
There, the main concern is the compromise to be found between the difficulty of the analysis
conception, the flexibility, the precision, and the cost of the analyses. Everything is fixed by
the choice of the abstract properties to be considered (which can be governed, for example,
by computer representation considerations) and by their semantics that is their correspondence
with concrete properties. The use of Galois connections to express this correspondence squares
with an ideal situation where there is a best way to approximate any concrete property by an
abstract one. These two interrelated choices entirely determine the abstract semantics, which
can be derived from the concrete collecting semantics and described using fixpoints. Then,
the practical problem of effectively computing these fixpoints must be grappled with. There,
chaotic and asynchronous methods are useful. Convergence can be accelerated using widening
and narrowing operators so as to cope with infinite domains of abstract properties or to avoid
combinatorial explosions. Hence, the approximation process is split up in the static design of
an abstract semantics expressed as an equation and the iterative resolution of this equation.
Independent designs also have to be combined.

We now enter into more details of this approach, which we illustrate using logic programs.

4. APPROXIMATION METHODS FOR ABSTRACT INTERPRETATION

We start with a few, hopefully well-known, mathematical facts.

4.1. Lattice and Fixpoint Theory

Let be given sets S, T and U . The powerset ℘(S) is the set {X | X ⊆ S} of all subsets of S.
The cartesian product S × T is the set {〈s, t〉 | s ∈ S ∧ t ∈ T} of all pairs with first component
in S and second component in T . A binary relation on S×T is a subset ρ ∈ ℘(S×T ) of S×T .
A pre-order on a set S is a binary relation ⊑ that is reflexive (∀x ∈ S : x ⊑ x, where x ⊑ x′

stands for 〈x, x′〉 ∈ ⊑) and transitive (∀x, y, z ∈ X : (x ⊑ y ∧ y ⊑ z) ⇒ x ⊑ z). We write
x ⊏ y for (x ⊑ y ∧ x 6= y). A partial order on a set S is a pre-order that is antisymmetric
(∀x, y ∈ S : (x ⊑ y ∧ y ⊑ x) ⇒ x = y).

Let ⊑ be a partial order on a set S. u is an upper bound of a subset X of S if and only
if u is greater than or equal to all members of X (∀x ∈ X : x ⊑ u). The least upper bound u
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of a subset X of S is an upper bound of X that is smaller than any other upper bound of X
(∀x ∈ X : x ⊑ u ∧ ∀u′ ∈ S : (∀x ∈ X : x ⊑ u′) ⇒ (u ⊑ u′)). A least upper bound is unique. If
it exists, the least upper bound of X is written ⊔X. The lower bounds and greatest lower bound
⊓X of X ⊆ S are dual (i.e. their definition is obtained from that of upper bounds and the least
upper bound by replacing ⊑ by its dual ⊒).

A poset P (⊑) is a partial order ⊑ on a set P . A complete lattice L(⊑,⊥,⊤,⊔,⊓) is a poset
L(⊑) such that any subset X of L has a least upper bound ⊔X and a greatest lower bound
⊓X. In particular, the infimum ⊥ = ⊔∅ = ⊓L is the smallest element of L whilst the supremum
⊤ = ⊓∅ = ⊔L is the greatest. A linear order ⊑ is a partial order such that any two elements of
P are comparable: ∀x, y ∈ P : x ⊑ y ∨ y ⊑ x. An increasing chain is a subset X of P such
that ⊑ is a linear order on X. A complete partial order , for short cpo, is a poset such that every
increasing chain has a least upper bound. A strict cpo has an infimum.

We write ϕ ∈ S ≻→ T to mean that ϕ is a partial function of S into T , i.e., a relation
ϕ ∈ ℘(S×T ) such that 〈s, t〉 ∈ ϕ only if s ∈ S and t ∈ T and, for every s ∈ S, there exists at most
one t ∈ T , written ϕs, ϕ[[s]], ϕ[s], or ϕ(s), satisfying 〈s, t〉 ∈ ϕ. We say that ϕ(s) is well-defined
when the definition of ϕ implies the existence of ϕ(s). We write ϕ ∈ S 7→ T to mean that ϕ is
a total function of S into T i.e. ϕ(s) is well-defined for all s in S (∀s ∈ S : ∃t ∈ T : 〈s, t〉 ∈ ϕ).
As usual function composition ◦ is defined by ϕ ◦ ψ(s) = ϕ(ψ(s)). The image of X ⊆ S by
ϕ ∈ S 7→ T is ϕ∗(X) = {ϕ(x) | x ∈ X}. Let P (⊑,⊔) be a poset with least upper bound ⊔ and
Q(�,∨) be a poset with least upper bound ∨. P (⊑) m7−→ Q(�) denotes the set of total functions
ϕ ∈ P 7→ Q that are monotone, i.e., order morphisms: ∀x ∈ P : ∀y ∈ Q : x ⊑ y ⇒ ϕx � ϕy.
P (⊑,⊔) c7−→ Q(∨) denotes the set of total functions ϕ ∈ P 7→ Q that are upper-continuous, i.e.,
which preserve existing least upper bounds of increasing chains: if X ⊆ P is an increasing chain
for ⊑ and ⊔X exists then ϕ(⊔X) = ∨ϕ∗(X). P (⊔) a7−→ Q(∨) denotes the set of total functions
ϕ ∈ P 7→ Q that are additive, i.e., complete join-morphisms preserving least upper bounds of
arbitrary subsets, when they exist: if X ⊆ P and ⊔X exists then ϕ(⊔X) = ∨ϕ∗(X). When
the above notions are restricted to sets equipotent with the set N of natural numbers, they are
qualified by the attribute ω as in ω-chain, ω-cpo, ω-continuity , etc.

A fixpoint x ∈ P of ϕ ∈ P 7→ P is such that ϕx = x. We write ϕ
=

for the set {x ∈ P | ϕx = x}
of fixpoints of ϕ. The least fixpoint lfpϕ of ϕ is the unique x ∈ ϕ

=

such that ∀y ∈ ϕ
=

: x ⊑
y. The dual notion is that of greatest fixpoint gfpϕ. By Tarski’s fixpoint theorem [141], the
fixpoints of a monotone mapping ϕ ∈ L(⊑) m7−→ L(⊑) on a complete lattice L(⊑,⊥,⊤,⊔,⊓)
form a complete lattice ϕ

=

for ⊑ with infimum lfpϕ = ⊓ϕ
⊑

and supremum gfpϕ = ⊔ϕ
⊒

where
ϕ

⊑
= {x ∈ L | ϕx ⊑ x} is the set of postfixpoints and ϕ

⊒
= {x ∈ L | ϕx ⊒ x} is the set of

prefixpoints of ϕ. Moreover, if ϕ is ω-upper-continuous (hence, in particular, additive), lfpϕ
= ⊔n≥0ϕ

n(⊥) where ϕ0(x) = ⊥ and ϕn+1(x) = ϕ(ϕn(x)) for all x ∈ L. This is illustrated in
Figure 2 (where a poset P is represented by its Hasse diagram so that its elements are figured by
points, a point being above and linked by a line to another if it corresponds to a strictly greater
element and a function ϕ is represented by its sagittal graph using arrows linking all each point
for x ∈ P to the point corresponding to ϕ(x)).

4.2. Approximation of Fixpoint Semantics by Simplification Using Galois Connections

Two fixpoint approximation methods were considered in [29]. One is static in that it can be
understood as the simplification of the equation involved in the concrete semantics into an ap-
proximate abstract equation which solution provides the abstract semantics. Galois connections
are used to formalize this discrete approximation process. The second is dynamic in that it
takes place during the iterative resolution of the abstract equation (or system of equations).
This separation introduces additional flexibility allowing for both expressiveness and efficiency.
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FIGURE 2. Fixpoints.

4.2.1. Approximation of Concrete Program Properties by Abstract Properties

We assume that the concrete program properties are described by elements of a given set P ♭.
Let �♭ be a partial order relation on P ♭ defining the relative precision of concrete properties:
p♭1 �♭ p♭2 means that p♭1 and p♭2 are comparable properties of the program, p♭1 being more
precise than p♭2, the relative precision being left unquantified. The abstract program properties
are assumed to be represented by elements of a poset P ♯(�♯) where the partial order relation
�♯ defines the relative precision of abstract properties.

Example 1 (Rule of signs). For a trivial example, we can chose P ♭ = {false, <0, =0, >0, ≤0,
6=0, ≥0, true} with the intended meaning that these properties refer to the possible values

x of some program variable and therefore false
def
= ∅, <0

def
= {x ∈ Z | x < 0}, =0

def
= {0}, . . . ,

true
def
= Z. For example, =0 �♭ ≥0 since “is equal to zero” is more precise than “is positive

or zero” (but it would be difficult to say of how much!). Hence for this example �♭ is the
subset ordering ⊆. A possible approximation of P ♭ would be P ♯ = {f ♯, −1, 0, +1, t♯} where
strict inequalities are ignored.

The semantics of the abstract properties is given by a concretization function γ ∈ P ♯ 7→ P ♭:
γ(p♯) is the concrete property corresponding to the abstract description p♯ ∈ P ♯. The notion of
approximation is formalized by an abstraction function α ∈ P ♭ 7→ P ♯ giving the best abstract
approximation α(p♭) of concrete properties p♭ ∈ P ♭.

Example 2 (Rule of signs, continued). The concretization function for our trivial example is
given in Figure 3, (where posets P ♭(�♭) and P ♯(�♯) are represented by their Hasse diagrams
and γ by its sagittal graph). For example, +1 means ≥ 0 that is “belonging to the set of
zero or positive integers”. In Figure 3, we would have:

p♭ false <0 =0 >0 ≤0 6=0 ≥0 true

α(p♭) f ♯ −1 0 +1 −1 ⊤ +1 t♯

with the obvious meaning that, e.g. “is strictly positive” can be approximate from above by
“is zero or positive” for subset approximation ordering ⊆.
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If p♯1 = α(p♭) and p♯1 �♯ p♯2 then p♯2 is also a correct, although less precise abstract
approximation of the concrete property p♭. Hence, the soundness of approximations, i.e., the fact
that p♯ is a valid approximation of the information given by p♭ can be expressed by α(p♭) �♯ p♯.
If p♭1 = γ(p♯) and p♭2 �♭ p♭1 then p♯ is also a correct approximation of the concrete property
p♭2 although this concrete property p♭2 provides more accurate information about program
executions than p♭1. So the soundness of approximations, that is the fact that p♯ is a valid
approximation of the information given by p♭, can also be expressed by p♭ �♭ γ(p♯). When these
two soundness conditions are equivalent, we have got a Galois connection. We now examine
more precisely the motivations for and consequences of this hypothesis. This requires the study
of mathematical properties of Galois connections.

4.2.2. Galois Connections

Given posets P ♭(�♭) and P ♯(�♯), a Galois connection is a pair of maps such that:

α ∈ P ♭ 7→ P ♯

γ ∈ P ♯ 7→ P ♭

∀p♭ ∈ P ♭ : ∀p♯ ∈ P ♯ : α(p♭) �♯ p♯ ⇔ p♭ �♭ γ(p♯)
(1)

in which case we write:

P ♭(�♭)↼−−⇁
γ

α P ♯(�♯)

Galois connections have numerous properties, which are recalled in [34] (particularly theorems
5.3.0.5 and 5.3.0.7), where the references to the mathematical literature are also found. For
example, γ ◦ α is extensive:

∀p♭ ∈ P ♭ : p♭ �♭ γ ◦ α(p♭) (2)

since α(p♭) �♯ α(p♭) by reflexivity, hence p♭ �♭ γ ◦ α(p♭) by (1) with p♯ = α(p♭). This can be
interpreted by the fact that the loss of information in the abstraction process is sound. The
same way, α ◦ γ is reductive:

∀p♯ ∈ P ♯ : α ◦ γ(p♯) �♯ p♯ (3)

since γ(p♯) �♭ γ(p♯) by reflexivity, hence α ◦ γ(p♯) �♯ p♯ by (1) with p♭ = γ(p♯). This can be
interpreted by the fact that the concretization process introduces no loss of information. From
an abstract point of view, α(p♭) is as precise as possible.
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It follows that α is monotone [since p♭1 �
♭ p♭2 implies p♭1 �

♭ γ ◦α(p♭2) by (2) and transitivity
whence α(p♭1) �

♯ α(p♭2) by (1)] and so is γ [since p♯1 �
♯ p♯2 implies α ◦ γ(p♯1) �

♯ p♯2 by (3) and
transitivity whence γ(p♯1) �

♭ γ(p♯2) by (1)]:

α ∈ P ♭(�♭) m7−→ P ♯(�♯)
γ ∈ P ♯(�♯) m7−→ P ♭(�♭)

(4)

Monotony can be interpreted as the fact that the abstraction and concretization process preserves
the soundness of the approximation.

(2), (3), and (4) imply (1), hence can be chosen as an equivalent definition of Galois connec-
tions:

P ♭(�♭)↼−−⇁
γ

α P ♯(�♯) ⇐⇒
[

α ∈ P ♭(�♭) m7−→ P ♯(�♯)
]

∧
[

γ ∈ P ♯(�♯) m7−→ P ♭(�♭)
]

∧
[

∀p♭ ∈ P ♭ : p♭ �♭ γ ◦ α(p♭)
]

∧
[

∀p♯ ∈ P ♯ : α ◦ γ(p♯) �♯ p♯
]

(5)

Observe that P ♭(�♭)↼−−⇁
γ

α P ♯(�♯) if and only if P ♯(�♯−1
)↼−−⇁

α

γ P ♭(�♭−1
) where the inverse ≤−1

of the partial order ≤ is ≥. It follows that the duality principle on posets stating that any
theorem is true for all posets, then so is its dual obtained by substituting ≥, >, ⊤, ⊥, ∨, ∧, etc.
respectively for ≤, <, ⊥, ⊤, ∧, ∨, etc. can be extended to Galois connections by exchanging α
and γ.

For all p♭ ∈ P ♭ and p♯ ∈ P ♯, we have α◦γ(p♯) �♯ p♯ by (3) whence by monotony γ ◦α◦γ(p♯) �♯

γ(p♯). Moreover, γ(p♯) �♯ γ ◦ α ◦ γ(p♯) by (2) when p♭ is γ(p♯). By antisymmetry, we conclude
that:

∀p♯ ∈ P ♯ : γ ◦ α ◦ γ(p♯) = γ(p♯) (6)

The same way, for all p♭ ∈ P ♭ we have α◦γ(α(p♭)) �♯ α(p♭) by letting p♯ = α(p♭) in (3). Moreover,
(2) implies that for all p♭ ∈ P ♭ we have p♭ �♭ γ ◦α(p♭) whence by monotony α(p♭) �♭ α ◦γ ◦α(p♭).
By antisymmetry, we conclude:

∀p♭ ∈ P ♭ : α ◦ γ ◦ α(p♭) = α(p♭) (7)

An immediate consequence is that a Galois connection defines closure operators, as follows
(a lower closure operator is monotone, reductive, and idempotent, whereas an upper closure
operator is monotone, extensive, and idempotent):

P ♭(�♭)↼−−⇁
γ

α P ♯(�♯) =⇒

{

α ◦ γ is a lower closure operator,

γ ◦ α is an upper closure operator.
(8)

Idempotence, i.e., ρ ◦ ρ = ρ, can be interpreted as the fact that all information is lost at once in
the abstract interpretation process so that two successive abstractions with the same abstraction
function are equivalent to a single one. Another consequence is that one can reason upon the
abstract interpretation using only P ♭ and the image of P ♭ by the closure operator γ ◦α (instead
of P ♯). This equivalent approach is considered in [34]. In particular, the use of Moore families,
i.e., containing t♭ and closed under arbitrary ∧♭, is justified by the following:

Proposition 3 (Moore family). If P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯) and P ♭(�♭, f ♭, t♭,∧♭,∨♭) is a complete lattice
then γ∗(P ♯) is a Moore family.

proof. If p♭ ∈ γ∗(P ♯) then ∃p♯ ∈ P ♯ : p♭ = γ(p♯) �♭ t♭, hence by monotony and (6) p♭ = γ(p♯)
= γ ◦ α ◦ γ(p♯) �♭ γ ◦ α(t♭), proving that γ ◦ α(t♭) = t♭ is the supremum of γ∗(P ♯).

Assume that X ⊆ γ∗(P ♯). If p♭ ∈ X, then ∃p♯ ∈ P ♯ such that p♭ = γ(p♯). Then ∧♭X exists in
a complete lattice and satisfies ∧♭X �♭ p♭ so that by monotony and (6) γ ◦ α(∧♭X) �♭ γ ◦ α(p♭)
= γ ◦α ◦ γ(p♯) = γ(p♯) = p♭ proving that γ ◦α(∧♭X) is a lower bound of X so that γ ◦α(∧♭X) �♭

∧♭X. But γ ◦α is extensive by proposition 8 so that by antisymmetry γ ◦α(∧♭X) = ∧♭X proving
that ∧♭X ∈ γ∗(P ♯).
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In a Galois connection, one function uniquely determines the other:

Proposition 4. If P ♭(�♭) ↼−−⇁
γ1

α1
P ♯(�♯) and P ♭(�♭) ↼−−⇁

γ2

α2
P ♯(�♯), then (α1 = α2) if and only if

(γ1 = γ2).

proof. Assume that α1 = α2. For all p♯ ∈ P ♯, α2 ◦ γ2(p
♯) �♯ p♯ by (3), hence α1 ◦ γ2(p

♯) �♯ p♯

by hypothesis and therefore γ2(p
♯) �♭ γ1(p

♯) by (1). The same way, α1 ◦ γ1(p
♯) �♯ p♯ by (3)

hence α2 ◦ γ1(p
♯) �♯ p♯ by hypothesis and therefore γ1(p

♯) �♭ γ2(p
♯) by (1). By antisymmetry,

we conclude that γ1(p
♯) = γ2(p

♯). The reciprocal follows from the duality principle.

The practical consequence of this fact is that we can perform an abstract interpretation by
defining the abstraction or, indifferently, the concretization function, since the adjoined function
is uniquely determined as follows:

Proposition 5. If P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), then, for all p♭ ∈ P ♭, α(p♭) is equal to the greatest lower

bound
∧♯{p♯ | p♭ �♭ γ(p♯)} of the inverse image by γ of the set of upper bounds of p♭. For all

p♯ ∈ P ♯ we have γ(p♯) =
∨♭{p♭ | α(p♭) �♯ p♯}.

proof. If p♭ �♭ γ(p♯) then α(p♭) �♯ p♯ by (1) so that α(p♭) is a lower bound of {p♯ | p♭ �♭ γ(p♯)}.
Moreover p♭ �♭ γ ◦ α(p♭) by (2) so that α(p♭) belongs to {p♯ | p♭ �♭ γ(p♯)}. It follows that α(p♭)
is the greatest lower bound of {p♯ | p♭ �♭ γ(p♯)} since for any other lower bound ℓ, we must have
ℓ �♯ α(p♭). The dual result holds for γ.

Another important property of Galois connections is the preservation of bounds:

Proposition 6. If P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), then α ∈ P ♭(∨♭) a7−→ P ♯(∨♯) preserves least upper bounds
and γ ∈ P ♯(∧♯) a7−→ P ♭(∧♭) preserves greatest lower bounds.

proof. Assume that X is a subset of P ♭ such that
∨♭X exists. For all x ∈ X we have x �♭

∨♭X by definition of least upper bounds so that α(x) �♯ α(
∨♭X) by monotony, proving that

α(
∨♭X) is an upper bound of the α(x). Let m be another upper bound of all α(x), x ∈ X.

We have α(x) �♯ m, whence x �♭ γ(m) by (1) so that
∨♭X �♭ γ(m) by definition of least

upper bounds. By monotony and (3) it follows that α(
∨♭X) �♯ α ◦ γ(m) �♯ m, proving that

α(
∨♭X) is the least upper bound of {α(x) | x ∈ X}. By the duality principle, it follows that

∀X ⊆ P ♯ : γ(
∧♯X) =

∧♭{γ(x) | x ∈ X} when
∧♯X exists.

Whenever we have defined an abstraction function that is a complete join morphism or a con-
cretization function that is a complete meet morphism, then this definition entirely determines
a unique Galois connection, provided that the bounds allowing for the definition of the adjoined
function exist (which is the case, for example, when considering complete lattices):

Proposition 7. Let P ♭(�♭) and P ♯(�♯) be posets. If α ∈ P ♭(
∨♭) a7−→ P ♯(

∨♭) and
∨♭{p♭ |

α(p♭) �♯ p♯} exists for all p♯ ∈ P ♯, then P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯) where ∀p♯ ∈ P ♯ : γ(p♯) =
∨♭{p♭ |

α(p♭) �♯ p♯}. If γ ∈ P ♯(
∧♯) a7−→ P ♭(

∧♭) and
∧♯{p♯ | p♭ �♭ γ(p♯)} exists for all p♭ ∈ P ♭, then

P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯) where ∀p♭ ∈ P ♭ : α(p♭) =
∧♯{p♯ | p♭ �♭ γ(p♯)}.

proof. If α(p♭) �♯ p♯ then p♭ ∈ {p♭
′
| α(p♭

′
) �♯ p♯}, whence p♭ �♭

∨♭{p♭
′
| α(p♭

′
) �♯ p♯} = γ(p♯)

by definition of least upper bounds and of γ. Reciprocally, if p♭ �♭ γ(p♯) then by definition of
γ and monotony α(p♭) �♯ α(

∨♭{p♭
′
| α(p♭

′
) �♯ p♯}), which is equal to

∨♯{α(p♭
′
) | α(p♭

′
) �♯ p♯}

since α preserves least upper bounds, proving that α(p♭) �♯ p♯ by definition of least upper
bounds and transitivity. A dual result holds for γ.

By eliminating the “useless” abstract properties in the abstract domain P ♯ that are not the
abstraction of some concrete property, we obtain an abstraction onto P ♯, a situation that can
be characterized as follows:

Proposition 8. If P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), then α is onto if and only if γ is one-to-one if and only
if ∀p♯ ∈ P ♯ : α ◦ γ(p♯) = p♯ (in which case the Galois connection is said to be a Galois
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surjection). α is one-to-one if and only if γ is onto if and only if ∀p♭ ∈ P ♭ : γ ◦ α(p♭) = p♭

(in which case the Galois connection is said to be a Galois injection).

proof. By (7) we have α ◦γ ◦α(p♭) = α(p♭) hence γ ◦α(p♭) = p♭ for all p♭ ∈ P ♭ if α is one-to-one.
In this case γ is onto since p♭ = γ(p♯) by choosing p♯ = α(p♭). The same way, γ ◦α ◦γ(p♯) = γ(p♯)
by (6), whence p♯ = α ◦ γ(p♯) if γ is one-to-one. In this case, it follows that α is onto since
p♯ = α(p♭) by choosing p♭ = γ(p♯). We conclude by application of the duality principle.

This leads to the definition of Galois surjections:

P ♭(�♭)↼−−→
γ

α P ♯(�♯)
def
= (P ♭(�♭)↼−−⇁

γ

α P ♯(�♯)) ∧ (∀p♯ ∈ P ♯ : α ◦ γ(p♯) = p♯)) (9)

with −⇁ denoting ‘into’ and −→ ‘onto’. Galois surjections induce the order structure from
concrete onto abstract properties:

Proposition 9. If P ♭(�♭) ↼−−→
γ

α P ♯(�♯) and P ♭(�♭, f ♭, t♭,∧♭,∨♭) is a complete lattice, then so is
P ♯(�♯).

proof. Given any subset X of P ♯, p♭ =
∨♭{γ(p♯) | p♯ ∈ X} exists in the complete lattice P ♭.

Given p♯ ∈ X we have γ(p♯) �♭ p♭, whence by monotony and Galois surjection characteristic
property p♯ = α ◦ γ(p♯) �♯ α(p♭) proving that α(p♭) is an upper bound of X.

Let ℓ be another upper bound of X. For all p♯ ∈ X, we have p♯ �♯ ℓ and γ(p♯) �♭ γ(ℓ)
by monotony, whence p♭ �♭ γ(ℓ) by definition of least upper bounds. By the Galois surjection
characteristic property and monotony, α(p♭) �♯ α ◦ γ(ℓ) = ℓ proving that α(p♭) = ∨♯X.

The proof that α(
∧♭{γ(p♯) | p♯ ∈ X}) is the greatest lower bound of X ⊆ P ♯ is dual.

As observed in theorem 10.1.0.2 of [34], each abstract property p♯ can be improved by its
lower closure α ◦ γ(p♯). This leads to a systematic way of obtaining Galois surjections from
Galois connections by identification of the abstract properties p♯, which meaning γ(p♯) cannot
be distinguished at the concrete level, into an equivalence class:

Proposition 10 (Reduction). If P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), then p♯1 ≡ p♯2
def
= γ(p♯1) = γ(p♯2) is an

equivalence relation such that P ♭(�♭) ↼−−→
γ≡

α≡
P ♯/≡(�♯

≡
) where α≡(p♭)

def
= {p♯ | p♯ ≡ α(p♭)},

γ≡(X) is γ(p♯) such that p♯ ∈ X and X �♯
≡
Y

def
= ∃p♯1 ∈ X : ∃p♯2 ∈ Y : p♯1 �

♯ p♯2.

proof. We have [α≡(p♭) �♯
≡
X] ⇔ [∃p♯1 ∈ α≡(p♭) : ∃p♯2 ∈ X : p♯1 �♯ p♯2] ⇔ [∃p♯1 : ∃p♯2 ∈ X :

p♯1 ≡ α(p♭) ∧ p♯1 �♯ p♯2] ⇔ [∃p♯1 : ∃p♯2 ∈ X : γ(p♯1) = γ ◦ α(p♭) ∧ p♯1 �♯ p♯2], which implies

[∃p♯1 : ∃p♯2 ∈ X : α ◦ γ ◦ α(p♭) = α ◦ γ(p♯1) ∧ p♯1 �♯ p♯2], and, therefore, by (7) and (3), we

have [∃p♯1 : ∃p♯2 ∈ X : α(p♭) �♯ p♯1 ∧ p♯1 �♯ p♯2], which implies [∃p♯2 ∈ X : α(p♭) �♯ p♯2]

⇔ [∃p♯2 ∈ X : p♭ �♭ γ(p♯2)] ⇔ [p♭ �♭ γ≡(X)]. Reciprocally, [∃p♯2 ∈ X : α(p♭) �♯ p♯2] implies

[∃p♯1 : ∃p♯2 ∈ X : p♯1 = α(p♭)∧p♯1 �
♯ p♯2], whence [∃p♯1 : ∃p♯2 ∈ X : p♯1 ≡ α(p♭)∧p♯1 �

♯ p♯2].

From a practical point of view, this proposition corresponds to the use of a normal form for
abstract properties with the same meaning. We use the following notation for the reduction:

P ♭(�♭) ↼≡−−−− →
γ

α P ♯(�♯)
def
= P ♭(�♭)↼−−→

γ≡

α≡
P ♯/≡(�♯

≡
) (10)

4.2.3. The Compositional Design of Galois Connections

We now study systematic ways of defining Galois connections so as to specify program analysers
by successive refinements.

4.2.3.1. Composition of Galois Connections. The composition of Galois connec-
tions is a Galois connection. This fundamental property is the basis for designing program
analysers by composition of successive approximations:

(

P ♭(�♭)↼−−⇁
γ1

α1

P ♮(�♮) ∧ P ♮(�♮)↼−−⇁
γ2

α2

P ♯(�♯)

)

⇒ P ♭(�♭)↼−−−−−−⇁
γ1◦γ2

α2◦α1

P ♯(�♯) (11)
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For example, in [29], 〈α1, γ1〉 decomposes global invariants on program counters and values of
variables into local invariants upon the values of the variables attached to program points, then
〈α2, γ2〉 decomposes the relational local invariants into attribute independent ones, and then
〈α3, γ3〉 approximates the set of possible values of each variable by an abstract value such as its
sign, parity, interval of values, etc.

4.2.3.2. Partitioning. One first standard way of obtaining Galois connections is illus-
trated by the decomposition of a global invariant into local invariants attached to program points
[34], example 6.2.0.2.

Example 11 (Local invariants). More precisely, consider invariance properties represented as a
set p♭ of states belonging to S so that P ♭ = ℘(S). If states are pairs 〈c,m〉 where c ∈ C
is a control state (a control point for imperative sequential programs) and m ∈ M is an
environment delivering the values of variables then p♭ can be abstracted as a vector p♯ = α(p♭)
such that p♯[c] = {m | 〈c,m〉 ∈ p♭} for all c ∈ C. The meaning of such an abstract value p♯

is γ(p♯) = {〈c,m〉 | c ∈ C ∧m ∈ p♯[c]}. α is a bijection with inverse γ so that the concrete
and abstract representations of an invariant are isomorphic: an invariant can be represented
globally as a predicate on the control and memory states or locally as a set of invariants on
the memory states attached to each program point.

This can be easily generalized as follows:

Proposition 12 (Partitioning). Let P ♭(�♭, f ♭, t♭,
∨♭,

∧♭) be a complete lattice that is (infinitely)

distributive for intersection1, i.e., the join operation is (completely) distributive on meets so

that x∧♭
∨♭X =

∨♭{x∧♭ y | y ∈ X} for all x ∈ P ♭ and any (infinite) set X ⊆ P ♭. Let L be a

non-empty finite (respectively infinite) set of so-called labels and δ ∈ L 7→ P ♭ be a partition

of P ♭ (satisfying the cover property t♭ =
∨♭

ℓ∈L δ(ℓ) and the disjointness property ∀ℓ, ℓ′ ∈ L :

ℓ 6= ℓ′ ⇒ δ[ℓ] ∧♭ δ[ℓ′] = f ♭). Define P ♯ =
∏

ℓ∈L{p
♭ ∧♭ δ(ℓ) | p♭ ∈ P ♭} with the componentwise

ordering p♯1 �♯ p♯2 if and only if ∀ℓ ∈ L : p♯1[ℓ] �♭ p♯2[ℓ]. Let α(p♭)[ℓ] = p♭ ∧♭ δ(ℓ) and

γ(p♯) =
∨♭

ℓ′∈L p
♯[ℓ′] for all ℓ ∈ L, p♭ ∈ P ♭ and p♯ ∈ P ♯. Then the partitioning is such that

P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯) whereas the reduced partitioning satisfies P ♭(�♭) ↼≡−−−− →
γ

α P ♯(�♯).

proof. For all p♭ ∈ P ♭ and p♯ ∈ P ♯, if α(p♭) �♯ p♯, then for all ℓ ∈ L we have p♭ ∧♭ δ(ℓ) =
α(p♭)[ℓ] �♭ p♯[ℓ] �♭

∨♭
ℓ′∈L p

♯[ℓ′] = γ(p♯) by definition of α, of the componentwise ordering, of

least upper bounds
∨♭ and of γ. So p♭ is equal to p♭∧♭ t♭ by definition of the supremum t♭, hence

to p♭∧♭
∨♭

ℓ∈L δ(ℓ) by the cover property, so to
∨♭

ℓ∈L p
♭∧♭ δ(ℓ) by ∧♭–distributivity, which is upper

�♭–bounded by γ(p♯) by definition of least upper bounds.

Reciprocally, if p♭ �♭ γ(p♯), then p♭ �♭
∨♭

ℓ′∈L p
♯[ℓ′] by definition of the concretization γ,

whence for all ℓ ∈ L, α(p♭)[ℓ] = p♭ ∧♭ δ[ℓ] �♭
(

∨♭
ℓ′∈L p

♯[ℓ′]
)

∧♭ δ[ℓ] by definition of the abstraction

α and of greatest lower bounds. But
(

∨♭
ℓ′∈L p

♯[ℓ′]
)

∧♭ δ[ℓ] is equal to
∨♭

ℓ′∈L

(

p♯[ℓ′] ∧♭ δ[ℓ]
)

by

distributivity. Moreover, p♯[ℓ′] �♭ δ[ℓ′] and δ[ℓ]∧♭ δ[ℓ′] = f ♭ so that p♯[ℓ′]∧♭ δ[ℓ′] = f ♭ by definition
of greatest lower bounds and of the infimum when ℓ 6= ℓ′. It follows that

∨♭
ℓ′∈L

(

p♯[ℓ′] ∧♭ δ[ℓ]
)

= p♯[ℓ] ∧♭ δ[ℓ] = p♯[ℓ] since p♯[ℓ] �♭ δ[ℓ] by definition of P ♯. By transitivity and definition of the
pointwise ordering �♯, we conclude that α(p♭) �♯ p♯. The reduction follows from proposition
10.

This Galois connection enables us to decompose an equation into a system of equations, one
for each label. For logical programs, the choice of labels can vary considerably. For example,
one can choose a single one for the whole program, one for each predicate, one for each clause
(after head unification), two for each clause (after call and before exit), one before and after each
atom of a clause [140], [131] or one before and/or after a call [11] in an AND/OR tree, bi-labels

1 Such lattices are called Brouwerian.
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corresponding to pairs of the previous choices or even paths to the calls in the computations
within AND/OR trees [160], [157]. The choice of the best decomposition obviously depends
upon the kind and quality of the information that is to be gathered about programs and of the
acceptable memory and computation costs.

4.2.3.3. Reduced Product. If several independent abstract interpretations P ♯i(�♯i),
i ∈ ∆ have been designed with respect to a concrete domain P ♭(�♭) of program properties using

Galois connections P ♭(�♭) ↼−−⇁
γi

αi P ♯i(�♯i), i ∈ ∆, then there are many ways to combine them
to perform all abstract interpretations simultaneously. Several such combinations of abstract
interpretations have been suggested in sections 9 and 10 of [34]. We will use the following ones:

Proposition 13 (Reduced product). Let P ♭(�♭) and P ♯i(�♯i) be posets for all i in the index set ∆

such that for all i in ∆, P ♭(�♭) ↼−−⇁
γi

αi P
♯i(�♯i). Define P ♯ =

∏

i∈∆ P
♯i, p♯1 �♯ p♯2 if and only

if ∀i ∈ ∆ : p♯1[i] �
♯i p♯2[i], α ∈ P ♭ 7→ P ♯ such that α(p♭) =

∏

i∈∆ α
i(p♭) and γ ∈ P ♯ ≻→ P ♭

such that γ(p♯) =
∧♭

i∈∆ γ
i(p♯[i]).

If ∆ is finite and P ♭(�♭,∧♭) is a meet-semi-lattice or ∆ is infinite and P ♭(�♭,∧♭) is a com-

plete meet-semi-lattice (hence a complete lattice), then the product is such that P ♭(�♭) ↼−−⇁
γ

α

P ♯(�♯), whereas the reduced product satisfies P ♭(�♭) ↼≡−−−− →
γ

α P ♯(�♯).

proof. By definition of α and �♯, α(p♭) �♯ p♯ is equivalent to ∀i ∈ ∆ : αi(p♭) �♯i p♯[i] or, by
definition (1) of Galois connections, to ∀i ∈ ∆ : p♭ �♭ γi(p♯[i]). By definition of greatest lower
bounds, which exist by the lattice hypothesis, this is equivalent to p♭ �♭

∧♭
i∈∆ γ

i(p♯[i]), i.e., to
p♭ �♭ γ(p♯) by definition of γ. The reduction follows from proposition 10.

This combination of abstract interpretations can be qualified of attribute independent. A classi-
cal example consists in analysing the possible values of the variables of a program by analysing
independently the possible values of each variable in the program, as, for example, in [28]. The
information obtained by the combination of the analyses is essentially the same as the one ob-
tained by performing the analyses separately. However, the separate analyses can be mutually
improved using proposition 10. For example, the reduced product of sign and parity analysis
would exclude the case when a variable is both zero and odd, a situation that may not be rec-
ognizable by separate analyses (for example the conjunction of {0} x := 1 {+} and {odd} x :=

1 {even} would be {〈0, odd〉} x := 1 {〈+, even〉} which reduces to {〈⊥,⊥〉} x := 1 {〈+, even〉}
whereas for the reduced product we would have {〈⊥,⊥〉} x := 1 {〈⊥,⊥〉}).

Example 14 (Attribute independent groundness analysis). In groundness analysis, the lattice

P ♯i, i = 1, 2 represents the set of terms to which some logical variable X i, i = 1, 2 can
be bounded during execution of a logic program, ⊥ corresponding to the empty set, g

corresponding to the set of ground terms, ng corresponding to the set of terms containing
at least one free variable, and ⊤ corresponding to all possible terms. Their reduced product
P ♯ =

∏

i∈{1,2} P
♯i can be used to represent the possible values of the pair of variables 〈X1, X2〉

(which implies that all abstract pairs of values containing ⊥ are semantically equivalent hence
reduced to 〈⊥,⊥〉, as shown in Figure 4). The analysis is attribute independent in that no
relationship can be expressed between the groundness of X1 and that of X2 (such as X1 is
ground if and only if X2 is not ground).

4.2.3.4. Down-set Completion. A method was given in paragraph 9.2 of [34] to pro-
vide a disjunctive concrete interpretation of sets of abstract properties. It was used to show that
merge over all paths data flow analyses can always be expressed in fixpoint form. This construc-
tion is of general use to enrich an abstract interpretation. The intuitive idea is that the abstrac-
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FIGURE 4. Lattice of attribute independent groundness analysis.

tion α loses no information about meets (proposition 3), whereas joins are preserved by losing in-
formation (proposition 6). For example, in the rule of signs, α({n ∈ N | n > 0}∪{n ∈ N | n < 0})
= α({n ∈ N | n > 0}) ⊔ α({n | n < 0}) = + ⊔ − = ⊤, thus losing the information that 0 is
impossible. This situation can be improved by moving to the more expressive abstract domain
℘(P ♯) and considering sets of abstract values in P ♯ the meaning of which is the disjunction of
the meaning of the individual abstract values in the set. This corresponds to a case analysis. For
example, {−,+} expresses a non-zero value since γ({−,+}) = γ(−) ∪ γ(+) = {n ∈ N | n 6= 0}.
Now, several sets of abstract values can have the same concrete meaning such as, for example,
{⊤}, {⊤,−}, and {⊤,−, 0,+,⊥}. Therefore, a reduction is necessary to reduce the size of the
abstract lattice, hence that of its computer representation. Proposition 10 can be used for that
purpose, but in this case this can be done, at least partially, in a syntactic way, by considering
down closed sets only, which contain all abstract values which can be approximated by an ele-
ment of the set. Following theorems 9.2.0.2 to 9.2.0.4 of [34], this intuitive idea can be formalized
as follows:

Proposition 15 (Down-set completion). Let P ♭(�♭, f ♭, t♭,∧♭,∨♭) be a complete lattice that is com-

pletely distributive (i.e.
∧♭{

∨♭{xij | j ∈ Ji} | i ∈ I} =
∨♭{

∧♭{xiϕ(i) | i ∈ I} | ϕ ∈
∏

k∈I Jk}

for all Ji, i ∈ I) and assume P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯). Let ↓�X = {y | ∃x ∈ X : y � x} be the

down closure of X for �. Define:

D�♯

(P ♯) = ↓�
♯∗ (

℘(P ♯)
)

γd ∈ D�♯

(P ♯) 7→ P ♭

γd(X)
def
=

∨♭ γ∗(X)

αd ∈ P ♭ 7→ D�♯

(P ♯)

αd(p♭)
def
= ∩{X | p♭ �♭ γd(X)}

then P ♭
(

�♭
)

↼−−⇁
γd

αd
D�♯

(P ♯) (⊆) and P ♭
(

�♭
) ↼≡−−−− →

γd

αd
D�♯

(P ♯) (⊆).

proof. We show that γd is a complete meet morphism so that the conclusion follows from
proposition 7.

We prove the preliminary lemma stating that {
∧♭

i∈I ϕ[i] | ϕ ∈
∏

k∈I{p
♭ | ∃p♯ ∈ Xk : p♭ �♭

γ(p♯)}} = {p♭ | ∃p♯ ∈
⋂

i∈I Xi : p♭ �♭ γ(p♯)} when Xk ∈ D�♯

(P ♯)) for all k ∈ I. So let ϕ

be any element of
∏

k∈I{p
♭ | ∃p♯ ∈ Xk : p♭ �♭ γ(p♯)} and k ∈ I. Then

∧♭
i∈I ϕ[i] �♭ ϕ[k] ∈

{p♭ | ∃p♯ ∈ Xk : p♭ �♭ γ(p♯)}, proving by transitivity that ∃p♯k ∈ Xk :
∧♭

i∈I ϕ[i] �♭ γ(p♯k).

Hence
∧♭

i∈I ϕ[i] �♭
∧♭

k∈I γ(p♯k). By proposition 3, γ∗(P ♯) is a Moore family so there exists some

p♯ ∈ P ♯ such that
∧♭

k∈I γ(p♯k) = γ(p♯), whence by (6)
∧♭

i∈I ϕ[i] �♭ γ(p♯) = γ ◦ α ◦ γ(p♯). But

for all k ∈ I, we have γ(p♯) =
∧♭

k∈I γ(p♯k) �♭ γ(p♯k), whence by monotony and (3), α ◦ γ(p♯) �♯
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α ◦ γ(p♯k) �♯ p♯k ∈ Xk. But Xk is down closed for �♯, whence α ◦ γ(p♯) ∈ Xk. We conclude that
α ◦γ(p♯) ∈

⋂

k∈I Xk so that
∧♭

i∈I ϕ[i] ∈ {p♭ | ∃p♯ ∈
⋂

i∈I Xi : p♭ �♭ γ(p♯)} proving inclusion in one
direction. Reciprocally, assume that ∃p♯ ∈

⋂

i∈I Xi : p♭ �♭ γ(p♯). Define ϕ[i] = p♭ for all i ∈ I.

Then ϕ ∈
∏

k∈I{p
♭ | ∃p♯ ∈ Xk : p♭ �♭ γ(p♯)} and p♭ =

∧♭
i∈I ϕ[i] proving the inverse inclusion.

To prove that γd is a complete meet morphism, we observe that by definition γd(
⋂

i∈I Xi) is

equal to
∨♭ γ∗(

⋂

i∈I Xi) =
∨♭ ↓�

♭

({γ(p♯) | p♯ ∈
⋂

i∈I Xi}) =
∨♭{p♭ | ∃p♯ ∈

⋂

i∈I Xi : p♭ �♭ γ(p♯)},

i.e., by the previous lemma, to
∨♭{

∧♭
i∈I ϕ[i] | ϕ ∈

∏

k∈I{p
♭ | ∃p♯ ∈ Xk : p♭ �♭ γ(p♯)}}, which

by complete distributivity is
∧♭{

∨♭{p♭ | ∃p♯ ∈ Xi : p♭ �♭ γ(p♯)} | i ∈ I}, which by definition

of γd is equal to
∧♭

i∈I

∨♭ ↓�
♭

({γ(p♯) | p♯ ∈ Xi}) =
∧♭

i∈I

∨♭ ↓�
♭

(γ∗(Xi)). =
∧♭

i∈I

∨♭ γ∗(Xi). =
∧♭

i∈I γ
d(Xi). The reduction follows from proposition 10.

Example 16 (Rule of signs, continued). Assume that P ♭ = ℘(Z) and P ♯ is {⊥,−, 0,+,⊤} with
the obvious meaning γ(⊥) = ∅, γ(−) = {x ∈ Z | x < 0}, γ(0) = {0}, γ(+) = {x ∈ Z | x > 0}
and γ(⊤) = Z. Using proposition 15, define α(X) as the least s ∈ P ♯ such that X ⊆ γ(s).

The down-set completion of P ♯ contains the elements: false
def
= ∅ ≡ {⊥}; <0

def
= {−,⊥}; =0

def
= {0,⊥}; >0

def
= {+,⊥}; ≤0

def
= {−, 0,⊥}; 6=0

def
= {−,+,⊥}; ≥0

def
= {+, 0,⊥} and true

def
=

{⊤,+,−, 0,⊥} ordered by subset inclusion so that we obtain the lattice that is shown in
Figure 5.

Another equivalent way to define the down-set completion consists in considering Hoare’s lower
powerdomain that is subsets of P ♯ pre-ordered by X - X ′ if and only if ∀p♯ ∈ X : ∃p♯

′
∈

X ′ : p♯ �♯ p♯
′
. Let ≈ be the corresponding equivalence relation defined by X ≈ X ′ def

= (X -

X ′) ∧ (X ′ - X). The equivalence class of X ⊆ P ♯ is [X]≈
def
= {X ′ ⊆ P ♯ | X ′ ≈ X}. ℘(P ♯)/≈ is

the set of all equivalence classes [X]≈ for all X ⊆ P ♯. It is partially ordered by [X]≈ - [X ′]≈ if
and only if there exist Y , Y ′ ⊆ P ♯ such that (Y ≈ X) ∧ (Y ′ ≈ X ′) ∧ (Y - Y ′). The fact that
℘(P ♯)/≈ (-) is the down-set completion of P ♯ follows from the following:

Proposition 17. ℘(P ♯)/≈ (-) is order-isomorphic with D�♯

(P ♯) (⊆).

proof. Define α ∈ D�♯

(P ♯) 7→ ℘(P ♯)/≈ by α(X)
def
= [X]≈ and γ ∈ ℘(P ♯)/≈ 7→ D�♯

(P ♯) by

γ([X]≈)
def
= ↓�

♯

X. For all X ∈ D�♯

(P ♯), we have γ ◦ α(X) = ↓�
♯

X = X since X is down-closed.

Moreover, α ◦ γ([X]≈) = [↓�
♯

X]≈ = [X]≈ since for all p♯ ∈ X, we have p♯ ∈ ↓�
♯

X, whence

X - ↓�
♯

X since �♯ is reflexive and by definition of the down closure, for all p♯ ∈ ↓�
♯

X there

exists p♯
′
∈ X such that p♯ �♯ p♯

′
, whence ↓�

♯

X - X. It follows that α is an isomorphism with
inverse γ.
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FIGURE 5. Lattices of signs.



abstract interpretation and application to logic programs 21

If X, X ′ ⊆ P ♯, and X ⊆ X ′, then for all p♭ ∈ X, p♭
′
∈ X ′ and p♭ �♯ p♭

′
so that X - X ′

and therefore [X]≈ - [X ′]≈. Reciprocally, if X, X ′ ⊆ P ♯ and [X]≈ - [X ′]≈, then there exist X̄,
X̄ ′ ⊆ P ♯ such that X̄ ≈ X, X̄ ′ ≈ X ′ and X̄ - X̄ ′ so that by definition of ≈ and transitivity,

X - X ′ so that ∀p♭ ∈ X : ∃p♭
′
∈ X : p♭ �♯ p♭

′
whence ↓�

♯

X ⊆ ↓�
♯

X ′ proving that α(X) - α(X ′)
which implies γ ◦α(X) ⊆ γ ◦α(X ′) that is X ⊆ X ′. We conclude that α is an order-isomorphism,
that is X ⊆ X ′ if and only if α(X) - α(X ′).

The situation observed in example 16 where the down-set completion of P ♯ is the set of
subsets of the atoms {−, 0,+} of P ♯ is in fact more general. An element a of a lattice L(≤)
with infimum ⊥ is an atom if it covers ⊥, that is ⊥ < x ≤ a ⇒ x = a. L is atomistic if and
only if every element of L is a join of atoms, and hence of the atoms which it contains. We
write A(L) for the set of atoms of L. Two abstract interpretations are equivalent if and only if
any concrete property is approximated in the same way in both interpretations. More formally,
if P ♭(�♭) ↼−−⇁

γ1

α1
P ♯

1(�
♯
1) and P ♭(�♭) ↼−−⇁

γ2

α2
P ♯

2(�
♯
2) then ∀p♭ ∈ P ♭ : γ1 ◦ α1(p

♭) = γ2 ◦ α2(p
♭).

Proposition 18 (Representation of the down-set completion using atoms). Let P ♭(�♭, f ♭, t♭, ∧♭,
∨♭) be a completely distributive complete lattice and P ♯(�♯, f ♯, t♯, ∧♯, ∨♯) be an atomistic
complete lattice such that P ♭(�♭) ↼−−⇁

γ

α P ♯(�♯). Define:

γa ∈ ℘(A(P ♯)) 7→ D�♯

(P ♯)

γa(X)
def
= {

∨♯ S | S ⊆ X}

αa ∈ D�♯

(P ♯) 7→ ℘(A(P ♯))

αa(X)
def
= X ∩ A(P ♯)

Then D�♯

(P ♯)(⊆) ↼−−→
γa

αa
℘(A(P ♯))(⊆). If, moreover, γ is join atomistic, that is to say:

∀X ⊆ P ♯ :
♭
∨

γ∗(X) =
♭
∨

γ∗
(

(↓�
♯

X) ∩ A(P ♯)
)

then the two abstract interpretations are equivalent in that γd ◦ αd = γd ◦ γa ◦ αa ◦ αd.

proof. If X ⊆ A(P ♯), then for all x ∈ X we have {x} ⊆ X and ∨♯{x} = x proving that
X ⊆ {

∨♯ S | S ⊆ X} ∩ A(P ♯) = αa ◦ γa(X). Moreover, if S ⊆ X and
∨♯ S ∈ A(P ♯) then S

cannot be empty since the infimum ∨♯∅ = f ♯ does not belong to A(P ♯). Moreover, S cannot
contain two distinct atoms x1 and x2 since we would have f ♯ ≺♯ x1 �♯ (x1 ∨♯ x2) �♯

∨♯ S
hence x1 = (x1 ∨♯ x2) =

∨♯ S since x1 and
∨♯ S are atoms and therefore the contradiction

f ♯ ≺♯ x1 ≺♯ x2 since x1 and x2 are distinct atoms. It follows that
∨♯ S = ∨♯{x} = x where

x ∈ X proving that {
∨♯ S | S ⊆ X} ∩ A(P ♯) ⊆ X hence by antisymmetry that αa ◦ γa is the

identity.
Assume now that X ∈ D�♯

(P ♯) and x ∈ X. Let S be {a ∈ A(P ♯) | a �♯ x}. We have S ⊆ X
since X is down closed and x =

∨♯ S since P ♯(�♯,∨♯) is an atomistic complete lattice proving
that X ⊆ {

∨♯ S | S ⊆ X ∩ A(P ♯)} = γa ◦ αa(X).

We conclude that D�♯

(P ♯)(⊆)↼−−→
γa

αa
℘(A(P ♯))(⊆).

Finally, if X ∈ D�♯

(P ♯) then γd ◦ γa ◦ αa(X) =
∨♭ γ∗({

∨♯ S | S ⊆ X ∩A(P ♯)}) =
∨♭ γ∗({a ∈

A(P ♯) | ∃S ⊆ X ∩ A(P ♯) : a �♯
∨♯ S}) since γ is join-atomistic. Since P ♯ is atomistic, this is

equal to
∨♭ γ∗({S | S ⊆ X ∩A(P ♯)}) =

∨♭ γ∗(X ∩A(P ♯)) =
∨♭ γ∗

(

(↓�
♯

X) ∩ A(P ♯)
)

since X is

down closed, which is equal to
∨♭ γ∗(X) that is to γd(X).

4.2.3.5. Transforming an Attribute Independent Analysis into a Relational

Analysis. If we have obtained independent analyses P ♯i(�♯i), i ∈ ∆, then the down-set com-
pletion of their reduced product provides a relational analysis.

Example 19 (Relational groundness analysis). By considering the down-set completion of the
reduced product for groundness given in example 14, one can express that X1 is ground if
and only if X2 is not ground by the element {〈g,ng〉, 〈ng,g〉}, as shown in Figure 6.
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∏

i∈{1,2} P
♯i

FIGURE 6. Lattice of relational groundness analysis.

However the lattice which is obtained can be very large. If we consider the down-set completion
of the reduced product of n rules of signs lattices shown in example 16 then the longest strictly
increasing chain in the down-set completion has length 3n + 1 hence this lattice is very large, so
the corresponding program analyses might be very expensive.

Various other forms of relational combinations can be considered. For example, the set of
monotone maps in P ♯

1 7→ P ♯
2 is considered in section 10.2 of [34], so as to obtain relational

properties the complexity of which is included between those of the reduced product and down-
set completion of the reduced product. By restricting to complete join morphisms, that is
equivalently to Galois connections between P ♯

1 and P ♯
2, one obtains, up to an isomorphism, the

tensor product considered in [129]. However tensor products cannot represent all relations that
can be specified by elements of the down-set completion of the reduced product.

4.2.3.6. Transforming a Relational Analysis into an Attribute Independent

Analysis. As shown by [86], relational analyses can be very expensive. A radical method to
reduce the analysis cost is to transform the relational analysis into an attribute independent
analysis. We now explain a systematic way to do so. In order to formalize the notion of
relational analysis, let us consider a set ∆ of program attributes, the properties of each attribute
i ∈ ∆ being described by elements of a given set P ♯i of properties. A relational property
X = {~p♯j | j ∈ J} ∈ ℘(

∏

i∈∆ P
♯i) represents the disjunction for j ∈ J of the conjunction for

i ∈ ∆ of the meanings of ~p♯j [i]: γ(X) =
∨

j∈J

∧

i∈∆ γ
i
j(
~p♯j [i]). Such a relational property can be

approximated by a vector of attribute independent properties, as follows:

Proposition 20. Let P ♯i(�♯i, f ♯i, t♯
i
,∧♯i,∨♯i) be complete lattices for i ∈ ∆. Define:

αi ∈ ℘(
∏

i∈∆

P ♯i) 7→
∏

i∈∆

P ♯i γi ∈
∏

i∈∆

P ♯i 7→ ℘(
∏

i∈∆

P ♯i)

αi(X) =
∏

i∈∆

∨♯i{~p♯[i] | ~p♯ ∈ X} γi(~p♯) = {~p♯}

Then ℘(
∏

i∈∆ P
♯i)(~-) ↼−−⇁

γi

αi

∏

i∈∆ P
♯i( ~�♯), where X ~- X ′ def

= ∀~p♯ ∈ X : ∃~p♯
′
∈ X ′ : ~p♯ ~�♯ ~p♯

′

and ~p♯ ~�♯ ~p♯
′ def

= ∀i ∈ ∆ : ~p♯[i] �♯i ~p♯
′
[i].
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proof. αi(X) ~�♯ ~p♯ ⇔
∏

i∈∆ ∨♯i{~p♯
′
[i] | ~p♯

′
∈ X} ~�♯ ~p♯ ⇔ ∀i ∈ ∆ : ∀~p♯

′
∈ X : ~p♯

′
[i] �♯i ~p♯[i] ⇔

∀~p♯
′
∈ X : ∀i ∈ ∆ : ~p♯

′
[i] �♯i ~p♯[i] ⇔ ∀~p♯

′
∈ X : ~p♯

′ ~�♯ ~p♯ ⇔ X ~- {~p♯} ⇔ X ~- γi(~p♯).

In practice the attribute independent analysis is often not precise enough whilst the relational
one is too expensive. The idea is then to consider some but not all relationships between
attributes. Doing so a priori without knowing at all the program to be analysed, i.e., using the
Galois connection approach, is then almost impossible. A better approach is to take decisions
progressively during the analysis, as the relationships holding between attributes are discovered.
This is the widening/narrowing approach discussed below. There a criterion is given to throw
away the relationships considered uninteresting with respect to what is presently known about
the program properties.

4.2.3.7. Lifting to Property Transformers. As observed in paragraph 7.1 of [34],
Galois connections can be lifted from sets of properties to sets of monotone properties trans-
formers:

Proposition 21. If P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), then

P ♭ m7−→ P ♭(�♭) ↼−−−−−−−−−−⇁
λ φ.γ◦φ◦α

λ ϕ.α◦ϕ◦γ
P ♯ m7−→ P ♯(�♯)

where the ordering on functions is pointwise that is ϕ � φ if and only if ∀x : ϕ(x) � φ(x).

proof. If α ◦ ϕ ◦ γ �♯ φ, then for all x in P ♯, we have α ◦ ϕ ◦ γ(x) �♯ φ(x) by definition of
pointwise orderings whence ϕ ◦ γ(x) �♭ γ ◦ φ(x) by (1). In particular when x = α(p♭) for any
p♭ ∈ P ♭, we have ϕ ◦ γ ◦ α(p♭) �♭ γ ◦ φ ◦ α(p♭). But p♭ �♭ γ ◦ α(p♭) by (2) so that by monotony
of ϕ for �♭ we have ϕ(p♭) �♭ ϕ ◦ γ ◦ α(p♭) proving by transitivity and definition of pointwise
orderings that ϕ �♭ γ ◦ φ ◦ α. Reciprocally, if ϕ �♭ γ ◦ φ ◦ α then ∀x ∈ P ♭ : ϕ(x) �♭ γ ◦ φ ◦ α(x)
whence α ◦ ϕ ◦ γ(p♯) �♯ φ ◦ α ◦ γ(p♯) by (1) for x = γ(p♯). Moreover φ ◦ α ◦ γ(p♯) �♯ φ(p♯) by (3)
and monotony of φ for �♯. By transitivity and definition of pointwise ordering we conclude that
α ◦ ϕ ◦ γ �♯ φ.

For example, starting from an approximation of values, the repeated application of this property
can be used to approximate functions, functionals, etc. In particular, it follows that the choice of
an approximation of program properties uniquely determines the way of approximating fixpoints
of properties transformers. This result is also the basis for extending abstract interpretation from
first-order to higher-order functional languages.

4.2.4. Approximation of a Concrete Program Fixpoint Semantics by an Abstract Semantics

We assume that the concrete semantics is defined as a least fixpoint lfpF ♭ =
⊔♭

n≥0 F
♭n(⊥♭) where

X = F ♭(X) is the equation (or system of equations) associated to the program, P ♭(⊑♭, ⊥♭,
⊔♭) is

a poset of concrete program properties and F ♭ ∈ P ♭(⊑♭) c7−→ P ♭(⊑♭) is continuous. We assume
that the least upper bound of the F ♭n(⊥♭), n ≥ 0 exists, for example because P ♭(⊑♭,⊥♭,

⊔♭) is a
strict cpo.

Example 22 (Semantics of logic programs). Let P be a logic program (containing at least one
constant), UP be its Herbrand universe and ground(P) be the set of all ground instances of
clauses in P. The poset P ♭(⊑♭,⊥♭,

⊔♭) of concrete properties is the complete lattice ℘(UP)(⊆
, ∅, UP,∩,∪). F ♭ is the immediate consequence operator TP of van Emden and Kowalski [146]
defined by:

TP ∈ ℘(UP) 7→ ℘(UP)
TP(X) = {a0 | a0->a1, . . . , an ∈ ground(P) ∧ ∀i ∈ [1, n] : ai ∈ X}

(12)

Observe that TP is a complete ∪-morphism. A postfixpoint I ∈ TP
⊆ of TP is a model of P. The

application of Tarski’s fixpoint theorem [141] yields van Emden and Kowalski characterization
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FIGURE 7. Fixpoint inducing using a Galois connection.

theorem of the semantics of the logic program P, which is the least model of P, that is
lfpTP =

⋃

n≥0 TP
n(∅) with TP

n(∅) ⊆ TP
n+1(∅) for all n > 0.

Observe that two partial orderings are involved on P ♭ (and P ♯). In general these orderings
are distinct but they may coincide. ⊑♭ is called the computational ordering . It holds between
iterates F ♭n(⊥♭) during the fixpoint computation. �♭ is called the approximation ordering . It
specifies the relative precision of concrete program properties.

Let us now examine the problem of computing and then approximating from above for �♯

the abstract semantics α(lfpF ♭) of the program.

4.2.4.1. Fixpoint Inducing Using Galois Connections. Assume that P ♭(⊑♭,
⊔♭)

and P ♯(⊑♯,
⊔♯) are posets, that F ♭ ∈ P ♭ 7→ P ♭ provides the concrete semantics lfpF ♭ of a

program and we are interested in its abstraction α(lfpF ♭) where P ♭(⊑♭) ↼−−⇁
γ

α P ♯(⊑♯). Assum-

ing that lfpF ♭ is obtained as the limit of the iteration sequence F ♭0(⊥♭) = ⊥♭, F ♭1(⊥♭) =

F ♭(⊥♭), . . . , F ♭n+1
(⊥♭) = F ♭(F ♭n(⊥♭)), . . . , F ♭ω =

⊔♭
n≥0 F

♭n(⊥♭) = lfpF ♭, it is natural
to try to obtain α(lfpF ♭) by computing the abstract image of this iteration sequence that

is: α(F ♭0(⊥♭)) = α(⊥♭), α(F ♭1(⊥♭)) = α(F ♭(⊥♭)), . . . , α(F ♭n+1
(⊥♭)) = α(F ♭(F ♭n(⊥♭))), . . . ,

α(F ♭ω) = α(
⊔♭

n≥0 F
♭n(⊥♭)) = α(lfpF ♭). Since, in general, the computation must be done

entirely in the set P ♯ of abstract program properties, we would like to obtain this iteration
sequence using an abstract infimum ⊥♯, an abstract operator F ♯ and an abstract least upper
bound ⊔♯ on P ♯ in the form F ♯0(⊥♯) = ⊥♯, F ♯1(⊥♯) = F ♯(⊥♯), . . . , F ♯n+1

(⊥♯) = F ♯(F ♯n(⊥♯)),
. . . , F ♯ω =

⊔♯
n≥0 F

♯n(⊥♯). This is possible if F ♯n(⊥♯) = α(F ♭n(⊥♭)) for all n = 0, 1, . . . , ω. The
situation is illustrated in Figure 7. When looking for hypotheses implying the desired property
F ♯n(⊥♯) = α(F ♭n(⊥♭)) for all n = 0, 1, . . . , ω, it is interesting to favor inductive reasonings on n,
as follows:

— For n = 0, α(⊥♭) = ⊥♯ which yields the definition of ⊥♯;

— For all n ≥ 0, α(F ♭n(⊥♭)) = F ♯n(⊥♯) implies α(F ♭n+1
(⊥♭)) = F ♯n+1

(⊥♯) that is by defi-
nition of the iteration sequences α(F ♭(F ♭n(⊥♭))) = F ♯(F ♯n(⊥♯)) that is using the induction hy-
pothesis α(F ♭(F ♭n(⊥♭))) = F ♯(α(F ♭n(⊥♭))) which obviously holds when ∀p♭ ∈ P ♭ : α(F ♭(p♭)) =



abstract interpretation and application to logic programs 25

F ♯(α(p♭)) or F ♯ = α ◦ F ♭ ◦ γ and ∀p♭ ∈ P ♭ : γ ◦ α(p♭) = p♭;

— Lastly for n = ω, we must have ∀n ≥ 0 : α(F ♭n(⊥♭)) = F ♯n(⊥♯) which implies

α
(

⊔♭
n≥0 F

♭n(⊥♭)
)

=
⊔♯

n≥0 F
♯n(⊥♯). But this is true since

⊔♯
n≥0 α(F ♭n(⊥♭)) =

⊔♯
n≥0 F

♯n(⊥♯)

by induction hypothesis and
⊔♯

n≥0 α(F ♭n(⊥♭)) = α
(

⊔♭
n≥0 F

♭n(⊥♭)
)

since, by proposition 6, α

is a complete join morphism, whence we conclude by transitivity.

Moreover if p♭ is a fixpoint of F ♭ then F ♭(p♭) = p♭ whence α(F ♭(p♭)) = α(p♭) and therefore
F ♯(α(p♭)) = α(p♭) since α ◦ F ♭ = F ♯ ◦ α proving that α(p♭) is a fixpoint of F ♯. In particular
α(

⊔♭
n≥0 F

♭n(⊥♭)) =
⊔♯

n≥0 F
♯n(⊥♯) is a fixpoint of F ♯.

Assume that F ♯ ∈ P ♯(⊑♯) m7−→ P ♯(⊑♯) is monotone and p♯ is a fixpoint of F ♯ such that ⊥♯ ⊑♯

p♯. Then F ♯0(⊥♯) = ⊥♯ ⊑♯ p♯. If F ♯n(⊥♯) ⊑♯ p♯ then F ♯n+1
(⊥♯) = F ♯(F ♯n(⊥♯)) ⊑♯ F ♯(p♯) = p♯

by monotony and fixpoint property. If ∀n ≥ 0 : F ♯n(⊥♯) ⊑♯ p♯ then
⊔♯

n≥0 F
♯n(⊥♯) ⊑♯ p♯ by

definition of least upper bounds proving that
⊔♯

n≥0 F
♯n(⊥♯) is the least fixpoint of F ♯ greater

than or equal to ⊥♯.

In summary, we have just proved the following proposition ([34], theorem 7.1.0.4–(3)):

Proposition 23 (Fixpoint inducing). If P ♭(⊑♭,
⊔♭) and P ♯(⊑♯,

⊔♯) are posets, P ♭(⊑♭) ↼−−⇁
γ

α P ♯(⊑♯),

F ♭ ∈ P ♭ 7→ P ♯ is such that lfpF ♭ =
⊔♭

n≥0 F
♭n(⊥♭), ⊥♯ = α(⊥♭), F ♯ ∈ P ♯ 7→ P ♯ is such that

α ◦ F ♭ = F ♯ ◦ α (which is implied by F ♯ = α ◦ F ♭ ◦ γ and ∀p♭ ∈ P ♭ : γ ◦ α(p♭) = p♭), then

α(lfpF ♭) =
⊔♯

n≥0 F
♯n(⊥♯).

⊔♯
n≥0 F

♯n(⊥♯) is a fixpoint of F ♯. When F ♯ ∈ P ♯(⊑♯) m7−→ P ♯(⊑♯)

is monotone, it is the least fixpoint of F ♯ greater than or equal to ⊥♯.

The fact that lfpF ♭ =
⊔♭

n≥0 F
♭n(⊥♭) follows for example from ω-upper-continuity on a complete

partial order. It can be relaxed into monotony by using transfinite iteration sequences, as in
[33]. Observe that no such hypothesis is necessary on the abstract domain P ♭ since it is induced
from P ♭ by the Galois connection.

4.2.4.2. Fixpoint Abstraction Using Galois Connections. In general, a fixpoint
inducing is not computable so that one must be satisfied with an abstract approximation p♯ from
above of the concrete fixpoint α(lfpF ♭) that is α(lfpF ♭) �♯ p♯ or equivalently lfpF ♭ �♭ γ(p♯).
When a Galois connection has been established between concrete and abstract properties, any
concrete fixpoint can be approximated by an abstract fixpoint using an approximation of the
function as indicated in proposition 21. We obtain theorem 7.1.0.4 of [34]:

Proposition 24 (Fixpoint abstraction). If P ♭(�♭, f ♭, t♭,∧♭,∨♭) and P ♯(�♯, f ♯, t♯, ∧♯, ∨♯) are

complete lattices, P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯) and F ♭ ∈ P ♭(�♭) m7−→ P ♭(�♭), then α(lfpF ♭) �♯

lfpα ◦ F ♭ ◦ γ.

proof. By Tarski’s fixpoint theorem [141], the least fixpoints exist. So let p♯ = lfpα ◦F ♭ ◦γ. We
have α ◦ F ♭ ◦ γ(p♯) = p♯ whence F ♭ ◦ γ(p♯) �♭ γ(p♯) by (1). It follows that γ(p♯) is a postfixpoint
of F ♭ whence lfpF ♭ �♭ γ(p♯) by Tarski’s fixpoint theorem or equivalently α(lfpF ♭) �♯ p♯ =
lfpα ◦ F ♭ ◦ γ.

A consequence of this theorem is that the choice of the concrete semantics F ♭ and of the ab-
straction P ♭(�♭) ↼−−⇁

γ

α P ♯(�♯) of program properties entirely determines the abstract semantics
lfpα ◦ F ♭ ◦ γ. It follows that the abstract semantics can be constructively derived from the
concrete semantics by a formal computation consisting in simplifying α ◦ F ♭ ◦ γ so as to ex-
press it using operators on abstract properties only (this has been illustrated on the casting
out of nine introductory example). But for a few exceptions (such as [15] where P ♭ is finite),
this simplification is not mechanizable and must be done by hand. This simplification is fa-
cilitated by the observation that α ◦ F ♭ ◦ γ can be approximated from above by F ♯ such that
∀p♯ ∈ P ♯ : α ◦ F ♭ ◦ γ(p♯) �♯ F ♯(p♯):



26 patrick cousot and radhia cousot

s

s

s

s

s

s

s

s

s

P ♭

F ♭

�

�

�

�

�

�

�

�

❄

❄

�

�

✲

�

�

✲

�

�

✲

�

�

✲

�

�

✲

�

�

✲✲

�

�

⊥♭

lfpF ♭

gfpF ♭

⊤♭

s

s

s

s

P ♯

s

�

�

✛s

�

�

✛
�

�

�

�

❄

�

�

F ♯

⊥♯

α(lfpF ♭)

gfpF ♯

= lfpF ♯

⊤♯























































✲

✲

✲

α

α

α

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

②

②

②✛

γ

γ

γ

FIGURE 8. Fixpoint approximation using a Galois connection.

Proposition 25 (Fixpoint approximation). If P ♯(�♯, f ♯, t♯,∧♯,∨♯) is a complete lattice, F ♯, F̄ ♯ ∈

P ♯(�♯) m7−→ P ♯(�♯), and F ♯ �♯ F̄ ♯, then lfpF ♯ �♯ lfp F̄ ♯.

proof. We have F ♯(lfp F̄ ♯) �♯ F̄ ♯(lfp F̄ ♯) = lfp F̄ ♯ whence lfpF ♯ �♯ lfp F̄ ♯ since lfpF ♯ =
∧♯{X |

F ♯(X) �♯ X} by Tarski’s fixpoint theorem [141].

Apart from this, theorem 24 has numerous variants depending upon the hypotheses ensuring
the existence of fixpoint (for example see theorem 7.1.0.5 of [34] which avoids the monotony
hypothesis). The general idea is that the abstract iterates approximate from above the concrete
iterates, as illustrated in Figure 8. We will use the following variant of proposition 24 which
is based upon the ideas sketched above, where the computational and approximation orderings
are distinguished:

Proposition 26 (Fixpoint abstract approximation). If P ♭(⊑♭,⊥♭,⊔♭) and P ♯(⊑♯,⊥♯,⊔♯) are cpos,

F ♭ ∈ P ♭(⊑♭,⊔♭) c7−→ P ♭(⊑♭,⊔♭), F ♭ ∈ P ♭(�♭) m7−→ P ♭(�♭), F ♯ ∈ P ♯(⊑♯,⊔♯) c7−→ P ♯(⊑♯,⊔♯),

P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), α(⊥♭) �♯ ⊥♯, ∀p♯ ∈ P ♯ : α◦F ♭ ◦γ(p♯) �♯ F ♯(p♯) and for any ⊑♭-increasing

chain p♭i, i ∈ N and any ⊑♯-increasing chain p♯i, i ∈ N such that ∀i ∈ N : α(p♭i) �♯ p♯i we

have α(
⊔♭

i∈N
p♭i) �

♯
⊔♯

i∈N
p♯i, then α(lfpF ♭) �♯ lfpF ♯.

proof. Since α(⊥♭) �♯ ⊥♯, we have α(F ♭0(⊥♭)) �♯ F ♯0(⊥♯). If n ≥ 0 and α(F ♭n(⊥♭)) �♯ F ♯n(⊥♯)
by induction hypothesis, then F ♭n(⊥♭) �♭ γ(F ♯n(⊥♯)) by (1) so that by monotony α ◦ F ♭ ◦

F ♭n(⊥♭) �♯ α ◦F ♭ ◦γ(F ♯n(⊥♯)) �♯ F ♯(F ♯n(⊥♯)) whence α(F ♭n+1
(⊥♭)) �♯ F ♯n+1

(⊥♯). We conclude
by continuity and the last hypothesis that α(lfpF ♭) = α(

⊔♭
i∈N

F ♭n(⊥♭)) �♯
⊔♯

i∈N
F ♯n(⊥♯) =

lfpF ♯.

When the computational and approximation orderings coincide, this proposition amounts to the
more simple:

Proposition 27. If P ♭(�♭, f ♭,∨♭) and P ♯(�♯, f ♯,∨♯) are cpos, F ♭ ∈ P ♭(�♭,∨♭) c7−→ P ♭(�♭,∨♭),

F ♯ ∈ P ♯(�♯,∨♯) c7−→ P ♯(�♯,∨♯), P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), α(⊥♭) �♯ ⊥♯ and ∀p♯ ∈ P ♯ : α ◦ F ♭ ◦

γ(p♯) �♯ F ♯(p♯), then α(lfpF ♭) �♯ lfpF ♯.
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proof. This is a corollary of proposition 26 since for any �♭-increasing chain p♭i, i ∈ N and any
�♯-increasing chain p♯i, i ∈ N such that ∀i ∈ N : α(p♭i) �

♯ p♯i, we have α(∨♭
i∈N p

♭
i) = ∨♯

i∈Nα(p♭i)
�♯ ∨♯

i∈N p
♯
i by proposition 6 and definition of least upper bounds.

As usual continuity hypotheses can be avoided using monotony and transfinite iteration se-
quences.

4.2.4.3. Chaotic and Asynchronous Iterations. Using a decomposition by parti-
tioning, a ‘concrete’ fixpoint equation X = F ♭(X) can be decomposed into an ‘abstract’ system
of equations:

{

Xi = F ♯
i(X1, X2, . . . , Xn)

i = 1, . . . , n
(13)

where each Xi belongs to a cpo or complete lattice P ♯
i(⊑

♯
i) and F ♯

i(X1, X2, . . . , Xn) is equal
to the i-th component F ♯(X)[i] of F ♯(X). If F ♯ is upper-continuous then the least fixpoint

lfpF ♯ =
⊔♯

k≥0 F
♯k where F ♯0 = ⊥♯ and F ♯k+1

= F ♯(F ♯k) can be computed by Jacobi’s method
of successive approximations, which can be detailed as:

{

Xk+1
i = F ♯

i(X
k
1 , X

k
2 , . . . , Xk

n)

i = 1, . . . , n
(14)

In practice the Gauss-Seidel’s iterative method:



































Xk+1
1 = F ♯

1(X
k
1 , Xk

2 , . . . , Xk
i−1, Xk

i , . . . , Xk
n−1, Xk

n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xk+1
i = F ♯

i(X
k+1
1 , Xk+1

2 , . . . , Xk+1
i−1 , Xk

i , . . . , Xk
n−1, Xk

n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Xk+1
n = F ♯

n(Xk+1
1 , Xk+1

2 , . . . , Xk+1
i−1 , Xk+1

i , . . . , Xk+1
n−1, Xk

n)

(15)

which consists in continually reinjecting in the computations the last results of the computations
themselves would reduce the memory congestion and accelerate the convergence.

In general, Gauss-Seidel’s method is not algorithmically more reliable than Jacobi’s successive
approximations method. This means that without sufficient hypotheses on F ♯, Jacobi’s method
may converge although the Gauss-Seidel one diverges. The contrary is also possible, that is
Gauss-Seidel’s method may converge although Jacobi’s iterations endless cycle. Fortunately,
this phenomenon is impossible when F ♯ is upper-continuous (or monotone using transfinite
iteration sequences). One can arbitrarily determine at each step which are the components of
the system of equations which will evolve and in what order, as long as no component is forgotten
indefinitely. Otherwise stated any chaotic iteration method converges to the least fixpoint of F ♯.
We now define the notion of chaotic iterations more formally and prove convergence.

Let J be a subset of {1, . . . , n}. We denote by F ♯
J the map defined by F ♯

J(X1, . . . , Xn) =
〈Y1, . . . , Yn〉 where, for all i = 1, . . . , n, we have:

{

Yi = F ♯
i(X1, . . . , Xn) if i ∈ J

Yi = Xi if i 6∈ J

In particular, F ♯
{1,...,n} = F ♯.

An ascending sequence of chaotic iterations for F ♯ is a sequence Xk, k ≥ 0 of vectors of
∏n

i=1 P
♯
i starting from the infimum X0 =

∏n
i=1 ⊥

♯
i and recursively defined for k > 0 by: Xk =

F ♯
Jk−1

(Xk−1) where Jk, k ≥ 0 is a weakly fair sequence of subsets of {1, . . . , n}, that is: ∀k ≥ 0 :
∀i ∈ {1, . . . , n} : ∃ℓ ≥ 0 : i ∈ Jk+ℓ (so that no component is forgotten indefinitely). For example,
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Jacobi’s successive approximations are obtained by choosing ∀k ≥ 0 : Jk = {1, . . . , n}, whereas
the choice ∀k ≥ 0 : Jk = {(k mod n) + 1} corresponds to Gauss-Seidel’s iterative method. In
[30], we proved:

Proposition 28 (Convergence of an ascending sequence of chaotic iterations). The limit
⊔♯

k≥0X
k

of any ascending sequence of chaotic iterations Xk, k ≥ 0 for an upper-continuous map

F ♯ ∈
∏n

i=1 P
♯
i 7→

∏n
i=1 P

♯
i is the least fixpoint of F ♯ greater than or equal to X0.

proof. 1◦) Let us first remark that whenever X ⊑♯ F ♯(X) ⊑♯ lfpF ♯, we have ∀J ⊆ {1, . . . , n},
X ⊑♯ F ♯

J(X) ⊑♯ F ♯(X) ⊑♯ lfpF ♯. Indeed for all i = 1, . . . , n, Xi ⊑
♯
i F

♯
i(X), therefore, if i ∈ J ,

then Xi ⊑
♯
i F

♯
i(X) = F ♯(X)[i] = F ♯

J(X)[i], else Xi ⊑
♯
i F

♯
J(X)[i] ⊑♯

i F
♯
i(X).

2◦) Let us now prove that ∀k ≥ 0 : Xk ⊑♯ Xk+1 ⊑♯ F ♯(Xk) ⊑♯ lfpF ♯. For the infimum
X0 ⊑♯ lfpF ♯ we have X0 ⊑♯ F ♯(X0) ⊑♯ F ♯(lfpF ♯) = lfpF ♯ by monotony and fixpoint property
hence X0 ⊑♯ X1 = F ♯

J0
(X0) ⊑♯ F ♯(X0) ⊑♯ lfpF ♯ by 1◦). For the induction step, let us assume

that Xk−1 ⊑♯ Xk ⊑♯ F ♯(Xk−1) ⊑♯ lfpF ♯ for some k > 0. If i ∈ Jk−1, then Xk
i = F ♯

i(X
k−1) ⊑♯

i

F ♯
i(X

k) ⊑♯
i lfpF

♯[i] since Xk−1 ⊑♯ Xk ⊑♯ lfpF ♯ and F ♯
i is monotone. Otherwise, i 6∈ Jk−1, and

Xk
i = Xk−1

i ⊑♯
i F

♯
i(X

k−1) ⊑♯
i lfpF

♯[i] by induction hypothesis so that Xk
i ⊑♯

i F
♯
i(X

k−1) ⊑♯
i

F ♯
i(X

k) ⊑♯
i lfpF ♯[i] by monotony. In both cases, we have Xk

i ⊑♯
i F

♯
i(X

k) ⊑♯
i lfpF ♯[i] for

all i = 1, . . . , n, therefore Xk ⊑♯ F ♯(Xk) ⊑♯ lfpF ♯, proving that Xk ⊑♯ Xk+1 = F ♯
Jk

(Xk) ⊑♯

F ♯(Xk) ⊑♯ lfpF ♯.

3◦) Let us now prove that ∀k ≥ 0 : ∃m ≥ k : F ♯(Xk) ⊑♯ Xm. If i ∈ {1, . . . , n} and k ≥ 0
then, by weak fairness, there exists ℓ(i) such that i ∈ Jk+ℓ(i). It follows that Xk+ℓ(i)+1[i] =
F ♯

i(X
k+ℓ(i)). By induction using 2◦), we have Xk ⊑♯ Xk+ℓ(i), so that, by monotony, F ♯(Xk)[i] =

F ♯
i(X

k) ⊑♯
i X

k+ℓ(i)+1[i] ⊑♯
i X

m[i], where m is the maximum of the ℓ(i) for i = 1, . . . , n. Whence
F ♯(Xk) ⊑♯ Xm.

4◦) Let Xω be
⊔♯

k≥0X
k. By 2◦), definition of least upper bounds, and upper-continuity,

Xω ⊑♯
⊔♯

k≥0 F
♯(Xk) = F ♯(Xω). By 3◦), ∀k ≥ 0 : F ♯(Xk) ⊑♯

⊔♯
m≥0X

m, whence F ♯(Xω) =
⊔♯

k≥0 F
♯(Xk) ⊑♯ Xω. By antisymmetry, Xω is a fixpoint of F ♯. By 2◦), Xω ⊑♯ lfpF ♯, whence

equality holds by unicity of the least fixpoint.

Proposition 28 justifies the use of abstract interpreters in which the chaotic iteration strategy
is chosen so as to mimic actual program executions. Examples of practical implementation of
a particular strategy of chaotic iteration are given by [133], [103], [64], [131], [69], [158]. An
example of an abstract interpreter written in a version of Prolog is given in [152].

This result has been generalized to asynchronous iterations [25] corresponding to a parallel
implementation where X is a shared array and each process i reads the value xj of element X[j]
in any order for j = 1, . . . , n, then computes x′

i = F ♯
i(x1, . . . , xn) and finally asynchronously

writes this value x′
i in shared memory X[i]. The relative speed of the processes is irrelevant

provided execution is weakly fair. Another generalization in [32] concerns systems of functional
fixpoint equations fi( ~Xi) = Fi[f1, . . . , fn]( ~Xi), i = 1, . . . , n. When each fi( ~Xi) needs to be
known only for a subset φi of the domain Pi of ~Xi, it is necessary and sufficient to compute the
value of fi( ~Xi) for ~Xi belonging to a subset the domain of X called the φ-F -closure and such
that φi ⊆ φ-F -closurei ⊆ Pi. This technique, which was later popularized by Jones and Mycroft
[84] under the name minimal function graphs, may be used as a basis for the tabulation method
of [9], [89], [59], [154].

4.2.4.4. Convergence and Termination. Convergence to the least fixpoint lfpF ♯ is
obtained in proposition 28 by taking the join

⊔♯
k≥0X

k of infinitely many terms in the chaotic
iteration sequence. In practice this can be avoided when using finite lattices, posets satisfying the
ascending chain condition, and more generally in any case when the chaotic iteration sequence
is increasing but not strictly (because of properties of P ♯ and/or F ♯) so that the fixpoint must
be reached after finitely many steps. For example, we have:
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Proposition 29 (Termination of an ascending sequence of chaotic iterations). If the length of
strictly increasing chains in

∏n
i=1 P

♯
i is bounded by ℓ and the number of steps which are

necessary for any component to evolve in chaotic iterations Xk, k ≥ 0 for F ♯ is bounded by
m, then lfpF ♯ = Xℓm.

proof. Observe that by cases 1◦) and 3◦) in the proof of proposition 28, we have Xk ⊑♯ F ♯(Xk) ⊑♯

Xk+m for all k ≥ 0. Therefore if there exists k ≥ 0, hence a least one, such that Xk = Xk+m

then Xk is a fixpoint of F ♯, whence the least one and X im, 0 ≤ i ≤ k is a strictly increasing
chain so that k ≤ ℓ. When a fixpoint is reached, the chaotic iterations are stabilized so that
lfpF ♯ = Xℓm. The remaining case ∀k ≥ 0 : Xk ⊏♯ Xk+m is impossible since it is in contradiction
with the ascending chain condition.

Other theoretical upper bounds on fixed point iterations have been given by [130], but these
worst case analyses do not take into account the fact that F ♯ is not indifferent. In particular,
proofs that these bounds are tight may lead to consider peculiar F ♯ not corresponding to any
program at all! Pending average-case analyses, practical experiences such as [64], [103], [149],
[142], [154] are very useful. Moreover, in practice, it is always possible to use extrapolation
techniques such as widenings and narrowings considered below to speed-up convergence at the
price of overshooting the least fixpoint.

4.2.4.5. On the Use of Galois Connections. Galois connections correspond to an
ideal situation where the set P ♯ of abstract properties has been defined so that any concrete
property has a best abstract upper approximation. Numerous practical abstract interpretations,
such as [44] or the k-depth success pattern analysis of Sato and Tamaki [137], [109], which do
not satisfy this condition can be easily handled by relaxing some of the hypotheses involved in
the Galois connection approach [42].

4.3. Approximation of Fixpoint Semantics by Convergence Acceleration Using Widenings
and Narrowings

In [28], we introduced the idea of using widening and narrowing operators to accelerate con-
vergence for fixpoint approximation from above (the dual case considered in [25] is also useful
for some applications such as type inference [121] where a sound approximation is from below).
This idea offered the possibility of considering infinite lattices not satisfying the ascending chain
condition or of speeding up convergence in case of combinatorial explosion [79]. The larger the
abstract domain P ♯ is, the more precise the analyses tend to be because less information is lost.
For termination, widening and narrowing operators ensure that only a finite P ♯[[p]] subspace of
P ♯ will be considered during analysis of any program p. A Galois connection upon that subspace
P ♯[[p]] would not do when P ♯[[p]] is different for each program p and the union of these subspaces
P ♯[[p]] for all programs p is infinite.

4.3.1. Downward Abstract Iteration Sequence with Narrowing

A first idea to effectively approximate lfpF ♯ from above is to use a downward iteration X̌k, k ≥ 0,
all elements of which are upper approximations of the least fixpoint lfpF ♯ and which is stationary
after finitely many steps. In order to ensure that all X̌k, k ≥ 0 are upper approximations of the
least fixpoint lfpF ♯, one can look for an inductive argument using the basis lfpF ♯ �♯ X̌0 and
the inductive step lfpF ♯ �♯ X̌k ⇒ lfpF ♯ �♯ X̌k+1 �♯ X̌k. The basis is easily handled with by
starting from the supremum X̌0 = t♯. Finding general purpose sufficient conditions ensuring the
validity of the inductive step lfpF ♯ �♯ X̌k implies lfpF ♯ �♯ X̌k+1 together with X̌k+1 �♯ X̌k

is a bit more difficult since the only available information is X̌k and F ♯(X̌k) and the least
fixpoint lfpF ♯ and more generally the fixpoints of F ♯ are unknown. Hence we define X̌k+1 to be
X̌k △ F ♯(X̌k) that is the composition of the available information using a so called narrowing
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operator △. To ensure X̌k △F ♯(X̌k) = X̌k+1 �♯ X̌k with the additional constraint that it must
be valid for all program, that is all F ♯, we can require more specifically that ∀x, y ∈ P ♯ : x△ y
�♯ x. Ensuring lfpF ♯ �♯ X̌k △ F ♯(X̌k) for all F ♯, hence without knowing its fixpoints, is a bit
more difficult. In practice however, F ♯ is often monotone for �♯. In this case if p♯ is a fixpoint
of F ♯ then p♯ �♯ x implies p♯ �♯ F ♯(x) by monotony and fixpoint property. Therefore if p♯ �♯ x
and p♯ �♯ y imply p♯ �♯ x△ y then obviously lfpF ♯ �♯ X̌k implies lfpF ♯ �♯ X̌k+1. Since the
fixpoints p♯ of F ♯ are unknown, we require the narrowing operator to satisfy ∀x, y, z ∈ P ♯ :
z �♯ x ∧ z �♯ y ⇒ z �♯ x △ y. Finally the downward iteration sequence X̌0, . . . , X̌k+1 =
X̌k △ F ♯(X̌k), . . . must be finite. Again since this must be true for all possible F ♯, we require
the non-existence of strictly decreasing chains of the form x0, . . . , xk+1 = xk △ yk where yk,
k ≥ 0 is a decreasing chain (due to monotony of F ♯).

The above discussion is a motivation for the definition of a narrowing operator , such that:

△ ∈ P ♯ × P ♯ 7→ P ♯ (16a)

∀p♯1, p
♯
2 ∈ P ♯ : p♯1 △ p♯2 �

♯ p♯1 (16b)

∀p♯1, p
♯
2, p

♯
3 ∈ P ♯ : p♯1 �

♯ p♯2 ∧ p
♯
1 �

♯ p♯3 ⇒ p♯1 �
♯ p♯2 △ p♯3 (16c)

for all decreasing chains p♯
k
, k ≥ 0 and p♯

′
∈ P ♯ the chain

X̌0 = p♯
′
, . . . , X̌k+1 = X̌k△p♯

k
, . . . is not strictly decreasing

for �♯

(16d)

with the following convergence property showing how to improve upper-approximations of fix-
points:

Proposition 30 (Downward abstract iteration sequence with narrowing). If F ♯ ∈ P ♯(�♯) m7−→
P ♯(�♯), △ ∈ P ♯ × P ♯ 7→ P ♯ is a narrowing operator and F ♯(p♯) = p♯ �♯ p♯

′
, then the

decreasing chain X̌0 = p♯
′
, . . . , X̌k+1 = X̌k △ F ♯(X̌k) is stationary with limit X̌ℓ, ℓ ∈ N

such that p♯ �♯ X̌ℓ �♯ p♯
′
.

proof. We prove p♯ �♯ X̌k for all k ∈ N. This holds for k = 0 by hypothesis. If p♯ �♯ X̌k

by induction hypothesis, then p♯ = F ♯(p♯) �♯ F ♯(X̌k) by monotony whence p♯ �♯ X̌k+1 =
X̌k △F ♯(X̌k) �♯ X̌k by (16b) and (16c). Since the chain X̌k, k ≥ 0 is decreasing for �♯ then so
is F ♯(X̌k), k ≥ 0 by monotony. Therefore X̌k, k ≥ 0, which is not strictly decreasing by (16d),
has a limit X̌ℓ such that p♯ �♯ X̌ℓ �♯ X̌0 = p♯

′
.

Observe that in a complete lattice satisfying the descending chain condition (that is all strictly
decreasing chains for �♯ are finite) the narrowing operator x△ y can be defined as the greatest
lower bound of x and y for �♯. Hypotheses (16) have numerous variants. For example if the
starting point p♯

′
is a postfixpoint of F ♯ we can assume that p♯2 �

♯ p♯1 in (16b). Moreover, the
narrowing operator can be chosen to depend upon the iteration step. In particular since any
term of the chain X̌k, k ≥ 0 is sound we can stop iterations after an arbitrary number n of steps
so as to cut analysis costs down. In this case the narrowing x△i y would be y if i ≤ n else x.
Finally, more sophisticated convergence enforcement strategies could be designed by using not
a single but all previous iterates.

4.3.2. Upward Abstract Iteration Sequence with Widening

In general no approximation of the least fixpoint better than the supremum t♯ is known to
start with. Since the downward abstract iteration sequence with narrowing cannot undershoot
fixpoints no approximation of the least fixpoint better than the greatest fixpoint can be computed
by the method of proposition 30. Therefore, in order to get a better initial upper-approximation
of the least fixpoint, one can start from below, for example from the infimum f ♯, using an
increasing chain so as to overshoot this unknown least fixpoint. As shown by the practical
experience, the benefit of this method is that very often the limit will be below the greatest
fixpoint and in all cases below the supremum t♯. Three problems have to be solved. When using
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an increasing chain X̂k, k ∈ N starting from below the least fixpoint lfpF ♯, we must first have
a computable criterion to check whether a point X̂ℓ above the least fixpoint has been reached.
Depending on the problem to be solved, several criteria are available such as X̂ℓ is a fixpoint of
F ♯ or, by Tarski’s fixpoint theorem, X̂ℓ is a postfixpoint of F ♯. Second, we must ensure that
the sequence X̂k, k ∈ N eventually reaches a point above the least fixpoint. A simple way to
do so is to iterate above the chain F ♯0 = ⊥♯, . . . , F ♯k+1

= F ♯(F ♯k), . . . , converging to the least

fixpoint lfpF ♯ = ⊔♯
k≥0F

♯k. To do so we can use a widening operator ▽ ∈ P ♯ × P ♯ 7→ P ♯ in
order to extrapolate to X̂k+1 = X̂k ▽ F ♯(X̂k) from two consecutive terms X̂k and F ♯(X̂k) so
that X̂k �♯ X̂k+1 and F ♯(X̂k) �♯ X̂k+1. Third, we must ensure that the iteration sequence X̂k,
k ∈ N stabilizes after finitely many steps. This leads to the definition of a widening operator,
such that:

▽ ∈ P ♯ × P ♯ 7→ P ♯ (17a)

∀p♯1, p
♯
2, p

♯′

1, p
♯′

2 ∈ P ♯ : (p♯1 ⊑
♯ p♯2) ∧ (p♯1 �

♯ p♯
′

1) ∧ (p♯2 �
♯ p♯

′

2) (17b)

⇒ (p♯
′

1 �
♯ p♯

′

1
▽ p♯

′

2) ∧ (p♯2 �
♯ p♯

′

1
▽ p♯

′

2)

for all increasing chains p♯
k
, k ≥ 0, the chain X̂0 = p♯

0
, . . . ,

X̂k+1 = X̂k ▽ p♯
k
, . . . is not strictly increasing for �♯

(17c)

with the following convergence property showing how to compute upper-approximations of the
least fixpoint starting from below:

Proposition 31 (Upward abstract iteration sequence with widening). If F ♯ ∈ P ♯(⊑♯) c7−→ P ♯(⊑♯),

F ♯ ∈ P ♯(�♯) m7−→ P ♯(�♯), ▽ is a widening operator and ∀k ∈ N : p♯
k
�♯ p♯

′
⇒ ⊔♯

k∈N p
♯k �♯

p♯
′
, then the increasing chain X̂0 = ⊥♯, X̂k+1 = X̂k ▽ F ♯(X̂k) for k ∈ N is stationary with

limit X̂ℓ such that lfpF ♯ �♯ X̂ℓ.

proof. Since �♯ is reflexive, we have F ♯0 = ⊥♯ �♯ ⊥♯ = X̂0. Assume F ♯k �♯ X̂k then F ♯k+1
=

F ♯(F ♯k) �♯ F ♯(X̂k) by monotony whence X̂k �♯ X̂k+1 and F ♯k+1
�♯ X̂k+1 by (17b) and X̂k+1 =

X̂k▽F ♯(X̂k). It follows that the chain X̂k, k ≥ 0 hence by monotony F ♯(X̂k), k ≥ 0 is increasing

but not strictly by (17c). For the limit X̂ℓ where ℓ ∈ N, we have F ♯k �♯ X̂k �♯ X̂ℓ for all k ≤ ℓ.
Moreover, if m ≥ ℓ and F ♯m �♯ X̂m = X̂ℓ, then X̂m+1 = X̂m ▽ F ♯(X̂m) = X̂ℓ ▽ F ♯(X̂ℓ) = X̂ℓ.

It follows that ∀k ∈ N : F ♯k �♯ X̂ℓ, whence lfpF ♯ = ⊔♯
k∈NF

♯k �♯ X̂ℓ.

Once again one can imagine a number of weaker hypotheses on the widening operator, such as
expressing correctness criteria (17) with respect to concrete properties, using widenings based
upon all previous iterates and depending upon the rank of the iterates (so as for example to
be able to speed up convergence by loosing more information as iteration time passes), using
chaotic iterations with one widening operator only along each cycle in the dependence graph of
the system of equations, etc. Proposition 31 only shows the way. Moreover, it is not always
necessary to wait for the iterates to stabilize since for example, by Tarski’s theorem [141], if the
computational ordering ⊑♯ coincides with the approximation �♯ ordering then F ♯(X̂ℓ) �♯ X̂ℓ

implies lfpF ♯ �♯ X̂ℓ.

Observe that [11], [10] and [83] use an infinite domain and a nonmonotone widening operator
that enlarges, in a nonunique way, the denoted set of terms. This so-called restriction operation
on normal types/abstract substitutions consists in removing from a type graph the paths of
forward arcs where the number of occurrences of the same functor is greater than some given
fixed constant. To do so, a cyclic graph is created describing infinitely many trees by paths
of all possible lengths. It is also observed that to get more precise analyses, application of the
restriction algorithm could be delayed until a diverging computation is observed for recursive
calls. Finally, since the widening is not necessarily monotone, proposition 28 on chaotic iterations
no longer applies so that the precision on the result may depend upon the chaotic iteration
strategy which is chosen (but not its soundness).
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FIGURE 9. Fixpoint approximation using a Galois connection, a widening and a narrowing.

4.3.3. Upward and Downward Abstract Iteration Sequences

In practice, one first uses an upward abstract iteration sequence with widening to obtain an
upper-approximation of the least fixpoint starting from below and then a downward abstract
iteration sequence with narrowing so as to improve this upper bound while remaining above any
fixpoint. This is illustrated in Figure 9.

Example 32 (Interval analysis). In order to analyse the possible values of integer variables,
[28] and [29] introduced the abstraction α ∈ P ♭(⊆) 7→ P ♯(�♯) where P ♭ = ℘(Z), P ♯ = {[ℓ, u] |
ℓ ∈ Z ∪ {−∞} ∧ u ∈ Z ∪ {+∞} ∧ ℓ ≤ u} ∪ {∅}, minZ = −∞, maxZ = +∞ such that
α(∅) = ∅ and α(X) = [minX,maxX]. The computational ordering ⊑♯ and approximation
ordering �♯ are identical and defined by ∅ �♯ I for all I ∈ P ♯ and [a, b] �♯ [c, d] if and
only if c ≤ a ∧ b ≤ d. Since P ♯ has infinite strictly increasing chains, it is necessary to
introduce a widening operator such that for all intervals I ∈ P ♯, ∅ ▽ I = I ▽ ∅ = I and
[a, b] ▽ [c, d] = [if c < a then −∞ else a, if d > b then + ∞ else b]. The strictly decreasing
chains of the abstract lattice P ♯ are all finite but can be very long so that it is useful to
define a narrowing such that for all intervals I ∈ P ♯, ∅ △ I = I △ ∅ = ∅ and [a, b] △ [c, d] =
[if a = −∞ then c else a, if b = +∞ then d else b].

The analysis of the output of the following PROLOG II program:

program -> init(x,1) while(x);

init(x,x) -> ;

while(x) -> val(inf(x,100),1) out(x) line val(add(x,2),y)

while(y);

consists in solving the equation:

X =
(

[1, 1] ⊔ (X ⊕ [2, 2])
)

⊓ [−∞, 99]

where ∅⊕ I = I ⊕∅ = ∅ and [a, b]⊕ [c, d] = [a +̇ c, b +̇ d] with −∞ +̇x = x +̇−∞ = −∞ and
+∞ +̇x = x +̇ +∞ = +∞. The ascending abstract iteration sequence with widening is the
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following:

X̂0 = ∅

X̂1 = X̂0 ▽
(

(

[1, 1] ⊔ (X̂0 ⊕ [2, 2])
)

⊓ [−∞, 99]
)

= ∅ ▽ [1, 1] = [1, 1]

X̂2 = X̂1 ▽
(

(

[1, 1] ⊔ (X̂1 ⊕ [2, 2]
))

⊓ [−∞, 99]
)

= [1, 1] ▽ [1, 3] = [1,+∞]

X̂3 = X̂2 ▽
(

(

[1, 1] ⊔ (X̂2 ⊕ [2, 2]
))

⊓ [−∞, 99]
)

= [1, 1] ▽ [1, 99] = [1,+∞]

The descending abstract iteration sequence with narrowing is now:

X̌0 = X̂3 = [1,+∞]

X̌1 = X̌0 △
(

(

[1, 1] ⊔ (X̌0 ⊕ [2, 2])
)

⊓ [−∞, 99]
)

= [1,+∞] △ [1, 99] = [1, 99]

X̌2 = X̌1 △
(

(

[1, 1] ⊔ (X̌1 ⊕ [2, 2])
)

⊓ [−∞, 99]
)

= [1, 99] △ [1, 99] = [1, 99]

Observe that the analysis time does not depend upon the number of iterations in the while-
loop which would be the case without using widening and narrowing operators.

4.3.4. A Compromise Between Relational and Attribute Independent Analyses Using Widenings

Since relational analyses are powerful but expansive whereas attribute independent analyses are
cheaper but less precise, the use of widening operators may offer an interesting compromise.
For example, if P ♯i is the lattice {⊥, g, ng, ⊤} for groundness analysis of term ti then the

down-set completion P ♯ of the reduced product
∏n

i=1 P
♯i can express dependencies between

groundness properties of arguments of atoms p(t1, . . . , tn). By proposition 18, elements of P ♯

can be represented by subsets of
∏n

i=1{g, ng} in which case strictly increasing chains in P ♯ have
a maximal size of O(2n). Expressing dependencies between the different arguments of all atoms
in the program would be even more expansive [53]. This cost can be cut down using a widening

operator. A brute force one would be X▽Y
def
= if Cardinality(Y ) ≤ ℓ(n) then X∪Y else

∏n
i=1{g,

ng} where ℓ(n) is a parameter which can be adjusted to tune the cost/performance ratio.

5. OPERATIONAL AND COLLECTING SEMANTICS

Abstract interpretations of programs must be proved correct with respect to a standard semantics
of these programs. Following [26], the standard semantics that we will choose is operational.
A popular alternative is to choose a denotational semantics. But this choice would be less
fundamental since denotational semantics can be derived from the operational semantics by
abstract interpretation [43].

It is possible to group program properties into classes, such as invariance and liveness prop-
erties, for which all correctness proofs of abstract interpretations of one class will essentially be
the same, but for the particular abstract properties which are chosen in the class. By giving a
correctness proof of the abstract interpretation for the strongest property in the class, we can
factor all these proofs out into two independent steps. First, a fixpoint collecting semantics is
given which characterizes the strongest property in the class of interest. It is proved correct
with respect to the standard semantics. Second, abstract interpretations in the given class are
proved correct with respect to the corresponding collecting semantics.

There are many other interests in this separation process. The collecting semantics is sound
but usually also complete with respect to the considered class of program properties. Hence it
can serve as a basis for developing program correctness proof methods [27]. Knowledge about
the considered class of properties can be usefully incorporated once for all into the collecting
semantics. For example [128] and [68] observed that invariance properties can always be proved
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using sets of states attached to program points and this was incorporated into the static seman-
tics of [29]. Another example, recalled in paragraph 4.2.3.6., is given in [34] (example 6.2.0.2)
where it is shown how relational invariants can be decomposed into attribute independent ones
(where relationships between variables are lost). Taken together these two examples show that
an abstract interpretation can be decomposed into what concerns control and what concerns
data, the two aspects being treated separately. Using combination methods as proposed in [34]
and recalled in section 4.2.3., this leads to a modular design of abstract interpreters. In doing
so, useful abstract interpretations can be easily transferred from one language to another.

Another important step was taken in [26] where it was understood that collecting semantics
can be studied in abstracto, independently of a particular language. For example, the static
semantics of [29] was expressed using transition systems (due to [93]) hence in a language
independent manner. The difficulty of generalizing program points for expression languages was
solved by understanding them as the more general technique of covering the concrete domain
by partitions, partial equivalence relations or other covers.

Choosing once for all a particular collecting semantics and claiming that it is the only
sensible alternative would lead to rigid approximation decisions which could later turn out to
be impractical (for example by approximating functions by functions whereas tuples (as in type
checking) or relations (between argument values and results) can do better) and to rule out
analysing program properties which are forgotten by the collecting semantics, or very difficult
to express in the chosen framework (such as execution order). Therefore, we proceed by working
out meta-collecting semantics, where ‘meta’ means language independent and easily instantiable
for particular programming languages, and by relating them by abstract interpretations, so as
to understand this family of collecting semantics as a set of possible intermediate steps in the
approximation of program executions.

To illustrate this approach for logic programming languages, we will chose here to start
from an operational point of view formalized by transition systems. We will consider invariance
properties which are characterized as fixpoints of predicate transformers. This will be first done
in a language independent way. Later, these results will be instantiated for logic programs.

Abstract interpretation is mostly used to derive an abstract semantics from a concrete se-
mantics. But the contrary is also possible. For example in [104] the standard domains of goals
is the abstract domain, while the concrete domain is a new one containing timing information.

5.1. Operational Semantics as Transition Systems

The small-steps operational semantics of a programming language L associates a transition
system 〈S, I,F, 7−P→〉 to each program P of the language. S is a set of states, I ⊆ S is the set
of initial states, F ⊆ S is the set of final states while 7−P→ ∈ ℘(S×S) is a transition relation
between a state and its possible successors. The idea is that program execution starts with some
initial state s0 ∈ I. After i execution steps leading to state si ∈ S a further execution step can
lead to any successor state si+1 ∈ S as given by the transition relation so that si 7−P→ si+1.
This execution can either run for ever or else terminate either with a final state sn ∈ F or with
a blocking state without successor for the transition relation. A familiar example which will be
developed later is SLD-resolution for logic programs. An initial state consists of an initial goal
and the empty substitution. A final state has an empty goal and an answer substitution. A state
is simply a current goal and a substitution. A transition consists in unifying a selected atom in
the goal with the head of a program clause and in replacing it by a unified instance of the body
of the clause in the new goal together with a new substitution obtained by composition of the
old one with the most general unifier.
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FIGURE 10. Descendant states (•) of the initial states (I).

5.2. Top/Down — Forward Collecting Semantics

The top/down (also called forward) collecting semantics characterizes the descendant states of
the initial states as illustrated in Figure 10 For logic programs, the set of descendant states of
the initial states provides information about all calls for a given initial question regardless of
whether they succeed, finitely fail or do not terminate.

Given a relation t ∈ ℘(S × S), its transitive closure is t⋆ =
⋃

n∈N
tn where t0 = 1 = {〈s, s′〉 |

s = s′}, tn+1 = t ◦ tn = tn ◦ t and t ◦ t′ = {〈s, s′′〉 | ∃s′ : 〈s, s′〉 ∈ t∧ 〈s′, s′′〉 ∈ t′}. The fundamental
fixpoint characterization of transitive closures is that t⋆ = lfpT where T ∈ ℘(S × S)(∪) a7−→
℘(S × S)(∪) is defined by T (X) = 1 ∪X ◦ t.

The top/down collecting semantics for program P is the set D of descendant states of the
initial states, that is D = {s | ∃s′ ∈ I : s′ 7−P→⋆ s} which can be written post[ 7−P→⋆]I by
defining:

post ∈ ℘(S×S) 7→
(

℘(S) 7→ ℘(S)
)

post[t]X
def
= {s | ∃s′ ∈ X : 〈s′, s〉 ∈ t} (18)

Using the fixpoint inducing proposition 23, we can use the above fixpoint characterization of tran-
sitive closures to provide a fixpoint definition of this top/down collecting semantics:

Proposition 33 (Fixpoint characterization of the top/down collecting semantics). D = lfpF [[P]]
where F [[P]] ∈ ℘(S)(∪) a7−→ ℘(S)(∪) is defined by F [[P]]X = I ∪ post[ 7−P→]X.

proof. Observe that ℘(S×S)(⊆, ∅,S×S,∪,∩) and ℘(S)(⊆, ∅,S,∪,∩) are complete lattices.
Define α ∈ ℘(S × S) 7→ ℘(S) by α(X) = post[X]I. It is a complete ∪-morphism so that by
proposition 7 there exists γ such that ℘(S × S)(⊆) ↼−−⇁

γ

α ℘(S)(⊆). We have 7−P⋆→= lfpT =
⋃

n∈N
T n(∅) where T (X) = 1 ∪ X◦ 7−P→, ∅ = α(∅) and F [[P]] ∈ ℘(S)(∪) a7−→ ℘(S)(∪) is such

that for all X ∈ ℘(S × S), we have α ◦ T (X) = post[T (X)]I = {s | ∃s′ ∈ I : 〈s′, s〉 ∈ T (X)}
= {s | ∃s′ ∈ I : 〈s′, s〉 ∈ 1 ∪ X◦ 7−P→} = {s | ∃s′ ∈ I : (〈s′, s〉 ∈ 1) ∨ (〈s′, s〉 ∈ X◦ 7−P→)}
= {s | ∃s′ ∈ I : (s′ = s) ∨ (〈s′, s〉 ∈ X◦ 7−P→)} = I ∪ {s | ∃s′ ∈ I : 〈s′, s〉 ∈ X◦ 7−P→}
= I ∪ {s | ∃s′ ∈ I : ∃s′′ ∈ S : 〈s′, s′′〉 ∈ X ∧ s′′ 7−P→ s} = I ∪ {s | ∃s′′ ∈ {s′′ | ∃s′ ∈ I :
〈s′, s′′〉 ∈ X} : s′′ 7−P→ s} = I ∪ {s | ∃s′′ ∈ post[X]I : s′′ 7−P→ s} = I ∪ post[ 7−P→](post[X]I)
= F [[P]](post[X]I) = F [[P]] ◦ α(X). By proposition 23, we have α(lfpT ) = lfpF [[P]] so that D =
post[ 7−P→⋆]I = α( 7−P→⋆) = α(lfpT ) = lfpF [[P]].
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FIGURE 11. Ascendant states (•) of the final states (F).

5.3. Bottom/Up — Backward Collecting Semantics

The bottom/up (also called backward) collecting semantics characterizes the ascendant states
of the final states as illustrated in Figure 11. For logic programs, the set of ascendant states of
the final states provides information about atoms that can succeed.

The bottom/up collecting semantics for program P is the set A of ascendant states of the
final states, that is A = {s | ∃s′ ∈ F : s 7−P→ s′} which can be written pre[ 7−P→⋆]F by defining:

pre ∈ ℘(S×S) 7→
(

℘(S) 7→ ℘(S)
)

pre[t]X
def
= {s | ∃s′ ∈ X : 〈s, s′〉 ∈ t} (19)

Observe that the ascendant states A of the final states F of the transition system 〈S, I, F,
7−P→〉 is precisely the set of descendant states of the initial states of the inverse transition system
〈S, F, I, 7−P→−1〉 where the inverse t−1 of a relation t ∈ ℘(S × S) is {〈s′, s〉 | 〈s, s′〉 ∈ t}. For
that reason it is traditional not to explicitly study the backward abstract interpretations since,
from a theoretical point of view, they are essentially the same as the forward ones (provided
adequate, that is invertible, collecting semantics are considered, an handicap for denotational
semantics). For example, we have:

Proposition 34 (Fixpoint characterization of the bottom/up collecting semantics). A = lfpB[[P]]
where B[[P]] ∈ ℘(S)(∪) a7−→ ℘(S)(∪) is defined by B[[P]]X = pre[ 7−P→]X ∪ F.

proof. Using the fact that (t⋆)−1 = (t−1)⋆ and pre[t]X = post[t−1]X, we have A = pre[ 7−P→⋆]F
= post[( 7−P→⋆)−1]F = post[( 7−P→−1)⋆]F = lfpλ X.F ∪ post[( 7−P→)−1]X by proposition 33,
which is equal to lfpλ X.pre[ 7−P→]X ∪ F = lfpB[[P]].

5.4. Combining the Top/Down — Forward and Bottom/Up — Backward Collecting Se-
mantics

In practice, we are interested by programs that succeed, so that the program interpreter should
not enter dead-ends, that is states for which execution can only fail or not terminate properly.
Therefore, we are interested in characterizing the descendant states of the initial states which
are also ascendant states of the final states, as shown in Figure 12. The set of descendant states
of the initial states which are the ascendant states of the final states of a transition system
〈S, I,F, 7−P→〉 corresponding to a program P is characterized by D ∩ A = lfpF [[P]] ∩ lfpB[[P]].
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FIGURE 12. Descendant states (•) of the initial states (I) which are ascendant states of the
final states (F).

In order to justify the technique later used to approximate this meet of fixpoints, we will use
the following properties ([25]):

Proposition 35 (Fixpoint properties of collecting semantics). For all transition systems 〈S, I,
F, 7−P→〉 and I ⊆ S, we have:

1◦) (pre[ 7−P→]X) ∩ lfpF [[P]] ⊆ pre[ 7−P→](X ∩ lfpF [[P]])

2◦) (post[ 7−P→]X) ∩ lfpB[[P]] ⊆ post[ 7−P→](X ∩ lfpB[[P]])

lfpF [[P]] ∩ lfpB[[P]]

3◦) = lfpλ X.(lfpF [[P]] ∩B[[P]]X)

4◦) = lfpλ X.(lfpB[[P]] ∩ F [[P]]X)

5◦) = lfpλ X.(lfpF [[P]] ∩ lfpB[[P]] ∩B[[P]]X)

6◦) = lfpλ X.(lfpF [[P]] ∩ lfpB[[P]] ∩ F [[P]]X)

proof. — To prove 1◦), observe that (19) and proposition 33 imply that (pre[ 7−P→]X) ∩
lfpF [[P]] = {s | ∃s′ ∈ X : s 7−P→ s′} ∩ {s | ∃s′′ ∈ I : s′′ 7−P→⋆ s} ⊆ {s | ∃s′ ∈ X : ∃s′′ ∈ I :
s′′ 7−P→⋆ s′ ∧ s 7−P→ s′} since s′′ 7−P→⋆ s and s 7−P→ s′ imply s′′ 7−P→⋆ s′. This is precisely
pre[ 7−P→](X ∩ post[ 7−P→⋆]I) = pre[ 7−P→](X ∩ lfpF [[P]]). The proof of 2◦) is similar to that of
1◦).

— To prove 3◦), let Xn, n ∈ N and Y n, n ∈ N be the iteration sequences starting from the
infimum ∅ for B[[P]] and clambdaX(lfpF [[P]] ∩ B[[P]]X) respectively. We have lfpF [[P]] ∩ X0 =
∅ = Y 0. Assume that lfpF [[P]] ∩ Xn ⊆ Y n by induction hypothesis. Then lfpF [[P]] ∩ Xn+1 =

lfpF [[P]]∩B[[P]](Xn) = lfpF [[P]]∩(pre[ 7−P→]Xn∪F) = lfpF [[P]]∩
(

(

pre[ 7−P→]Xn∩ lfpF [[P]]
)

∪F
)

,

which, by 1◦), is included in lfpF [[P]] ∩
(

pre[ 7−P→]
(

Xn ∩ lfpF [[P]]
)

∪ F
)

which, by induction

hypothesis and monotony, is included in lfpF [[P]] ∩
(

pre[ 7−P→](Y n) ∪ F
)

= lfpF [[P]] ∩ B[[P]]Y n

= Y n+1. It follows that lfpF [[P]] ∩ lfpB[[P]] = (∪n∈NX
n) ∩ lfpF [[P]] = ∪n∈N (Xn ∩ lfpF [[P]]) ⊆

∪n∈NY
n = lfpλ X.(lfpF [[P]] ∩B[[P]]X). But lfp is monotone so that lfpλ X.(lfpF [[P]] ∩B[[P]]X)

⊆ lfpλ X.(lfpF [[P]])∩ lfpλ X.(B[[P]]X) = lfpF [[P]]∩ lfpB[[P]]. Equality follows by antisymmetry.
The proofs of 4◦) to 6◦) are similar.
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6. COMBINING TOP/DOWN-FORWARD AND BOTTOM/UP-BACKWARD
ABSTRACT INTERPRETATION

In order to approximate lfpF ♭ ∧♭ lfpB♭ from above using abstract interpretations F ♯ of F ♭ and
B♯ of B♭, we can use the abstract upper approximation lfpF ♯ ∧♯ lfpB♯. However, a better
approximation suggested in [25] can be obtained as the limit of the decreasing chain Ẋ0 = lfpF ♯

and Ẋ2n+1 = lfpλ X.Ẋ2n ∧♯ F ♯(X), Ẋ2n+2 = lfpλ X.Ẋ2n+1 ∧♯ B♯(X) for all n ∈ N. Observe
that by proposition 35 there is no improvement when considering the exact collecting semantics.
However, when considering approximations of the collecting semantics, not all information can
be collected in one pass. So the idea is to propagate the initial conditions top/down so as
to get conditions on applicability of the unit clauses. These conditions are then propagated
bottom/up to get stronger necessary conditions to be satisfied by the initial goal for possible
success. This restricts the possible subgoals as indicated by the next top/down pass. Going
on this way, the available information on the descendant states of the initial states which are
ascendant states of the final states can be improved on each successive pass, until convergence.
A similar scheme was used independently by [91] to infer types in flowchart programs. If the
abstract lattice does not satisfy the descending chain condition then [25] also suggests to use
a narrowing operator △ to enforce convergence of the downward iteration Ẋk, k ∈ N. The
same way a widening/narrowing approach can be used to enforce convergence of the iterates
for λ X.Ẋ2n ∧♯ F ♯(X) and λ X.Ẋ2n+1 ∧♯ B♯(X). The correctness of this approach follows from:

Proposition 36 (Fixpoint meet approximation). If P ♭(�♭, f ♭, t♭, ∧♭, ∨♭) and P ♯(�♯, f ♯, t♯, ∧♯,

∨♯) are complete lattices, P ♭(�♭) ↼−−⇁
γ

α P ♯(�♯), F ♭ ∈ P ♭(�♭) m7−→ P ♭(�♭) and B♭ ∈ P ♭(�♭

) m7−→ P ♭(�♭) satisfy hypotheses 5 ◦) and 6 ◦) of proposition 35, F ♯ ∈ P ♯(�♯) m7−→ P ♯(�♯),

B♯ ∈ P ♯(�♯) m7−→ P ♯(�♯), α ◦ F ♭ ◦ γ �♯ F ♯, α ◦ B♭ ◦ γ �♯ B♯, Ẋ1 is lfpF ♯ or lfpB♯ and

for all n ∈ N, Ẋ2n+1 = lfpλ X.(Ẋ2n ∧♯ B♯(X)) and Ẋ2n+2 = lfpλ X.(Ẋ2n+1 ∧♯ F ♯(X)) then

∀k ∈ N : α(lfpF ♭ ∧♭ lfpB♭) �♯ Ẋk+1 �♯ Ẋk.

proof. Observe that by the fixpoint property, Ẋ2n+1 = Ẋ2n∧♯B♯(Ẋ2n+1) and Ẋ2n+2 = Ẋ2n+1∧♯

F ♯(Ẋ2n+2), hence Ẋ2n �♯ Ẋ2n+1 �♯ Ẋ2n+2 since ∧♯ is the greatest lower bound for �♯ so that
Ẋk, k ∈ N is a decreasing chain.

We have α(lfpF ♭ ∧♭ lfpB♭) �♯ α(lfpF ♭) since α is monotone and α(lfpF ♭) �♯ lfpF ♯ by
propositions 24 and 25, thus proving the proposition for k = 0. Let us observe that α◦F ♭◦γ �♯ F ♯

implies F ♭ ◦γ �♭ γ ◦F ♯ by (1) so that in particular for an argument of the form α(X), F ♭ ◦γ ◦α �♭

γ ◦F ♯ ◦α. By (8), γ ◦α is extensive so that by monotony and transitivity F ♭ �♭ γ ◦F ♯ ◦α. Assume
now by induction hypothesis that α(lfpF ♭ ∧♭ lfpB♭) �♯ Ẋ2n, whence lfpF ♭ ∧♭ lfpB♭ �♯ γ(Ẋ2n)
by (1). Since F ♭ �♭ γ ◦ F ♯ ◦ α, it follows that λ X. lfpF ♭ ∧♭ lfpB♭ ∧♭ F ♭(X) �♯ λ X.γ(Ẋ2n) ∧♭

γ ◦ F ♯ ◦ α(X) = λ X.γ(Ẋ2n ∧♭ F ♯ ◦ α(X)) since γ is a complete meet morphism (6). Now by
hypothesis 5◦) of proposition 35, we have lfpF ♭ ∧♭ lfpB♭ = lfpλ X.(lfpF ♭ ∧♭ lfpB♭ ∧♭ F ♭(X)) �♯

lfpλ X.γ(Ẋ2n ∧♭ F ♯ ◦ α(X)) by proposition 25. Let G be λ X.Ẋ2n ∧♭ F ♯(X). By (3), α ◦ γ is
reductive so that by monotony G◦α◦γ �♯ G and α◦γ ◦G◦α◦γ �♯ G◦α◦γ, whence, by transitivity,
α ◦ γ ◦G ◦ α ◦ γ �♯ G. By proposition 24, we have α(lfp γ ◦G ◦ α) �♯ lfpα ◦ γ ◦G ◦ α ◦ γ �♯ lfpG
by proposition 25. Hence, lfpλ X.γ(Ẋ2n ∧♭ F ♯ ◦ α(X)) �♭ γ(lfpλ X.Ẋ2n ∧♭ F ♯(X)) so that by
transitivity we conclude that α(lfpF ♭ ∧♭ lfpB♭) �♯ Ẋ2n+1. The proof that α(lfpF ♭ ∧♭ lfpB♭) �♯

Ẋ2n+2 is similar using hypothesis 6◦) of proposition 35.
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7. OPERATIONAL AND COLLECTING SEMANTICS OF LOGIC PROGRAMS

7.1. Operational Semantics of Logic Programs

7.1.1. Syntax and Semantic Domains of Logic Programs

Let v be an infinite denumerable set of variable symbols X, Y, Z, . . . , f be a family of sets fi of
data constructors c, f, g, . . . of arity i ≥ 0 and p be a family of sets pi of predicate symbols p,
q, . . . of arity i ≥ 0. The set t of terms t, . . . is defined by t ::= X | c | f(t1, . . . , tn) where X

∈ v, c is a constant in f0 which is assumed to be non-empty and f ∈ fn is a functor . The set a

of atoms a, b, . . . is defined by a ::= p(t1, . . . , tn) where p ∈ pn and each ti belongs to t. A
simple expression is either a term or an atom. The set c of clauses c, . . . is defined by c ::= a0
-> | a0 -> a1 . . . an where each ai belongs to a. a0 is the head of clause c whereas a1 . . . an is
its body . A unit clause of the form a0 -> has an empty body. The set L of programs P, . . . is
defined by P ::= c1; . . . ; cn; where each ci belongs to c. We define P[ℓ] to be the ℓ-th clause
cℓ of P. The set g of resolvents g, . . . is defined by g ::= � | b1 . . . bn� where each goal bi is a
triplet 〈a, ℓ, i〉 where a is an atom belonging to a, ℓ ∈ N is the rank of a clause cℓ in P and i is
the rank of a variant of atom a in cℓ. A state s ∈ S is a quadruplet 〈g, θ, V,Θ〉 which consists of
a resolvent g, a current substitution θ, a set of (already utilized) variables V ⊆ v and an answer
substitution Θ.

A substitution [101] is a function θ ∈ s from a finite set V ⊆ v of variables to the set t of
terms such that θ(X) 6= X for every variable X in the domain V of θ. The domain or support
V of the substitution θ is written dom θ. {X1/t1, . . . , Xn/tn} is the substitution θ with domain
dom θ = {X1, . . . , Xn} such that θ(Xi) = ti for i = 1, . . . , n. A renaming ρ ∈ r is a bijective
substitution from dom ρ onto dom ρ whence a permutation of some finite set of variables. The
identity renaming ǫ has an empty support. Substitutions are extended as follows:

θ(c) = c θ(X) = X if X 6∈ dom θ

θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)) θ(p(t1, . . . , tn)) = p(θ(t1), . . . , θ(tn))

θ(a0->) = θ(a0)-> θ(a0->a1 . . . an) = θ(a0)->θ(a1) . . . θ(an)

θ(c1; . . . ;cn;) = θ(c1); . . . ;θ(cn); θ(�) = �

θ(b1 . . . bn�) = θ(b1) . . . θ(bn)� θ(〈a, ℓ, i〉) = 〈θ(a), ℓ, i〉

θ(〈g,Θ, V,Θ′〉 = 〈θ(g), θ ◦ Θ, V ∪ vars θ,Θ′〉

(20)

where the identity-free composition σ ◦ Θ of substitutions σ and Θ is θ such that dom θ =
(domσ ∪ domΘ)−{X ∈ v | σ(Θ(X)) = X} and for all X ∈ dom θ we have θ(X) = σ(Θ(X)) and the
free variables of an expression are inductively defined by:

vars c = ∅ vars X = {X}

vars f(t1, . . . , tn) = ∪n
i=1 vars ti vars p(t1, . . . , tn) = ∪n

i=1 vars ti

vars a0-> = vars a0 vars a0->a1 . . . an = ∪n
i=0 vars ai

vars c1; . . . ;cn; = ∪n
i=1 vars ci vars� = ∅

vars b1 . . . bn� = ∪n
i=1 vars bi vars θ = dom θ ∪ ∪X∈dom θ vars θ(X)

vars〈a, ℓ, i〉 = vars a vars〈g, θ, V,Θ〉 = vars g ∪ vars θ ∪ V

(21)

Two simple expressions which are equal up to variable renaming are called variants of each
other.

7.1.2. Transition Relation of Logic Programs: SLD-Resolution

Two simple expressions e1 and e2 are unifiable if and only if there exists a unifier of e1 and e2 that
is a substitution θ such that θ(e1) = θ(e2). If two simple expressions e1 and e2 are not unifiable
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then mgu(e1, e2)
def
= ∅. If two simple expressions e1 and e2 are unifiable then mgu(e1, e2)

def
= {θ}

where θ is a unifier which is idempotent (dom θ ∩
⋃

X∈dom θ vars θ(X) = ∅ so that θ ◦ θ = θ),
relevant (vars θ ⊆ vars e1∪vars e2) and most general (for any unifier ς of e1 and e2, there exists a
substitution σ such that ς = σ ◦ θ). Most general unifiers are unique up to variable renaming in
the sense that if σ and θ are most general unifiers of two simple expressions then there exists a
renaming ρ such that σ = ρ◦θ. Conversely, if θ is a most general unifier of two simple expressions
and ρ is a renaming then ρ ◦ θ is also a a most general unifier of those expressions. For example
mgu(p(f(X),Z), p(Y,a)) = {Y/f(X), Z/a}, whereas mgu(p(X,X), p(Y,f(Y))) = ∅.

The set I of initial states contains states of the form 〈〈a, 0, 0〉�, ǫ, vars a,Θ〉 where a ∈ a is
an atom, ǫ is the identity renaming and Θ is the answer substitution. The fact that the answer
substitution Θ is part of the initial state can be considered either as a miracle or as näıveté in
that a simple-minded Prolog interpreter might enumerate all possible answers and check them
for success in turn. The set F of final states contains states of the form 〈�,Θ, V,Θ〉 where
Θ ∈ s and V ⊆ v. The miracle was that the answer substitution we started with is precisely the
desired answer or more näıvely the initial hypothesis is now checked. An SLD-derivation step
for a clause P[ℓ] is defined by the following inference rule (where n ≥ 0 and k ≥ 1):

P[ℓ] = a0->a1 . . . an ∧ bi = 〈a, ℓ′, i′〉 ∧ mgu(a, ρa0) = {θ} ∧ vars ρP[ℓ] ∩ V = ∅

〈b1 . . . bi . . . bk�,Θ, V,Θ
′〉 7−ρP[ℓ]→

θ〈b1 . . . bi−1 〈ρa1, ℓ, 1〉 . . . 〈ρan, ℓ, n〉 bi+1 . . . bk�,Θ, V ∪ vars ρ,Θ′〉

(22)

Observe that the set V is used to guarantee that SLD-refutations are variable-separated [101],
that is the variables occurring in the variant ρP[ℓ] of the clause P[ℓ] of program P are new relative
to the variables in all the goals, clauses and unifiers used in the previous SLD-derivation steps.
This operational semantics keeps track of the origin of the atoms in the list of goals using a clause
number and a position in this clause. Some program analyses require even more details about
execution such as keeping track of the caller 〈ρa1, ℓ

′, i′, ℓ, i〉 or even of the whole computation
history (using execution traces or proof trees for example). Prolog depth-first strategy consists
in choosing i = 1 and in adding the constraint that ℓ is minimal whereas choice points have to
be added if multiple answer are desired.

For example, the append program:

app([],X,X) -> ;

app(T:X,Y,T:Z) -> app(X,Y,Z) ;

has the following SLD-refutation for initial goal app(X,Y,1:[]) (naturally the miraculous an-
swer substitutions are omitted):

〈〈app(X,Y,1:[]), 0, 0〉�, ǫ, {X, Y}〉
7−app([],X0,X0) ->→
〈�, {X/[], Y/1:[], X0/1:[]}, {X, Y, X0}〉

as well as:

〈〈app(X,Y,1:[]), 0, 0〉�, ǫ, {X, Y}〉
7−app(T1:X1,Y1,T1:Z1) -> app(X1,Y1,Z1)→
〈〈app(X1,Y1,Z1), 2, 1〉�, {X/1:X1, Y/Y1, T1/1, Z1/[]}, {X, Y, X1, Y1, T1, Z1}〉
7−app([],X2,X2) ->→
〈�, {X/1:[], Y/[], X1/[], Y1/[], T1/1, Z1/[], X2/[]}, {X, Y, X1, Y1, T1, Z1, X2}〉

The transition relation 7−P→ for program P ∈ L is defined by:

s 7−P→ s′
def
= (∃ℓ ∈ N : ∃ρ ∈ r : s 7−ρP[ℓ]→ s′) (23)

Other operational semantics of logic programs than SLD-resolution can serve as a standard
semantics for abstract interpretation, such as modeling Prolog search strategy in a constraint
logic program [2], OLDT-resolution [90], [66] or bottom/up execution using magic templates
[87], [132].
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7.2. Top/Down Collecting Semantics of Logic Programs

The top/down collecting semantics of a logic program P is the set D of states 〈g, θ, V,Θ〉 which
can be reached during an SLD-resolution of some initial goal 〈a�, ǫ, vars a,Θ′〉 ∈ I for query a.
By proposition 33, we have D = lfpF [[P]] with:

F [[P]]X = I ∪ post[ 7−P→]X

= I ∪
{

θ〈b1 . . . bi−1 〈ρa1, ℓ, 1〉 . . . 〈ρan, ℓ, n〉 bi+1 . . . bk�,Θ, V ∪ vars ρ,Θ′〉
∣

∣

〈b1 . . . bi . . . bk�,Θ, V,Θ
′〉 ∈ X ∧ bi = 〈a, ℓ′, i′〉 ∧ P[ℓ] = a0->a1 . . . an

∧ mgu(a, ρa0) = {θ} ∧ vars ρP[ℓ] ∩ V = ∅
}

(24)

where n = 0 for clauses with empty body and k ≥ 1.

7.3. Bottom/Up Collecting Semantics of Logic Programs

The bottom/up collecting semantics of a logic program P is the set A of states 〈g, θ, V,Θ〉 for
which there exists a successful SLD-resolution (terminating with some success 〈�,Θ, V,Θ〉 ∈ F).
By proposition 34, we have A = lfpB[[P]] where B[[P]] is defined as follows (with n = 0 for clauses
with empty body and k ≥ 0):

B[[P]]X = pre[ 7−P→]X ∪ F

= F ∪
{

〈b1 . . . bi−1 〈a, ℓ
′, i′〉 bi+1 . . . bk�,Θ, V,Θ

′〉
∣

∣

∃ℓ ∈ N : P[ℓ] = a0->a1 . . . an ∧ mgu(a, ρa0) = {θ} ∧ vars ρP[ℓ] ∩ V = ∅

∧ θ〈b1 . . . bi−1 〈ρa1, ℓ, 1〉 . . . 〈ρan, ℓ, n〉 bi+1 . . . bk�,Θ, V ∪ vars ρ,Θ′〉 ∈ X
}

= F ∪
{

〈b1 . . . bi−1 〈θρa0, ℓ
′, i′〉 bi+1 . . . bk�,Θ, V,Θ

′〉
∣

∣

∃ℓ ∈ N : P[ℓ] = a0->a1 . . . an ∧ vars ρP[ℓ] ∩ V = ∅

∧ θ〈b1 . . . bi−1 〈ρa1, ℓ, 1〉 . . . 〈ρan, ℓ, n〉 bi+1 . . . bk�,Θ, V ∪ vars ρ,Θ′〉 ∈ X
}

(25)

since, by induction on the syntax of terms, the atom a such that mgu(a, ρa0) = {θ} (where
vars a ∩ vars ρa0 = ∅) is θρa0.

The least Herbrand model lfpTP of logic programs using immediate consequence operator
TP of program P [146] can be obtained from B[[P]] by an abstract interpretation which consists
in abstracting a set of states by the set of ground atoms obtained by approximating each state
〈g�,Θ, V,Θ′〉 by the atoms occurring in g. TP can be used as a more abstract bottom/up col-
lecting semantics for some program analysis problems but certainly not for groundness analysis
since only ground atoms are considered in the standard Herbrand base BP.

However, the minimal Herbrand model with variables introduced by [3], [65] and [94] would
do for groundness analysis since ground as well as nonground atoms are considered, up to renam-
ing, in this extended Herbrand base. Observe that this minimal extended Herbrand model is an
abstract interpretation α(lfpB[[P]]) of the above bottom/up semantics (25) for the abstraction
α defined by α(S) = {Θbi | 〈b1 . . . bi . . . bn�, θ, V,Θ〉 ∈ S} (up to the use of equivalence classes
to identify variants of atoms as indicated in proposition 10).

8. ABSTRACT INTERPRETATION OF LOGIC PROGRAMS USING FINITE
ABSTRACT DOMAINS (WITH THE EXAMPLE OF GROUNDNESS ANAL-
YSIS)

In order to illustrate the abstract interpretation of logic programs using finite abstract domains,
we will consider groundness analysis, a simple version of Mellish’s mode analysis [115] [116]. We
will first consider a top-down groundness analysis method, which is essentially that proposed by
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[105], with the difference that it will be constructively derived from the operational semantics
of logic programs. Then, we will consider a bottom/up version of this groundness analysis
method. The analysis algorithms are not new but their systematic derivation from the collecting
semantics has not been so well understood. Most publications contain no correctness proof at
all or soundness is proved a posteriori. We understand the method for deriving an abstract
interpreter from the collecting semantics as an example of formal derivation of a program from
its specification. This process or part of it should be automatizable. The novelty here will be
combination of the top/down and bottom/up analysis methods to get a new powerful analysis
algorithm which yields results that could be obtained by one of these methods using much more
sophisticated abstract domains only. The methodology can be easily extended to any other type
of invariance property of logic programs. Hence, our interest in groundness analysis is only that
it provides a simple enough example.

8.1. Groundness

A simple expression e is ground if and only if it contains no variables, that is vars e = ∅. Ground-
ness analysis of a logic program P consists in determining which variables of which atoms of
which clauses of the program are always bound to ground terms during program execution. More
precisely if P[ℓ] = a0 -> a1 . . . ai . . . an and X ∈ vars ai then any state 〈b1 . . . 〈ρai, ℓ, i〉 . . . bk�,
Θ, V , Θ′〉 is such that varsΘ(ρai) = ∅. For example in the app program, the variable Z and
its variants are always bound to a ground term for an initial question app(X,Y,t) where t is a
ground term.

8.2. Groundness Abstraction

A concrete property is a set of states so that P ♭ = ℘(S). The abstraction α(S) of a set S
of states consists in keeping track of the groundness of the atoms occurring in states, ignoring
current and answer substitutions and sets of already bounded variables as well as the order in
which goals are derived, the occurrence of that atom at a given position of a given clause of
the program and even the structure of that atom. To formalize this choice, we let g represent
any ground term and ng any non-ground term. A set of terms can then be represented by an
element of G = {⊥,g,ng,⊤} where ⊥ corresponds to the empty set and ⊤ to the set t of all
terms. A set of atoms of the form p(t1, . . . , tn) (where the predicate symbol p is fixed) can be
approximated by the down-set completion of the reduced product

∏n
i=1G (propositions 15 and

13). Since G is atomistic, we can, according to proposition 18, use the equivalent representation
as a set of vectors p(t♯1, . . . , t♯n) where each t♯i is an abstract term g or ng. Then, considering
that the set of predicate symbols used in a logic program is finite, we can decompose a set of
atoms by partitioning into a vector

∏

p∈p S[p] of sets S[p] of atoms, one for each predicate symbol
p ∈ p, as suggested by proposition 12. This is of practical interest only and we will use ∪p∈pS[p]
instead which is equivalent since the sets S[p] are disjointed. For example, the abstraction of
{p(a,b), p(X,f(a,b)), q(X)} would be {p(g,g), p(ng,g), q(ng)}. A set of resolvents b1 . . .
bn� can be approximated by the set of goals bi occurring in one of these resolvents thus ignoring
the relationships between goals appearing in resolvents, in particular the order in which goals
are explored. Finally, we can approximate a set of states 〈g,Θ, V,Θ′〉 by ignoring the current
and answer substitutions Θ, Θ′ and sets of utilized variables V and then by abstraction of the
set of resolvents g. Then (11) ensures that by composition of the above abstractions we obtain a
Galois connection. To formulate this abstraction more precisely, we define the abstract domain
as follows:

t♯ = {g,ng} (26)

a♯ = {p(t♯1, . . . , t♯n) | p ∈ p ∧ ∀i = 1, . . . , n : t♯i ∈ t♯} (27)

P ♯ = ℘(a♯) (28)
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which is a complete lattice P ♯(⊆, ∅, a♯,∪,∩). The abstraction function α ∈ P ♭ 7→ P ♯ is defined
as follows:

α(S) = {αS(s) | s ∈ S} (29)

αS(〈g, θ, V,Θ〉) = αg(g) (30)

αg(�) = ∅ (31)

αg(b1 . . . bn�) = {αb(bi) | i = 1, . . . , n} (32)

αb(〈a, ℓ, i〉) = αa(a) (33)

αa(p(t1, . . . , tn)) = p(αt(t1), . . . , αt(tn)) (34)

αt(X) = ng (35)

αt(c) = g (36)

αt(f(t1, . . . , tn)) =

{

g if ∀i = 1, . . . , n : αt(ti) = g

ng if ∃i = 1, . . . , n : αt(ti) = ng
(37)

Observe that no miracle is needed since the unknown answer substitution is simply ignored. The
corresponding concretization function γ ∈ P ♯ 7→ P ♭ is defined by:

γ(∅) = {〈�,Θ, V,Θ′〉 | Θ,Θ′ ∈ s ∧ V ⊆ v} (38)

γ(A) = {〈〈a1, ℓ1, i1〉 . . . 〈bn, ℓn, in〉�,Θ, V,Θ
′〉 | ∀k = 1, . . . , n : ∃a♯ ∈ A :(39)

ak ∈ γa(a♯) ∧ ℓk ∈ N ∧ ℓi ∈ N ∧ Θ,Θ′ ∈ s ∧ V ⊆ v}

γa(p(t♯1, . . . , t♯n)) = {p(t1, . . . , tn) | ∀i = 1, . . . , n : ti ∈ γt(t
♯
i)} (40)

γt(g) = {t ∈ t | vars t = ∅} (41)

γt(ng) = {t ∈ t | vars t 6= ∅} (42)

so that we obtain the Galois surjection:

P ♭(⊆)↼−−→
γ

α P ♯(⊆) (43)

8.3. Top/Down Abstract Interpretation of Logic Programs

Given a logic program P, we are interested in the ways in which predicates may be called during
the satisfaction of those queries, that is in the set D = {s | ∃s′ ∈ I : s′ 7−P→⋆ s} of the
descendant states of the initial states I. We characterize these states in terms of groundness
which means that we would like to know α(D) that is α(lfpF [[P]]) by proposition 33. Observe
that the computational ordering ⊑♭ for lfpF [[P]] = ∪n∈NF [[P]]

n
(∅) is ⊆ and that this fixpoint

is not effectively computable. In practice, approximations from above can be considered since
claims that a term is ground or not ground are sound whenever it cannot be otherwise during
program execution whereas it is always safe to claim that the groundness is unknown. Therefore
the approximation ordering is also ⊆. Consequently, the fixpoint approximation proposition 24
shows that α(lfpF [[P]]) ⊆ lfpα ◦ F [[P]] ◦ γ. This is a specification of an abstract interpreter which
reads a program P then builds an internal representation of the equation X = α ◦ F [[P]] ◦ γ(X)
and then solves it iteratively starting from the infimum ∅. To refine this specification formally,
we replace α, F [[P]] and γ by their definitions (24), (29) and (39). Then, we make simplifications
(by hand) until obtaining an equivalent formulation in terms of abstract operators on P ♯ only.
During this simplification process further approximations are allowed when necessary since by
proposition 25 we can choose F ♯[[P]] ∈ P ♯(⊆) m7−→ P ♯(⊆) such that ∀X ∈ P ♯ : α ◦ F [[P]] ◦ γ(X) ⊆
F ♯[[P]]X.

This formal development leads to the definition of abstract substitutions as functions θ♯ ∈ s♯

from a finite set V ⊆ v of variables to the abstract set t♯ of terms. Abstract substitutions are
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extended to atoms as follows:

θ♯(c) = g (44)

θ♯(X) = ng if X 6∈ dom θ♯ (45)

θ♯(f(t1, . . . , tn)) =

{

g ∀i = 1, . . . , n : θ♯(ti) = g

ng ∃i = 1, . . . , n : θ♯(ti) = ng
(46)

θ♯(p(t1, . . . , tn)) = p(θ♯(t1), . . . , θ♯(tn)) (47)

Then we get:

F ♯[[P]]X = {αa(a) | 〈a�, ǫ, V,Θ〉 ∈ I} ∪X

∪
{

θ♯(ai)
∣

∣ ∃ℓ ∈ N : P[ℓ] = a0 -> a1 . . . an ∧ i ∈ {1, . . . , n} ∧ θ♯ ∈ vars a0 7→ t♯

∧ θ♯(a0) ∈ X
}

(48)

Since the abstract domain P ♯ is finite the termination of the iterative computation of the least
fixpoint of F ♯[[P]] is guaranteed. The analysis can be of exponential size in the number of
arguments in a predicate, which in practice is small ([144] suggests an average of 3). If practical
experience shows that convergence should be accelerated then a widening can be useful, and
chosen as suggested in section 4.3.4.. In particular, the decision to resort to widening can be
dynamic, that is taken during the analysis, whenever it turns out to be too long to conclude
(otherwise stated the widening is a simple join for the first n steps, where n can be tuned
experimentally). Let us consider the following example (adapted from [136]):

p(f(X,Y),f(X,Z)) -> q(X,Y) r(Y,Z) ;

q(X,Y) -> s(X) t(X,Y) ;

s(a) -> ;

r(X,Y) -> u(X) t(X,Y) ;

u(X) -> ;

t(X,X) -> ;

For ground initial questions p(t1, t2) such that {αa(a) | 〈a�, ǫ, V,Θ〉 ∈ I} = {p(g,g)}, we
obtain the following ascending iteration:

X́0 = ∅

X́1 = F ♯[[P]]X́0 = {p(g,g)} ∪ X́0 ∪ ∅

X́2 = F ♯[[P]]X́1 = X́1 ∪ {q(g,g), r(g,g)}

X́3 = F ♯[[P]]X́2 = X́2 ∪ {s(g), t(g,g), u(g)}

X́4 = F ♯[[P]]X́3 = X́3

proving that all subgoals encountered during execution of an initial ground question are ground.
If no information is known upon the groundness of initial goals so that {αa(a) | 〈a�, ǫ, V,Θ〉 ∈ I}
= {p(g,g), p(g,ng), p(ng,g), p(ng,ng)} we obtain no information on the groundness of
predicates of the program.

In the definition (48) of F ♯[[P]], we can avoid the enumeration of all abstract substitutions
θ♯ ∈ vars a0 7→ t♯ by a preliminary computation of groundness tables for each clause of the
program such as the one shown in Figure 13 for the clause p(f(X,Y),f(X,Z)) -> q(X,Y)

r(Y,Z). Such a groundness table directly provides the set of abstract atoms θ♯(ai) that can be
derived from the abstract clause heads θ♯(a0) belonging to X.

8.4. Bottom/Up Abstract Interpretation of Logic Programs

The method for obtaining the abstract bottom/up semantics for groundness analysis is essentially
the same as for the top/down semantics. The abstraction is the same as in section 8.2. but for
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FIGURE 13. Groundness table of clause p(f(X,Y),f(X,Z)) -> q(X,Y) r(Y,Z).

the fact that we are now interested by subgoals instantiated by the answer substitution so that
30 is redefined as:

αS(〈g, θ, V,Θ〉) = αg(Θg) (49)

Observe that there is no miracle here since the answer substitution Θ is known when going
bottom/up whereas the unknown current θ and set of utilized variables V are ignored by the
abstraction. Now the specification α ◦B[[P]] ◦ γ can be refined into the upper approximation:

B♯[[P]]X = X ∪
{

θ♯(a0)
∣

∣ ∃ℓ ∈ N : P[ℓ] = a0 -> a1 . . . an ∧ θ♯ ∈ ∪n
i=1 vars ai 7→ t♯

∧ ∀i = 1, . . . , n : θ♯(ai) ∈ X
}

(50)

The least fixpoint of B♯[[P]] provides groundness conditions on the subgoals which may be suc-
cessfully satisfied as shown by the bottom/up analysis of the above example program:

X̀0 = ∅

X̀1 = B♯[[P]]X̀0 = X̀0 ∪ {s(g), u(g), u(ng), t(g,g), t(ng,ng)}

X̀2 = B♯[[P]]X̀1 = X̀1 ∪ {q(g,g), r(g,g), r(ng,ng)}

X̀3 = B♯[[P]]X̀2 = X̀2 ∪ {p(g,g)}

X̀4 = B♯[[P]]X̀3 = X̀3

Observe that groundness information originates from unit clauses (or final clauses of recursive
predicates) and propagates to the variables in the invoking goals. If a goal p(t1,t2) succeeds
then the answer substitution will necessarily bind terms variables occurring in terms t1 and t2
to ground terms.

8.5. Combining Top/down and Bottom/Up Abstract Interpretation of Logic Programs

The top/down abstract interpretation lfpF ♯[[P]] characterizes the descendant states of the initial
states of logic program P. For the groundness analysis, an abstract value such as {p(g)} means
that during any execution of the program P, a goal p(t) has t ground. This can be used by
the compiler to choose simplified versions of the unification algorithm. Hence groundness is a
consequence of the form of the possible queries. The bottom/up abstract interpretation lfpB♯[[P]]
characterizes the ascendant states of the final states of logic program P. A compiler might use
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this information to anticipate dead-ends. For the groundness analysis, an abstract value such as
{p(g)} means that during any execution of the program P, a goal p(t) can only have ground
instantiations or else will either fail or loop. [111] compare bottom/up and top/down analyses
and particularly stress the difference in other application areas.

The combination lfpF ♯[[P]] ∩ lfpB♯[[P]] of both analyses characterizes a superset of the set
of states which are the descendant states of the initial states and the ascendant states of the
final states, that is subgoals derived from the initial queries and which may succeed. For the
groundness analysis example, the meaning of abstract value {p(g)} is now that a subgoal p(t)
has t ground or else will return a ground answer unless it fails or loops. Using the technique of
proposition 36 for our example program, we obtain:

Ẋ0 = lfpB♯[[P]] = {p(g,g), q(g,g), s(g), r(g,g), r(ng,ng), u(g),
u(ng), t(g,g), t(ng,ng)}

Ẋ1 = lfpλX.Ẋ0 ∩ F ♯[[P]]X = {p(g,g), q(g,g), r(g,g), s(g), u(g), t(g,g)}

Ẋ2 = lfpλX.Ẋ1 ∩B♯[[P]]X = Ẋ1

The analysis shows that all predicates in the program are or will be bound to ground terms.
Observe that much more complicated abstract domains would have to be used to obtain the
same information using purely top/down or purely bottom/up abstract interpretations [3], [72]
[136].

9. ABSTRACT INTERPRETATION OF LOGIC PROGRAMS USING INFI-
NITE ABSTRACT DOMAINS (WITH THE EXAMPLE OF ARGUMENT
SIZES ANALYSIS)

With the exception of [9] most abstract interpretations of logic programs that can be found
in the literature, use finite domains or domains satisfying the ascending chain condition or at
least such that all possible iteration sequences are finite. However, nothing prevents considering
infinite domains with potentially infinite iteration sequences provided widening operators are
used to accelerate the convergence above least fixpoints. The example that we will consider is
taken from [147] and consists in determining relationships between argument sizes of predicates.
The size of an elementary expression is determined syntactically as follows:

σ(c) = 1 (51)

σ(X) = 1 (52)

σ(f(t1, . . . , tn)) = σ(p(t1, . . . , tn)) = 1 +
n
∑

i=1

σ(ti) (53)

The idea, already explored in [44] for imperative programs, is to approximate a set of points
in Z

n by its convex hull. It follows that a set X of atoms can be decomposed by partitioning
according to the predicate symbols p ∈ p whereas each set of atoms for a given predicate symbol
p is approximated by the convex hull of the sizes of its arguments:

αA(X) = λ p.ConvexHull({〈σ(t1), . . . , σ(tn)〉 | p(t1, . . . , tn) ∈ X}) (54)

Again sets of states can be approximated by the set of atoms occurring in these states:

α(S) = αA

(

∪{αS(s) | s ∈ S}
)

(55)

αS(〈g, θ, V,Θ〉) = αg(g) (56)

αg(�) = ∅ (57)

αg(b1 . . . bn�) = {αb(bi) | i = 1, . . . , n} (58)

αb(〈a, ℓ, i〉) = a (59)

Consider for example the append program:



abstract interpretation and application to logic programs 47

app([],X,X) -> ;

app(T:X,Y,T:Z) -> app(X,Y,Z) ;

The set

{app([T1: . . . Tn:[],X,T1: . . . Tn:X) | n ≥ 0 ∧ ∀i = 1, . . . , n : Ti ∈ t}

of atoms can be approximated by:

{app(x,y,z) | x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ (x− 1) + y = z}

For the following program, testing for inequality of natural numbers n ≥ 0 represented as
successors sn(0) of zero:

p(X,X) -> ;

p(X,s(Y)) -> p(X,Y) ;

the approximation of the set of atoms

{p(X,sn(X)) | n ≥ 0}

would be:

{p(x,y) | x ≥ 0 ∧ y ≥ 0 ∧ x ≤ y}

[147] observes that this is the least fixpoint of an operator associated with the program:

B♯[[P]]X =
{

〈x, y〉
∣

∣ x ≥ 0 ∧ y ≥ 0 ∧ ((x = y) ∨ (〈x, y − 1〉 ∈ X))
}

(60)

which we recognize as being an upper approximation of α ◦ B[[P]] ◦ γ. This approximation is
sound since supersets of atoms leads to upper bounds for the sizes of the arguments. The least
fixpoint of this operator is not computable iteratively since the successive iterates are:

X̀0 = ∅
. . .

X̀ i+1 = B♯[[P]]X̀ i = {〈x, y〉 | 0 ≤ x ≤ y ≤ x+ i}
. . .

Hence [147] “describes a method to verify a conjectured fixpoint” (since B[[P]]X = X implies
lfpB[[P]] ⊆ X) and then “offers an heuristic that often works for guessing a fixpoint.” The
conclusion is that “we need more ways to generate candidates for the fixpoint.”

Our suggestion is to use abstract interpretation techniques. First, requiring fixpoints is too
strong since postfixpoints are also correct (by Tarski’s fixpoint theorem [141], B[[P]]X ⊆ X
implies lfpB[[P]] ⊆ X) and much easier to find, as shown for example by the long experience
of program proving methods [27]. Then, using a widening/narrowing approach, we can enforce
convergence to a postfixpoint. The widening that we will use is taken from [44]. If polyhedron
P1 is represented by a set S1 = {β1, . . .βn} of linear inequalities and P2 is represented by S2 =
{γ1, . . . γm}, then P1

▽P2 is S′
1∪S

′
2 where S′

1 is the set of inequalities βi ∈ S1 satisfied by all points
of P2, whereas S′

2 is the set of linear inequalities γi ∈ S2 which can replace some βj ∈ S1 without
changing polyhedron P1. The intuitive idea is to throw away old constraints which are not stable
while keeping the new ones that would be redundant had the old ones not been discarded. For
example if P1 = {〈x, y〉 | x ≥ 0 ∧ x ≤ y ∧ y ≤ x} and P2 = {〈x, y〉 | 0 ≤ x ≤ y ≤ x + 1} then
P1

▽ P2 = {〈x, y〉 | 0 ≤ x ≤ y} since the inequalities 0 ≤ x and x ≤ y of P1 are satisfied by
all points of P2, which is not the case of constraint y ≤ x. Replacing any constraint of P1 by
y ≤ x+ 1 would change P1, hence it is not incorporated in P1

▽ P2.
For example, the fixpoint equation (60) leads to the upward abstract iteration sequence with

widening shown in Figure 14. Observe that we have computed the invariant found heuristically
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X̂3 = B[[P]]X̂2

= X̂2

FIGURE 14. Upward abstract iteration sequence with widening for equation (60).
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in example 7.1 of [147]. More generally, we stop iterating as soon as a postfixpoint is reached.
Then we use an abstract iteration sequence with narrowing, with a trivial narrowing consisting
in stopping the iteration after a few steps (typically one). Non-trivial invariants can be found
automatically by this method [44]. It has been successfully applied to the vectorization and
parallelization of sequential programs [80]. [77] contains further examples of constraints deriva-
tion among object sizes (in imperative programs). [92] is also useful when considering linear
equalities instead of inequalities. Other approaches for compile-time estimating argument size
relations consist in solving difference equations with boundary conditions [54], [56], [55]. Non-
iterative methods for solving the fixpoint equations involved in abstract interpretation are still
to be studied.

10. A THEMATIC SURVEY OF THE LITERATURE ON ABSTRACT INTER-
PRETATION OF LOGIC PROGRAMS

Our purpose in this section is to give a general idea of the abundant research work on abstract
interpretation of logic programs and its applications for the non-specialist.

10.1. Abstract Interpretation Frameworks for Logic Programs

The goal of an abstract interpretation framework is to facilitate the design and development
of abstract interpreters. A collecting semantics is chosen to deal with a given category of
program properties (such as top/down or bottom/up analysis). Then, according to (11), the
approximation of this collecting semantics is decomposed into a general purpose approximation
and an application dependent approximation. The general purpose approximation deals with the
attachment of the unspecified abstract properties to program points, execution trees or any more
general notion of label attached to programs and with the control structure of logic programs.
The application dependent approximation is user specified by providing a set and computer
representation of abstract properties, and abstract operations for unification and for all built-ins.
Specific verification conditions are also given which must be verified for these abstract operations
to ensure the correctness of the application. The advantages of this approach are multiple. For
example, esoteric theory need not be understood by casual users in all its detail since it is
embedded into a widely distributed program with hopefully friendly interfaces. Specification,
correctness proof and coding of a specific application is thus considerably reduced. The defect
is that general-purpose tools may not be well-suited or efficient for a specific analysis but most
users will appreciate some help in programming a non-trivial abstract interpreter.

10.1.1. Top/Down Abstract Interpretation Frameworks

Bruynooghe’s top/down framework was first sketched in [11] then fully described in [9] and
further refined in [10] to integrate mode, type and sharing inference. A full account can be
found in [106] and applications to compile-time garbage collection are discussed in [122]. [47]
argue that abstract interpretation is not only suited for applications in code optimization, but
provides an excellent tool to support techniques in source level program transformation. This
paper also addresses the novice in the field that might prefer to start from a concrete example
rather than by an abstract presentation.

Most of the abstract interpretation frameworks for logic programs are top/down [48], [64],
[103], [102], [111], [117], [118], [124], [131], [157] certainly because abstract interpretation is
often understood as “acting as an interpreter” that is execution of an abstract interpreter to
perform a data flow analysis instead of “understanding in a specified way” that is approximation
of a semantics. Top/down abstract interpretation frameworks naturally correspond to an oper-
ational standard semantics but can also be formulated using denotational semantics [85]. This
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is easily seen to be less general as soon as denotational semantics are understood as abstract
interpretation of an operational trace semantics [43].

10.1.2. Bottom/Up Abstract Interpretation Frameworks

Bottom/up abstract interpretation frameworks for logic programs were first formalized by [108],
using an abstract version of the semantics of [67] dealing with negation. The semantics was
given in terms of ground atoms only and was used to formalize the depth-k pattern analysis
of [137]. In [111], definite logic programs were considered using a version of TP to characterize
the set of atoms which the program P “makes true”, differing from TP in that these atoms need
not be ground. Following [16], this idea was formalized by [3], [65], reformulated by [94] in an
algebraic framework (which was used to justify [9]) and used by [96] to provide a declarative
semantics of concurrent logic programs. Examples of bottom/up analyses are given by [72], [87],
[113], [132].

10.1.3. Bottom/Up Versus Top/Down Abstract Interpretation and Their Combination

Theorem 10-13 of [26] provides a way to transform a relational bottom/up abstract interpretation
into a top/down one and vice-versa. [132] applies this method to logic programs.

The collecting semantics (24) relates the root and internal nodes of the execution tree by the
resolvent, current substitution and set of utilized variables and the internal nodes of the tree
to the leaves through the answer substitution. Bruynooghe uses a different collecting semantics
providing an infix traversal of the execution tree where each subtree is traversed top/down to
determine calling-patterns and then bottom/up to return answer substitutions. In this case
information is propagated from the root to the internal nodes on the first pass and then from
the leaves to the internal nodes in the second pass, thus providing a combination of top/down
and bottom/up analysis based upon the use of relational abstract lattices.

The multi-passes algorithm given in proposition 36 is an interesting alternative not requiring
relational abstract domains. It has proved very powerful for imperative languages [7] and does
not seem to have been used for logic programming languages.

10.2. Variable Binding Analysis

The most numerous applications of abstract interpretation to logic programming languages
concern variable binding analysis which consists in determining when variables are bound (mode
analysis) and for how long (liveness analysis), and how they can be bound (variable binding and
data dependencies analysis).

10.2.1. Live Variable Analysis

Live variable analysis which consists in determining for how long variables are bounded helps
the compiler generate better storage management [11], [106].

10.2.2. Mode Analysis

One of the most attractive features of Prolog is its parameter passing mechanism. A simple
parameter can be used for input, output or both. The compiler must generate code for both
alternatives, which can slow down execution considerably. Most predicate do not use this flexible
parameter passing. [153] introduced explicit mode declarations (instantiated ‘+’, uninstantiated
‘−’, and unknown ‘?’) to help the compiler generate better code. But this annotation of programs
is tedious and subtle errors can be introduced in the program, in particular when the program
is modified. The annotation of input arguments to a call (not further instantiated by execution
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of the goal) and of output arguments (that is variables which are free at call time and will be
later instantiated) can be automatically inferred using abstract interpretation.

Early work on mode inference via static analysis was done by Mellish [115], [116] who used
dependencies between variables to propagate information regarding their instantiation. Since
aliasing effects resulting from unification were not taken into account, the procedure sometimes
produced erroneous results [48], [117]. This was later corrected and proved correct [117], [118],
using abstract interpretation, as advised by Mycroft. The impact of this work was important
since it introduced abstract interpretation in the logic programming community. Mode analysis
has been widely studied starting from simple two-values abstract domains {in, out} [135] to very
sophisticated abstract domains for finding the instantiation state of the arguments of the calls
at run-time [11], [10], [20], [46], [57], [49], [59], [60], [61], [63], [83], [98], [105], [139], [145], [154].
Mode analysis is used for code optimization. For example, in the Warren Abstract Machine
(WAM), examining the contents of a variable may require dereferencing an arbitrary length
chain of references. Mode analysis may reveal that some arguments will ever need dereferencing
so that the branch-and-test loops needed for arbitrary dereferencing can be removed. When a
variable is bound, its address is examined to see if it was created before the last choice-point
and, if so, its address is pushed on to the trail stack. Mode analysis may reveal that the binding
of some arguments may never need trailing. [142] proposes an abstract domain to dereference
chain and choice-point analysis and provides figures showing the dramatic reduction of the
amount of code a compiler need to produce for clause heads. Similar object code optimizations
are considered by [50], [73], [144]. Using mode information gathered by abstract interpretation
allows the generation of more specific code which executes faster. This results in substantial
speedups [106], [148].

10.2.3. Sharing Analysis

This category of sharing analyses is concerned with analysing the occurrences of variables into
terms and concerns various properties such as groundness [4], [3] [17], [19], [20], [21], [22], [23],
[24], [72], [85], [96], [149], [154], aliasing [11], [17], [20], [50], [52], [72], [81], [82], [123], [125],
[154], linearity [20], [124], strictness, [20], covering, and compoundness [21], [22] analyses. These
properties are often related with mode analysis.

A variable is ground if and only if it is bound to a ground term containing no variable,
in every possible substitution during execution of the program. A term is linear if it contains
exactly one variable. In particular a variable is uninitialized if it is unbound and not pointed to
by any other variable , it is free if it is just bound to another variable and one which is bound
to a complex term is called nonfree. It is strict or nonground if it contains one variable or more.
Two terms are aliases if and only if they are both reduced to one variable. Two variables in a
logic program are said to be aliased if in some execution of the program they may be bound to
terms which contain a common variable. Covering analysis aims at determining whether any
variable occurring in a term t1 also occurs in another term t2, whereas compoundness analysis
aims at determining whether a variable is always bound to a particular functor, a special case
of pattern analysis.

10.2.4. Data Dependency Analysis

Dependency analysis tries to find out which arguments and subgoals are dependent in the sense
that they can have shared terms. This knowledge can be used for example in organizing the
parallel execution of the clause, in intelligent backtracking, in compile time garbage collection
or occur-checking to detect situations where cyclic terms can be created during unification [13],
[12], [105], [154], [52], [118], [123], [81], [85], [140], [134], [100], [122], [105], [123], [154].
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10.3. Predicate Type Analysis

Predicate type analysis consists in characterizing the class of arguments for which predicates
are true, more precisely what is the set (type analysis) or shape (pattern analysis) of possi-
ble values of these arguments, whether unification of the arguments can lead to infinite terms
(occur-check analysis), whether a predicate can be true for at most one value of its arguments
(functionality analysis) or can lead to no more than one success (determinacy analysis), what
are the relationships between arguments sizes, etc.

10.3.1. Pattern Analysis

Pattern analysis [137] consists in determining the shape of the term to which variables are
bound. In top/down analysis one obtains calling patterns whereas in bottom/up analysis we
get success patterns. Patterns are usually non recursive and limited to the top of the terms,
and will describe the degree of instantiation of variables whenever the clause is called, up to,
for example, some fixed depth [3], [20], [51], [50], [109], [111], [113]. The main use of pattern
analysis is for program specialization.

10.3.2. Type Analysis

Type analysis also describes a set of terms but it is a more refined analysis since the interior of
terms can usually be described recursively [11], [10], [49], [50], [63], [66], [71], [78], [83], [88], [98],
[99], [106], [107], [119], [120], [121], [126], [139], [160], [161]. Types can be used descriptively, in
which case the abstract interpretation is used for type inference or prescriptively in which case
the abstract interpretation is used for type checking. Type information is useful for a number
of tools notably for program debugging or the elimination of dead code (which result is never
used) and unreachable code (which is never executed).

10.3.3. Occur-Check Analysis

For efficiency reasons, many Prolog systems omit occur checks during unification. This makes
the system unsound as a theorem prover. For example the query q would succeed in the following
logic program:

p(x, f(x)) -> ;

q -> p(x, x) ;

when executed without occur-check. Occur check analysis determines cases when unification
can safely be performed without occur checks, which may help a compiler generate efficient
programs without sacrificing soundness [17], [20], [85], [134], [140].

10.3.4. Determinacy, Functionality, and Mutual Exclusion Analysis

Although the ease of use of logic programming languages is partly due to the power of non-
deterministic search, some large parts of programs may not require the use of choice points
with general backtracking, in which case no backtrack is necessary, unnecessary search can be
avoided and space on the run-time stack can be reclaimed early. Determinacy analysis consists
in recognizing predicates that can return at most one answer to any call to it [116], [148], [145].
Functionality analysis is a special case of determinacy analysis that consists in recognizing pred-
icates that can be true for at most one value of their arguments [58], [50], [60], [61]. Mutual
exclusion analysis aims at determining pairs of clauses for a predicate such that at most one of
them can succeed at runtime for a call to that predicate [61].
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10.3.5. Analysis of Relationships Between Argument Sizes of Predicates

The analysis of relationships between argument sizes of predicates is a high-level abstract inter-
pretation which can be used for code improvement using better memory allocation strategies as
well as automatic termination proofs (for some but not all programs) [54], [56], [55], [147], [151].

10.4. Analysis of Logic Programs with Negation as Failure

SLDNF-resolution, i.e., SLD resolution with negation as failure [14], is not a complete proof
procedure for general programs or goals. On the one hand, SLDNF-resolution is unable to
prove a formula F ∨ G if neither F nor G is a logical consequence of the theory because of
nontermination. On the other hand, SLDNF-resolution must avoid floundering, that is reaching
a goal which contains only nonground negative literals. For example [4], the goal p(X) ¬q(X)
does not fail for the program:

p(X) -> ;

q(a) -> ;

r(b) -> ;

so SLDNF-resolution cannot prove that ∃X : p(X)∧¬q(X) although p(b)∧¬q(b) obviously holds.
A way to solve this problem is to consider a restricted class of programs and goals (by imposing
syntactic conditions ensuring that the definition of predicates contains nonground facts, [62]) or
to use abstract interpretation [4] so as to show that predicates, the definition of which contains
nonground facts, are suitably used so as to produce ground answers only. Since the floundering
problem is undecidable [1], one can only obtain safe approximate results (in the sense that no
non floundering goal during abstract interpretation will flounder during its actual evaluation
whereas a goal floundering during abstract interpretation may not flounder during its actual
evaluation) [4], [5], [114], [73].

10.5. Analysis of Dynamically Modified, Concurrent, and Constraint Logic Programs

Most papers on abstract interpretation of logic programs consider definite programs and more
research is needed to deal with practical programs involving imperative features. For exam-
ple, [49] considers the case of programs that can be dynamically modified through the use of
constructs like Prolog assert .

Abstract interpretation frameworks for concurrent logic programs has tended to concentrate
on operational and top/down analyses to reduce the enqueuing and dequeuing of processes,
to identify deadlock or unintended suspensions and to remove unnecessary synchronization in-
structions [18], [19], [51], [96], [97], [104]. Very few research papers are devoted to abstract
interpretation of parallel imperative programs (see [35] for an early reference) and work on con-
current logic languages might originate more research on this subject from which other parallel
languages might benefit.

Few work has been done on abstract interpretation of constraint logic languages [112]. Us-
ing the combined top/down and bottom/up analysis of constraint logic programs, constraints
could be propagated top/down so has to statically spread the effect of the constraint on all
clauses of the program and backward so has to statically anticipate future failures. This ab-
stract interpretation might significantly reduce the search space at run-time. Moreover, abstract
interpretation using such constraints is well-known [44], [77], [80] for imperative programs so
that cross-fertilization should be expected. On parallel machines, one can even imagine that
part of the search space to be explored later is reduced by abstract interpretation while the
concrete search is pursued elsewhere.
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10.6. Applications of Abstract Interpretation of Logic Programs

[154] argue that abstract interpretation of logic programs can be quite precise, yet not overly
expensive and therefore has reached the stage of practicability. Applications concern program
debugging (mainly by type checking or inference), compilation, transformation and correctness
proof.

10.6.1. Compilation of Logic Programs

Abstract interpretation may be used by the compiler to optimize the code for the language
primitives such as built-ins or unification, for the control of flow and use better memory allocation
strategies such as allow a stack instead of heap allocation strategy for some variables, pass
arguments always instantiated to an integer or a constant by value instead of by reference or
reuse available memory thanks to compile-time garbage collection, etc. [143], [148] and [106]
present some benchmark timing from an optimizing Prolog compiler using global analysis by
abstract interpretation.

10.6.1.1. Unification and Code Specialization. Having derived call and success
modes, the compiler can make explicit the different cases of unification. For example the unifi-
cation of ground terms is a test for equality, unification between a free variable and a variable
amounts to an assignment, unification between a term with free variables and a ground term is
a mere selection of components [11], [106].

[70], [69], [73] produce specialized versions of predicates for different run-time instantiation
situations.

10.6.1.2. Clause Selection and Efficient Backtracking. The anticipation of
run-time behaviors may be used to avoid checking all possible clauses, to detect some kind
of repetition in the SLD-derivations that might make the interpreter enter an infinite loop [6],
to design efficient backtracking strategies [12], [60], [61].

10.6.1.3. Compile-Time Garbage Collection. [150] made a first attempt at detect-
ing compile-time garbage collection. [8] presented a technique for global analysis which achieves
compile-time garbage collection and reuse of the collected storage cells in a way similar to what a
programmer achieves in imperative languages. However, the program had to be annotated with
strong types and modes. In [11] an abstract interpretation framework was formulated which
can be used to infer this type, mode (slightly improving [57]), aliasing and liveness information.
This originated work on compile-time garbage collection [97], [100], [106], [122].

10.6.2. Transformation of Logic Programs

The information gathered about logic programs by abstract interpretation is useful not only for
compilers, but also for other program transformers like partial evaluators [61], [70], [69], [73],
data structures transformers [106], [110], [147], and parallelizers [10], [13], [51], [60], [63], [72],
[81], [82], [123], [124], [125], [154], [156], [159] in order to automatically insert communications
and synchronizations in Prolog with and-parallelism, or to eliminate the run-time independence
test of goals in conditional parallelism operators which provide the control over the spawning and
synchronization of such independent goals during parallel forward execution and backtracking
(or to reduce the number of variables that have to be tested at runtime).

10.6.3. Correctness Proofs of Logic Programs

The idea of abstract interpretation is very close to program proof methods in that both rely upon
a collecting semantics and on the use of approximation. For example the invariants of Floyd’s
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partial correctness proof method [128], [68] denote a postfixpoint of F [[P]] in proposition 33 up to
the Galois connection of example 11 allowing for the decomposition of global invariants into local
ones. The difference is that in proof methods the information (invariants, variant functions, etc.)
is provided by the user whereas in abstract interpretation it must be automatically computed.
This connection between proof methods and abstract interpretation was explored in [36], [37],
[38], [39], [40], [41], [27] and might also be fruitfully applied to logic programming languages.

11. CONCLUSION

Although the original work on abstract interpretation was intended for imperative [29] and
recursive [32] sequential programs, it can be adapted or translated to other non-imperative lan-
guages since it was expressed in a language-independent way, using transition systems to model
operational semantics [25], [34], fixpoints to model collecting semantics, Galois connections to
model property approximations, the compositional design and combination of abstract domains
so as to specify abstract interpreters by successive refinements, chaotic iterations to model ab-
stract interpreters execution and widening/narrowing to model convergence acceleration. The
application of these ideas to logic programming has been very fecund. We illustrated it with a
näıve groundness analysis, but the main point was to stress the constructive aspects of abstract
interpretation. It might turn out that the formal derivation of an abstract interpreter from a
semantics is, at least partly, amenable to mechanization. The extension of abstract interpreta-
tion from imperative and functional to logic programming languages was not straightforward
because of the bi-directional flow of control, owing to unification and backtracking. Moreover
the program states have non-conventional and complex structures so that a number of a new
abstract domains had to be discovered so as, for example, to provide precise abstract descrip-
tions of substitutions and unification. It seems that more work is needed to study a hierarchy
of abstract domains expressing from the simplest to the more complex properties of logic pro-
grams among which a choice could be made for particular applications to tune the cost/precision
trade-off. We have suggested a few well-known methods that have stood the test of time in other
areas and which might also be useful for the abstract interpretation of logic programs such as
the combination of top/down and bottom/up analyses and the use of infinite algebraic domains
expressing powerful relational properties. Presently such domains have been mainly utilized for
numerical values but the community of researchers on logic programming is certainly the best
placed to extend these methods to non-numerical domains. If this work, or more work on ab-
stract interpretation of logic programs, could be expressed in language independent ways using
general-purpose semantics it would certainly be easier to understand and apply in many other
application areas. Beyond the present emphasis on parallelism and constraints, further specific
work seems also needed to incorporate all features of logic programming such as imperative
features, dynamic program modification, modular or incremental programming, etc.
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Science 456, pages 293–306. Springer-Verlag, Berlin, Germany, August 20–22, 1990.

[132] U. Nilsson. Abstract interpretation: A kind of magic. In J. Ma luszyński and M. Wirsing, editors,
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