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Abstract

This paper focuses on observability issues in the framework of loose algebraic

speci�cations. It is well known that some correct realizations of an algebraic speci�cation

do not satisfy all the axioms of the speci�cation. They remain correct provided that the

di�erences between the properties of the realization and the properties required by the

speci�cation are not \observable". We compare various observational approaches devel-

oped so far. We point out their respective advantages and limitations. Expressive power

is our main criterion for the discussion.

Keywords: algebraic speci�cation, observability, implementation

1 Introduction

Since the pioneering work of [6], algebraic speci�cations have been advocated as being

one of the most promising approach to enhance software quality and reliability. Algebraic

speci�cations proved to be useful not only to formally describe complex software systems, but

also to prototype them (e.g. by transforming axioms into an equivalent set of rewrite rules,

or by resolution as in SLOG [3] or RAP [9]), and to prove the correctness of these software

systems (w.r.t. their formal, algebraic speci�cation). More recently, it has also been shown

that algebraic speci�cations provide suitable means to compute adequate test sets for the

described software systems, and that they provide also a formal basis to promote software

reusability. An important aim of the research activity in the area of algebraic speci�cations is

to provide adequate concepts, languages and tools to cover the whole software development

process and to establish their mathematical foundations.

In this paper we shall focus on problems arising when one tries to establish the correctness

of some software w.r.t. its speci�cation. To better understand the very nature of the problems

involved, we shall �rst briey recall the main underlying paradigm of the loose approach:

�

This work is partially supported by ESPRIT Working Group COMPASS and C.N.R.S. GDR de

Programmation.
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� A speci�cation is supposed to describe a future or existing system in such a way that the

properties of the system (what the system does) are expressed, and the implementation

details (how it is done) are omitted. Thus a speci�cation language aims at describing

classes of correct (w.r.t. the intended purposes) realizations. In contrast a programming

language aims at describing speci�c realizations.

� In a loose framework, the semantics of some speci�cation SP is a class Alg[SP] of (non-

isomorphic) algebras. Given some realization (program) P, its correctness w.r.t. the

speci�cation SP can then be established by relating the program P with one of the

algebras of the class Alg[SP]. Roughly speaking, the program P will be correct w.r.t.

the speci�cation SP if and only if the algebra de�ned by P belongs to the class Alg[SP].

This understanding of program correctness w.r.t. algebraic speci�cations is however an over-

simpli�ed picture. Indeed, if correctness is de�ned in such a way, then most realizations that

we would like to consider as being correct (from a practical point of view) turn out to be

incorrect ones. This is illustrated by the following example:

spec : SET

use : NAT, BOOL

sort : Set

generated by :

� : ! Set

ins: Nat Set ! Set

operations :

2 : Nat Set ! Bool

del : Nat Set ! Set

axioms :

ins(x,ins(x,s)) = ins(x,s)

ins(x,ins(y,s)) = ins(y,ins(x,s))

del(x, �) = �

del(x, ins(x, s)) = del(x, s)

x 6= y ) del(x, ins(y, s)) = ins(y, del(x, s))

x 2 � = false

x 2 ins(x,s) = true

x 6= y ) x 2 ins(y,s) = x 2 s

If we consider a standard realization of SET by e.g. lists, we do not obtain a correct re-

alization: this is due to the axioms expressing the commutativity of the insertion operation,

which do not hold for lists. However, if we notice that indeed we are only interested in the

result of some computations (e.g. membership), then it is clear that our realization \behaves"

correctly. This leads to a re�ned understanding of program correctness: a program P should

be considered as being correct w.r.t. its speci�cation SP if and only if the algebra de�ned by

P is a \behaviourally correct realization" of SP. In other words, the di�erences between the

speci�cation and the program should not be \observable", w.r.t. some appropriate notion of

\observability".

The problem is now to specify the \observations" to be associated to some speci�cation,

and to de�ne the semantics of such \observations" in order to obtain a framework that will

capture the essence of program correctness. Up to now, various notions of observability have

been introduced, involving observation techniques based on sorts [5], [21], [10], [4], [18], [11],

[19], [14], [13], operations [1], terms [17], [7] or formulae [16], [17]. It is unfortunately di�cult

to compare these various notions of observability and to decide which one is better suited to
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solve the problem described above. The aim of this paper is to provide grounds for such a

comparative study. To achieve this goal we shall use the notion of \observational equivalence"

of Sannella and Tarlecki, �rst introduced in [16] and further developed in [17]. The expressive

power of the various observation techniques mentioned above will be our main criterion for

the discussion.

This paper is organized as follows. In Section 2 we summarize some basic notations that

will be used later on and we introduce various observation techniques. In Section 3 we briey

recall the observational-equivalence-based semantics. Then we use this semantics in Section

4 to establish a classi�cation of the various observation techniques and some other results.

In Section 5 we point out some limitations of observational-equivalence-based approaches.

2 Observational Speci�cations

We assume that the reader is familiar with algebraic speci�cations (see e.g. [6] and [2]).

A signature � consists of a �nite set of sort symbols Sorts[�] (also denoted by S) and

a �nite set of operation names with arities Ops[�] (also denoted by �). We denote by T

�

(resp. T

�(X)

) the �-algebra of ground terms (resp. terms with variables) over �. We use

At[�] to denote the set of atoms over � (i.e. At[�] = ft = t

0

j t; t

0

2 T

�(X)

g) and At[W] to

denote the set of all atoms built only with a set W of terms (i.e. At[W] = ft = t

0

j t; t

0

2Wg).

From atoms, connectives (_, ^, : etc.) and quanti�ers (9, 8) we construct the set of all

well formed formulae over �, written W�[�], in the usual way. The de�nition of a (total)

�-algebra is the standard one, as well as the satisfaction relation between �-algebras and

�-formulae. The class of all �-algebras is denoted by Alg[�]. The restriction (by the for-

getful functor) of a �-algebra A to a subsignature �

0

of � is denoted by A

j

�

0

.

An algebraic speci�cation SP is a pair h�;�i where � is its signature (also written

Sig[SP]) and � � W�[�] is a �nite set of axioms. We denote by Alg[SP] the class of the

models of SP, which by de�nition is the class of all �-algebras for which � is satis�ed.

\To rely on some observational technique" means \to choose which kind of objects we

observe and how we observe them". In this paper, for a given signature � (with S = Sorts[�]),

we will consider observation techniques based on:

� sorts

We consider some set of observable sorts S

Obs

which is a subset of the sorts of the

signature (S

Obs

� S).

� operations

We consider some set of observable operations �

Obs

which is a subset of the operations

of the signature (�

Obs

� �).

� terms

We consider some set of observable terms W (W � T

�(X)

).

� atoms

We consider some set of observable �-atoms E (E � At[�]).

� formulae

We consider some set of observable �-formulae � (� �W�[�]).
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Once we have chosen some observation technique, we can specify, using this technique, that

some parts of an algebraic speci�cation are observable. An observational speci�cation is

formed by adding a speci�cation of the objects to be observed to a usual algebraic speci�ca-

tion, as precised by the following de�nition.

De�nition 2.1

An observational speci�cation is a pair hSP;Obsi, where SP is a usual algebraic spec-

i�cation and Obs is a set of observations over Sig[SP], which can be either a set of sorts,

operations, terms, atoms or formulae, according to the observation technique in use.

The next step is to de�ne the semantics of such observational speci�cations.

3 Observational Semantics

As already mentioned in the introduction, the usual satisfaction relation is not su�cient

to reect the paradigm: \the class of the models of a speci�cation represents all its acceptable

realizations." Some correct programs could correspond to algebras which do not satisfy all

the axioms of the speci�cation, provided that the di�erences between the properties of the

algebra and the properties required by the speci�cation are not observable. Thus, a correct

realization of an algebraic speci�cation SP may correspond to an algebra which is outside

of Alg[SP]. The aim of an observational semantics is to de�ne the class of \observational

models" (or \behaviours") of SP, denoted by Beh[hSP, Obsi], which better matches the class

of correct realizations of SP (w.r.t. Obs).

There are mainly two possible ways to de�ne an observational semantics of SP. We could

extend Alg[SP] by including some additional algebras which are \observationally equivalent"

to a model of Alg[SP] w.r.t. Obs (extension by observational equivalence, see [16], [17], [7]).

We could also directly relax the satisfaction relation (extension by relaxing the satisfaction

relation, see [18], [14], [1]). Our comparative study of observation techniques will be based

on the notion of \observational equivalence".

First we need an appropriate equivalence relation �

Obs

on Alg[�], also called observa-

tional equivalence of algebras w.r.t. Obs (cf. [16], [17]). The choice of �

Obs

depends on the

observational technique in use. For each observational technique we give below a de�nition

of the corresponding observational equivalence �

Obs

.

De�nition 3.1

Given a set of observations Obs, an observational equivalence w.r.t. Obs, written �

Obs

,

is an equivalence relation on Alg[�] de�ned (depending on the observation technique used to

express Obs) as follows:

� Obs = S

Obs

(observable sorts)

1

A �

S

Obs

B i� 8 t; t

0

2 (T

�(X)

)

s

; s 2 S

Obs

A j= t = t

0

, B j= t = t

0

In other words, A and B are observationally equivalent w.r.t. a set of observable sorts,

if A and B satisfy the same equalities between terms of observable sorts.

� Obs = �

Obs

(observable operations)

1

A �

�

Obs

B i�

8 f ; g 2 �

Obs

; with the same target sort

8 � : X! T

�(X)

A j= f(x

1

; : : : ; x

n

)� = g(y

1

; : : :y

m

)� , B j= f(x

1

; : : : ; x

n

)� = g(y

1

; : : :y

m

)�
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In other words, A and B are observationally equivalent w.r.t. a set of observable oper-

ations, if A and B satisfy the same equalities between terms with observable head.

� Obs = W (observable terms)

1

A �

W

B i� 8 l; r 2W 8 �; � : X! T

�(X)

A j= l� = r� , B j= l� = r�

In other words, A and B are observationally equivalent w.r.t. a set of observable terms, if

A and B satisfy the same equalities between observable terms and their (non necessarily

ground) instantiations.

2

� Obs = E (observable atoms)

A �

E

B i� 8 e 2 E A j= e , B j= e

In other words, A and B are observationally equivalent w.r.t. a set of observable atoms,

if A and B satisfy the same observable atoms.

� Obs = � (observable formulae)

A �

�

B i� 8' 2 � A j= ' , B j= '

In other words, A and B are observationally equivalent w.r.t. a set of observable for-

mulae, if A and B satisfy the same observable formulae.

An observational model of hSP;Obsi is an algebra observationally equivalent to a model

of SP as de�ned below:

De�nition 3.2

The class of observational models of hSP;Obsi, written Beh[hSP;Obsi] is de�ned as fol-

lows:

Beh[hSP;Obsi] = fB 2 Alg[�] j 9 A 2 Alg[SP] B �

Obs

Ag

It should be noted that ordinary speci�cations can be considered as observational speci�-

cations in a straightforward way. For a given observation technique � we just have to consider

a set Obs

all

�

which makes \everything" observable. Then for all SP

Beh[hSP;Obs

all

�

i] = Alg[SP]

For instance if we consider observable operations then the set �

all

Obs

which makes everything

observable is just the whole signature �. Then we have:

Beh[hSP;�i] = Alg[SP]

This correctly reects the fact that the class of observational models associated to an ordinary

speci�cation SP is exactly Alg[SP].

1

There is a variant of these techniques which consists on observation of ground objects (i.e. ground terms of

sorts S in the case of sort observation, ground terms with observable head in the case of operation observation

etc).

2

We consider the atoms formed by substituted terms l� = r� rather than l = r only. For instance, when

W = ftg, the observational equivalence �

W

does not rely only on the satisfaction of the unique (trivial) atom

t = t, but also on the satisfaction of all atoms t� = t�.
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4 Expressive Power of Observation Techniques

It is of �rst importance to have a precise understanding of the respective expressiveness

of various observation techniques for the following reason. The observation technique will be

the basis of a correctness notion (of some software w.r.t. its speci�cation). If the observation

technique is not \powerful enough", then it may be impossible to take into account some real-

izations that we would like to consider as being relevant (because they will still be incorrect).

The crucial point here is that when the observation technique is not powerful enough, then

the set of \observed properties" (i.e. those properties that are used to decide the correctness

of the realization) is too large, hence the class of correct realizations is too small.

In this section we compare the expressive power of observation techniques introduced in

Section 2. The criterion for this comparison is provided by following two de�nitions.

De�nition 4.1

An observation technique � is �ner than another one �, written � � �, if and only if:

For any speci�cation SP and any set Obs

�

of observations de�ned using technique �, there

exists a set of observations Obs

�

(de�ned using technique �) such that both hSP;Obs

�

i and

hSP;Obs

�

i have the same observational models, i.e. Beh[hSP;Obs

�

i] = Beh[hSP;Obs

�

i].

De�nition 4.2

An observation technique � is strictly �ner than another one �, written � � � if it is

�ner and if:

There exists a speci�cation SP and a set Obs

�

of observations de�ned using technique �,

such that there is no set of observations Obs

�

(de�ned using technique �) for which both

hSP;Obs

�

i and hSP;Obs

�

i have the same observational models, i.e.

� � � and 9 SP 9 Obs

�

8 Obs

�

Beh[hSP;Obs

�

i] 6= Beh[hSP;Obs

�

i]

In the following we use the de�nitions above to compare the expressive power of the

observation techniques introduced in Section 2.

Proposition 4.3

Fineness orders observation techniques as follows:

formulae � atoms � terms � operations � sorts

Proof

In order to prove that � � �, from De�nitions 3.1, 3.2 and 4.1 it is enough to construct a set

Obs

�

corresponding to the given Obs

�

such that

8 A;B 2 Alg[�] A �

Obs

�

B i� A �

Obs

�

B

� formulae� atoms

This is clear since each set of atomic formulae is a set of formulae as well.

� atoms � terms

Given a set W of terms the corresponding set of atomic observations is given by

E = fl� = r� j l; r 2W; �; � : X! T

�(X)

g

� terms � operations

Term observation corresponding to an operation observation �

Obs

is given by the set:

W = ff(t

1

; : : : ; t

n

) j (f : s

1

: : : s

n

! s) 2 �

Obs

; t

1

2 (T

�(X)

)

s

1

; : : : ; t

n

2 (T

�(X)

)

s

n

g
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� operations� sorts

Given a set of observable sorts S

Obs

we construct the corresponding set of observable operations

as follows:

�

Obs

= ff : s

1

: : : s

n

! s 2 � j s 2 S

Obs

g

2

The above result is not very surprising. Indeed it is even possible to show that the ordering

between the observation techniques is a strict one:

Proposition 4.4

Strict �neness orders observation techniques as follows:

formulae � atoms � terms � operations � sorts

Proof

We consider the following speci�cation

spec : SP

sort : s

generated by :

a, b, c, d : ! s

axioms :

a = b

b = c

c = d

From the axioms of SP and the fact that � = Sig[SP] is reduced to constants, we have: for any

algebra A 2 Alg[SP] and for any atom e 2 At[�]: A j= e. Therefore:

8 E � At[�] Beh[hSP; Ei] = Alg[h�; Ei]

� formulae� atoms

Assume that the set of observable formulae is the singleton � = fa = b _ c = dg. Since any

A 2 Alg[SP] satis�es � we have

Beh[hSP;�i] = Alg[h�;�i]

Assume now that there exists E � At[�] such that

Beh[hSP; Ei] = Beh[hSP;�i]

Thus

Alg[h�; Ei] = Alg[h�;�i]

But this is in contradiction with the fact that Alg[h�;�i] has no initial object while, for any

E � At[�], Alg[h�; Ei] does.

� atoms � terms

Consider the previous speci�cation SP with the set E

0

= fa = b; c = dg of atomic observations.

Assume that there exists W � T

�

such that

Beh[hSP;Wi] = Beh[hSP; E

0

i] (i)

For the same reason as before (i) is equivalent to

Alg[h�;At[W]i] = Alg[h�; E

0

i] (ii)

Since � is reduced to constants, we must therefore have At[W] � E

0

. Thus W � fa; b; c; dg,

hence (b = c) 2 At[W]. Consider B 2 Alg[�] such that a

B

= b

B

6= c

B

= d

B

. Then

B 2 Alg[h�; E

0

i]

and B 62 Alg[h�;At[W]i]

which contradicts (ii).
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It is easy to construct analogous examples which prove terms � operations� sorts. 2

When Obs

�

� Obs

�

, in general for a given SP

1

and Obs

�

there is no set of observations

Obs

�

such that hSP

1

;Obs

�

i has the same behaviour as hSP

1

;Obs

�

i. However some systematic

transformations can be performed on hSP

1

;Obs

�

i in order to obtain hSP

2

;Obs

�

+��i which

\simulates" the behaviour of hSP

1

;Obs

�

i, where �� is a particularly simple set of formulae.

Proposition 4.5 (Term observation can be simulated by operation observation)

Let SP

1

= h�

1

;�

1

i. Let W be a set of �

1

-terms. For each term t 2 W, let s be the

sort of t, and x

1

; : : : ; x

n

be the variables occurring in t (of sorts s

1

; : : : ; s

n

respectively); we

introduce a new operation f

t

: s

1

: : : s

n

! s, and a new axiom e

t

: f

t

(x

1

; : : : ; x

n

) = t. Let then

�� = ff

t

j t 2Wg

�� = fe

t

j t 2Wg

and SP

2

= h�

1

+ ��;�

1

+��i

The observational speci�cation hSP

1

;Wi is \simulated" by the observational speci�cation

hSP

2

;��+��i in the sense that:

Beh[hSP

2

;��+ ��i]

j

�

1

= Beh[hSP

1

;Wi]

Proof is given in Appendix A.

This transformation can be rather impractical when W is large since we need to enrich

SP

1

with jWj operations and jWj axioms in order to obtain SP

2

.

Proposition 4.6 (Operation observation can be simulated by sort observation)

Let SP

1

= h�

1

;�

1

i. Let �

Obs

� �

1

be a set of observable operations. For each target

sort s of the observable operations we introduce a new sort s

new

. Let then

S

Obs

= fs

new

j 9 (f : s

1

: : :s

n

! s) 2 �

Obs

g

For each f : s

1

: : :s

n

! s 2 �

Obs

we introduce a new operation f

new

: s

1

: : : s

n

! s

new

. Let

�� = hS

Obs

; ff

new

j f 2 �

Obs

gi

Next, for each g : p

1

: : :p

n

! s 2 �

Obs

and h : r

1

: : :r

m

! s 2 �

Obs

we introduce a new axiom

a

g;h

: g(x

1

; : : : ; x

n

) = h(y

1

; : : : ; y

m

) , g

new

(x

1

; : : : ; x

n

) = h

new

(y

1

; : : : ; y

m

) with pairwise

distinct variables x

1

; : : : ; x

n

; y

1

; : : : ; y

m

. Let then

�� = fa

g;h

j g; h 2 �

Obs

with the same target sortg

and let SP

2

= h�

1

+��;�

1

+ ��i.

Under the hypothesis above, the observational speci�cation hSP

1

;�

Obs

i is \simulated" by

the observational speci�cation hSP

2

; S

Obs

+ ��i in the sense that:

Beh[hSP

2

; S

Obs

+��i]

j

�

1

= Beh[hSP

1

;�

Obs

i]

Proof is given in Appendix B.

The two last propositions demonstrate that observations based on terms can be \simu-

lated" by observations based on operations, with additional observation of some particular

atoms (axioms e

t

), and that observations based on operations can as well be simulated by
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observations based on sorts, with additional observation of some particular formulae (axioms

a

g;h

).

It should be noted that the additional observable atoms, for the �rst simulation, as well

as the additional observable formulae, for the second one, have a particularly simple form.

Thus one could hope to lift proofs from the sort observation level to the term observation

level.

Therefore, one could hope that Hennicker's proof method (see [8]), which works mainly

for observable sorts, could be used to prove properties expressed with observable terms.

However, we want to prevent the reader from such a quick conclusion, which requires further

investigation, especially w.r.t. the following points:

1. Hennicker's observational semantics is slightly di�erent from Sannella's and Tarlecki's

observational semantics, that we used to establish our simulation results.

2. Hennicker's proof method requires observable preconditions for every conditional axiom

of the speci�cation, but in the transformation described in Proposition 4.6, we add

axioms (a

g;h

) with non observable preconditions.

3. Even if possible, such translations of proofs would result in rather illegible proofs.

Consequently, the problem of the proof translation remains an open question.

5 Some Limitations of Extension by Observational Equiva-

lence

The observational semantics based on an equivalence on Alg[�] provides a general frame-

work enabling us to discuss the power of observational techniques. Nevertheless, there are

some cases where this observational semantics seems too restrictive. Sometimes, there clearly

exists some relevant realizations which are not observationally equivalent to a (usual) model

of the speci�cation. This fact is particularly clear when Alg[SP] is empty. For instance, let

us consider the following speci�cation

spec : SET-WITH-ENUM

use : NAT, BOOL, LIST

sort : Set

generated by :

� : ! Set

ins: Nat Set ! Set

operations :

2 : Nat Set ! Bool

del : Nat Set ! Set

enum : Set ! List

axioms :

ins(x,ins(x,s)) = ins(x,s)

ins(x,ins(y,s)) = ins(y,ins(x,s))

del(x, �) = �

del(x, ins(x, s)) = del(x, s)

x 6= y ) del(x, ins(y, s)) = ins(y, del(x, s))

x 2 � = false
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x 2 ins(x,s) = true

x 6= y ) x 2 ins(y,s) = x 2 s

enum(�) = nil

enum(ins(x,s)) = cons(x,enum(s))

What we really need for this example is to observe

W = fx 2 sg [ ft 2 T

Sig[LIST]

j t is of sort Nat or Boolg

In other words, we observe membership and some LIST terms but we do not observe those

LIST terms where enum occurs.

Obviously, this speci�cation is inconsistent (i.e. Alg[SP] = �). Consequently the exten-

sion by the observational equivalence w.r.t. the set W yields an empty class of observational

models. Moreover, for any observation technique �, the speci�cation SET-WITH-ENUM with

observations Obs

�

has its observational model class empty. Nevertheless, a realization which

represents sets by lists, enum being the identity, should clearly be considered as a correct one.

In a semantical framework based on the extension by observational equivalence, the exis-

tence of observational models depends on the existence of usual models. Indeed, the extension

by observational equivalence is based on the usual satisfaction relation. This leads to a some-

what heterogeneous framework where the observational features are based on the usual ones.

In particular the \observational consistency" (Beh[hSP;Obsi] 6= �) always coincides with

the usual one (Alg[SP] 6= �). An approach where the satisfaction relation is directly rede-

�ned according to observability (extension by relaxing the satisfaction relation) seems more

promising. This would allow to give a homogeneous observational de�nition for all the usual

notions depending on the satisfaction relation (such as e.g. consistency).

Note also that this example points out a situation where we want to observe an in�nite

set of terms.

6 Conclusion

When we want to include observability features into algebraic speci�cations, two aspects

have to be taken into account. First, we have to ensure a good expressive power which for

instance gives rise to a usable speci�cation language. Second, we must provide simple proof

techniques since this point is crucial to establish software correctness. Clearly, the complex-

ity of proving software correctness increases with the �neness of the observation technique.

Consequently, the choice of an observation technique should be a compromise between its

�neness and the existence of proof facilities. Therefore we should, as far as possible, choose

the lower level of observation with a satisfactory expressive power. From our experiments

it seems that this level corresponds to term observation. Terms allow the expression of any

composition of operations. Intuitively, a term denotes a \computation" and software spec-

i�cation needs at most to de�ne the computations that we want to observe and those that

we do not want to observe. Conversely, there are examples where term observation seems

necessary (c.f. SET-WITH-ENUM).

Of course, the choice of even the �nest observation technique does not ensure, by itself,

a satisfactory expressive power of the observational approach. The speci�cation SET-WITH-

ENUM points out some limitations of semantics based on the extension by observational

equivalence. For this reason we believe that a promising direction for further investigations

11



is an approach which associates term observation with a semantics based on the extension

by relaxing the satisfaction relation.
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A Proof of the Proposition 4.5

Proposition 4.5 was stated in Section 4 as follows:

Proposition 4.5

Let SP

1

= h�

1

;�

1

i. Let W be a set of �

1

-terms. For each term t 2 W, let s be the

sort of t, and x

1

; : : : ; x

n

be the variables occurring in t (of sorts s

1

; : : : ; s

n

respectively); we

introduce a new operation f

t

: s

1

: : : s

n

! s, and a new axiom e

t

: f

t

(x

1

; : : : ; x

n

) = t. Let then

�� = ff

t

j t 2Wg

�� = fe

t

j t 2Wg

and SP

2

= h�

1

+ ��;�

1

+��i

The observational speci�cation hSP

1

;Wi is \simulated" by the observational speci�cation

hSP

2

;��+��i in the sense that:

Beh[hSP

2

;��+ ��i]

j

�

1

= Beh[hSP

1

;Wi]

To prove Proposition 4.5 we will use the following lemmas.

Lemma A.1

Let �

1

� �

2

. For any �

2

-algebra A

2

and any �

1

-formula ' we have:

A

2

j

�

1

j= ' i� A

2

j= '

(Well known) 2

Lemma A.2

With the notations of Proposition 4.5, for any �

1

-algebra B

1

there exists

B

2

2 Alg[h�

1

+��;��i] such that B

2

j

�

1

= B

1

.

Proof

Obvious from the de�nition of �� and ��. Indeed B

2

is unique and its carrier is the one of B

1

.

2

Lemma A.3

Given SP

1

and SP

2

as de�ned in Proposition 4.5, for any �

1

-algebra A

1

there exists

A

2

2 Alg[SP

2

] such that A

2

j

�

1

= A

1

.

13



Proof

Follows directly from Lemmas A.2 and A.1. 2

Lemma A.4

Given SP

1

and SP

2

as de�ned in Proposition 4.5, for any model A

2

2 Alg[SP

2

] and any

model B

2

2 Alg[h�

1

+��;��i], we have:

A

2

�

��+��

B

2

i� A

2

�

��

B

2

Proof

Results from the fact that

A

2

�

��+��

B

2

i� A

2

�

��

B

2

^ A

2

�

��

B

2

The second member of this last conjunction is true since from the hypothesis we have A

2

j= �� and

B

2

j= ��, and we know that

8� (A j= � ^ B j= �) ) A �

�

B

2

Lemma A.5

With the notations of Proposition 4.5, for any t 2 W , any � : X ! T

(�

1

+��)(X)

, there

exists � : X! T

�

1

(X)

such that

f

t

(x

1

; : : : ; x

n

)� =

��

t�

i.e. f

t

(x

1

; : : : ; x

n

)� and t� are equal in the theory presented by ��.

Proof

It is obvious from the de�nition of �� and �� that for any l 2 T

(�

1

+��)(X)

there exists r 2

T

�

1

(X)

such that l =

��

r. In particular, for i = 1; : : : ; n there exists d

i

2 T

�

1

(X)

such that x

i

� =

��

d

i

.

Consequently

f

t

(x

1

�; : : : ; x

n

�) =

��

f

t

(d

1

; : : : ; d

n

)

Therefore we can consider � : X! T

�

1

(X)

such that � = fx

i

7! d

i

g

i2f1;:::;ng

. Then

f

t

(x

1

; : : : ; x

n

)� =

��

f

t

(x

1

; : : : ; x

n

)�

But since f

t

(x

1

; : : : ; x

n

) = t belongs to ��, we conclude

f

t

(x

1

; : : : ; x

n

)� =

��

t�

2

Lemma A.6

With the notations of Proposition 4.5, for all A

2

;B

2

2 Alg[h�

1

+��;��i] the following

holds:

A

2

�

��

B

2

i� A

2

j

�

1

�

W

B

2

j

�

1

Proof
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� )

Given A

2

;B

2

2 Alg[h�

1

+��;��i] such that A

2

�

��

B

2

; given l; r 2W and �; � : X! T

�

1

(X)

,

we have to prove that

A

2

j

�

1

j= l� = r� i� B

2

j

�

1

j= l� = r�

Since f

l

(x

1

; : : : ; x

n

) = l and f

r

(y

1

; : : : ; y

m

) = r belong to �� we have

A

2

(resp. B

2

) j= l� = f

l

(x

1

�; : : : ; x

n

�) ^ r� = f

r

(y

1

�; : : : ; y

m

�)

Hence

A

2

j= l� = r� i� A

2

j= f

l

(x

1

�; : : : ; x

n

�) = f

r

(y

1

�; : : : ; y

m

�)

and B

2

j= l� = r� i� B

2

j= f

l

(x

1

�; : : : ; x

n

�) = f

r

(y

1

�; : : : ; y

m

�)

But since A

2

�

��

B

2

, we have

A

2

j= f

l

(x

1

�; : : : ; x

n

�) = f

r

(y

1

�; : : : ; y

m

�) i� B

2

j= f

l

(x

1

�; : : : ; x

n

�) = f

r

(y

1

�; : : : ; y

m

�)

Hence

A

2

j= l� = r� i� B

2

j= l� = r�

and from Lemma A.1, this is equivalent to

A

2

j

�

1

j= l� = r� i� B

2

j

�

1

j= l� = r�

� (

Given A

2

;B

2

2 Alg[h�

1

+ ��;��i] such that A

2

j

�

1

�

W

B

2

j

�

1

; given f

t

(x

1

; : : : ; x

n

)� and

f

u

(y

1

; : : : ; y

m

)� (with �; � : X! T

(�

1

+��)(X)

and f

t

; f

u

2 ��) we have to prove that

A

2

j= f

t

(x

1

; : : : ; x

n

)� = f

u

(y

1

; : : : ; y

m

)� i� B

2

j= f

t

(x

1

; : : : ; x

n

)� = f

u

(y

1

; : : : ; y

m

)�

By Lemma A.5 there exist �; � : X! T

�

1

(X)

such that

A

2

;B

2

j= f

t

(x

1

; : : : ; x

n

)� = t�

and A

2

;B

2

j= f

u

(y

1

; : : : ; y

m

)� = u�

Thus:

A

2

j= f

t

(x

1

; : : : ; x

n

)� = f

u

(y

1

; : : : ; y

m

)� i�

A

2

j= t� = u� i�

(by Lemma A.1) A

2

j

�

1

j= t� = u� i�

(by hypothesis A

2

j

�

1

�

W

B

2

j

�

1

) B

2

j

�

1

j= t� = u� i�

(by Lemma A.1) B

2

j= t� = u� i�

B

2

j= f

t

(x

1

; : : : ; x

n

)� = f

u

(y

1

; : : : ; y

m

)�

2

Proof of Proposition 4.5

We have to prove

Beh[hSP

2

;��+��i]

j

�

1

= Beh[hSP

1

;Wi]

We have:

Beh[hSP

2

;��+��i] =

(by de�nition of Beh)

= fB

2

2 Alg[�

1

+��] j 9A

2

2 Alg[SP

2

];B

2

�

��+��

A

2

g =

(by Lemma A.4)

= fB

2

2 Alg[h�

1

+��;��i] j 9A

2

2 Alg[SP

2

];B

2

�

��

A

2

g =

(by Lemma A.6)

= fB

2

2 Alg[h�

1

+��;��i] j 9A

2

2 Alg[SP

2

];B

2

j

�

1

�

W

A

2

j

�

1

g
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Therefore,

Beh[hSP

2

;��+��i]

j

�

1

=

= fB

2

2 Alg[h�

1

+��;��i] j 9A

2

2 Alg[SP

2

];B

2

j

�

1

�

W

A

2

j

�

1

g

j

�

1

=

(by Lemma A.2)

= fB

1

2 Alg[�

1

] j 9A

2

2 Alg[SP

2

];B

1

�

W

A

2

j

�

1

g =

(by Lemma A.3)

= fB

1

2 Alg[�

1

] j 9A

1

2 Alg[SP

1

];B

1

�

W

A

1

g =

(by de�nition of Beh)

= Beh[hSP

1

;Wi] .

2

B Proof of Proposition 4.6

Proposition 4.5 was stated in Section 4 as follows:

Proposition 4.6

Let SP

1

= h�

1

;�

1

i. Let �

Obs

� �

1

be a set of observable operations. For each target

sort s of the observable operations we introduce a new sort s

new

. Let then

S

Obs

= fs

new

j 9 (f : s

1

: : :s

n

! s) 2 �

Obs

g

For each f : s

1

: : :s

n

! s 2 �

Obs

we introduce a new operation f

new

: s

1

: : : s

n

! s

new

. Let

�� = hS

Obs

; ff

new

j f 2 �

Obs

gi

Next, for each g : p

1

: : :p

n

! s 2 �

Obs

and h : r

1

: : :r

m

! s 2 �

Obs

we introduce a new axiom

a

g;h

: g(x

1

; : : : ; x

n

) = h(y

1

; : : : ; y

m

) , g

new

(x

1

; : : : ; x

n

) = h

new

(y

1

; : : : ; y

m

) with pairwise

distinct variables x

1

; : : : ; x

n

; y

1

; : : : ; y

m

. Let then

�� = fa

g;h

j g; h 2 �

Obs

with the same target sortg

and let SP

2

= h�

1

+��;�

1

+ ��i.

Under the hypothesis above, the observational speci�cation hSP

1

;�

Obs

i is \simulated" by

the observational speci�cation hSP

2

; S

Obs

+ ��i in the sense that:

Beh[hSP

2

; S

Obs

+��i]

j

�

1

= Beh[hSP

1

;�

Obs

i]

To prove Proposition 4.6 we will use the following lemmas.

Lemma B.1

With the notations of Proposition 4.6, for any �

1

-algebra B

1

there exists

B

2

2 Alg[h�

1

+��;��i] such that B

2

j

�

1

= B

1

.

Proof

Let F be the free synthesis functor associated with the presentation h��;��i over SP

1

. Then:

F(B

1

)

j

�

1

= B

1

because �� only contains operations with target in the new sorts (i.e. in S

Obs

) and �� only concerns

the new sorts. Thus we can take B

2

= F(B

1

). 2
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Lemma B.2

Given SP

1

and SP

2

as de�ned in Proposition 4.6, for any �

1

-algebra A

1

there exists

A

2

2 Alg[SP

2

] such that A

2

j

�

1

= A

1

.

Proof

Follows directly from Lemmas B.1 and A.1. 2

Lemma B.3

Given SP

1

and SP

2

as de�ned in Proposition 4.6, for any model A

2

2 Alg[SP

2

] and any

model B

2

2 Alg[h�

1

+��;��i], we have:

A

2

�

S

Obs

+��

B

2

i� A

2

�

S

Obs

B

2

Proof

same as for Lemma A.4 2

Lemma B.4

With the notations of Proposition 4.6, for all A

2

;B

2

2 Alg[h�

1

+��;��i] the following

holds:

A

2

�

S

Obs

B

2

i� A

2

j

�

1

�

�

Obs

B

2

j

�

1

Proof

Let A

2

;B

2

2 Alg[h�

1

+��;��i]. By de�nition of \�

S

Obs

", A

2

�

S

Obs

B

2

if and only if:

8 l; r 2 (T

(�

1

+��)(X)

)

s

; s 2 S

Obs

A

2

j= l = r i� B

2

j= l = r (i)

Since each proper subterm of l (resp. r) is in T

�

1

(X)

(because no operation of �

1

+ �� has an

observable sort in its domain), the expression (i) is equivalent to

8 f; g 2 �

Obs

8 �; � : X! T

�

1

(X)

A

2

j= f

new

(x

1

; : : :x

n

)� = g

new

(y

1

; : : : ; y

m

)�

i� B

2

j= f

new

(x

1

; : : :x

n

)� = g

new

(y

1

; : : : ; y

m

)�

(ii)

where x

1

; : : :x

n

; y

1

; : : : ; y

m

are pairwise distinct variables.

By hypothesis both A

2

and B

2

satisfy the axiom a

f;g

. Hence

A

2

j= f(x

1

; : : :x

n

)� = g(y

1

; : : : ; y

m

)� i� A

2

j= f

new

(x

1

; : : :x

n

)� = g

new

(y

1

; : : : ; y

m

)�

and B

2

j= f(x

1

; : : :x

n

)� = g(y

1

; : : : ; y

m

)� i� B

2

j= f

new

(x

1

; : : :x

n

)� = g

new

(y

1

; : : : ; y

m

)�

(iii)

From (iii) we can deduce that (ii) is equivalent to

8 f; g 2 �

Obs

8 �; � : X! T

�

1

(X)

A

2

j= f(x

1

; : : :x

n

)� = g(y

1

; : : : ; y

m

)�

i� B

2

j= f(x

1

; : : :x

n

)� = g(y

1

; : : : ; y

m

)�

which by Lemma A.1 is itself equivalent to

8 f; g 2 �

Obs

8 �; � : X! T

�

1

(X)

A

2

j

�

1

j= f(x

1

; : : :x

n

)� = g(y

1

; : : : ; y

m

)�

i� B

2

j

�

1

j= f(x

1

; : : :x

n

)� = g(y

1

; : : : ; y

m

)�

By de�nition of \�

�

Obs

" the last expression is equivalent to

A

2

j

�

1

�

�

Obs

B

2

j

�

1

2
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Proof of Proposition 4.6

We have to prove

Beh[hSP

2

; S

Obs

+��i]

j

�

1

= Beh[hSP

1

;�

Obs

i]

We have:

Beh[hSP

2

; S

Obs

+��i] =

(by de�nition of Beh)

= fB

2

2 Alg[�

1

+��] j 9A

2

2 Alg[SP

2

];B

2

�

S

Obs

+��

A

2

g =

(by Lemma B.3)
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