
POMP

�

or How to design a massively parallel

machine with small developments

y

Philippe Hoogvorst Ronan Keryell Philippe Matherat

Nicolas Paris

|

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure

URA 1327 CNRS

45 rue d'Ulm, 75005 PARIS

Tel: (+ 33 1) 44.32.20.32, fax: (+ 33 1) 44.32.20.80.

E.mail: : : :@dmi.ens.fr

: : :@frulm63.bitnet

|

Technical Report LIENS-91-5

Abstract

The design of a SIMD machine is usually complex because it leads to

developping an e�cient Processing Element and to writing all the soft-

wares required by the chip and the control of the machine.

We propose a di�erent approach by using an e�cient 32-bit o�-the-

shelf processor with its software environment (compiler and assembler)

and a programmable gate array for the network. It limits the development

to the minimum and leads to a rather general SIMD cluster built with o�-

the-shelf chips which can be considered as a SIMD transputer.

R�esum�e

La conception d'un ordinateur SIMD est souvent complexe car il faut

concevoir un Processeur El�ementaire SIMD e�cace avec tout l'environne-

ment de programmation n�ecessaire �a l'utilisation de la machine.

C'est pourquoi nous proposons l'utilisation originale d'un processeur

32 bits courant, avec son environnement logiciel standard, associ�e �a un

r�eseau de portes programmable pour la gestion des communications entre

processeurs et des probl�emes de synchronisation. Cela limite les d�evelop-

pements �a e�ectuer au minimum tout en conservant une puissance de

calcul importante.

�

un Petit Ordinateur Massivement Parall�ele: a small massively parallel computer. Project

supported by the FrenchMinistry of Research and Technology, in collaborationwith Thomson

Digital Image, and the Programme de Recherches Coordonn�ees en Architectures Nouvelles de

Machines informatiques (CNRS-MRT).

y

This paper was prepared for the proceedings of the Conference On Parallel Architec-

tures And Languages Europe, Eindhoven, The Netherlands, June 10-13, 1991. It is pub-

lished by Springer-Verlag in PARLE'91, Lecture Notes in Computer Science, Volume 505(1),

pages 83{100. It is available by anonymous ftp on the machine spi.ens.fr (129.199.104.3),

pub/reports/liens/liens-91-5.A4.ps.Z.

1



1 MOTIVATION 2

1 Motivation

In this article we propose a methodology for the development of a SIMD ma-

chine. The philosophy of the development consists in minimizing the devel-

opment e�ort. The excessive complexity of parallel machines is probably the

major cause of failure in academic projects. The �rst quality of a machine is its

existence at the end of a project. In this article, we show that it is possible to

develop a coarse-grain SIMD machine that o�ers good performance with very

little e�ort on both hardware and software aspects.

Even if the speci�city of this article is to show development reduction, it is

important to explain why we have decided to develop this kind of machine. Our

main �eld of interest is image synthesis.

2 Why choose SIMD for image synthesis?

Commercial machines for image synthesis are often very specialized with dedi-

cated hardware to speed up the computation of a single algorithm [HH80, AJ88].

This specialization is the major drawback of this approach. Machines become

rapidly obsolete because new rendering algorithms require ever hardware. Only

large companies are able to invest large amounts of money and man-power to

develop custom machines that will be obsolete in a few months' time. We pro-

pose POMP as a non-specialized architecture (with no hardware dedicated to

any special algorithm), which is a step beyond the other alternatives (partially

non-specialized) proposed in [KV90, FPE

+

89].

We have to balance the loss of power due to this non-specialization by a

massively parallel approach (up to 256 32-bit processors, in fact 8,192 bits of

data-paths). This massively parallel organization prohibits the organization in

a multiprocessor with shared memory. Each processor has its own local memory

and an interconnection network enables data interchange.

This class of architecture contains 2 major subclasses:

� The MIMD machines. Each processor runs its own program on its own

data.

� The SIMD machines. Each processor executes the same instruction at the

same time on its own data. We do not need a program memory for each

processor.

In the graphic pipeline, the last stage is rasterization, which requires most

of the computation. A SIMD structure o�ers the best performance on these

computation. [FP81] introduces the concept of smart memory which are a set

of SIMD memory-PE

1

clusters.

1

Processing Element.



3 THE BASIS OF THE MACHINE: THE PROGRAMMING MODEL 3

The POMP project tries to generalize this smart memory concept to all the

algorithms of the whole pipeline. We need for each cluster a general purpose PE,

which is able to handle 32-bit integer numbers, 
oating point numbers, pointer

data types, etc.

We also prefer the SIMD structure because a lot of synchronization problems

are avoided [BCJ89] and a high MFlop/dm

3

ratio can be reached [BDW85].

Furthermore we can build a very simple programming model which enables to

develop debugging environments.

3 The basis of the machine: the programming

model

The e�ciency and the programmability are the �nal targets of computer de-

signing. The relationship between hardware and software is the main problem.

Most of our choices for the architecture of POMP are consequences of the pro-

gramming model.

3.1 The programming model

Variables belong to two classes:

� scalar variables (for standard calculation and 
ow control),

� parallel variables (also called vectors).

An n-PE SIMD machine is able to simultaneously perform the same operation

on a vector of size n. Some SIMD programming environments try to hide the

number of processors behind the concept of virtual processors (for instance the

Connection Machine). The size of massively parallel variables is assumed to be

larger than the number of PEs. Each physical processor emulates one or more

virtual processors (vp). Vectors are not broken into individual elements but into

smaller arrays equally distributed over the PEs.

In a typical massively parallel application, vectors of di�erent sizes are re-

quired and need to interact. The vectors must be partitioned into classes called

vp-set for the CM and collection for POMPC. Each collection corresponds to

one set of virtual processors.

The size is the �rst attribute shared by the vectors of a same collection. The

other attributes of the collection are:

� the activity. This vector of boolean elements (also called context) is the

mask which indicates which elements of the vectors of the collection are

active.

� the topologic organization. These information describes the topologic rela-

tive organization of the virtual processors and the mapping of these virtual

processors on the PEs.



3 THE BASIS OF THE MACHINE: THE PROGRAMMING MODEL 4

3.2 The POMPC language

A detailed description of this language can be found in [Par90]. This model has

led to designing of a programming language which is called POMPC. POMPC

must be considered as a symbolic macroassembler for SIMD machine as is C for

general computers. This language is the direct translation of a programming

model and emphasizes the SIMD aspect of the machine: we do not provide

an autovectorizing language which hides the structure of the machine from the

programmer. This kind of higher level languages can be implemented over

POMPC.

Most of the SIMD machines provide this kind of basic language and a taxon-

omy of many SIMD languages and machines can be found in [Tuc90]. POMPC

has been inspired by the previous version of C* [Thi87, pages 35{41] and is rather

similar to the new version of this language. MPL [Chr90] and MultiC [Wav90]

are also alike (without the collection mechanism).

To implement this model, we must de�ne at any time what the di�erent

processors (the scalar one and the di�erent virtual SIMD machines) are doing.

As only the scalar processor has the control over the program 
ow and as the PEs

are slaves, the best way to express this dependency is to include the instruction

for the PE into the sequential program of the scalar processor (it leads to the

de�nition of a very simple and very convenient controller explained in the next

section).

As we expect to write the addition of 2 vectors like the addition of 2 scalars,

the major problem is to determine from the source �le the location of each

calculation. Typechecking on expressions and statements provides these infor-

mations.

POMPC is an extension of the Kernighan & Ritchie C [KR78]. The exten-

sions are as follows:

� It is possible to de�ne collections.

� Each variable can be either a scalar (like in C), a vector of the particular

processor collection (one datum per PE) or a vector belonging to another

collection. Each vector is declared as a member of a collection. Thus it

is possible to associate a collection with each vectorial statement or each

vectorial expression.

� The where/elsewhere operators allow to change the activity of a collec-

tion, during the execution of a block. This activity is modi�ed according

to the value of a boolean vector of the collection. The where statement

is the equivalent of the if statement except that the block is always exe-

cuted (it mays contains scalar statements or statements concerning other

collections). Every other 
ow-control statements (even break, continue

and return but not goto) has been translated for a parallel usage.



3 THE BASIS OF THE MACHINE: THE PROGRAMMING MODEL 5

=���������������������������������������������������������������������������

Mapping a picture on a scrambled surface :

The view of an underwater chessboard under a dripping tap

���������������������������������������������������������������������������=

#include "pompc.h" =� pompc standard include �le �=

#include "pc_math.h" =� pompc math include �le �=

collection [256,256] pixel; =� pixel is a 2D 256 x 256 collection �=

pixel chessboard() =� returns a chessboard picture �=

f 10

pixel x,y; =� x,y : the local coordinates �=

x = pc coord(0);y = pc coord(1);

where((x & 16) ^ (y & 16)) return 255;

elsewhere return 0;

g

main()

f

pixel char color,picture; =� two pictures �=

pixel int x0,y0; =� local coordinates �= 20

pixel int u,v; =� mapping coordinates �=

int time,screen; =� current time and screen number �=

screen = gr open graphic(); =� gets a window where to display the movie �=

gr set cmap(screen,0,0,0,�1); =� sets a standard color map table... �=

color = chessboard(); =� gets the picture of a chessboard �=

x0 = pc coord(0) � 128; =� x0,y0 : coordinate system from �=

y0 = pc coord(1) � 128; =� the center of the chessboard �=

for(time=0;;time++) f =� and let's go forever... �=

f 30

pixel double X,Y,d,d1,phi;

X = x0;Y = y0;

d = pc sqrt(X�X+Y�Y); =� d : distance from the origin �=

phi = time � d=16.0; =� phi : phase delay �=

where(phi < 0) phi = 0; =� drop touches the surface at phi=0 �=

d1 = 1 + 8�pc sin(phi)=d; =� d1 : new distance from center �=

u = X � d1 + 128; =� coordinates where to get the �=

v = Y � d1 + 128; =� color of the local pixel �=

g

picture <� [u,v]color; =� global indirection �= 40

gr 
ash(screen,&picture,0,0,1,1); =� displays the result �=

g

g

Table 1: Example of a POMPC program.



3 THE BASIS OF THE MACHINE: THE PROGRAMMING MODEL 6

i

A

A = i;

broadcast

i

A

i op<- A;

associative scalar concentration

op

i

A

A[.k.] <- i;

scalar send

A

k

i

A

i <- A[.k.];

scalar get

A

k

D

A,S

D[.A.] op<- S;

D

A

K

op= A

k

send

S

A,D

D <- S[.A.];

D

k

= S

A

K

get

Figure 1: The communications used by POMPC.

� Communications are required to perform non-local interactions. Most of

the communications are expressed in the syntax of the language because

they require only standard network speci�cities, the rest being carried out

by library functions. Figure 1 summarizes the di�erent syntactical con-

structions for POMPC communications. The �rst 4 types of communica-

tions are interactions between scalar variables and vectorials ones. The

2 last types are interactions between collections. The [. .] operator

speci�es transformations on the rank of the elements. When a communi-

cation may send more than one datum on a given element, a accumulative

operator can be speci�ed to accumulate di�erent data in the resulting el-

ement. Accumulative operators are addition, subtraction, multiplication,



4 ARCHITECTURE OF POMP 7

bit-wise and, bit-wise or, exclusive-or, minimum and maximum.

Table 1 shows an example of the POMPC language.

This program computes a chessboard picture (the chessboard function) and

distorts it (as the deformation of a water surface under a water drip) according

to a mapping achieved by a get.

4 Architecture of POMP

4.1 Processor designing: a necessary evil?

The �rst choice during the design of a SIMD machine is the size of the PEs. In

fact, this is the �rst choice because everyone considers that PEs are necessarily

custom-made and that we can freely choose the width of the datapath of the

PEs.

For some very special applications (mostly image processing), it is inter-

esting to choose 1-bit PE because of the size of the data (from 1 to 8 bits).

In order to be e�cient these machines require full-custom processors [NCR84]:

classical sequential processors are not adapted for this computation, because of

the inadequation of the width of the 32-bit processors to 1-bit and 8-bit data.

In the other �elds of application for the SIMD (like ours), the required data

sizes are more conventional (int, float, double) [Hor82, AB86] and it seems

easier and more e�cient to use a powerfull processor than to interface a 
oating-

point coprocessor with 1-bit processor, as in the Connection Machine 2. In this

last case, 1-bit PEs are no longer used for scienti�cal computations: : :

Unfortunately, no commercial 32-bit SIMD PE exists such as the GAPP

[NCR84] for 1-bit SIMD machines or the Transputer (an MIMD PE [INM89]).

We consider that PEs for non dedicated SIMD machines must have the same

qualities as classical processors. An intermediate choice could be to design a

rather small PE with all the necessary hardware required to micro-code e�-

ciently the 
oating-point operations (like the MasPar machine [Bla90a]).

The consequences of this coarse-grain choice are important because this

seems to suppose the development of a very complex PE. We need very broad

competences to be able to design competitive 32-bit PE with 
oating-point and

only large semiconductors companies can cope with such developments. The

problem is not limited to chip design but also to the development of all the

software environment. Developing the PE is not the good solution.

Let us summarize the requirements for the PE:

� a lot of MIPS: an e�cient integer ALU,

� a lot of MFLOPS: an e�cient 
oating-point ALU,

� indirect access to local memory: a data address generator,



4 ARCHITECTURE OF POMP 8

� local 
ow control: a local enable mechanism,

� communications: an e�cient network and a routing mechanism.

In fact it is very similar to a classical processor.

4.2 Why not use an o�-the-shelf processor ?

Such an approach had already be done for the PASM computer [SSNJDK84].

The advantages of using a commercial processor are clear:

� we need not develop a PE, it is cheaper and less time-consuming,

� a C compiler is available for our PE,

� we can bene�t from every improvement of the processor (this is very im-

portant since the speed of RISC processors is regularly doubled inside a

common architecture).

� if we remain rather independent of the processor (particularly in the soft-

ware domain), it is possible to change processors when it appears that a

more suitable architecture has been introduced on the market.

We can drastically limit our developments and provide an easy evolution for our

machine. The general concept is to choose the best processor at any given time.

Four sensitive points have to be coped with:

� We have to broadcast an instruction to every processor. This is easier if

the chosen PE has a Harvard architecture

2

.

� We have to keep every PE synchronous. Each instruction must take the

same time independently of the data processed. This is mostly the case

in RISC processors (as opposed to microcoded processors), provided that

all accesses to the memory last the same time. This prohibits the use of

PEs with caches.

� We have to independently freeze every PE to process the where statement.

It is possible if an \instruction not ready" mechanism is implemented on

the code bus. This is the case every RISC processor with o�-chip cache.

� We have to provide each PE with an access to the network and some

facilities to communicate with the scalar processor. It requires special

hardware and which will be discussed in the section 5.

In 1991, there exists one processor presenting the required characteristics:

the Motorola 88100 [MOT88]. We chose it as the PE of POMP.



4 ARCHITECTURE OF POMP 9

I D

512 KB

@D

HyperCom

SRAM

Access to the network

cluster
instruction
40 bits

88100

@I
Ctrl

Global Or &
scalar get
4 bits

Video

Figure 2: The basic cluster.

4.3 The Processing Element

We can now present the basic cluster for the PE (�gure 2). It contains

mainly:

� the 88100 at 20MHz (17 MIPS and 7 MFLOPS);

� 128K � 32-bit static RAM with a 35ns access time in 4 chips;

� Hypercom, a chip to customize the CPU to its SIMD environment.

The SIMD approach permits us to use only 9 integrated circuits per PE.

A 40-bit instruction bus broadcasts the instructions and the control of the

Hypercom chip to the cluster. The Hypercom provides the followingmechanisms:

� the activity management. Depending on the current activity loaded in the

Hypercom, The control bus de�nes for each instruction if it is executed.

The eventuality of n nested where seems to require an n-depth stack to

save the current activity. In fact, it can be implemented with a counter

[Ker89, Lev90] which is convenient to cope with the complicated activ-

ity handling required when using break, continue, return, case and

default.

� the network access. It consists in limited routing capabilities and shift

registers. The section 5 is dedicated to the network and will give some

2

a special input bus for the instructions.



5 THE INTERCONNECTION NETWORK 10

indications on the hardware required in each Hypercom chip for the access

to the network.

� the hardware required for the communications between the PEs and the

scalar processor: a 4-bit open-collector bus to get the global or of a dis-

tributed variable. This also allows to send a vector element to the scalar

processor (useful for the scalar get and for the �nal stage of the associative

scalar concentration) by nibbles of 4 bits as in [Bla90a], which is a good

compromise.

� the hardware required to correctly recover from an exception or an inter-

ruption.

4.4 The controller and the scalar processor

Some SIMD machines use an independent sequencer to run scalar code or to

expand microinstructions generated by an host computer [Thi87]. The use of

the host computer as scalar processor facilitates the software development but

requires high input/output bandwidth for the broadcast of the code from the

host to the PEs. It is possible only if an intermediate sequencer expands some

high-level instructions into microcode (typically 32-bit instructions expanded

into 1-bit microinstructions, when 1-bit PEs are used). We cannot use such a

structure because we need a 20 MHz 40-bit instruction rate. The scalar processor

must be directly located in the SIMD machine. This choice has been made in

[Bla90a, AB86].

As we use a commercial processor for the PE, it is natural to use the same

processor as scalar processor for code orthogonality and for easier synchroniza-

tion between PEs and the scalar processor. It simultaneously fetches its own

32-bit instruction and the 40-bit instruction broadcasted to the clusters. The

whole machine is driven by a 72-bit Long Instruction Word (LIW). The �gure 3

presents the global architecture of POMP.

An history of the cluster instructions is saved in a FIFO: when an exception

occurs, the PEs can correctly resume execution. The scalar processor can ac-

cess a register to override some �elds of vectorial instructions, enabling scalar

broadcasts of values.

Since the most important argument claimed by the SIMD defenders is the

removal of synchronization issues, we think that the implicit LIW is a way to

go further in the synchronization of scalar code with the parallel code, allowing

a more global code optimization.

5 The interconnection network

Choosing a network consists in choosing the best trade-o� between performance

and cost for a given class of applications.



5 THE INTERCONNECTION NETWORK 11

I
D

Control

Video

R
G

B
Alpha

DACPAV

512 KB

@D

HyperCom

I

@I

88100

@D

D
RAM

RAM

RAM

VME Bus

RAM SCSI

88100

I/O

Scalar
Reduction

FIFO

Scalar broadcast

Scalar Data

Scalar code

Vectorial code

Scalar processor

Network

Up to 256

Global
exception

Parallel Processor

SRAM

Host

LI
W

 c
od

e

Figure 3: The global architecture of POMP.

5.1 Measuring the performance

Applications may require di�erent communication types:

� random access,



5 THE INTERCONNECTION NETWORK 12

� 1-neighbour access,

� all neighbours according to a multidimensional mesh,

and di�erent object granularities for the network:

� size of the packets (1 bit to 1 Kbit),

� number of physical processors,

� number of virtual processors per physical processor (vp-ratio).

To measure the needs of a target application, we have to evaluate the occur-

rence of every combination above. A unit system is required for such measure-

ments to compare the performance of the network with the performance of the

PEs. We have decided to speak in terms of:

time required for the communication of 32 bits for each virtual processor

time required for the addition of 32 bits for each virtual processor

5.2 Measuring the cost

The global cost of the machine depends on the cost of the PEs and the cost of the

network. The latter is not easy to evaluate because it is not a linear function of

the performance. This cost grows by step when the implementation must move

from one technology to another at di�erent hierarchical levels [FWT82]:

� the number of transistors required for the network by each PE,

� the number of pins required by each PE,

� the density on each motherboard (the number of routing levels on moth-

erboards),

� the number of connections between motherboards.

5.3 Choosing the Network

Many network designs have been described in the literature and can be classi�ed

according to some criteria such as operation mode, control strategy, switching

method and network topology [Fen81, Gil86, Kot87].

In our case, the network is synchronous (SIMD machine) and the control is

distributed (for scalability and simplicity). The choice of the switching method

is not obvious:

� packet switching requires local storage and more complex hardware,

� circuit switching needs to establish a connection through several physical

links.



5 THE INTERCONNECTION NETWORK 13

The network topology is probably the major issue in parallel computer de-

signing because it depends on the applications and on almost all the machine

parameters.

5.4 Implementation of a hybrid interconnection network

We propose a network for applications which require mostly random accesses

(required for image synthesis with distributed data-base) but also simultaneous

accesses to all neighbours on a multidimensional mesh.

These aspects seem incompatible and would require respectively a dynamic

(switched) and a static network. Existing machines demonstrate it:

static network CM-2 [Thi87], ILLIAC IV [Hor82], MPP [Bat80],

dynamic network PASM [SSNJDK84], OPSILA [AB86],

static network and dynamic network MasPar [Bla90b].

A candidate for the static network is the hypercube network and a can-

didate for the dynamic network is the indirect binary cube MIN (multistage

interconnection network) [Sch91].

But since a dynamic network is a spatial unfolding of a static network, it

must be possible to use the physical wires between switches as a static network

instead of using two separated networks like in MasPar.

Each stage of our hybrid MIN can be seen as a dimension of the hypercube.

If such a MIN is built with n log

p

n switches instead of

n

p

log

p

n for a cube MIN

with n PEs and p � p-crossbars

3

(ie n lines of log

p

n crossbars instead of

n

p

lines), it is possible to partition the MIN into n similar subsets mapped on a

hypercube, as seen on �gure 4 for n = 4 and p = 2.

The classical design approach leads to the development of an ASIC (Ap-

plication Speci�c Integrated Circuit) for the Hypercom. This is not convenient

because we are quite obliged to redesign the ASIC if the number of processors

or the network change.

In order to follow our minimalist philosophy, the Hypercom circuit can be

implemented with some reprogrammable LCA (Logic Cell Arrays) such as the

new 4000 family of Xilinx [XIL90], which o�ers the required performance, com-

plexity and pin count. Each switch is reversible, o�ers broadcast capabilities

and uses a destination tag algorithm to establish a connection.

For communications on a mesh, a control bit enable changing from the dy-

namic to the static network. Thus routing overheads are avoided.

3

We consider a generalized hypercube pattern with p PEs totally interconnected on each

dimension. p = 2 for the standard hypercube.



6 THE CODE GENERATION FOR POMP 14

PE

PE

PE

PE

F
ro

m
 s

w
itc

he
s

T
o 

P
E

s

SW SW

SW SW

SW SW

SW SW

Figure 4: The network for n = 4 and p = 2.

5.5 Performance and cost

This study is illustrated for the case of 256 + 1 processors packaged as:

� 1 controller board,

� 16 motherboards of 16 PEs

in a 19" Triple Europe rack.

The performance evaluation of the network for random routing is complex,

contrary to neighbourhood communications. We have simulated the random

routing for a high vp ratio, as shown in table 2, with 1-bit datapaths. Related

costs are represented in table 3.

8-stage and 4-stage (�gure 5) networks present a correct trade-o� between

performance for random routing and cost. They are both small enough to be

implemented in the Hypercom with a reprogrammable LCA, even with 4-bit

datapath, for the 8-stage MIN, which is then very performant.

6 The code generation for POMP

Figure 6 illustrates the code generation process for POMP. The �nal instruc-

tion is 72-bit wide and consists in the following �elds:

� a 32-bit instruction for the scalar processor;



6 THE CODE GENERATION FOR POMP 15

Hypercube static networkIndirect cube MIN

channel
channel
channel
channel

channel
channel
channel

channel
channel
channel

channel
channel
channel

channel
channel
channel

4x4

4x4

4x4

4x4

0

1

2

3

4
0

1

2

3

4

PE

F
ro

m
 s

ta
ge

T
o 

st
ag

e

PE

0

1

2

3

D
im

en
si

on

channel
channel
channel

S

Figure 5: The two con�gurations of the network with n = 256 processors and

p = 4.

Network Average Average #cycles per 32 bits Peak

type e�ciency int double 256 bits 1 throughput

a

8 stages, 2� 2 0.30 66.8 63.4 60.8 60 1.3 GB/s

4 stages, 4� 4 0.37 41.5 38.5 36.2 35.4 2.6 GB/s

2 stages, 16� 16 0.48 21.4 15 10.2 8.6 10 GB/s

1 stages, 256� 256 0.63 15.8 11.1 7.5 6.3 10 GB/s

b

a

For regular routing, like matrix multiplication.

b

The throughput is limited by the PE data bus.

Table 2: Performance of some hybrid networks.

� a 32-bit instruction broadcasted to the PEs;

� an 8-bit instruction to control the Hypercoms.

The global idea of our code generation consists in using commercial compiler and

assembler, which is coherent with our philosophy to develop as little software

as possible.



6 THE CODE GENERATION FOR POMP 16

Network #Links #Communication #switches #Wires between

type /PE pins/PE /PE motherboards

8 stages, 2� 2 2 18 32 158

4 stages, 4� 4 4 30 64 282

2 stages, 16� 16 16 90 512 960

1 stages, 256� 256 256 960 65536 15360

Table 3: Costs of some hybrid networks.

The most complex part for this generation is the splitting of the POMPC

source �le into two C �les. This is the �rst phase of a compiler. It is neces-

sary to develop a parser for POMPC. A typechecker identi�es the collection

of each expression and each statement. An instruction breaker cuts the di�er-

ent parts of expressions to separate instructions with scalar side e�ects (scalar

assignment, scalar increments and decrements, function calls,...) from purely

vectorial instructions which depend on an activity and are repeated as many

times as necessary to handle the virtual processing management

4

. Consecu-

tive instructions depending on the same collection are then associated to share

the same virtual management loop. Vectorial local variables declared in block

handled in a single virtual management loop are relegated to the processor col-

lection: local arrays are transformed into single elements which are commonly

compiled in registers (this con�rms the usefulness of a RISC processor for the

PEs). The �nal step of the program is the code generation. This part is simple

because the generated code is C which is a symbolic language. Three kinds of

generators are used:

� the generation of the code for POMP. The di�erent �les are generated

with synchronization points declared in the C codes by dummy function

calls to pseudo-functions (synchro 1(), synchro 2(),...)

� the generation of a C �le for one or more processes simulation: it is in fact

the same generation of code but in a single �le. Each PE is simulated by a

Unix process which also runs the scalar code. A shared memory segment

allows to synchronize the processes and to simulate the communication.

Thus it is possible to develop in POMPC the communication routines for

POMP and for the simulation. It allows to measure the performance of the

network. The number of processes is de�ned by an environment variable.

The monoprocess simulation is a multiprocess simulation with only one

PE.

� the generation of a CPaRIS code (the C Parallel Instruction Set of the

4

This is the virtual management loop.



6 THE CODE GENERATION FOR POMP 17

simulation on one or
more Unix processes

Connection Machine

scalar C file vectorial C file

vectorial
assembler fileassembler file

scalar

assembler file
synchronized vectorialsynchronized scalar

assembler file

Hypercom
control file

simulation
C file

C* file

POMPC source file

control code      scalar code      vectorial code

LIW code

MC88100
C compiler

MC88100
C compiler

synchronizer

MC88100 asm MC88100 asm

execution
on POMP

C code generators

POMPC parser

typechecking analyser

Figure 6: The code generation diagram.

Connection Machine [Thi87]) which allows to perform real-time simula-

tions on the Connection Machine

5

.

� other code generators can be thought of; for instance it could be interesting

to write some for the Intel Hypercube or for the Sequent Machine and to

study the interest of a SPMD language to program MIMD machines.

The second program to be developed is the synchronizer. It takes as inputs

5

This language is used by people programming on the Connection Machine



7 CONCLUSION 18

the three �les for each �eld and resynchronizes them. This programmust under-

stand the assembly code of the target processor (here the MC88100) in order to

identify the synchronization pseudo-function calls. Synchronization is achieved

by inserting nops in the code to be delayed. This program must also take into

account the pipeline structure of the controller and the internal pipeline of the

MC88100. The internal scoreboarding of the chip must be managed at compile

time to avoid the desynchronization of the whole machine at run time.

The third program is a simple loader with a parallel symbolic debugger.

Only the last two programs depend on the type of the choosen processor and

must be rewritten if we choose another processor. This limits the complexity of

the development for today and for tomorrow.

7 Conclusion

Choosing to limit the developments does not lead to poor performances.

As concerns the hardware, we have only to develop the controller board,

which is easy thanks to the use of a commercial processor, the replicated module

of the cluster (a very small board with 9 circuits) and the interconnections of

the 16 mother boards.

Software developments are limited to the development of a POMPC prepro-

cessor (20,000 lines of C) and the synchronizer (5,000 lines of C).

It is possible for programs requiring little networking (at most one global

indirection every 50 instructions) to reach the full e�ciency of the machine:

4000 MIPS and 1700 MFLOPS with a small machine (� 1 kW).

8 Current Work

A 3-processor machine is now under development. It will demonstrate the feasi-

bility of the controller and of the programming concepts. As soon as credits can

be found (we need 1 MFF in commercial chips) a prototype with 257 processors

will be built.

The POMPC compiler is written. Simulations on the Connection Machine 2

(located at the ETCA) and on Unix work. Small applications like a One-Step-

Relaxation electrical simulator have been developed in POMPC and run on the

Connection Machine and on the Unix simulators. Some aspects of the semantic

of POMPC have been studied by Luc Boug�e and Jean Luc Levaire [Bou90,

Lev90]. A ray-tracer is under development using the spatial coherence of the

rays with beam tracing techniques developed in [Thi90].



REFERENCES 19

References

[AB86] M. Auguin and F. Boeri. The opsila computer. In INRIA, editor, Par-

allel Algorithms & Architectures, pages 143{153. North-Holland, 1986.

[AJ88] Kurt Akeley and Tom Jermoluk. High-performance polygon rendering .

In Computer Graphics (SIGGRAPH '88), volume 22(4), pages 239{246.

ACM, Août 1988.

[Bat80] Kenneth E. Batcher. Architecture of a massively parallel processor. In

SIGARCH 80, pages 168{173. The Institute of Electrical and Electronics

Engineers, Inc., 1980.

[BCJ89] Edward C. Bronson, Thoms L. Casavant, and Leah H. Jamieson. Experi-

mental application-driven architecture analysis of an simd/mimd parallel

processing system. In International Conference on Parallel Processing,

pages 59{67. The Institute of Electrical and Electronics Engineers, Inc.,

Academic Press, 1989.

[BDW85] John Beetem, Monty Denneau, and Don Weingarten. The gf11 super-

computer. In SIGARCH 85, pages 108{115. The Institute of Electrical

and Electronics Engineers, Inc., 1985.

[Bla90a] Tom Blank. The design of the maspar mp-1, a cost-e�ective massively

parallel computer. In IEEE, editor, IEEE Compcon Spring 1990, Febru-

ary 1990.

[Bla90b] Tom Blank. The maspar mp-1 architecture. In IEEE, editor, IEEE

Compcon Spring 1990, February 1990.

[Bou90] Luc Boug�e. On the semantics of languages for massively parallel simd ar-

chitecture. Technical Report LIENS-90-13, Laboratoire d'Informatique

de l'Ecole Normale Sup�erieure, Juin 1990.

[Chr90] Peter Christy. Software to support massively parallel computing on the

maspar mp-1. In IEEE, editor, IEEE Compcon Spring 1990, February

1990.

[Fen81] Tse Yun Feng. A survey of interconnection networks. Computer,

14(12):12{27, D�ecembre 1981. The Institute of Electrical and Electronics

Engineers, Inc.

[FP81] Henry Fuchs and John Poulton. Pixel-plane: a vlsi-oriented design for

a raster graphics engine. VLSI Design, 2(3), 1981.

[FPE

+

89] Henry Fuchs, John Poulton, John Eyle, Trey Greer, Jack Goldfeather,

David Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Is-

rael. Pixel-plane 5: A heterogeneous multiprocessor graphics system us-

ing processor-enhanced memories. In Computer Graphics (SIGGRAPH

'89), volume 32(4), pages 79{88. ACM, Juillet 1989.

[FWT82] Mark A. Franklin, Donald F. Wann, and William J. Thomas. Pin limi-

tation and partitionning of vlsi interconnection networks. IEEE Trans-

actions on Computers, C-31(11):1109{1116, Novembre 1982.

[Gil86] Wolfgang K. Giloi. Interconnection networks for massively parallel com-

puter systems. In Future Parallel Computers, volume 272, pages 321{

348. Springer-Verlag, 1986.



REFERENCES 20

[HH80] James H.Clark and Mark R. Hannah. Distributed processing in a high-

performance smart image memory . Lambda, 1(4):369{374, 1980.

[Hor82] R. Michael Hord. The ILLIAC IV, The First Supercomputer. Computer

Science Press, 1982.

[INM89] Inmos. The Transputer Databook , 1989.

[Ker89] Ronan Keryell. Pomp2 : D'un petit ordinateur massivement parall�ele.

Rapport de magist�ere, LIENS | Ecole Normale Sup�erieure, Octobre

1989.

[Kot87] S. C. Kothari. Multistage Interconnection Networks fo Multiprocessor

Systems, volume 26, pages 155{199. Academic Press, 1987.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C programming lan-

guage. Prentice-Hall, 1978.

[KV90] David Kirk and Douglas Voorhies. The rendering architecture of the

dn10000vs. In Computer Graphics (SIGGRAPH '90), pages 299{307.

Association for Computing Machinery, Août 1990. Volume 24, Number

4.

[Lev90] Jean-Luc Levaire. Deux s�emantiques op�erationnelles pour POMPC.

Diplôme d'etude approfondie, LIENS, Paris, Septembre 1990.

[MOT88] MOTOROLA. MC88100 RISC processor user's manual , 1988.

[NCR84] NCR. Geometric arithmetic parallel processor NCR45CG72 , 1984.

[Par90] Nicolas Paris. D�e�nition de pompc (version 1.5). Technical report,

LIENS, F�evrier 1990.

[Sch91] Isaac D. Scherson. Orthogonal graphs for the construction of a class

of interconnection networks. IEEE Transactions on Parallel and Dis-

tributed Systems, 2(1):3{19, Janvier 1991.

[SSNJDK84] Howard Jay Siegel, Thomas Schwederski, IV Nathaniel J. Davis, and

James T. Kuehn. Pasm: A recon�gurable parallel system for image

processing. ACM SIGARCH Newsletter, 12(4):7{19, Septembre 1984.

[Thi87] Thinking Machine Corporation. ConnectionMachine Model CM-2 Tech-

nical Summary, Avril 1987. HA87-4.

[Thi90] Jean-Philippe Thirion. Interval arithmetic for high resolution ray trac-

ing. Technical Report LIENS-90-4, Laboratoire d'Informatique de

l'Ecole Normale Sup�erieure, F�evrier 1990.

[Tuc90] Russ Tuck. Porta-SIMD: An Optimaly Portable SIMD Programming

Language . PhD thesis, University of North Carolina at Chapel Hill,

Mai 1990.

[Wav90] Wavetracer Inc. The multiC Programming Language: Extending C to

Accomodate Data Parallel Processing, 1990.

[XIL90] XILINX. XC 4000 Logic Cell

TM

Array Family, 1990. Technical Data.



PUBLICATIONS DU LIENS 21

PUBLICATIONS DU LIENS

90 - 1 M.P. GASCUEL

A. VERROUST

C. PUECH

Animation with Collisions of Deformable Articulated Bodies

90 - 2 B. VIROT Parallelization of the Simulated Annealing Algorithm Application to the Placement

Problem

90 - 3 J.P.THIRION Tries : Data Structures Based on Boolean Representation for Ray Tracing

90 - 4 J.P. THIRION Interval Arithmetic for High Resolution Ray Tracing

90 - 5 F.P. PREPARATA

J.S. VITTER

M. YVINEC

Output-Sensitive Generation of the Perspective View of Isothetic Parallelepipeds

90 - 6 L. BOUG

�

E

P. GARDA

Towards a Semantic Approach to SIMD Architectures and their languages

90 - 7 L. PUEL

A. SU

�

AREZ

Compiling Pattern Matching by Term Decomposition

90 - 8 D. DURE Simulation Multi-Mode de Circuits VLSI (Th�ese)

90 - 9 P.L. CURIEN Substitution up to Isomorphism

90 -10 P.L. CURIEN

G. GHELLI

Coherence of Subsumption

90 -11 F. FAGES A New Fixpoint Semantics for General Logic Programs Compared with the Well-

Founded and the Stable Model Semantics

90 -12 A. BOUVEROT Pliage/D�epliage et Extraction de Programmes Logiques: Pr�esentation Compar�ee

90 -13 L. BOUG

�

E On the Semantics of Languages for Massively Parallel SIMD Architectures



PUBLICATIONS DU LIENS 22

90 -14 K. BRUCE

R. DI COSMO

G. LONGO

Provable Isomorphisms of Types

90 -15 F. FAGES Consistency of Clark's Completion and Existence of Stable Models

90 -16 J.D. BOISSONNAT

O. DEVILLERS

R. SCHOTT

M. TEILLAUD

M. YVINEC

Applications of Random Sampling to On-line Algorithms in Computational Geome-

try

90 -17 J.P. THIRION Utilisation de la Coh�erence des Rayons Lumineux pour le Lancer de Rayons (Th�ese)

90 -18 M. POCCHIOLA

E. KRANAKIS

Camera Placement in Integer Lattices

90 -19 R. M. AMADIO Domains in a Realizability Framework

90 -20 G. LONGO Notes on the Foundation of Mathematics and of Computer Science

90 -21 G. LONGO

E. MOGGI

Constructive Natural Deduction and its "!"-set Interpretation

90 -22 M.P. GASCUEL D�eformations de Surfaces Complexes : Techniques de Haut Niveau pour la Mod�eli-

sation et l'Animation (Th�ese)

90 -23 M. POCCHIOLA Trois Th�emes sur la Visibilit�e : Enum�eration Optimisation et Graphique 2D (Th�ese)

90 -24 Y. LAFONT

A. PROUT

�

E

Church-Rosser Property and Homology of Monoids

90 -25 P.H. CHEONG Compiling Lazy Narrowing into Prolog

90 -26 P.H. CHEONG

L. FRIBOURG

E�cient Integration of Simpli�cation into Prolog

90 -27 A. VERROUST Etude de Probl�emes li�es �a la d�e�nition, la Visualisation et l'Animation d'Objets Com-

plexes en Informatique Graphique (Th�ese d'Etat)

90 -28 L. FRIBOURG Generating Simpli�cation Lemmas Using Extended Prolog Execution and Proof-

Extraction

90-29 L. COLSON Repr�esentation Intentionnelle d'Algorithmes dans les Syst�emes Fonctionnels : une

Etude de Cas. (Th�ese)

91 - 1 G. BERNOT Testing Against Formal Speci�ations : a Theoretical View

91 - 2 A. BOUVEROT Comparaison entre la Transformation et l'Extraction de Programmes

Logiques.(Th�ese)

91 - 3 R. AMADIO Bi�nite Domains : Stable Case

91 - 4 A. BOUVEROT Extracting and Transforming Logic Programs

91 - 5 P. HOOGVORST

R. KERYELL

P. MATHERAT

N. PARIS

POMP or How to Design a Massively Parallel Machines with Small Developments



PUBLICATIONS DU LIENS 23

91 - 6 G. BERNOT

M. BIDOIT

T. KNAPIK

Observational Approaches in Algebraic Speci�cations: a Comparative Study

91 - 7 Y. LAFONT

A. PROUT

�

E

Church-Rosser Property and Homology of Monoids (revised version)

91 - 8 G. BERNOT

M. BIDOIT

Proving the Correctness of Algebraically Speci�ed Software: Modularity and Observ-

ability Issues

91 - 9 M. BIDOIT Development of Modular Speci�cations by Stepwise Re�nements Using the PLUSS

Speci�cation Language

91 - 10 R. Di COSMO Invertibility of Terms and Valid Isomorphisms. A Proof Theoretic Study on Second

Order �-calculus with Surjective Pairing and Terminal Object

91 - 11 R. Di COSMO

P.L. CURIEN

A Con
uent Reduction for the �-calculus with Surjective Pairing and Terminal Ob-

ject and Terminal Object

91 - 12 P. CR

�

EGUT Machines �a Environnement pour la R�eduction Symbolique et l' Evaluation Partielle

(Th�ese)

91 - 13 L. CHILLAN Typing with Type Relations and ML-Polymorphism

91 - 14 P.COUSOT

R. COUSOT

Inductive De�nitions, Semantics and Abstract Interpretation

91 - 15 A. ASPERTI A Linguistic Approach to Deadlock

91 - 16 P.L. CURIEN

T. HARDIN

A. R

�

IOS

Normalisation Forte du Calcul des Substitutions

91 - 17 N. PARIS MOD2MAG User's Manual


