
Mod2mag

User's Manual

Nicolas Paris

1

November 8, 1991

1

Laboratoire d'Informatique de l'Ecole Normale Sup�erieure URA 1327 du C.N.R.S.

1

Acknowledgements

I am very grateful to Pr. Bertrand Zavidovique who trusted me for such a large work.

I wish to thank Thierry Bernard, Georges Quenot, Ronan Keryell and Jean-Dominique

Gascuel for their help and suggestions.

Last but not least, I give Philippe Hoogvorst special thanks for the time he has spent

checking this document.

2

Chapter 1

Introduction

1.1 Presentation of Mod2mag

Mod2mag is the masterpiece of the VLSI compilation environment developed at the Computer

Science Laboratory of the Ecole Normale Sup�erieure. This document is mostly dedicated to the

description of mod2mag. However a manual page is available (mod2mag(1)) to summarize

the
ags ofmod2mag. This environment is a complement of the Magic Software Distribution

of the University of California at Berkeley. File formats are compatible with the formats of the

magic tools. It is necessary for the reader to read the manual of the Berkeley distribution in

order to understand this document.

Mod2mag is a silicon compiler. It takes input �les in the syntax of the model language

and may generate di�erent kinds of output:

� Transistor level netlists for electric simulation,

� Switch-level/logical/behavioral netlists for multi-level simulation,

� Layouts for magic,

� Layout netlists for the magic router,

� Pcb netlists for the Dedale2000 pcb router.

Mod2mag uses basic layout tiles which are designed with magic.

Being very e�cient for the development of small cells, the magic environment does not pro-

vide any e�cient facility to convert a schematic description into a layout hierarchy. Mod2mag

has been developed to tackle this problem. In this environment:

� Magic is used to design basic library cells,

� Mod2mag is used to describe, simulate and debug schematics and �nally to generate

the layout, and the PCB netlists.

Mod2mag allows to follow a top-down methodology due to the behavioral description of

the cells. It is associated with msim for the multi-level simulation. Our model syntax can

be classi�ed in Hardware Description Language. Furthermore, it provides facilities to develop

parametrical libraries in order to generate layout in both full-custom and/or standard cell style.

3

4 CHAPTER 1. INTRODUCTION

1.2 Libraries, examples and technologies

Associated with the Magic environment, this environment is e�cient for the design of VLSI.

The last problem is the development of libraries in the designer technology. Tools and method-

ologies are provided in order to help a designer or a local maintainer to develop custom libraries

in a local technology. This distribution is associated with layout libraries in 2 technologies:

� the mcmos technology which corresponds to the ECDM20-C 2�m Cmos technology of

European Silicon Structure. A speci�cation of the standard cells for this technology

is provided in the appendix A. Libraries and examples are provided in the software

distribution in the directory ~cad/ulm/mcmos.

� the ecpd technology which corresponds to the ECPD15 1:6�m Cmos technology of Euro-

pean Silicon Structure. A speci�cation of the standard cells for this technology is provided

in the appendix B. Libraries are provided in the software distribution in the directory

~cad/ulm/ecpd. This technology is scalable (unless for pads which must be adapt to

the technology). So it is relatively easy to develop a technology in the existing ECPD12

1:2�m Cmos technology of European Silicon Structure and to the ECPD8 0:8�m Cmos

technology to come of European Silicon Structure.

The appendix C explains to the local maintainer how to develop a new environment for a new

technology.

1.3 Presentation of the global environment

The �gure 1.1 shows the data
ows between �les and program for the whole environment.

Programs in bold face belongs to our distribution while programs in italic belongs to the

Berkeley environment.

1.3.1 File formats

File formats are identi�ed by the extension of the of each �le:

� the .mod �les are text �les which contain the source for mod2mag. They follow the

syntax of the model language. This document precisely describe the syntax and the

semantic of this format..mod �les can be generated by ext2mod from .ext �les.

� the .mag �les are layout �les, which contains the graphical hierarchical description of the

layout cells. This format is the magic(5) format. .mag �les are generated by mod2mag

and can be edited by magic.

� the .ext �les are hierarchical netlist �les. They describe under a hierarchical format the

transistor netlist of a circuit. They are generated by magic and are use by ext2mod

and ext2sim. This format is described in ext(5).

� the .net �les are netlist for the magic router. It may be generated by mod2mag. This

format is described in net(5).

� the .sim �les are
at electrical netlist. This format is described in sim(5). These �les are

generated by mod2mag or by ext2sim.

1.3. PRESENTATION OF THE GLOBAL ENVIRONMENT 5

mod2mag.mod

espresso

magic

sim2psice

msim

eqntott

tt2tab

spice

ext2mod

ext2sim mag2ps

ana

.mag.net

.log

.sim

.spice

.stim

.slo

.eqn

.tt

.tab

.ext

.ps

Figure 1.1: software environment

� the .al �les are netlist alias �les. This format is described in sim(5). These �les are

generated by mod2mag or by ext2sim. They describe the di�erent names given to the

same wires. They are associated with electrical
at netlists (.sim) or logical
at netlists

(.log). These �les are used by msim and sim2spice.

� the .spice �les are electrical
at netlists for spice. These �le are generated by

sim2spice.

� the .log �les are logical
at netlists. This format is described in log(5). These �les are

generated by mod2mag. They are read by msim.

6 CHAPTER 1. INTRODUCTION

� the .beh �les are behavioral
at netlists. This format is described in msim(1). These �les

are generated by mod2mag. They are read by msim.

� the .stim �les are stimuli for multilevel simulation. The format is described in msim(1).

These are manually edited text �les. They are read by msim.

� the .slo �les hold the wave-forms generated by msim and displaid by ana. The format

is described in slo(5).

� .eqn �les hold the equation of PLAs. They are text �les edited manually. This format is

described in eqntott(1). They are converted into .tt format using eqntott.

� the .tt �les are table description of PLAs. They are generated by eqntott from .eqn

�les. They may be optimized by the espresso program. The format is described in

espresso(1).

� the .tab �les are PLA �les. They can be read by the Read command in model. It may

be generated by tt2tab from the .tt �les.

� the .ps �les are the Postscript �les. The program mag2ps converts .mag cells into

printable Postscript �les. Ana provide also .ps �les to plot the wave-forms.

1.3.2 Programs

Our distribution consists of the following programs:

� mod2mag is the silicon compiler. It takes as input .mod �les and .tab �les and generates

layouts (.mag), routing netlists for magic (.net), electrical netlist (.sim and .al) and

multi-level simulation netlists (.log, .beh and .al). This document is dedicated to the

description of this program. However a manual page is available (mod2mag(1)).

� ext2mod generates amodel interface and a data sheet for every .mag cells. This program

is documented in ext2mod(1).

� msim is the multi-level simulator. It as input takes a multi-level netlist as in-

put(.log,.beh and .al) and stimuli (.stim). This simulators is documented in msim(1).

� ana is the wave-form analyser/model-debugger. This program is documented in ana(1).

It reads .slo �les and may produce Postscript �les.

� mag2ps generates Postscript print out of layout cells. This program is documented in

mag2ps(1). All the layout �gures of this document have been generated by mag2ps.

� tt2tab converts .tt format to a format readable by this program.

The manual pages for all these programs and the new �le formats are located in ~cad/ulm/man

and in the appendixF.

1.3. PRESENTATION OF THE GLOBAL ENVIRONMENT 7

1.3.3 Organization of this document

This document follows this plan:

� the next chapter presents the syntax of the language model,

� the chapter 3 presents the simulation aspects,

� the chapter 4 presents the layout generation aspects,

� the �rst 3 appendices presents the speci�cation of cells for two technologies and how to

develop a new technology.

� the appendix D presents the data sheet of the library in the mcmos technology.

� the appendix E presents small, though non trivial circuits generated by mod2mag.

� the last appendix contains the manual pages of the programs and �le formats of the

distribution.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started

This chapter is dedicated to the presentation of the syntax of model. The design of di�erent

levels of implementation of a nand gate will be an opportunity to illustrate the syntax ofmodel

and the associated semantic.

2.1 Preparing an input �le

Files expressed in the model syntax possess usually the \.mod" extension. An input �le is

mainly made up of two kinds of statements:

� declarations and de�nitions of objects,

� instances of these objects.

The order of these declarations/de�nitions and instances is irrelevant, as long as objects are

declared or de�ned before being used.

2.2 First lesson : the basic syntax

Table 2.1

1

shows the �rst implementation of our nand gate. At the �rst line, a library �le is

included. The Include statement is the priviliged way of sharing objects and/or libraries

between di�erent designs: it is possible to build and share libraries. These included �les are

read as if their contents take place directly in the calling �le. As a single �le for each library is

included in various designs, the coherence between them is automatically ensured.

Here, the magicdef.mod �le is assumed to contain the de�nitions of the ntrans and ptrans

objects. Between line 3 to line 12, the nand gate is de�ned. At line 17, this gate is used.

2.2.1 De�nition and instance of Parts

The main purpose of the modellanguage is to provide a syntax for the description of pieces of

hardware. Circuits are often described with a hierarchy of cells. Cells are built with electronic

1

lesson1.mod

9

10 CHAPTER 2. GETTING STARTED

1 Include "magicdef.mod"

2 { description of a nand gate with two inputs in(0:1)

3 Part nand[in(0:1)] -> out

4

5 Signal middle

6

7 ntrans(1000,200)[in(0)] -> GND,middle

8 ntrans(1000,200)[in(1)] -> out,middle

9 ptrans(1500,200)[in(0)] -> Vdd,out

10 ptrans(1500,200)[in(1)] -> Vdd,out

11

12 End

13

14 Signal a,b

15 Signal output

16

17 nand[a,b] -> output

Table 2.1: the nand gate : �rst implementation

component like fet transistors and capacitors and with subcells. Every cell is called a part in

the modelterminology.

The de�nition of the nand gate looks like the de�nition of a function. It begins with the

Part keyword and ends with the End keyword. Each enclosed statement belongs to the nand

de�nition. The next word is the name of this part, followed the di�erent parameters of this

\function":

� an optional list of integer parameters, enclosed between parenthesis. An empty list is

illegal and must be omitted;

� a list of input signals surrounded with square bracket \[]" (here the bus in(0:1));

� a list of output signals (located after an arrow \->"). When the output list is empty, the

arrow must be suppressed

Mod2mag provides electrical rule checking which is not based on the distinction between inputs

and outputs in a part declaration. (the Electrical Rule Checking mechanism is described in

chapter 3). This distinction exists only for legibility purpose. Anyway, we must handle signals

which are not really well-typed. For instance, the source and the drain of a FET transistor are

neither input nor output. By convention, the irresolute input/output signals take place into

the part output list, as shown in our �rst example for the instances of ntrans and ptrans,

which are FET transistors.

These instances show examples of the use of integer parameters (which represent here the

width and the length of the transistor channel in hundredths of micron).

2.2. FIRST LESSON : THE BASIC SYNTAX 11

2.2.2 Signals and buses

Wires are required for connecting the di�erent parts together. A wire may be known under

several names. These names are called signals in the model syntax. They must be declared

before being used. The Signal keyword declares signals in the current context:

� local signals in the body of a part declaration (e.g. middle at line 5),

� global signals in the top level of the �le (e.g. a, b and output at lines 14 and 15)

Parameter signals are implicitly declared in the header of a part de�nition: so the signals in(0),

in(1) and out are declared in the current part by in(0:1) and by out in the header of the

part de�nition (at line 3).

An easy way to declare a list of signals is to declare a bus which is an array of signals.

An index mechanism allows to extract signals from a bus. The domain of this index must be

speci�ed at the declaration of the bus with its limits separated with column (:) and enclosed

with parenthesis. So,

Signal data(0:4)

declares a bus consisting of 5 signals: data(0), data(1), data(2), data(3) and data(4). A

given identi�er can take place in only one signal declaration in a given context. For instance,

it is illegal to write:

Signal data,data(0:4),data(7:11)

When using a bus, it may be useful to extract a subbus from this bus, or to build a bus from

signals and subbuses.

2.2.3 Construction of signal lists

Di�erent constructors are available to build list of signals:

� the most simple operator is the signal list concatenation. This operator is the comma

(\,"). If a, b and c are signals or buses, then a, b, c is a list of signals. The �rst way

to list every signal of the data bus is to write directly:

data(0), data(1), data(2), data(3), data(4)

� It is possible to share in a list the identical bus name:

data(2),data(1), data(2,1)

It is possible to apply a list of integers to a bus as long as every integer belongs to the

range of the bus: it results a signal list. By this mechanism, we can use every integer

list constructor for signals list. The second way to list every signals of the data bus is to

write:

data(0,1,2,3,4)

� It is possible to specify a regular enumeration of integers with the colon operator (\:").

1:5 is a list of those �ve integers 1, 2, 3, 4, 5. We may also specify a step. 6 : 1

By -2 is a list of the three integers 6, 4, 2. The third way to list every signal of the

data bus is to write:

data(0:4)

� Sometimes, every signals of a bus must be listed in the natural order. The name of the

bus without any parenthesis is enough to describe the whole signal list. The most simple

12 CHAPTER 2. GETTING STARTED

type name tension

ground Ground 0V

Gnd 0V

Earth 0V

Zero 0V

Vss 0V

power Power 5V

Vdd 5V

Vcc 5V

One 5V

Table 2.2: power-supplies special signals

way to list every signals of the data bus is:

data

2.2.4 Special signals: the power-supplies

Power supplies signals are special global signals in model. These global signals are known by

the software. Their names are keywords. There exist 2 power supplies: the ground (0V) and

Vdd (5V). the table 2.2 shows the multiple names given for each power-supplies.

When required, it is possible to built power-supplies buses : Vdd(1:4).

2.2.5 Keywords

We have yet discovered some keywords: Part, End, Signal, Vdd and GND. A word beginning

with an upper-case letter must be a keyword. The rest of the word is not case-sensitive : Part

and PART are equivalent.

2.2.6 Identi�ers

A word beginning with a lower-case letter is an identi�er. Unlike keywords, the identi�ers are

case-sensitive: clock and clocK are not equivalent. Identi�er names are made up of characters

(with no limitation on the number) chosen among letters, digits and the underscore character

(\ "), with the classical convention that the �rst character is not a digit.

2.2.7 Various lexical elements

Instructions are delimited by one or more carriage returns (<CR>). The carriage return is

meaningless after a comma (,), an arrow (->), or one of these keywords Then, Else, And and

Or. It is possible to cut a too long line with the character minus (-) placed just at the end of

the line.

Comments start with a curly bracket (f) and stop at the end of the line.

Strings are surrounded by double quotes ("). Double quotes, carriage returns, tabulations,

backslashes are expressed in a string by \",\n,\t and \\.

2.2. FIRST LESSON : THE BASIC SYNTAX 13

2.2.8 Compiling a model �le

Con�guration

In order to compile the examples of this manual, you need to add the directory ~cad/bin to

your environment variable PATH. It is also better to create your own directory, where to run the

examples. You have two �les to copy in this directory:

� ~cad/ulm/mcmos/example/.magic

� ~cad/ulm/mcmos/example/lesson1.mod

The .magic �le speci�es where to �nd the layout cells (.mag) and the model �les (.mod).

This �le contains magic orders, which are executed at the beginning of a magic session (see

magic(1)). It is necessary to specify where to �nd the cells thanks to the path command. This

�le is also interpreted by mod2mag only to read eventual path command. Programs (magic

and mod2mag) successively read the optional �les:

� ~cad/lib/magic/sys/.magic,

� ~/.magic,

� ./.magic.

The last path command de�nes where to �nd the cells and the model �les. Our .magic �le

contains the command:

path ":.:~cad/ulm/mcmos/example:~cad/ulm/mcmos/lib8:~cad/ulm/mcmos/pad:~cad/ulm/mcmos/pla:"

which indicates that model �les and layout cells are successively searched in :

� . the current directory,

� ~cad/ulm/mcmos/example the example directory,

� ~cad/ulm/mcmos/lib8 the cell library,

� ~cad/ulm/mcmos/pad the pad library,

� ~cad/ulm/mcmos/pla the pla library,

As the example directory takes place is the path command, you need not to copy the

lesson1.mod �le, but it is better for you to have your own copy of the �le if you want to

modify it.

Running the compiler

To compile the example, run the following command:

model lesson1.mod

or

model lesson1

The compiler generates one of those 2 �les:

� lesson1.err which contains the errors of the �le (if any).

14 CHAPTER 2. GETTING STARTED

1 Include "magicdef.mod"

2

3 Part nand(n)[in(0:n-1)] -> out

4

5 Signal middle(0:n)

6 Integer i

7

8 If n > 10 Then

9 Error "too many inputs : ",n," in the nand gate"

10 Endif

11

12 Message "warning nand: ",n," inputs > 5" If n > 5

13

14 middle(0) -> GND

15 For i=0:n-1 Cycle

16 ntrans(1000*n,200)[in(i)] -> middle(i),middle(i+1)

17 ptrans(2000,200)[in(i)] -> Vdd, out

18 Repeat

19 middle(n) -> out

20

21 End

22

23 Constant size = 4

24

25 Signal input(1:size)

26 Signal output

27

28 nand(size)[input] -> output

Table 2.3: the nand gate : second implementation

� lesson1.out which is the interpreted output of the compiler, if the design description is

coherent (if not correct).

When mod2mag is called without any
ags, only the correction of the input �le is checked.

We will discuss in the next two chapters the di�erents that can be set and the di�erent output

�les generated. In this chapter, we pay attention only the basical syntax of model.

2.3 Second lesson : more about the basic syntax

Let us write now a more general nand (table 2.3

2

). We want to express in a single part de�nition

how to build nands with 2, 3, 4 and so on inputs. We need integer identi�ers, arithmetic

operators and parameterized calls. This example is the opportunity to discuss the following

points:

2

�le lesson2.mod

2.3. SECOND LESSON : MORE ABOUT THE BASIC SYNTAX 15

� Declaration and use of integers,

� Flow control,

� Debugging messages.

2.3.1 Integers

Integers are used in model as in any programming language. They can have an integer value

assigned to, together with integer constants in arithmetical/logical expressions. Last but not

least, they can be passed by value as parameter to functions.

Integer identi�ers

Integer identi�ers have the same lexical form as the signals identi�ers. It is legal for a signal

and a integer to have the same name

3

. Arrays of integers can be declared and used as arrays

of signals (= buses).

Integer lists

Integer lists can be constructed using the same syntactical constructs as the list of signals:

Integer i(0:6),j,k

successively declares an array of the 7 integers i(0),...i(6)and 2 integers j and k. The instances

of integers is identical to signals ones. i(5:1 By -2) means the integer list i(5),i(3),i(1).

In the same manner as a signal, an integer identi�er can be either local to a part (i.e. declared

between the Part header and the corresponding End statement) or global (.i.e declared outside

of any de�nition of a part).

Integer initialization

Each global variable is initialized at the null value, unless another value is given in the command

line of the model program. The line 23 of our example could be changed by:

Integer size

size = 4 If size = 0

By default, size gets the 0 value at its declaration, and is then modi�ed to get the 4 value. If

we compile this example with the model command:

model size=3 lesson2.mod [other options]

size is initialized to 3. This mechanism is convenient to parameterize the compilation without

modifying the model source.

Constant integer identi�ers

A convenient way to use numerical constants is illustrated at line 23 of the example 2.3. The

corresponding identi�ers (\size" in the example tab. 2.3) cannot be modi�ed after its decla-

ration.

3

This should be avoided for legibility!

16 CHAPTER 2. GETTING STARTED

operator arity function

+ 2 addition

- 2 subtraction

- 1 unary minus

* 2 multiplication

/ 2 euclidean division

% 2 modulo

& 2 logical and

! 2 logical or

!! 2 exclusive or

<< 2 shift left

>> 2 arithmetical shift right

n 1 to 1's complement

^ 2 exponentiation

Table 2.4: the integer operators and their arities

Numerical constants

Numerical constants are expressed by default in decimal base or in any other base from 2 to

36. If the base is not decimal, the value of the base in decimal is concatenated to left of the

numerical constant with an underscore () as separator. When the base is greater than 10,

the missing \digit" to build the number are taken from the alphabet (case-unsensitive). So `a'

represents 10, `b' represents 11 and so on until `z'. For example 123, 16 C, 2 1101 represent

the decimal values 123, 12, 13.

Integer expressions

Integer expressions are built like in programming languages. The table 2.4 presents the di�erent

integer operators with their arities.

The precedence of operators is processed among this order:

1. - (unary) and n,

2. ^,

3. *, / and %,

4. + and -,

5. << and >>,

6. &,

7. ! and !!.

Parenthesis are used to force the precedence. Each binary operator is left associative.

2.3. SECOND LESSON : MORE ABOUT THE BASIC SYNTAX 17

operators function

= equal

di�erent

< less than

> greater than

<= less than or equal

>= greater than or equal

Table 2.5: comparator functionality

2.3.2 Flow control

Flow control is useful to express the construction algorithms of parts. There are 6 kinds of
ow

controls:

1. conditional control If,

2. endless loop control Cycle.

3. enumeration control For,

4. conditional ended loop control While,

5. conditional ended loop control Until,

6. case switch control Switch.

Exit and Continue are used to modify the execution of the
ow. Some of these
ow controls

need conditions. They are expressed by boolean expressions.

Boolean expressions

Basic booleans are comparisons between integer expressions. Then, they can be made up of

boolean operators to build more complex boolean expressions.

Comparators A comparator admits two integer arguments as input and returns a boolean.

The table 2.5 presents these di�erent comparators with their respective functionality.

Boolean operators (And, Or and Not).

The operator precedence follows this order:

� Not,

� And,

� Or.

18 CHAPTER 2. GETTING STARTED

If : conditional execution of statements

The complete syntax of the If statement is:

If condition Then

statement list 1

Else

statement list 2

Endif

The boolean expression is �rst evaluated. If the value is true, the statement list 1 is executed

and statement list 2 is skipped. Otherwise statement list 1 is skipped and statement list 2 is

executed. If the second statement list is empty, the Else keyword is not necessary. The

example 2.3 shows this construction between lines 8{10.

This heavy construction can be shortened when the �rst statement body has only one

statement and when the second statement body is empty:

statement If condition

Program 2.3 shows an example this construction at line 12.

Iteration statements

There is a general construction to express the body of some loop:

Cycle

statements

Repeat

In the body statement, the Continue statement jumps to the next iteration of the loop and

the Exit statement jumps out of the loop.

The iteration statement described above will never end unless an exit statement is executed.

Apart from explicitly programming an exit, there are 3 ways of controlling loops.

� The For statement will repeat the execution of the loop body while the control variable

is successively assigned the values of a list of integers. The loop is terminated when the

list is exhausted. Syntax:

For variable = integer list Cycle

statements

Repeat

� The While statement evaluates a boolean condition to continue the iteration:

While condition Cycle

statements

Repeat

The condition is �rst evaluated. Then if the boolean value wass true, the body of the

loop is executed

4

.

� The Until statement also uses a boolean to control the loop. Unlike the While statement,

the loop body is �rst executed

5

. Then the condition is evaluated. The body of the loop

is executed once more if the boolean is false. Syntax:

Cycle

statements

4

It may be executed 0 times.

5

It will be executed at least once.

2.3. SECOND LESSON : MORE ABOUT THE BASIC SYNTAX 19

Repeat Until condition

Exit and Continue are still available with these 3 ways of controlling loops.

Case statements

The Switch statement allows to choose between multiple possibilities

For : enumeration control

The For statement is classically used in progamming languages to execute a statement body

for each elements of a enumeration of an index.

A list of values for the variable is provided, instead of the range of variation:

For variable = integer list Cycle

statements

Statements are evaluated for each element of the list. At each evaluation variable is set to the

value of the next integer of the list. The content of the list is evaluated before entering the

loop. This mechanism is more
exible thanks to the lists construction. In our example 2.3 lines

15-18, a classical range is used with to the enumeration (:) operator for list construction.

As for the If statement, it is possible to shorten the notation, when a single statement is

involved in the body of the For loop:

statement For variable = integer list

The For loop execution can also be modi�ed by the Continue and Exit operators.

While : conditional ended loop control

The Cycle loop can be legibly written with either the While or Until constructions. It indicates

when to stop the execution of the loop with a boolean expression. The boolean can be evaluated

before (While) or after (Until) the body of statements.

The While statement syntax:

While condition Cycle

statements

Repeat

The condition is evaluated at every iteration of the statement body. If the test is passed, the

execution continues inside the loop, otherwise the execution resumes after the end of loop. The

For construction between line 15 and 18 can be rewritten:

i = 0

While i < n Cycle

ntrans(1000*n,200)[in(i)] -> middle(i),middle(i+1)

ptrans(2000,200)[in(i)] -> Vdd, out

i = i+1

Repeat

The Until statement syntax:

Cycle

statements

Repeat Until condition

20 CHAPTER 2. GETTING STARTED

The condition is evaluated after every evaluation of the body statements. If the test is passed,

the execution continues to the next statement after the end of loop, otherwise jumps back to

the start of the loop.

The While and Until loops execution can be also modi�ed with the Continue and Exit

operators.

Switch : case switch control

The Switch statement is useful to choose a sequence of statements between several sequences

depending on the value of an expression. The structure of the Switch statement is:

Switch expression

Case expression1

statement list 1

Case expression2

statement list 2

...

Default

statement list n

End

It roughly works as the C switch. The expression is evaluated at the entrance of the switch

statement. For each Case statement the calculated value of expression is compared to the

evaluation of the associated expression (expression1, expression2,...). At the �rst time the

expressions are equal, the statement lists following the Case statement are executed until the

�rst Exit execution. The statements following the Default keywords (if it exists) are executed

if no equality has been formerly found.

2.3.3 Signals merging

As it can be observed in line 14 and 19 the arrow operator (->) is used to connect signals.

Di�erent names can refer to the same wire). This connection can merge directly a signal list

(possibly of one element) to another one of same size. The di�erent names for an equipotential

are equivalent: the arrow operator is commutative (unlike the assignment operator).

Instance mechanism

The expression ptrans(2000,200)[in(i)] (line 17) de�nes an instance of ptrans with the

integer parameters 2000 and 200, with in(i) as an input bus and returns the list of the output

signals of the instance which must be connected. The arrow operator completes this task by

connecting the corresponding signals to Vdd and out. It is only a legibility convention to put

the instance at the left of the arrow. When a instance has no output, the right side of the arrow

is empty. In this case the arrow must suppressed.

Unconnected signals

Sometimes, some of the outputs are unused. Because of the instance mechanism, the designer

must specify a signal for each output. It is tedious to de�ne ghost signals for each unconnected

output: the operator \unconnected" -- allows us to de�ne an unnamed unconnected signal. It

2.4. THIRD LESSON : LAST REFINEMENT ABOUT THE SYNTAX 21

acts like a dummy symbol generator. Because many signals may be unconnected in a signal

list, it is possible to de�ne an unconnected bus: --(0:7) is a bus of 8 unconnected signals.

2.3.4 Debugging messages

Model provides messages for debugging facilities. There are two kinds of print statements:

� Message/Messagef : print and continue compilation,

� Error/Errorf : print and abort compilation,

These statements have the following syntax:

Message list of strings and integer value

Messagef "string format" list of strings and integers

Error list of strings and integer value

Errorf "string format" list of strings and integers

In the Message/Error statements, strings are printed literally and integers are converted to

their decimal representations. For the Messagef/Errorf statements, the �rst parameter is a

format string. The syntax of this format is the same as C's (see printf(3)).

2.4 Third lesson : last re�nement about the syntax

To end our fast sight of the model syntax, let us consider our third implementation of the

nand gate (table 2.6

6

).

1 Include "magicdef.mod"

2

3 Part basic_nand[in(1:*)] -> out

4 Integer n,i

5 n = Length[in]

6 Signal middle(1:n+1)

7

8 middle(1) -> GND

9 For i=1:n Cycle

10 ntrans(1000*n,200)[in(i)] -> middle(i),middle(i+1)

11 ptrans(2000,200)[in(i)] -> Vdd, out

12 Repeat

13 middle(n+1) -> out

14

15 End

16

17 Part basic_nor[in(1:*)] -> out

18 Integer n,i

19 n = Length[in]

20 Signal middle(1:n+1)

21

22 middle(1) -> Vdd

23 For i=1:n Cycle

24 ptrans(2000*n,200)[in(i)] -> middle(i),middle(i+1)

25 ntrans(1000,200)[in(i)] -> GND, out

26 Repeat

27 middle(n+1) -> out

28 End

6

in �le lesson3.mod

22 CHAPTER 2. GETTING STARTED

29

30 Part basic_or[in(1:*)] -> out

31 basic_nor[basic_nor[in]] -> out

32 End

33

34 Part nand[in(1:*)] -> out

35 Integer n,p,j,first,last

36 n = Length[in]

37 Signal middle(1:3)

38

39 If n < 5 Then { recursion terminaison }

40 basic_nand[in] -> out

41 Else

42 p = Sqrt(n)

43 p = 3 If p > 3

44 first = 1

45 For j=1:p Cycle

46 last = first + (n -1)/p

47 last = n If last > n

48 nand[in(first:last)] -> middle(j)

49 first = last+1

50 Repeat

51 basic_or[middle(1:p)] -> out

52 Endif

53 End

Table 2.6: the nand gate : third implementation

This example provides the opportunity to study the next features:

� use of * as implicit parameter,

� built-in functions and procedures,

� recursivity.

2.4.1 Use of star (*) as implicit parameter

At line 3 of the last example, a star (*) appears in the input signal list of a part de�nition.

This star represents a number which is in fact a parameter of the part. The value of the star is

dynamically calculated when the part is instanced, so that the length of the list of input formal

parameters matches the length of the actual input parameters.

The value of the star is an implicit parameter of the part. It is necessary to get the size of

the bus containing the star. The Length operator achieves this task. It takes as input a list of

signals (typically the bus containing the star) and yields an integer which is the length of the

list:

Length[a,b(1,3,5),c(0:2),d]

returns 8. If an input bus is declared as in tab. 2.6 line3, the length operator applied to the

bus will give the value of the *

7

.

7

If the bus is declared b(0:*), Length[b] will yield the width of the bus, which is the value of the star plus

1.

2.4. THIRD LESSON : LAST REFINEMENT ABOUT THE SYNTAX 23

2.4.2 Built-in functions and procedures

Built-in functions and procedures (like Length) are provided to deal with parameters, to com-

pute maths functions and to read �les.

2.4.3 Log function

The Log function is convenient to calculate the number of bu�ering stages of an inverter. The

Log function takes a single parameter p and returns the smallest integer n such that 2

n

� p.

For instance:

Log(15) = 4

Log(16) = 4

Log(17) = 5

It is used at line 68 of table 4.4 page 50 for a multistage inverter generator.

2.4.4 Sqrt function

The Sqrt function is convenient to develop an ampli�cation tree of depth 2 with load repartition.

The Log function takes a single parameter p and returns the smallest integer n such that n

2

� p.

For instance:

Sqrt(3) = 2

Sqrt(4) = 2

Sqrt(5) = 3

It is used at line 42 of table 2.6.

2.4.5 Input functions

In order to import a large number of parameters intomodel, which could not be easily expressed

through the model syntax, �le reading mechanisms are provided. As more than one �les can

be read simultaneously, each opened �le is identi�ed by a unique integer number. This number

(from 0 to 19) is returned by the Open function which takes one parameter: the name of the

�le.

descriptor = Open "�lename"

The Read function reads the next integer in the �le pointed by a descriptor. Read takes one

integer parameter (the �le descriptor) and returns the value of the next integer read from the

�le. It is assumed that integers are written in decimal, one by line. A line in the �le which

begins with a star is treated as a comment and is skipped. If the line start with a star, it is

skipped (because it is a comment).

The Close procedure releases the �le descriptor in order to be used again. It admits the

descriptor as unique parameter.

2.4.6 Recursivity

Model parts can be recursive. The recursion is always based on integer parameters. In the

example presented in table 2.6, the nand part is recursive (on the value of the hidden parameter

star). Recursivity is essential to express easily complex structures like trees.

24 CHAPTER 2. GETTING STARTED

2.4.7 How to debug complex �les?

The integer parameters and the recursivity allow to develop very powerful objects. The price

of this power is the complexity of the debug. We require some help to debug easilymodel �les.

When a model �le has been created, it must be checked. The command:

model �le

compiles it. Without any
ags, the software only checks the input �le and evaluates it.

The compilation for model consist in fact in the evaluation of integer expressions. Compi-

lation time errors are of two types:

� syntax errors,

� evaluation errors.

The compilation process has two passes.

The �rst one parses the model input �le and checks the syntax. An internal representation

of each object is then built. In this representation, no evaluation is done. In the �rst pass,

the symbols are checked (declaration before instance). These errors are easy to correct because

error messages are explicit and point out the implied lines.

At the second pass, this representation is interpreted. At this stage, errors may occur:

� arithmetical errors: divide by 0, negative arguments for Sqrt and Log.

� range errors: over
ow and under
ow of arrays and buses,

� mismatches in signal list connections: wrong number of input signals, bus size mismatch

in bus connections.

� non-existence in the upper contexts of inherited signals.

These errors are also easy to correct. Using Message, it is possible to trace integer values and

to detect what is wrong within the input �le.

When the �le is apparently correct (there is no more compilation time errors), the �le can

be observed as correct for the point of view of the software: the input �le is consistent; it is

correct from the compiler view point. There is no more \.err" �le and a \.out" �le is created.

The \.out" �le contains the interpreted view of the input design in model syntax. No

integer and no
ow control structure subsist. This view of the design conserves its hierarchical

structure. It is the reference of the exact structure of the design.

2.5 Fourth lesson : scope of signals and integers

Chapter 3

Description for the simulation

One of the purposes of an Hardware Description Language like model, is to describe the

electrical interconnection of a circuit. The language must contain the information required by

the software to make some electrical veri�cations (Electrical Rule Checking) and to extract

the following di�erent data:

� transistor simulation netlist,

� gate and behavioral simulation netlist,

� routing netlist for chip router

� routing netlist for PCB router.

The last two points concern hardware generation and will be discussed in the next chapter.

The electrical structure of a design is speci�ed with two mechanisms:

� the de�nition the electrical (and logical) behavior of each basic cells (the leaves of the

hierarchy),

� the interconnection of these cells in blocks (the nodes of the hierarchy).

From the designer point of view, programming in model consists in taking basic cells from a

library to build more complex structures. According to classical design methodologies (derived

from standard-cell systems), the designer does not build libraries. In fact, this task is di�cult

because a layout, an Electrical Rule Checking interface, a transistor level description and a

gate level description must be provided for each cell. One purpose ofmod2mag is to allow the

designer to build himself his own cells and libraries. That is why we describe how to specify the

electrical structure of imported cells (corresponding to existing layouts). A tool (ext2mod) is

provided for the de�nition of this electrical/logical structure. We also describe how to specify

a behavioral model in order to follow a top-down approach in the design methodology.

In this chapter, we �rst explain the Electrical Rule Checking mechanism. Then we describe

the generation of the simulation netlists and continue with the description of the behavioral

models. We �nish with the presentation of ext2mod, the tool which automatically derives the

electrical structure of a cell from its layout. The description of the generation of router netlists

will be described in the next chapter because of the topological aspects of layout.

25

26 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

1 Part nand2[i(0:1)] -> out

2 Source i

3 Dest out

4

5 ...

6

7 End

8

9 Part andor[a(0:1),b(0:1)] -> out

10 Signal left,right

11

12 nand2[a] -> left

13 nand2[left,right] -> out

14 nand2[b] -> right

15 End

16

17 Signal select, selectbar, d(0:1), outmux

18 Source select,d(0:1)

19

20 nand2[select,VDD] -> selectbar

21 andor[d(0),selectbar,d(1),select] -> outmux

Table 3.1: the nand gate : the electrical speci�cation of the IOs of the nand cell

3.1 Electrical Rule Checking mechanism

The Electrical Rule Checking mechanism checks the consistency of the connections: it detects

the non-polarized inputs and the short-circuits.

This mechanism is based on the type-check of the input/output signals of the cells. Each

of them cell may be declared as input or output or tristate signal.

The designer may specify these types for some cells (generally the basic ones) and let the

system automatically determine the types of the IO signals of composed cells by analysing the

already typed subcells.

From a theoretical point of view, only the leaves of the hierarchy need to be typed. Prac-

tically, it is better to introduce this typing mechanism at the gate level. At transistor level,

source and drain of FET transistors can only be classi�ed as tristate signals. The type of the

output of a non-tristate classical gate would be found tristate, as the union of 2 tri-state signals.

Strictly speaking, this is not false. However, this not accurate enough for the ERC to detect

a short-circuit between 2 non-tristate outputs. So the best place to de�ne the type of the IO

signals is at gate-level.

The table 3.1

1

shows an example of the ERC interface of the nand gate.

The Source, Dest and Tristate statements follow the same syntax:

Source IO-signal list

1

The �le erc.mod

3.2. GENERATION OF THE SIMULATION NETLISTS 27

The Source statement (line 2) speci�es that each signal of the list is an input of the cell

and must be polarized (i.e. connected to a single output or to one or more tristate signals).

The Dest statement (line 3) speci�es that each signal of the list is an output (it may be

connected only to input signals).

The Tristate statement speci�es that each signal of the list is a tristate signal (it is some-

times a low impedance IO and can polarize input; it can be connected to other tristate signals

in order to build multi-speaker buses and is not allowed to be connected to classical outputs).

Power-supplies are considered as output signals.

The check is performed at each level of hierarchy and the reporting message for each error

precisely indicates the implied level of hierarchy.

At the top level of the hierarchy, the global inputs of the system are not polarized. They

induce a warning report. In order to avoid this, it is possible to declare an external polarization

of these global signals by a Source statement (line 18).

The Check is performed at the generation of simulation netlists (see below).

3.2 Generation of the simulation netlists

The generation of the transistor netlist is launched by the command:

model -s design

The
at netlist is written into the design.sim �le. The format of this �le is described in sim(5).

The gate netlist is obtained in the design.log �le by:

model -l �le

The format (.log) of this �le is described in log(5).

For both commands, an alias �le design.al is also generated. Its holds the synonyms for

the signals.

The generation of the transistor netlist is controlled by the Output/Outputf statement,

which writes into the design.sim �le. The syntax of this statement is the same as the syntax of

the Message/Messagef statement:

Output list of strings and integers

or

Outputf "format string" list of strings and integers

The generation of the gate netlist is controlled by the Logic/Logicf statement, which writes

into the design.log �le. The syntax of this statement is the same as the syntax of the

Message/Messagef statement:

Logic list of strings and integers

or

Logicf "format string" list of strings and integers

These commands (Output/Outputf and Logic/Logicf) are very similar; their only functional

di�erence lies in the command line
ags which control them. However, the Output/Outputf

command will usually be inserted in the de�nition of transistors while the Logic/Logicf com-

mand will lie in the de�nition of gates.

The table 3.2 shows a part of the �le magicdef.mod (which is located in the directory

~cad/ulm/mcmos/lib8).

A signal may be known under various names; however, in the transistor and gate netlists,

all the names of a given signal must be changed into an unique global name for this signal. This

is done by the Net function, which takes a list as input and returns a list of strings representing

the unique names of each signal of the list.

28 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

1 Part ntrans(w,l)[g] -> s,d

2 Output "n ",Net[g],Net[s],Net[d],l/50," " ,w/50," 0 0"

3 End

4

5 Part ptrans(w,l)[g] -> s,d

6 Output "p ",Net[g],Net[s],Net[d],l/50," " ,w/50," 0 0"

7 End

Table 3.2: de�nitions of nmos and pmos

At each instance of the nmos part, the netlister writes in the netlist �le the line:

n gate source drain channel-length channel-width 0 0

which complies to the format of the transistor netlist.

3.3 Behavioral cell description

3.3.1 The aim of behavioral modeling

Behavioral modeling is necessary:

� to follow a top-down methodology. First develop the global behavior of the circuit, and

step by step re�ne each block in sub-blocks until the gate level (which are basic cells).

� the modeling of external devices (for instance, existing integrated circuits, buses, memo-

ries,...).

Behavioral modeling is the way to explain how to simulate a circuit. The behavioral description

capabilities of model is compatible with the msim simulator (see msim(1)). It is a multimode

simulator which operates at the following level :

� switch level for pass transistors.

� gate level,

� behavioral level.

During the generation of the logical netlist (the -l option), a description of switches and gates

is written into the .log by the Logic/Logicf statements, just described above. Behavioral

models are written in the .beh �le (see msim(1)). These two �les are read by msim in order

to perform the simulation.

The table 3.3

2

shows an example of the model for a nand gate. Even with a behavioral

model, it is necessary to specify the type of the inputs/outputs (line 2 and 3).

The behavioral description is a list of special statements enclosed by the Behavior and End

keywords (line 5 to 17).

2

�le behavior.mod

3.3. BEHAVIORAL CELL DESCRIPTION 29

1 Part nand[a,b] -> c

2 Dest c

3 Source a,b

4

5 Behavior

6 Capa 100 a,b,c

7 Slew 100 c

8 Variable va,vb,vc

9

10 Undef c

11 When a,b Change Do

12 va = Value[a]

13 vb = Value[b]

14 At Time + 1 NS Do

15 vc = Eval(\(va & vb))

16 Set c = vc

17 Done

18 Done

19 End

20 End

21

22 Signal a,b,c,d

23 nand[a,b] -> c

24 nand[c,c] -> d

25 Behavior

26 Capa 1000 c

27 End

Table 3.3: behavioral model of a nand

3.3.2 Organization of the behavioral modeling

The modeling of the behavior of a component consists of the following operations:

� the input states are read (line 12-13),

� computing a new state from the inputs states and, possibly, internal states (line 15),

� modifying of the internal state (line 15),

� modifying of the outputs (line 16),

� modeling the impedance of the inputs/outputs (line 6-7).

Flow control can be used to control the execution of the behavioral model during the sim-

ulation. This
ow control is extended to specify:

� when a execution block must be awaken (line 11);

� the delay of the execution of a block (line 14).

30 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

Behavioral description requires the manipulation of expressions and the assignment of vari-

ables.

3.3.3 Variables

Behavioral simulation most of the time requires internal variables. These variables are declared

in the Behavior...End block by the statement:

Variable list of identi�ers

They can take any value between �2

3

1 and 2

3

1 � 1 plus a special value Undef, which stands

for unde�ned.

The di�erence between the integers and the variables lies in the step in which they are used:

the integers are used during the compilation while the variables are used during the simulation.

It is possible to declare an array of variables.

3.3.4 Signal value acquisition

The Value function converts a list of signals into a 32 bit integer value. The argument is the

list of signals: Variable v

v = Value[inputbus]

� If one of the signals is HIGHZ or UNDEF, v is assigned the Undef value.

� Otherwise, the list of signals is transformed into a list of bits by changing HIGH into 1

and LOW into 0. The list of bits is padded by 0s at the left to 32 bits if necessary. Finally

the 32 least signi�cant bits form the integer value which is returned. The �rst signal

corresponds to the least signi�cant bit of the result.

3.3.5 Behavioral expressions

Behavioral expressions consist of basic expression items and operators. The basic expression

items are:

� numerical constants, possibly with a time unit PS, NS, US or MS (default is PS), a capaci-

tance unit FF, PF,NF or UF (default is FF) or a slew rate unit PS/FF, NS/FF,... (default is

NS/PF),

� integers (declared with Integer which have been changed into numerical constants),

� variables (declared with Variable which remain variable at the simulation),

� Time the current date during the simulation,

� utility functions,

� Eval function, used to evaluate early an expression (this function is useful with the

schedule operator At and is described at this occasion;

� Value operator, already described in the previous subsection.

The behavioral expression operators are the same as the integer ones. The comparators has

been added to these operators. They return either 0 if the comparison is true or 1 if not. The

evaluation is the same. If one of the operands is unde�ned (set to Undef) then the results will

be unde�ned (Undef is returned).

3.3. BEHAVIORAL CELL DESCRIPTION 31

Utility functions

The utility functions like the variables are evaluated during the simulation. 5 functions are

available:

� Random requires no argument and returns a di�erent 32-bit value at each call (during the

simulation). This function is useful to de�ne random actions on external buses;

� Log takes a single parameter and returns the smallest integer n so that 2

n

� p. It works

like the integer function Log but is evaluated during the simulation;

� Sqrt takes a single parameter and returns the smallest integer n so that n

2

� p;

� Open ("�lename"); this function opens the �le �lename in reading mode and returns a

�le descriptor. This action is performed at the simulation.

� Read (fdesc); this function reads the next integer in the �le pointed by the fdesc descriptor.

It is assumed that integers are written in decimal, one by line. If a line in the �le begins

with a '*', it is treated as a comment and skipped. Open and Read are useful for instance

for the initialization of of a ROM.

An utility procedure can be added to these function. The Close takes a single parameter

and closes the �le associated with this parameter.

3.3.6 The modi�cation of signals

When the behavior has been calculated, the simulator must di�use the result in the output

signals of the part. This can be performed using the following statements:

1. Undef signal list. The value of these signals are set to unde�ned state (example on line

10).

2. HighZ signal list. The value of these signals are set to high impedance state.

3. Low signal list. The value of these signals are set to the low level (0V).

4. High signal list. The value of these signals are set to the high level (5V).

It is also possible to change the state of a bus according to the binary value of a variable:

There is another way to change the value of a bus:

Set signal list = expression

If the expression value is Undef, every signal of the list is set to Undef. If the expression has an

integer value v, the n

th

signal is set to high (resp. low) if the n

th

bit of the binary representation

of v is 1 (resp. 0). The least signi�cant bit of v corresponds to the �rst signal of the list.

3.3.7 The modeling of the inputs/outputs

If nothing else is speci�ed, inputs and outputs of the part are supposed to be perfect:

� no parasitical capacitances on inputs/outputs,

� null output impedance.

32 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

It is possible to add a capacitance to a signal or a signal list with the statement:

Capa capacitance signal list

The capacitance is added for every signal of the signal list.

It is possible to specify an impedance for each signal statements. For instance,

Slew impedancesignal list

associates the signal list a delay equal to the product of the capacitance of each node with

impedance. The value of the impedance is expressed in pS/pF.

3.3.8 The modeling of a multitalker bus

We must describe what happens when 2 di�erent modi�cations of state are applied to the

same signal. These modi�cation are never applied simultaneously because of the sequential

organization of the simulator. Two desired e�ects are possible:

� The two modi�cations belong to the same object. The new state modi�cation must

override the old state. For instance, a clock generator sets and resets the clock at each

period.

� The two modi�cations belong to di�erent objects. These objects will be in con
ict on the

output.

In order to o�er naturally the 2 possibilities to the designer, each signal modi�cation state-

ments is associated with the current part instance. Each modi�cation statement changes the

state of the output pole associated with the current part instance. Modi�cation statements as-

sociated with di�erent part instances modify the states of di�erent output poles. Each output

pole has a current state and an impedance. Every Output poles corresponding to the same

signal will be used by the simulator to compute the state of the signal, as it is done for electrical

gates.

3.3.9 Debugging functions

For debugging purpose at simulation time, it is possible to print a message with the commands

Print and Printf. They work like Message and Messagef.

3.3.10 Scheduling
ow control

Two new statements are used to describe the behavior of a circuit:

� When instructs the simulator to execute a statement list on every speci�ed transition on

some signals,

� At postpones the execution of some statements.

These features are not easy to understand because of the parallelism they may hide. The

next example describes the behavior of a Read-Only-Memory.

1 Part tms2732A_17[a(0:11),eb,gb] -> d(0:7)

2

3 Source a,eb,gb

4 TriState d

5 Signal m(0:7),on

3.3. BEHAVIORAL CELL DESCRIPTION 33

ROM

delay

delayeb

a(0:11)
m(0:7) d(0:7)

on

Figure 3.1: organization of behavioral description of the ROM

6 Integer ta,ten

7 Constant size = 1 << 12

8

9 Behavior

10 Capa 9 PF a,eb

11 Capa 20 PF gb

12 Capa 12 PF d

13 Slew 60 PS/FF d

14

15 Variable rom(0:size-1)

16 Variable i,f,date

17

18 f = Open("program.rom")

19 For i=0:size-1 Cycle

20 rom(i) = Read(f) & 255

21 Repeat

22 Close(f)

23

24 Undef m

25

26 When a Change Do

27 Undef m

28 date = Time

29

30 At Time + 170 NS Do

31 If Time = date + 170 NS Then

32 Set m = rom(Eval(Value[a]))

33 Endif

34 Done

35 Done

36

37

34 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

38 When eb Low Do

39 At Time + 60 NS Do

40 Set on = 1

41 Done

42 Done

43 Set on = 0 When eb High

44 Undef on When eb Undef

45

46 When m,on Change Do

47 Switch Value[on]

48 Case 1

49 Set d = Value[m]

50 Exit

51 Case 0

52 HighZ d

53 Exit

54 Default

55 Undef d

56 End

57 Done

58 End

59 End

Behavioral statements which are not contained to a When block, are evaluated during the

initialization phase of the simulation. These statements are the initialization of the behavioral

model for the part (lines 10{22).

The array of variables rom will contain the values of the words of the ROM. It is loaded

from a �le during the initialization of the simulation (line 18{22).

We then describe the actions to be taken on given events (with the When operator). As

it is easier to describe separate automata for separate functionalities, we have divided the

description of the ROM is 3 parts (�g. 3.1):

� the ROM itself with its delay (line 26{35),

� a delay on the enable (eb) (line 38{48),

� the delayless tristate bu�er (line 50{61).

The When operator

The When operator is used to trigger an action on each occurrence of a given event.

The syntax of this statement is:

When signal list <transition> Do

statement list

Done

or the abbreviate one:

statement When signal list transition

<transition> is one of the following keywords:

� Undef : the statement list is executed at every end of transition to the Undef state.

� HighZ : the statement list is executed at every end of transition to the HighZ state.

3.3. BEHAVIORAL CELL DESCRIPTION 35

1.5 us 2 us 2.5 us

 A 0x102 0x9b 0xfbe 0x17f0x17f

 eb

 D 0x5 0x7

 f1_error_D 0x5 0x5 0x7 0x7

Figure 3.2: wave-forms of the ROM

� Low : the statement list is executed at every end of transition to the Low state.

� High : the statement list is executed at every end of transition to the High state.

� Change : the statement list is executed at every end of transition of any kind of the signal

list.

For instance (line 43) the Set statement is executed each time the signal eb reaches the

state High.

The At operator

To simulate delays, we need to postpone the execution of actions using the At operator. The

syntax of this statement is:

At expression Do

statement list

Done

or the abbreviate one:

statement At expression

The statement list is executed at absolute time given by expression, expressed in picoseconds.

The Time keyword which represents the current time during the simulation is used to transform

a delay into an absolute time.

When the delay is elapsed, the action is executed. It generally needs variables and states of

signals. A serious problem is to choose whether to take the values of the variables and signals

before the delay or after. By default the evaluation occurs after the elapsed delay.

Suppose (�g. 3.2) that eb is set to 0 at time t

0

and set at time t

1

< t

0

+60ns. Then at t

1

on

is set to 0 and later at t

0

+ 60ns on is set to the opposite of the value of eb at time t

0

+ 60ns:

0. So nothing happens.

On the opposite, if we replace the line 40 by

Set on = Eval(\Value[eb])

the expression is evaluted at time t

0

with the value 1. At time t

1

, on is set to 0. At time

t

0

+ 60ns, on is set to 1.

In this example, the �rst choice is the good one. But it is not the case if we need to simulate

a pipe which replays with a given delay everything that comes in:

When in Change Do

Set out = Eval(Value[in]) At Time + 10 NS

Done

36 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

400 ns 500 ns 600 ns 700 ns 800 ns 900 ns

 A 445 258 155155

 D 45 25

 eb

Figure 3.3: wave-forms of the ROM

Here the Eval functions is necessary when the delay between two changes may be smaller than

10 ns.

Glitches are the source of our problem. Sometimes we want to specify that the result is

available after a delay during which the inputs are steady. The behavior model needs to check

that no transition has occurred since a given time (line 31).

The �gure 3.3 shows the wave-forms of the simulation.

3.4 Ext2mod: an automatic cell characterization

The major problem of a library is its reliability. To provide a complete interface for a layout

library we must provide for each cell the following information:

� the layout,

� the model input/output interface,

� the Electrical Rule Checking interface,

� the transistor level description,

� the gate level description,

The description of the layout aspect consists in a .mag �le (see magic(5)) while the rest of

the information is contained in the associated model function. The purpose of ext2mod is

to automatically derived from the extracted netlist �le .ext associated to the layout �le the

model description of the �le. Creating a new cell proceeds in the following steps:

� the design of the layout with magic (creation of cell.mag see layout in �gure 3.4 and �le

nand2.mag),

� the extraction of the hierarchical netlist with magic (creation of cell.ext see �le

nand2.ext),

� the generation of the model description by the command:

ext2mod cell

(creation of cell.mod see table 3.4) and �le nand2.mod).

Ext2mod detects the input/output signals of the cell (line 1). In order to reserve simple

names to generic part of model, cells imported from magic are identi�ed with their mag

pre�x.

3.4. EXT2MOD: AN AUTOMATIC CELL CHARACTERIZATION 37

o

GND!

bb_p

i1

Vdd!

i0

Figure 3.4: layout of the nand2 gate

The transistor level description of the layout of the nand gate is shown at lines 5{14.

Parasitic capacitances and transistors are de�ned and interconnected.

The Electrical Rule Checking interface is de�ned for the input/output signals at lines 17{

18. The gate level description takes place at lines 19{21. Parasitic capacitances and logical

gates are de�ned and interconnected. A timing model is directly derived from the size of the

transistors and the capacitors. Delays are de�ned in ps and fanout are de�ned in ps/pF. This

nand has the following characteristics:

� an intrinsic delay of 586 ps on each input,

� an additional delay of 3138 ps for every 1 pF connected to the output,

� a 0.095 pF load capacitance on each input.

38 CHAPTER 3. DESCRIPTION FOR THE SIMULATION

1 MagicPart mag_nand2 [i(0:1)] -> o

2 { transistor description }

3 Signal l_0

4

5 Output "C ",Net[Vdd]," GND 35"

6 Output "C ",Net[o]," GND 74"

7 Output "C ",Net[i(0)]," GND 7"

8 Output "C ",Net[i(1)]," GND 5"

9 Output "C ",Net[l_0]," GND 17"

10 Output "C ",Net[GND]," GND 24"

11 Output "p ",Net[i(1),o,Vdd],"2300 200 0 0"

12 Output "p ",Net[i(0),Vdd,o],"2350 200 0 0"

13 Output "n ",Net[i(1),GND,l_0],"2050 200 0 0"

14 Output "n ",Net[i(0),l_0,o],"2050 200 0 0"

15

16 { logic description }

17 Dest o

18 Source i(0), i(1)

19 Logic "cap ",Net[i(0)],95

20 Logic "cap ",Net[i(1)],92

21 Logic "nand ",Net[o]," 3138 ",Net[i(0)]," 586 ",Net[i(1)]," 586 "

22

23 End

24

Table 3.4: electrical description of the nand6 gate generated by ext2mod

3.4.1 Layout optimization

The -f option of ext2mod generates feed a magic command �le which can be used while

editing the cell. The command:

:source feed

executes this �le. It de�nes some feedbacks which indicates some information on the transistors.

It helps to scale the n/p-transistors. If the p-transistor path of a gate is to weeak, transistors

responsible for this fact will get feedbacks to announce the problem associated with the scale

required to adapt it.

3.4.2 Automatic documentation

The -t option of ext2mod generates a data sheet associated with the cell. The next page

shows the data sheet automatically generated by the command:

ext2mod -t nand2; latex nand2; dvips nand2.

The appendix D has been automatically generated by ext2mod. For more details about

this program, see ext2mod(1).

3.4. EXT2MOD: AN AUTOMATIC CELL CHARACTERIZATION 39

As we have now de�ned how to import layouts into the system, it is time to learn how to

build bigger layout structures with mod2mag. This is the subject of the next chapter.

40 40 { Nand2 version of Thu Dec 13 12:12:03 1990 Mcmos

Cell Nand2: a 2-input nand

MagicPart mag_nand2 [i(0:1)] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 2.82

Inputs Capacitance �t ns

i(0) 0.09 pF 0.54

i(1) 0.09 pF 0.54

Description

o
i(1)

i(0)

/ 77� = 38:5�m .

o

GND!

bb_p Vdd!

i0

i1

this_is_a_2-input_nand

Chapter 4

Hardware Generation

This chapter is the occasion to discover the di�erent styles of hardware generation. We will

discover:

� the use of external layouts,

� the tessellation of layouts,

� the generation of a basic cell,

� the generation of a macro-cell,

� the data-path generation,

� the chip �nishing,

� the generation of pcb data.

Every declared part may contain the information on the way to build its layout. The style

of this building is speci�ed by replacing the \Part" keyword by one of the following:

� Part: this is only a method for building the hierarchy. No Layout will be generated: it

will be the responsibility of the calling parts. Part is a macro with parameters.

� MagicPart speci�es that the part is an imported cell. Its layout must already exist.

� PadPart speci�es that the part is an imported pad cell. Its layout must already exist.

� PavePart speci�es that the layout is built by tessellation of the layouts of subcells.

� BlockPart speci�es that the part is a compiled data-path.

� ChipPart speci�es that the part is a whole circuit with pads.

� PcbPart speci�es that the part is a whole board.

41

42 CHAPTER 4. HARDWARE GENERATION

MagicPart, PadPart, PavePart, BlockPart are involved in with layout generation (.mag �les).

The command:

model design -m

generates the layout �les. ChipPart and PcbPart are concerned by Pcb data generation. The

command:

model design -p

produces theses data.

Some of these styles (PavePart and ChipPart) are only placement operators: the electric

connectivity is not guaranteed and is assumed to be achieved by the placement itself. No

routing is performed by mod2mag. This is the reason why, an associated netlist is generated

in the .net format of magic(see net(5)). It is possible to use the router of magic to draw

these interconnection (see the example of the section 4.6, for the chip �nishing).

We will discover in this chapter these di�erent layout generation styles.

4.1 Importing external layout

It is necessary to provide a way to import layouts, in order to get:

� basic pieces of layouts to assemble them,

� complex and hierarchical pieces of layouts designed using other CAD-tools (it allows a

bridge with external tools).

If the layout of a part is directly imported, it is speci�ed through the keyword MagicPart

for general cells and PadPart for pad cells which must be located at the periphery of the chip.

Therefore we can directly use the model description given by ext2mod.

When the software needs to generate the layout of the part mag nand2, it simply uses the

one accessible in the �le named nand2.mag.

A pleasant way to use the �le generated by ext2mod is to include it (the Include command).

This will be very
exible in case of modi�cation of the layout. Everything can be recompiled

thanks to a make�le mechanism.

To avoid the proliferation of very small tile �les required to describe the various parts of

layout, it is possible to gather them in a layout library. The statement

Magiclib "layoutlib"

declares the name of a layout library located in layoutlib.mag.

It is also possible to declare zonesin the layout (using the labels x param and y param)

that will be stretched depending on the value of integer parameters (param) in the model

description of the part.

The layout library and the zone stretch mechanisms are detailed in the section describing

how to build a basic cell.

4.2 Tessellation of layout

As we know how to call basic pieces of layout, it is time to learn how to build composed layouts.

The most simple way of building layout consists in putting di�erent layout tiles together.

The resulting building is a tessellation of layouts. This style of generation does not deal with

electrical connections (nonetheless, they can be performed by side e�ects). It consists in putting

4.2. TESSELLATION OF LAYOUT 43

side by side the di�erent pieces. This style is speci�ed while declaring a part. The use of

the keyword PavePart instead of Part indicates that the tessellation style is desired for the

generation of the layout of that part.

The structure of a layout building is hierarchically described with constructors. It follows

the natural hierarchy given by the Part instance mechanism. It is also possible to structure

the layout inside a part de�nition using the following constructors:

� placement constructors (Xplace, Yplace and Yplace/Pile),

� transformation operators (Xmirror, Ymirror, Rotate90, Rotate180 and Rotate90).

4.2.1 Placement constructors

The Placement constructors are used as soon as a topological placement is required for the

layout generation or for the PCB generation. The placement constructors follow the syntax:

Xplace for YplaceorZplace or Pile g

statements

End

statements.

Reference rectangle

A geometric support is required to achieve the tessellation. The geometrical support is a

rectangle (called reference rectangle) which roughly de�nes the occupied place of the layout. In

an imported layout, this rectangle is speci�ed by a label (see magic (5)) named bb p. This label

can be observed in the layout of the nand2 cell (�gure 3.4, page 37). If this label does not exist

in the layout, the e�ective bounding box is used. Often the desired rectangle �ts the bounding

box, the label is then optional. In a composed layout (built with the tessellation constructors,

or other constructors to be de�ned), the rectangle is the bounding box of the set of reference

rectangles of the constituting layouts.

This rectangle is the only topological information used by the layout generator. The e�ects

of the constructors are directly drawn from these rectangles. It is now possible to describe the

constructors.

Xplace concatenates the constituting instances in the order of their interpretation, from left

to right, in a way that the lower-right corner of the reference rectangle of an instance �ts the

lower-left corner of the reference rectangle of the next instance. The �gure 4.1.a shows an

example of an X-axis style concatenation.

Yplace concatenates the constituting instances in the order of their interpretation, from the

bottom to the top, in a way that the upper-left corner of the reference rectangle of an instance

�ts the lower-left corner of the reference rectangle of the next instance. The �gure 4.1.b shows

an example of an Y-axis style concatenation.

Pile or Zplace piles all the constituting instances on top each other in a way that the lower-

left corners of the reference rectangle of each instance are located at the same point. The

�gure 4.1.c shows an example of piling up style. This operator is very useful for customizing a

44 CHAPTER 4. HARDWARE GENERATION

a
b

c

a: Xplace

b: Yplace
c: Pile/Zplace

a
b

c

a

b

c

reference rectangle
reference rectangle

reference rectangle

Figure 4.1: examples of the constructors

keyword transformations

Xmirror symmetry �x

Ymirror symmetry �y

Rotate90 rotation by 90

�

Rotate180 rotation by 180

�

Rotate270 rotation by 270

�

Table 4.1: transformation operators

cell with vias or contacts. A tile contains the major part of the layout, while other tiles are the

personalization of the layout with small connections. For instance, it is useful for decoders.

While the constructors specify the concatenation axis, the transformation operators is useful

to change the orientation of the part of a layout.

4.2.2 Transformation operators

The syntax of these operators is the same as the one of the constructors:

<Transformation operator>

statement(s)

End

The operators applies to the statement(s) which is(are) between itself and the End statement.

The table 4.1 summarizes those di�erent operators.

Two examples will illustrate the capabilities of the tessellation style with their operators.

The �rst one will show how to build a basic parametrical cell and second one will show how to

4.3. THE BUILDING A BASIC CELL 45

build macro-cell.

These examples will be the subject of the next two sections.

4.3 The building a basic cell

In this section we illustrate the use of the tessellation style for basic cells. As this style is

adequate with transistors sizing, we have chosen to design a parametrical inverting bu�er. This

bu�er will be speed optimal. All the �les involved in this example are available in the directory

~cad/ulm/mcmos/lib8.

4.3.1 Speed of a CMOS inverting driver

The purpose of a driver is to amplify a weak signal to distribute it on a heavily loaded wire. A

basic inverter can be characterized by:

� its input capacitance C (expressed in pF), proportionnal to the W �L

1

area of the gates

of the transistors,

� its output impedance R (expressed in ns/pF), proportionnal to the form factor

W

L

of the

transistor gates.

It results that L must be minimal (2�m = 4 �) in our technology. Both the input capacitance

and the output impedance are directly related to the transistor sizes (W for the n transistor

and 2W for the p transistor)

2

. Our time optimization consists in designing the most rapid

driver, for an given input capacitance C

i

and a given output load capacitance C

o

.

The result of this classical optimization follows:

� The inverter driver must be constituted with an odd number of inverters.

� The input capacitance of each inverters must follow a geometrical sequence.

� The ratio of this sequence must approach e and consequently the size of the sequence

must be the odd number near to logk = log

C

o

C

i

.

The numerical table 4.2 summarizes the boundaries of the k values for di�erent stage num-

bers of the sequence.

4.3.2 The model �le of the driver

Our inverter (niceinv) will consist in a geometrical sequence of inverters (n inv).

The parametrical basic inverter

We �rst de�ne a parametrical basic inverter n inv (see the table 4.3

3

). The parameter n is the

width of the channel of the n-transistor; the size of the p-transistor being twice larger.

1

W is the width of the transistor channel and L is its length.

2

As the holes are 2:5 times slower than electrons, the p transistor will be 2 times larger than the n transistor

in a inverter.

3

a part of the �le niceinv.mod.

46 CHAPTER 4. HARDWARE GENERATION

p 2p� 1 2p+ 1 k

1 1 3 5.19615

2 3 5 46.1175

3 5 7 360.778

4 7 9 2741.89

5 9 11 20603.2

Table 4.2: optimum stages number for a given k factor

This model �le calls (on line 1) the library cell invlib which contains all the necessary

pieces of layout. This mechanism avoids the proliferation of very small layout cells. Themodel

statement

Magiclib "magiccell"

reads the layout contained in the �le \magiccell.mag" and identi�es the di�erent tiles. Each

tile is limited by the label \c tilename", which corresponds to the layout of a part known

under model as mag magicelltilename. The reference rectangle for this tile is delimited by the

label \p tilename". This label is not required if the reference rectangle �ts the c label. The

�gure 4.2 shows this layout. For instance, the tile iv is delimited by the label c iv and its

reference rectangle is delimited by the label p iv. This layout is known under model as the

part mag invlibiv (line 7-8).

All the tiles of this cell (�gure 4.2

4

must be declared in the model �le with the MagicPart

header (lines 3 to 18). These cells are empty because the electrical characterization of the

inverter will be directly given in its de�nition (lines 22 to 26).

The parametrical basic inverter is built according to di�erent styles depending on the re-

quired size. As we want to use this inverter as part of a standard library (see appendices A

and D) for the data-path generator, we have some constraints about the height of the cells and

about the positions of the inputs/outputs and the power-supplies (see the section 4.5). We

shall try to have the smallest width for a given parameter. This leads to 3 di�erent styles:

� a small inverter with one Y-axis pair of transistors (tile vert).

� a medium inverter with two Y-axis pairs of transistors (tiles vert and iv).

� a large inverter with two X-axis pairs of n transistors and four X-axis pairs of p transistors

(tiles hl,hm and hr.

Vertical scalable inverter If the n parameter is less than 27 �m (line 32) the vertical style

is used. It is composed of a parametrical vertical inverter (mag invlibvert at line 38, to cover

the 4{15�m range) and, if necessary, an associated 12�m �xed size inverter (mag invlibiv at

line 39 to cover the 16-27�m range). The parametrical vertical inverter is declared at lines 5-6

with the parameters n, en, ep and p which must correspond in the layout with the labels y n,

y en, y ep and y p to stretch di�erent zones. A given parameter param will be automatically

associated with one or more labels called y param and/or x param in the layout. An error is

generated if none is found. The resulting layout for a given instance of this cell will be stretched

4

�le invlib.mag

4.3. THE BUILDING A BASIC CELL 47

1 MagicLib "invlib"

2

3 MagicPart mag_alim[]

4 End

5 MagicPart mag_invlibvert(n,en,ep,p)[in]

6 End

7 MagicPart mag_invlibiv[]

8 End

9 MagicPart mag_invlibhl[in]

10 End

11 MagicPart mag_invlibhm[]

12 End

13 MagicPart mag_invlibhr(adjust)[]

14 End

15 MagicPart mag_invlibpc[]

16 End

17 MagicPart mag_invlibout[] -> out

18 End

19

20 Part n_inv(n)[i] -> o { n is the channel width in microns }

21 {the transistor description}

22 Output "n ", Net[i], Net[GND], Net[o], 4, " ", 2*n, " 0 0"

23 Output "p ", Net[i], Net[VDD], Net[o], 4, " ", 4*n, " 0 0"

24 {the logical description}

25 Source i

26 Dest o

27 Logic "cap ",Net[i],n*4

28 Logic "not ",Net[o],(58800/n),Net[i], 0

29 Logic "cap ",Net[o],n*5

30 {the topological building}

31 Integer p,i

32 If n < 27 Then

33 { vertical inverter }

34 p = n

35 p = p - 12 If p > 15

36 Xplace

37 p = 4 If p < 4

38 mag_invlibvert(2*p,38-2*p,68-4*p,4*p)[i]

39 mag_invlibiv[] If n > 15

40 End

41 Else

42 { horizontal inverter }

43 Xplace

44 n = n - 27

45 mag_invlibhl[i]

46 While n > 38 Cycle

47 mag_invlibhm[]

48 n = n - 38

49 Repeat

50 mag_invlibhr(n) []

51 End

52 Endif

53 End

Table 4.3: de�nition of a one-stage parametrical inverter

so that the width of the x param label(s) and the height of the y param label(s) will be of param

48 CHAPTER 4. HARDWARE GENERATION

c_hm

p_pc c_out

out

c_hl

p_iv

c_iv

c_pcin

c_hr
x_adjust

in

c_vert

y_n

y_p

y_en

y_ep

Figure 4.2: layout of the invlib library cell

�.

Horizontal scalable inverter The horizontal scalable inverter is built with 3 tiles:

� the left tile (mag invlibhl at line 45 which contributes for 25�m of inverter gate width),

� the repetitive tile (mag invlibhm at line 47 which contributes for 38�m at each occur-

rence),

� the scalable right tile mag invlibhr at line 50 which contributes in the range 2{40�m.

The 38�m range of this tile is useful to adjust precisely the whole size of the inverter.

Multistage scalable inverter

In the layout library, 5 areas can be identi�ed:

1. a small vertical inverter (c vert),

2. a small �xed-size inverter (c iv),

3. a big horizontal scalable inverter (c hl, c hm, c hr),

4.4. THE BUILDING OF A REGULAR MACRO-CELL 49

4. a polysilicon contact c pc to be able to connect multistages drivers. The reference rect-

angle of c pc is degenerated and allows the inverter interconnections without any space

lost.

5. A metal1 output interface with its label for the driver �nishing.

The inverting driver is decomposed in 2p + 1 di�erent basic inverters with their sizes fol-

lowing a geometrical sequence of ratio

2p+1

q

C

o

C

i

. The associated model part is described in the

table 4.4

5

. Three kinds of driver can be generated:

� the one-stage driver if k is less than 5 (lines 64{65),

� the three-stages driver if k is less than 46 (lines 67{77),

� the �ve-stages driver if k is greater than 46 (lines (79{92),

The tile pc, called mag invlibpc in the model �le (lines 73, 75, 84,...) connects the

successive stages. The output interface (mag invlibout)is added for every styles. It makes the

cell compatible with the data-path generator.

4.3.3 Labeling the input/outputs of a generated cell

When a layout is generated, all the tiles are put together into a single block. The labels are

dropped unless connected to an input/output signal of the cell. Keeping these labels allows to

use the new cell as part of another bigge cell.

Each of these labels is initially located in a sub-tiles with a name local of the context of

the model part associated to this subtiles. This label must be renamed with the name in the

context of the created cell.

For instance, the tile part mag invlibout is declared with one output called out (line 17).

This part is used (lines 65, 77 and 92) with its output connected to the signal o which is in fact

a input/output signal of the part niceinv generated by the tessellation generator. So every

labels of c out the name of which is \out" will be dumped in the resulting layout of niceinv

under the name o of the signal in the context of the generated cell niceinv.

Global signals (ended under magic with a !) are systematically dumped. It is also possible

to force every labels of a subcell to be dumped, if there exists a label call b flatlabel in the

subcell.

The �gure 4.3 shows the instances of niceinv for the parameters: (6, 180), (6, 20), (20,

100) and (6, 60).

4.4 The building of a regular macro-cell

In this section, we show how to develop a regular macro-cell generator. We will illustrate it

with a Programmable Logic Array generator.

A Programmable Logic Array is a piece of hardware useful to implement random combi-

natorial logic. It is composed in 4 logic levels:

1. bu�ers and inverters of the input signals,

5

A part of niceinv.mod.

50 CHAPTER 4. HARDWARE GENERATION

...

55 PavePart niceinv(cd,cf)[i] -> o

56

57 Integer k,s

58 Signal temp(0:3)

59

60 Xplace

61 cf = 6 If cf < 6

62 k = cf/cd

63 If k <= 5 Then

64 n_inv(cf)[i]->o

65 mag_invlibout[] -> o

66 Else

67 If k<= 46 Then

68 s = (10 * (Log(k)-1))/3

69 While(s^3 < k*1000) Cycle

70 s = s+1

71 Repeat

72 n_inv(cd * s/10)[i]-> temp(0)

73 mag_invlibpc[]

74 n_inv(cd * s * s/100)[temp(0)]-> temp(1)

75 mag_invlibpc[]

76 n_inv(cd *s*s*s/1000)[temp(1)]-> o

77 mag_invlibout[] -> o

78 Else

79 s = (10 * (Log(k)-1))/5

80 While(s^5 < k*100000) Cycle

81 s = s+1

82 Repeat

83 n_inv(cd * s/10)[i]-> temp(0)

84 mag_invlibpc[]

85 n_inv(cd * s^2/100)[temp(0)]-> temp(1)

86 mag_invlibpc[]

87 n_inv(cd *s^3/1000)[temp(1)]-> temp(2)

88 mag_invlibpc[]

89 n_inv(cd *s^4/10000)[temp(2)]-> temp(3)

90 mag_invlibpc[]

91 n_inv(cd *s^5/100000)[temp(3)]-> o

92 mag_invlibout[] -> o

93 Endif

94 Endif

95 End

96 End

Table 4.4: the model description of the scalable driver niceinv

2. a �rst matrix of nor gates (often realized with NMOS technics),

3. a second matrix of nor gates,

4. output bu�ers.

It allows to implement every conjunction of disjunction of the inputs or their opposite. The

number of terms of the PLA (the number of connections between the two matrices) limits the

application �eld of the PLA. A logical function can be implemented in di�erent PLA with

di�erent number of terms. It is important to minimize the number of terms of the PLA.

4.4. THE BUILDING OF A REGULAR MACRO-CELL 51

i

o

GND!

Vdd!

i

o

GND!

Vdd!

i

o

GND!

Vdd!

i

o

GND!

Vdd!

Figure 4.3: layouts of di�erent instances of niceinv

Espresso (see espresso (1)) achieves some optimizations. In fact ROMs are unoptimized PLA.

The �rst matrix is then the decoder of the n bit input ROM and the number of terms is 2

n

.

The �les related to this example can be found in the directory ~cad/ulm/mcmos/pal. We will

follow the template approach proposed in MPLA (MPLA (1)) and continue to use the input

formats (.eqn and .tt) of the Berkeley CAD-tools for PLA in order to use espresso. The �le

hexa.eqn contains the equation of an hexadecimal 7 segment decoder (table 4.5).

The following unix command (with the Berkeley tools) converts this �le in the .tt format

(table 4.6):

eqntott -l -r hexa.eqn | espresso > hexa.tt

The .tt format cannot be read by the model Read statement: the tt2tab (see tt2tab(1))

program is provided, which converts the tt �le to a .tab �le, which can be read by model.

The source of the tt2tab is located in the �le ~cad/ulm/src/divers/tt2tab.c. It also

generates also on its standard output the model interface for the PLA. The command

tt2tab hexa > hexa.mod

generates the interface shown in the table 4.7 (�le hexa.mod).

The part pla (line 5) is de�ned in the pla.mod model �le (located in

pla.mod). Unfortunately, this �le is too big to be printed and detailed in this text. We will

52 CHAPTER 4. HARDWARE GENERATION

1 NAME=hexa;

2 INORDER = i0 i1 i2 i3;

3 OUTORDER = a b c d e f g;

4 a = !i3 & !i2 & (!i0 | i1) | !i3 & i2 & (i0 | i1) |

5 i3 & !i2 & (!i1 | !i0) | i3 & i2 & (!i0 | i1);

6 b = !i3 & !i2 | !i3 & i2 & (!i1 & !i0 | i1 & i0) |

7 i3 & !i2 & (!i1 | !i0) | i3 & i2 & !i1 & i0;

8 c = !i3 & !i2 & (!i1 | i0) | !i3 & i2 |i3 & !i2 |

9 i3 & i2 & !i1 & i0;

10 d = !i3 & !i2 & (!i0 | i1) | !i3 & i2 & (!i1 & i0 | i1 & !i0) |

11 i3 & !i2 & (!i1 | i0) | i3 & i2 & (!i1 | !i0);

12 e = !i3 & !i2 & !i0 | !i3 & i2 & i1 & !i0 |

13 i3 & !i2 & (!i0 | i1) | i3 & i2 ;

14 f = !i3 & !i2 & !i1 & !i0 |!i3 & i2 & (!i1 | !i0) |

15 i3 & !i2 |i3 & i2 & (!i0 | i1);

16 g = !i3 & !i2 & i1 |!i3 & i2 & (!i1 | !i0) |

17 i3 & !i2 |i3 & i2 & (i0 |i1);

Table 4.5: the equation describing an hexadecimal 7 segment decoder (�le hexa.eqn)

1 .na hexa

2 .ilb i0 i1 i2 i3

3 .ob a b c d e f g

4 .i 4

5 .o 7

6 .p 14

7 1101 0001100

8 -100 0001001

9 11-0 1110000

10 000- 0001010

11 -001 1001000

12 0010 0110011

13 -00- 0110000

14 1011 0111101

15 1010 1011011

16 0-0- 1100100

17 -111 1000111

18 0-11 1001110

19 --01 0010011

20 0110 1011111

21 .e

Table 4.6: the table describing hexadecimal 7 segment decoder (�le hexa.tt)

only comment few features. The template is located in plalib.mag (see �gure 4.4).

4.4.1 Building the PLA structure from the .tab �le

The �le hexa.tab is opened in the hexa Part at line 3. The �rst data of the �le is a timestamp

number of the PLA to identify it without ambiguity. It is read on line 4 and passed in parameter

to the pla Part in order to identify the instance of the PLA.

The �le contains then the number of inputs, the number of outputs and the number of

4.4. THE BUILDING OF A REGULAR MACRO-CELL 53

1 PavePart hexa[i0,i1,i2,i3] -> a,b,c,d,e,f,g

2 Integer fd,t

3 fd = Open ("hexa.tab")

4 t = Read(fd)

5 pla(4,7,fd,t,0)[i0,i1,i2,i3] -> a,b,c,d,e,f,g

6 End

Table 4.7: the model interface of the hexadecimal 7 segment decoder

c_c

c_b

c_a c_ep_e

c_fp_f

c_gp_g

c_hp_h

c_ip_i

c_jc_d

in

c_1

c_s1

c_t

c_u

c_m c_n
p_n

c_o
p_o

p_p
c_p

c_v

c_w

c_x

p_v

p_w

p_x

c_z

p_0c_0

out

c_2

c_3

c_4

c_5

p_2

p_3

p_4

p_5

c_6

out

c_r
p_r

c_q

p_m

c_l
p_l

p_kc_k

y_gnd y_gnd y_gnd y_gnd y_gnd y_gnd y_gnd

y_gnd y_gnd y_gnd y_gnd y_gnd y_gnd

y_vdd
y_vdd

y_vdd y_vdd y_vdd

y_vddy_vddy_vddy_vddy_vdd

x_vdd

x_vdd

x_vdd

x_vdd

x_vdd

l l

inbbinb

x_vdd

x_vdd

x_vdd

y_vdd

c_s0

p_s0

x_vdd

y_vdd

x_gnd

x_gnd

x_gnd

x_gnd

x_gnd

x_gnd

x_gnd

x_gnd

x_gnd

y_vdd

Figure 4.4: PLA template

internal terms. The di�erent zones of the PLA are successively build:

� the left border (with the pullup of the �rst nor matrix),

� the input bu�ers,

� the �rst nor matrix,

� the intermatrices zone,

� the output bu�ers,

� the second nor matrix.

54 CHAPTER 4. HARDWARE GENERATION

...

202 Yplace

203 For j = 0:nt-1 Cycle { For each term

204 If j & 3 = 0 Then { put a body-tie line every 4 lines

205 Xplace

206 mag_plalibi[] For i = 0:ni-1

207 End

208 Endif

209 Xplace

210 Logicf "nor %s 51477",Net[t(j)]

211 For i = 0:ni-1 Cycle { For each input of the current term

212 k = Read(fd)

213 Switch k

214 Case 0 { this input is not used

215 mag_plalibf[]

216 Exit

217 Case 1 { this input is used directly

218 mag_plalibh[r(i)] -> t(j)

219 Logicf " %s 3850",Net[r(i)]

220 Exit

221 Case 2 { this input is used inverted

222 mag_plalibg[rb(i)] -> t(j)

223 Logicf " %s 3850",Net[rb(i)]

224 Exit

225 Default

226 Error "bad value for k :",k If k <0 Or k > 2

227 End

228 Repeat

229 Logicf "\n"

230 End

231 Repeat

232 End

Table 4.8: the generation of the �rst nor matrix

The hexa.tab contains successively the information to build:

� the �rst matrix each term after each term (the matrix is built line by line),

� the second matrix each term after each term (the matrix is built column by column),

The table 4.8 shows the generation of the �rst matrix. nt is the number of terms, ni the

number of inputs, t(0:nt-1) is the term bus and r(0:ni-1), rb(0:ni-1) are the non-inverter

and inverter input bus.

The For loops (lines 203{231) enumerates the number of terms and the For loops (lines

211{228) enumerates the number of inputs for each terms. For each input of each term, k is

read (line 212) from the hexa.tab �le. According to k :

� if k = 0, the current input is not used by the current term and the tile mag plalibf is

laid out (label c f on �g. 4.5),

� if k = 1, the current input is used and the tile mag plalibh is laid out (label c h on

�g. 4.5),

4.5. DATA-PATH GENERATION 55

c_f

c_g

c_h

p_g

p_f

p_h

Figure 4.5: the nor matrix tiles

� if k = 2, the inversion of the current input is used and the tile mag plalibg is laid out

(label c g on �g. 4.5),

� else this is an error which is reported.

The transistors (for the .sim netlist) are generated in the calls of the subcells. The nor gate is

generated input by inputs on lines 210, 219, 223 and 229.

4.4.2 Stretching the power{supplies

Two values gnd and vdd are calculated from the number of inputs, the number of outputs

and the number of terms in order to stretch the power{supplies rails. The tiles located on

the boundary accept these two variable as parameters. And the label x gnd, y gnd, x vdd and

y vdd speci�es in the di�erent tiles to location where to stretch on the di�erent axis.

The resulting layout is shown on �gure 4.6.

In the tessellation style, the electrical connection between the tiles must be a consequence

of the placement. The designer is responsible of the adequation of the compiled netlist with the

resulting layout. It is possible as long the generated layout is rather regular. Unfortunately,

only few parts of an integrated circuit verify this condition. That is why we propose another

style which o�ers rather good densities for semiregular layouts like data-paths.

4.5 Data-path generation

The data-path generation style is invoked with the keyword BlockPart. The data-path gen-

erator is a cell building system. The interconnections in between the cells and between the

cells and the sides of the data-path are performed automatically. The placement of the cells is

speci�ed by the designer using the placement operators already used for the tessellation style.

It is possible to use this generator to build random logic, but it will be tedious to manually

specify the placement. That is why, this style is e�cient only for semiregular layout (like

data-paths). The �gure 4.7 shows the structure of a data-path. There exists an obvious bi-

dimensional placement:

56 CHAPTER 4. HARDWARE GENERATION

i0 i1 i2 i3 a b c d e f g

bb_p

GND!Vdd!

Figure 4.6: the resulting hexa PLA

� a whole slice for 1 bit of the data-path is develop along the X axis,

� columns represent basic operators on word width.

Irregularities may be introduced in the structure. Side e�ect can take place directly in the

data-path. The �nal quality (i.e. the density) will depends of course on the regularity of the

layout. Basic cells must comply to a list of constraints in order to be used by the data-path

generator. These constraints are detailed for the mcmos technology in the appendix A and for

the ecpd technology in the appendix B. If you want to use the data-path compiler in another

technology, inquire at the mod2mag maintainer of your site to get the constraint speci�cation

for the technology or if you are yourself the local mod2mag maintainer, read the appendix C

which contains guide lines to build yourself the constraint speci�cation. We will �rst describe

the constraints on the basic cells and then we will explain the building of a data-path.

4.5.1 Use of the data-path generator

The design of a shifter (left, right and rotate) will be an opportunity to discover how to build a

data-path. The model source is shown on table 4.9

6

and the basic schematic is shown on the

�gure 4.8

6

�le shift.mod

4.5. DATA-PATH GENERATION 57

word width operator

1 bit slice

control

control flow

data flow

side effect

Figure 4.7: the data-path structure

1 Include "lib8.mod"

2

3 { build a step at a given position :

4 {

5 { Example : n=4

6 { if in = 0 then out = 11110000000000000

7 { if in = 1 then out = 11111000000000000

8

9 Part step(n)[in,c(0:n-1)] -> out(0:2^n-1)

10 Signal mid(0:1)

11 Signal outbis(0:2^n-1)

12 Integer i

13 Yplace

14 If n=1 Then

15 Xplace

16 mag_and2[c,in] -> out(0)

17 mag_or2[c,in] -> out(1)

18 End

19 Else

20 step(n-1)[mid(0),c(1:n-1)] -> outbis(0:2^(n-1)-1)

21 step(1) [in,c(0)] -> mid

22 step(n-1)[mid(1),c(1:n-1)] -> outbis(2^(n-1):2^n-1)

23 out(i) -> outbis((2^(n-1) * (i & 1) + i/2) & 2^n-1) For i=0:2^n-1

24 Endif

58 CHAPTER 4. HARDWARE GENERATION

step generator

barrel shifter

a(0:2^n−1)

s(0:n−1)

c(2)

c(0) c(1)

b(0:2^n−1)

2^n

2^n

2^nn

GND

d0

d1

d0 d1
s

s

multiplexer

multiplexer

Figure 4.8: the shifter scheme

25 End

26 End

27

28 { oriented step :

29 { "c" is the position of the stairs

30 { "in" is the value of the stair's cell

31 { "m" is the direction of the stairs :

32 { 0 : 000000000000000

33 { 1 : 111111000000000

34 { 2 : 000000111111111

35 { 3 : 111111111111111

36

37 Part ostep(n)[in,c(0:n-1),m(0:1)] -> out(0:2^n-1)

38 Signal outbis(0:2^n-1),mbuf(0:1)

39 Integer i

40 Xplace

41 Yplace

42 step(n)[in,c(0:n-1)] -> outbis(0:2^n-1)

43 mag_buf[m(0)] -> mbuf(0)

44 End

45 Yplace

46 mag_mux21[mbuf,outbis(i)] -> out(i) For i=0:2^n-1

47 mag_buf[m(1)] -> mbuf(1)

48 End

49 End

4.5. DATA-PATH GENERATION 59

50 End

51

52 { shifter is a general shifter :

53 { 2^n is the size of the shifter

54 { s is the value of the shift (to the left)

55 { c is the command :

56 { c(0:1) is the direction

57 { 1 is Left

58 { 2 is Right

59 { 3 is Rotate

60 { c(2) is the injected bit in shifts

61

62 BlockPart shifter(n)[a(0:2^n-1),s(0:n-1),c(0:2)] -> b(0:2^n-1)

63 Integer i,j,b,p

64 Top s,c

65 Left a

66 Right b

67 p = 2^n

68 Signal sh(0:(n+1)*p-1),m(0:p-1),sbuf(0:n-1),cbuf(0:2)

69

70 Xplace

71 sh(0:p-1) -> a

72 b = 0

73 For i=0:n-1 Cycle

74 Yplace

75 For j=0:p-1 Cycle

76 mag_mux21[sh(b+j,b+((j+2^(n-1-i))&(p-1))),sbuf(n-i-1)] -> sh(b+p+j)

77 Repeat

78 mag_buf[s(n-i-1)] -> sbuf(n-i-1)

79 b = b+p

80 End

81 Repeat

82 ostep(n)[GND,sbuf(0:n-1),c(0:1)] -> m(0:p-1)

83 Yplace

84 mag_mux21[cbuf(2),sh(n*p+i),m(i)] -> b(i) For i=0:2^n-1

85 mag_buf[c(2)] -> cbuf(2)

86 End

87 End

88 End

89

90 Constant n=3

91 Signal a(0:2^n-1),sh(0:n-1),com(0:2),out(0:2^n-1)

92

93 Source a,sh,com

94 shifter(n)[a,sh,com] -> out

Table 4.9: a general shifter

The shifter is composed of 4 parts:

� a barrel shifter (lines 73-80),

� a step generator (Parts step/ostep lines 9-26),

� a multiplexer to compose the mask (line 46),

� a multiplexer to select the �nal result (line 84).

60 CHAPTER 4. HARDWARE GENERATION

Barrel shifter

The 2

n

barrel shifter is built with n stages of multiplexers (the For loop lines 73-86). Each

stages i is composed of p = 2

n

(line 67) multiplexers (line 76). The j

th

multiplexer selects

between the outputs j and j + 2

n�1�i

mod2

n

of the level i � 1.

Figure 4.9: the shifter: tessellation of cells

Step generator

The step generator takes as input the n-bit bus c and a control signal in and returns the 2

n

-bit

bus out. The value of the i

th

bit of out is:

� 1 if i is less than the value of c(0:n-1),

� 0 if i is greater than the value of c(0:n-1),

� the value of in if i is equal to the value of c(0:n-1).

The step generator is built recursively. A 2

1

-bit step (the terminal recursion case) is de-

scribed at lines 16-17. A 2

n

-bit step is build by the interlacing of two 2

n�1

-bit steps (line 20

and 22) built from the n�1 most signi�cant bits of c. c(0) is used to particularize each substep

(with each in input).

4.5.2 Placement and Recursivity

Recursivity is not natural at �rst sight for the description of hardware. We have said (sub-

section 2.4.6) that recursivity is essential for the description of trees. When using the layout

generator, it is up to the designer to specify both the electrical connectivity and the placement.

As a matter of fact recursivity is adequate to describe tree structure for both connectivity and

layout placement. The table 4.10 presents a generic tree structure with its placement.

The three important criteria for the placement of an operator in a data-path are:

� the adequation of the height of the operator to the height of the data-path. This is

generally easy to ful�ll because the operator size is related to the width of the data-buses.

In the case of a binary tree, there are 2

h

� 1 nodes and 2

h

leaves. As generally, the node

4.5. DATA-PATH GENERATION 61

1 Part tree(n)[in(0:2^n-1)] -> out

2 Signal left,right

3

4 If n = 1 Then

5 leaf[in] -> out

6 Else

7 Yplace

8 tree(n-1)[in(0:2^(n-1)-1)] -> left

9 node[left,right] -> out

10 tree(n-1)[in(2^(n-1):2^n-1)] -> right

11 End

12 Endif

13

14 End

Table 4.10: a generic tree structure with its placement

is able to deal with 2 bits of the data, the whole size of the operator 2

h+1

� 1 nearly

reaches the size of the data-path 2

h+1

.

� the minimization of the routing within the operator. This is also easy to reach for the

tree (see right of �gure 4.10) thanks to the sequence of the lines 8{10.

� the minimization of the routing between the operator and the rest of the data-path. For

this example (tab. 4.10) the routing is direct. This is often the case (for every binary{

tree reduction). It is not the case for the step operator because the location of the cell

dealing with the n

th

bit is at the row p, where p is the inverted binary representation of

n. Even in that it is better to use recursivity, because the extra{cost of rearranging the

input wires is less than the internal wiring cost for the solution which lays out the cells in

the right order. Furthermore the recursive solution is far more understandable than the

non-recursive one.

4.5.3 Data-path building

The shifter part declared with the keyword BlockPart will be generated by the data-path

generator.

The generator �rst produces the layout as in the tessellation style (�g. 4.9). As every basic

cell has the same height, cells are horizontally aligned. Horizontal connections will be done in

metal2 over the cells and, if necessary, in extra channels between rows. Each even row is put up

side down in order to connect correctly the Vdd power{supplies of adjacent rows and to share

the extra channel (on the GND side).

The generator then detects the vertical alignment between the left side of adjacent cells.

Vertical channels are declared and run along di�erent height. In regular Data-path, vertical

channels run from the bottom to the top of the data-path. The nesting of the Xplace and

Yplace is important to force some alignment between cells located on top each others.

62 CHAPTER 4. HARDWARE GENERATION

leaf

node

leaf

leaf

node

leaf

node

in
st

an
ce

 o
rd

er

leaf

node

leaf

leaf

node

leaf

node

projection of the tree

Figure 4.10: placement of a binary{tree

b0

b1

b2

b3

a4

a0

b4

a5

a1

b5

a6

a2

b6

a7

a3

b7

s2 s1 s0 c0 c1 c2

Figure 4.11: the �nal layout of the shifter

Each signal is a set of n terminals of cells. Each signal is split in n� 1 terminal-to-terminal

connections. The cost of each connection is evaluated on the number of row to cross, the

number of cells to run over and the number of vias.

4.6. CHIP GENERATION 63

Each connection is then allocated to the di�erent channels (horizontally over the cells and

vertically at the left of the cells). From now on, the densities of the channels are known and

the columns of cells are move away from each others to make space for the vertical channels

and the layout is drawn (�g. 4.11).

Input/Output signals are then extended to a side of the data-path (by default to the right

side). It is possible to specify the side for every input/output. The syntax is:

Right (or Left, Top, Bottom) signal list

The buses s and c (line 64) will be accessible to the top of the data-path while the bus a

will be accessible to the left side (line 65) and the bus b to the right side (line 66). These

inputs/outputs will be labeled in order to �nish the cell.

4.6 Chip generation

The use of the chip �nishing style will be illustrated on the example shown on the table 4.11

7

,

which generates the layout of the 74C138 (a 1-of-8 decoder with 3 enables).

1 Include "lib8.mod"

2 Include "pad.mod"

3

4 BlockPart decoder8[a(0:2),g,gb(1:2)] -> ob(0:7)

5 Left a(0,1),ob(0)

6 Top ob(1:4)

7 Right ob(5:7)

8 Bottom g,gb,a(2)

9

10 Signal ab(0:2)

11 Signal i(0:7),j(0:7),k(0:7),sel,selb,gbb(1:2),o(0:7)

12 Integer i

13

14 Xplace

15 Yplace

16 mag_biginv[a(0)] -> ab(0)

17 mag_biginv[a(1)] -> ab(1)

18 mag_biginv[a(2)] -> ab(2)

19 mag_inv[gb(1)] -> gbb(1)

20 mag_inv[gb(2)] -> gbb(2)

21 mag_nand3[g,gbb] -> selb

22 mag_biginv[selb] -> sel

23 End

24 Yplace

25 For i=0:7 Cycle

26 i(i) -> ab(0) If i & 1 = 0

27 i(i) -> a(0) If i & 1 # 0

28 j(i) -> ab(1) If i & 2 = 0

29 j(i) -> a(1) If i & 2 # 0

30 k(i) -> ab(2) If i & 4 = 0

31 k(i) -> a(2) If i & 4 # 0

32 Xplace

33 mag_and3[i(i),j(i),k(i)] -> o(i)

34 mag_nand2[o(i),sel] -> ob(i)

35 End

36 Repeat

37 End

7

�le 138.mod

64 CHAPTER 4. HARDWARE GENERATION

38 End

39 End

40

41 ChipPart ls138[a,b,c,g,gb(1:2)] -> ob(0:7)

42 { PCB interface }

43 Source a,b,c,g,gb

44 Pcb "dil16-supp 8 18 7 1"

45 Pin a,b,c,gb,g,ob(7),Gnd

46 Pin ob(6 : 0 By -1),Vdd

47 { local signal }

48 Signal ina,inb,inc,ing,ingb(1:2),inob(0:7)

49 { core generation }

50 channel(24)[]

51 Yplace

52 channel(6)[] Rotate90

53 decoder8[ina,inb,inc,ing,ingb(1:2)] -> inob(0:7)

54 channel(6)[] Rotate90

55 End

56 {pad ring generation }

57 Left

58 inpad(cmos)[b] -> inb

59 inpad(cmos)[a] -> ina

60 vddpad[]

61 outpad[inob(0)] -> ob(0)

62 Top

63 outpad[inob(1)] -> ob(1)

64 outpad[inob(2)] -> ob(2)

65 outpad[inob(3)] -> ob(3)

66 outpad[inob(4)] -> ob(4)

67 Right

68 outpad[inob(5)] -> ob(5)

69 outpad[inob(6)] -> ob(6)

70 gndpad[]

71 outpad[inob(7)] -> ob(7)

72 Bottom

73 inpad(cmos)[g] -> ing

74 inpad(cmos)[gb(2)] -> ingb(2)

75 inpad(cmos)[gb(1)] -> ingb(1)

76 inpad(cmos)[c] -> inc

77

78 End

79

80 Signal a,b,c,g,gb(1:2),ob(0:7)

81

82 ls138[a,b,c,g,gb(1:2)] -> ob(0:7)

Table 4.11: a whole chip: the 74C138

A part declared with the keyword ChipPart is generated by the chip generator. It belongs

to the 2 worlds:

� Layout world: it is the top of a layout hierarchy,

� Pcb world: it is a leaf of a PCB hierarchy.

4.6. CHIP GENERATION 65

4.6.1 Layout �nishing

The layout of a chip contains two parts:

� the core,

� the pad ring.

Core generation

The core layout is a tessellation (like the ones performed by PavePart) of few big subcells

(like ROM, RAM, PLA and data-path) that must be connected with each others and with

the input/output pads. The interconnections between these blocks and the pad ring will be

performed by a channel router (for instance the magic one) thanks to the .net �le provided

by the netlist generator of mod2mag. Therefore it is important to manage some space for the

channels. The parametrical part channel describe in magicdef.mod reservs some routing step

space for each channels (lines 50, 52 and 54).

Pad ring generation

The pad ring is a ring which runs around the core and which contains the input/output pads

(declared with the keyword PadPart). Every subcell of the chip (even if it is hidden by a Part

call) is located at one side of the ring. The context can be changed to specify to which side

a pad instance belongs. The statements Top (line 62), Bottom (line 72), Left (line 57) and

Right (line 67) change this context. The order of pad instances is signi�cant: it follows the

trigonometric order around the pad ring.

The directory ~cad/ulm/mcmos/pad contains all the �les related to the pad generation. the

pad.mod (line 2) provides a generic interface for the pads.

model generates only the di�erents block of the core and the pad ring as it can be observed

on �gure 4.12.

Each pad known by mod2mag possesses two layouts (see section C.2):

� the slim style, in order to maximize the horizontal pad density of the sides (used for

IO{limited circuits),

� the
at style, in order to minimize the height of the circuit (used for core{limited circuits).

The pad ring generator choose independently the style for each side of the chip and select the

best con�guration in order to minize the global area.

The �gure 4.13 shows the same layout with another pad con�guration (a wider space has

between asked for the routing channel).

We must then run magic to �nish the circuit.

Chip �nishing under magic

Three interventions are required under magic to �nish the chip:

� adjust the �ne position of the di�erent blocks of the core (to avoid routing grid alignment

problem). This is facultative if the core is a single data-path.

� to draw manually the power-supply from the pad ring to the di�erent blocks of the core.

66 CHAPTER 4. HARDWARE GENERATION

ob1 ob2 ob3 ob4

b

a

ob0

ggb2gb1c

ob5

ob6

ob7

Figure 4.12: the un�nished layout

ob1 ob2 ob3 ob4 ob5 ob6 ob7 g

b

a

ob0

gb2gb1c

Figure 4.13: a di�erent pad con�guration

� to route the circuit:

{ �rst load the chip layout,

{ select the top cell,

4.6. CHIP GENERATION 67

{ run the router :route.

The �gure 4.14 shows the �nal result after the intervention under magic.

Figure 4.14: the �nal layout of the chip

4.6.2 PCB interface

The PCB interface describe the space required by a chip or a connector on a board. It must

handle the two features (tab. 4.11 lines 44{46):

� The packaging de�nition,

� mapping between the input/output signals under model with the pin numbers of the

chip.

Pcb statement

The Pcb statement has the following syntax:

Pcb "string"

and de�nes 5 parameters which are �elds of the string. The �rst one represents the name of

the package for the PCB system (the Dedale2000 software of Decad society). The four last

parameters represents the bounding box (x0, y0, x1, y1) of the circuit relatively to the pin

number 1 of the circuit.

Pin statement

The Pin statement has the following syntax:

Pin pin list

68 CHAPTER 4. HARDWARE GENERATION

It enumerates the pins from the pin number 1 and associates them to a signal (taken from the

inputs, the outputs and the power-supplies of the chip).

4.6.3 Declaration of existing circuits

In order to build boards and to simulate them with existing circuits, we have to provide a

model interface at ChipPart level for these chips. Because they already exist, its is not

necessary to describe the layout of the circuit. However, we must provide 3 interfaces:

� the ERC interface (Source, Dest and Tristate),

� the PCB interface (Pcb and Pin),

� the behavioral description of the circuit in order to perform simulation.

The table 4.12

8

shows this description for the TTL 374 circuit (an 8-bit register with output

enable).

4.7 Pcb generation

Whole boards can be described thanks to the PcbPart keyword. The table 4.13

9

shows an

example of board description.

Placement keywords (line 9) are signi�cative to build the initial placement for the Pcb

system. The command:

model design -p

generates for each PcbPart name used in the design the �les:

� name.pcbnet: the input data �le for Dedale2000 (tab. 4.14),

� pcb name.mag: a magic �le that contains the placement of the chips on the board

(�g. 4.15).

ls138_1

1

ls138_2

1

ls374_3

1

ls374_4

1

ls374_5

1

ls374_6

1

ls374_7

1

ls374_8

1

ls374_9

1

ls374_10

1

Figure 4.15: the chip placement �le (pcb register bank.mag

8

�le 374.mod

9

bank.mod

4.7. PCB GENERATION 69

1 Chippart c374[d(0:7),clk,enb] -> q(0:7)

2 Signal m(0:7)

3 Source d,clk,enb

4 Tristate q

5 Constant delay = 10

6

7 Pcb "dil20-supp 8 22 7 1"

8 Pin enb,q(0),d(0,1),q(1,2),d(2,3),q(3),Gnd

9 Pin clk,q(4),d(4,5),q(5,6),d(6,7),q(7),Vdd

10

11 Behavior

12 Capa 9 PF d

13 Capa 20 PF en,clk

14 Capa 12 PF q

15 Slew 60 PS/PF q

16 Undef m

17 Undef q

18 When enb Low Do

19 Set q = Value[m(0:7)]

20 Done

21 When enb High Do

22 HighZ q

23 Done

24 When clk High Do

25 At Time + delay * 1 NS Do

26 Set m = Eval(Value[d(0:7)])

27 Done

28 Done

29 When m Change Do

30 If Value[enb] = 0 Then

31 Set q = Value[m(0:7)]

32 Endif

33 Done

34 When enb,clk Undef Do

35 Undef q

36 Done

37 End

38 End

Table 4.12: the declaration of an existing circuit(374.mod)

70 CHAPTER 4. HARDWARE GENERATION

1 Include "138.mod"

2 Include "374.mod"

3

4

5 PcbPart register_bank[d(0:8),ck,w(0:2),wen,wenb,r(0:2),ren,renb] -> out(0:7)

6

7 Signal wck(0:7),rs(0:7)

8 Integer i

9 Xplace

10 ls138[w,wen,wenb,ck] -> wck(0:7)

11 ls138[r,ren,renb,GND] -> rs(0:7)

12 ls374[d(0:7),wck(i),rs(i)] -> out(0:7) For i=0:7

13 End

14 End

Table 4.13: a whole board: a register bank(bank.mod)

/implantation

<P1> mg=<dil16-supp> x=12.700 y=3.810

<P2> mg=<dil16-supp> x=22.860 y=3.810

<P3> mg=<dil20-supp> x=33.020 y=3.810

<P4> mg=<dil20-supp> x=43.180 y=3.810

....

<P9> mg=<dil20-supp> x=93.980 y=3.810

<P10> mg=<dil20-supp> x=104.140 y=3.810

/alimentations 0V +5V

pal : P1,7 =0V

pal : P1,15 =+5V

pal : P2,7 =0V

pal : P2,15 =+5V

....

pal : P10,19 =+5V

pal : P2,5 =0V

/equipotentielles

<N0> P3,1 P2,15

<N1> P4,1 P2,14

<N3> P6,1 P2,12

....

<N30> P6,17 P5,17 P4,17 P3,17

<N31> P10,18 P9,18 P8,18 P7,18

<N31> P6,18 P5,18 P4,18 P3,18

Table 4.14: the input data �le for the Pcb router (register bank.pcbnet)

Appendix A

The constraints on cells in

mcmos technology

Cells must verify a list of constraints in order to be used by the data-path generator. The

constraints belong to the following classes:

� size of the cells,

� organization and reservation of the power-supply layer and the routing layers,

� speci�cation and position of the cell inputs/outputs,

� side e�ects of the design rule check.

A cell library is available in the ~cad/ulm/mcmos/lib8 directory. The �le lib8.mod contains

all the model descriptions of the cells. However, it is important to describe the constraints

that a cell must ful�ll in order to the designer to develop new cells or to develop cells in another

technologies. We are going to describe the constraints of our current technology (mcmos).

A.1 Cell size

the �gure A.1 is an example of cell complying with the constraints. The height of the cells is

constant: 150� = 75:0�m. It is possible to build constant height rows of cells. The length of the

cells is variable in order to adapt the area to the need. These dimensions represent the reference

rectangle (�g. A.1

1

) which must be de�ned by the bb p label (for data-path cells, the reference

rectangle is always di�erent of the bounding-box because of design rule check reasons).

A.2 Power-supplies and routing layers

In order to facilitate the signal and power-supply interconnections between cells, a global orga-

nization of the routing layer metal1 and metal2 is required.

1

tribuf.mag

71

72 APPENDIX A. THE CONSTRAINTS ON CELLS IN MCMOS TECHNOLOGY

Vdd!

out

bb_p

d

s2

s1

GND!

Figure A.1: A basic cell for the data-path generator

A.3 Power-supplies

Metal2 power-supplies are located along the horizontal borders of the cells. The positive one

follows the top side on the whole length of the cell. It is a 12� = 6:0�m width metal2 rail

(�g. A.2). The ground power{supply run across the cell in a 9� = 4:5�m width metal2 rail,

located at 3� = 1:5�m from the bottom of the cell.

Cell rows of even rank are used with an X axis symmetry. Power-supply rails can be shared

between consecutives rows. The positive rails of adjacent odd/even rows are directly connected

because they follow the side of the cells. Ground power-supply rails of the adjacent even/odd

rows are not connected, in order to insert some extra horizontal metal2 channels. However, if no

extra channels are required, the gap between the two rails is �lled with metal2. Power{supplies

are identi�ed by labels: Vdd! for the positive one and GND! for the ground (�g A.1).

A.4 Routing organization

The metal2 power-supply rails of the cells lead to a global organization of the power-supply for

the whole data-path: two metal2 combs (one for each power-supplies) are nested horizontally.

Metal2 layer is reserved for the horizontal connections. In the same way, vertical connections

are drawn in metal1. Metal2 wires can run over the cells. The corresponding space must be

A.4. ROUTING ORGANIZATION 73

power supply rail (Vdd!) 12l = 6.0 um

150l = 75um

ground rail (GND!) 9l = 4.5um

3l = 1.5um

6l = 3.0um

9l = 4.5um

8 metal2
channels
to let
empty

4l = 2.0um

11l = 5.5um

15l = 7.5um

6l = 3.0um

16l = 8.0um

>= 3l = 1.5um
9l = 4.5um

name of the metal1 input/output

>= 3l = 1.5um

Figure A.2: A basic cell for the data-path generator

number lower end upper end

� �m � �m

1 18 9.0 27 13.5

2 33 16.5 42 21.0

3 48 24.0 57 28.5

4 63 31.5 72 36.0

5 78 39.0 87 43.5

6 93 46.5 102 51.0

7 108 54.0 117 58.5

8 123 61.5 132 66.0

Table A.1: the location of the metal2 channels from the bottom of the cell

free of metal2 in the cells. 8 connections (in the lib8 library) can run through the cells and

be possibly connected to their inputs/outputs. The table A.1 speci�es the location of these

channels inside the cell. The metal2 channels are drawn by the data-path generator: metal2 is

prohibited inside the cells unless for the power-supplies. The �gure A.2 shows the locations of

these channels.

74 APPENDIX A. THE CONSTRAINTS ON CELLS IN MCMOS TECHNOLOGY

number lower end upper end

� �m � �m

1 13 6.5 17 9.5

2 28 14.0 32 16.0

3 43 21.5 47 23.5

4 58 29.0 62 31.0

5 73 36.5 77 38.5

6 88 44.0 92 46.0

7 103 51.5 107 53.5

8 118 59.0 122 61.0

9 133 66.5 137 68.5

Table A.2: the location of the polysilicon inputs/outputs in a cell

Sometimes the 8 channels are not su�cient to route the horizontal connections; the required

space is then allocated beyond the ground side of the cell.

Vertical connections are achieved in metal1 at the left of each cell column: the metal1 layer

is available to achieve internal connections in the cells (constraints on this layers will be de�ned

below).

A.5 De�nition of the inputs/outputs of the cells

Two technics are available (�g. A.2):

� polysilicon connection on the left side of the cell,

� metal1 vertical rail.

A.5.1 Polysilicon input/output

They are mainly used mainly for the input of the cells (quite always directly connected to

transistor gates). They are de�ned by a 4� = 2:0�m width square of polysilicon. The boundary

of the label must located at the left side of the cell. There exists 9 possible locations for these

inputs (�g. A.2) and are precisely de�ned in the table A.2. These locations �t with the 9 gaps

between the metal2 rails in order to avoid stacking rule errors.

A.5.2 Metal1 input/output

Other inputs/outputs are drawn with a 9� = 4:5�m metal1 vertical rail (�g. A.2). The ends

of each rail are located at 12� = 6:0�m away from the horizontal side of the cell and �t the

ends of the external metal2 channels. This rail must be moved away from the di�erent contacts

and boundaries of layers in order to prevent every stacking rule errors on the vias which could

be drawn at every intersections of the rail and the metal2 channels. A good test consists in

drawing all the vias and check with the DRC.

A 9� = 4:5�m space is required between 2 rails to guarantee a minimum distance between

vias.

A.6. DESIGN RULE CONSTRAINTS 75

Lower and upper sides of the cells must be free of metal1 to allow the extension of every

metal1 rail. This extension is required in the following cases:

� The connection of an input/output to a power{supply. It is achieved by a via on the

power{supply rail at one side of the cell.

� The connection of 2 inputs/outputs of adjacent cells if the positions of the rails �t.

Consequently, a 21� = 10:5�m gap free of metal1 must be centered on the axis of each in-

put/output rail.

An input-output rail is declared by a square label at its lower end. It must be located at a

minimum distance of 3� = 1:5�m of one of the vertical sides of the cell.

A.6 Design rule constraints

The cells must ful�ll the design rule for the technology for themselves and also for possible

side-e�ect with their neighbor. The data-path compiler makes the assumption that as soon as

cells do not overlap, design rules are expected.

For the side e�ects, only spacing and stacking rules are important. Stacking rules happen

when connecting a metal1 rail to a external metal2 channel with a via : it is easy to check every

combinaison with the magic DRC.

The spacing rule can be classi�ed in two kinds:

� between di�usions which are n or p-typed,

� between other layers.

For non-typed layers, spacing rules will be independent of the side type. if n is the distance

required between 2 objects of the same layer then the distance between every object of this

layer and the sides must be at least dn=2e.

In order to limit the constraints, it is important to adapt the rules to the sides of the cell:

� the top side, under the Vdd power{supply rail. In this area, we will �nd logically most

p-transistor. By the parity inversion of the rows of the data-path, each cell is suppose to

touch by his top side, the top side of another cell. The spacing rule for top side-e�ect is

calculated for a n-well environment. Spacing rules for non-typed layer are

� the bottom side, under the GND power{supply rail. In this area, we will �nd logically

most n-transistor. By the parity inversion of the rows of the data-path, each cell is

suppose to touch by his bottom side, the bottom side of another cell. The spacing rule

for top side-e�ect is calculated for a p-substrate environment.

� the vertical side which are supposed to be connected to vertical routing channels. The

assumption (which is right for the lib8 cell) is that those channel is wide enough(it contains

at least one wire) to isolate from the next horizontal cell (as each cell has at least one

poly input). Side e�ect are ignore for typed layers.

The table A.3 summarize the distance to observe for every layers and sides.

76 APPENDIX A. THE CONSTRAINTS ON CELLS IN MCMOS TECHNOLOGY

masks lower side upper side vertical side

� �m � �m � �m

polysilicon 2 1.0 2 1.0 2 1.0

metal1 3 1.5 3 1.5 3 1.5

n di�usion 4 2.0 16 8.0 { {

p di�usion 16 8.0 4 2.0 { {

p body-tie 4 2.0 12 6.0 { {

n body-tie 10 5.0 4 2.0 { {

Table A.3: drc constraints between layers depending on the side of the cell

Appendix B

The constraints on cells in ecpd

technology

Cells must verify a list of constraints in order to be used by the data-path generator. The

constraints belong to the following classes:

� size of the cells,

� organization and reservation of the power-supply layer and the routing layers,

� speci�cation and position of the cell inputs/outputs,

� side e�ects of the design rule check.

A cell library is available in the ~cad/ulm/ecpd/lib8 directory. The �le lib8.mod contains

all the model descriptions of the cells. However, it is important to describe the constraints

that a cell must ful�ll in order to the designer to develop new cells or to develop cells in another

technologies. We are going to describe the constraints of our current technology (ecpd).

B.1 Cell size

the �gure B.1 is an example of cell complying with the constraints. The height of the cells is

constant: 160� = 64:0�m. It is possible to build constant height rows of cells. The length of the

cells is variable in order to adapt the area to the need. These dimensions represent the reference

rectangle (�g. B.1

1

) which must be de�ned by the bb p label (for data-path cells, the reference

rectangle is always di�erent of the bounding-box because of design rule check reasons).

B.2 Power-supplies and routing layers

In order to facilitate the signal and power-supply interconnections between cells, a global orga-

nization of the routing layer metal1 and metal2 is required.

1

tribuf.mag

77

78 APPENDIX B. THE CONSTRAINTS ON CELLS IN ECPD TECHNOLOGY

d

en

y

bb_p

GND!

Vdd!

Figure B.1: A basic cell for the data-path generator

B.3 Power-supplies

Metal2 power-supplies are located along the horizontal borders of the cells. The positive one

follows the top side on the whole length of the cell. It is a 13� = 5:2�m width metal2 rail

(�g. B.2). The ground power{supply run across the cell in a 10� = 4:0�m width metal2 rail,

located at 3� = 1:2�m from the bottom of the cell.

Cell rows of even rank are used with an X axis symmetry. Power-supply rails can be shared

between consecutives rows. The positive rails of adjacent odd/even rows are directly connected

because they follow the side of the cells. Ground power-supply rails of the adjacent even/odd

rows are not connected, in order to insert some extra horizontal metal2 channels. However, if no

extra channels are required, the gap between the two rails is �lled with metal2. Power{supplies

are identi�ed by labels: Vdd! for the positive one and GND! for the ground (�g B.1).

B.4 Routing organization

The metal2 power-supply rails of the cells lead to a global organization of the power-supply for

the whole data-path: two metal2 combs (one for each power-supplies) are nested horizontally.

Metal2 layer is reserved for the horizontal connections. In the same way, vertical connections

are drawn in metal1. Metal2 wires can run over the cells. The corresponding space must be

B.4. ROUTING ORGANIZATION 79

power supply rail (Vdd!) 13l = 5.2 um

160l = 64um

ground rail (GND!) 10l = 4.0um

3l = 1.2um

6l = 2.4um

10l = 4.0um

8 metal2
channels
to let
empty

16l = 6.4um

6l = 2.4um

>= 3l = 1.2um
10l = 4.0um

name of the metal1 input/output

>= 3l = 1.2um

16l = 6.4um

poly input
somewhere
under m2 rail

poly input
somewhere
under m2 rail

no poly input

no poly
in this area

16l = 6.4um

additional poly
under a via

6l = 2.4um

Figure B.2: A basic cell for the data-path generator

number lower end upper end

� �m � �m

1 19 7.6 29 11.6

2 35 14.0 45 18.0

3 51 20.4 61 24.4

4 67 26.8 77 30.8

5 83 33.2 93 37.2

6 99 39.6 109 43.6

7 115 46.0 125 50.0

8 131 52.4 141 56.4

Table B.1: the location of the metal2 channels from the bottom of the cell

free of metal2 in the cells. 8 connections (in the lib8 library) can run through the cells and

be possibly connected to their inputs/outputs. The table B.1 speci�es the location of these

channels inside the cell. The metal2 channels are drawn by the data-path generator: metal2 is

prohibited inside the cells unless for the power-supplies. The �gure B.2 shows the locations of

these channels.

80 APPENDIX B. THE CONSTRAINTS ON CELLS IN ECPD TECHNOLOGY

number location

� �m

1 16 6.4

2 32 12.8

3 48 19.2

4 64 25.6

5 80 32

6 96 38.4

7 112 44.8

8 128 51.2

9 144 57.6

Table B.2: the metal2 pitches

Sometimes the 8 channels are not su�cient to route the horizontal connections; the required

space is then allocated beyond the ground side of the cell.

Vertical connections are achieved in metal1 at the left of each cell column: the metal1 layer

is available to achieve internal connections in the cells (constraints on this layers will be de�ned

below).

B.5 De�nition of the inputs/outputs of the cells

Two technics are available (�g. B.2):

� polysilicon connection on the left side of the cell,

� metal1 vertical rail.

B.5.1 Polysilicon input/output

They are mainly used mainly for the input of the cells (quite always directly connected to

transistor gates). They are de�ned by a 4� = 1:6�m width square of polysilicon. The boundary

of the label must located at the left side of the cell. As the pitch of vias is to small to let run a

poly wire between 2 vias, the only for a poly wire to cross a metal1 rail is to put the poly wire

on the same axis as the metal2 wires. The poly wire is enlarged if a via is put on the metal2

wire. At the left of the cell, the vertical channel may enlarged the poly wire to run it under

vias. In order to avoid side e�ects, poly inputs may
oat between 2 consecutive metal2 pitches

(see tab. B.2) but are not allowed to overhang over the pitches. If a poly input uses the gap

between the pitches n and n+ 1 the neighborhood gaps (n� 1 | n and n+ 1 | n+ 2) must

be free of poly inputs. Furthermore, poly wires inside the cells must be at least 6� = 2:4�m of

the left side in those gap (see �g. B.2).

B.5.2 Metal1 input/output

Other inputs/outputs are drawn with a 10� = 4:0�m metal1 vertical rail (�g. B.2). The ends

of each rail are located at 19� = 7:6�m away from the horizontal sides of the cell and �t the

B.6. DESIGN RULE CONSTRAINTS 81

ends of the external metal2 channels. This rail must be moved away from the di�erent contacts

and boundaries of layers in order to prevent every stacking rule errors on the vias which could

be drawn at every intersections of the rail and the metal2 channels. A good test consists in

drawing all the vias and check with the DRC.

A 10� = 4:0�m space is required between 2 rails to guarantee a minimumdistance between

vias.

Lower and upper sides of the cells must be free of metal1 to allow the extension of every

metal1 rail. This extension is required in the following cases:

� The connection of an input/output to a power{supply. It is achieved by a via on the

power{supply rail at one side of the cell.

� The connection of 2 inputs/outputs of adjacent cells if the positions of the rails �t.

Consequently, a 22� = 8:8�m gap free of metal1 must be centered on the axis of each in-

put/output rail.

An input/output rail is declared by a square label at its lower end. It must be located at a

minimum distance of 3� = 1:2�m of one of the vertical sides of the cell.

B.6 Design rule constraints

The cells must ful�ll the design rule for the technology for themselves and also for possible

side-e�ect with their neighbor. The data-path compiler makes the assumption that as soon as

cells do not overlap, design rules are expected.

For the side e�ects, only spacing and stacking rules are important. Stacking rules happen

when connecting a metal1 rail to a external metal2 channel with a via : it is easy to check every

combinaison with the magic DRC.

The spacing rule can be classi�ed in two kinds:

� between di�usions which are n or p-typed,

� between other layers.

For non-typed layers, spacing rules will be independent of the side type. if n is the distance

required between 2 objects of the same layer then the distance between every object of this

layer and the sides must be at least dn=2e.

In order to limit the constraints, it is important to adapt the rules to the sides of the cell:

� the top side, under the Vdd power{supply rail. In this area, we will �nd logically most

p-transistor. By the parity inversion of the rows of the data-path, each cell is suppose to

touch by his top side, the top side of another cell. The spacing rule for top side-e�ect is

calculated for a n-well environment. Spacing rules for non-typed layer are

� the bottom side, under the GND power{supply rail. In this area, we will �nd logically

most n-transistor. By the parity inversion of the rows of the data-path, each cell is

suppose to touch by his bottom side, the bottom side of another cell. The spacing rule

for top side-e�ect is calculated for a p-substrate environment.

� the vertical side which are supposed to be connected to vertical routing channels. The

assumption (which is right for the lib8 cell) is that those channel is wide enough(it contains

82 APPENDIX B. THE CONSTRAINTS ON CELLS IN ECPD TECHNOLOGY

masks lower side upper side vertical side

� �m � �m � �m

polysilicon 3 1.2 3 1.2 3 1.2

metal1 3 1.2 3 1.2 3 1.5

n di�usion 4 1.6 20 8.0 { {

p di�usion 20 8.0 4 2.0 { {

p body-tie 4 1.6 20 8.0 { {

n body-tie 8 3.2 4 2.0 { {

Table B.3: drc constraints between layers depending on the side of the cell

at least one wire) to isolate from the next horizontal cell (as each cell has at least one

poly input). Side e�ect are ignore for typed layers.

The table B.3 summarize the distance to observe for every layers and sides.

Appendix C

Customization of model

Unfortunately, the technology rules is site-dependent. All the examples provided in this manual

has been developed in the mcmos technology (which is the ECDM20 process of the European

Silicon Structure company). You probably use another technology. The goal of this chapter is

to help the customization of the model environment according to your technology.

Using a new technology requires:

� to de�ne the new con�guration �le for mod2mag,

� to design the libraries in the new technology, particularly a pad library and a data-path

cell library.

C.1 Con�guration �le

The con�guration �le is mainly used by the data-path generator. However, this �le is read as

soon the -m
ag is set. This �le must be de�ned even if the data-path compiler is not used.

The con�guration �le is located in ~cad/lib/magic/technology/model. For our technology

mcmos, our 8-channel style �le is shown in the table C.1.

The metal1 pitch and metal2 pitch respectively represents the horizontal and vertical

routing pitches: they must also comply with the via spacement rules (this explains the di�erence

between the pitch value and the sum of the size and distance values.

Furthermore, the metal1 pitch and the metal2 pitch must be equal to the routing pitch

of magic (as de�ned in the .tech �le), in order to use the magic router.

The number of metal2 channels (included the 2 power{supplies channels) is de�ned by the

ratio between the cell size and the metal2 pitch:

(channel number+ 2)�metal2 pitch = cell size

In order to connects the polysilicon inputs to vertical metal1 wires, the router have to

horizontally extend the polysilicon port. Those polysilicon connection can collide with vias. To

avoid this stacking rule constraints, two strategies can be used :

� if the metal2 pitch is wide enough to let a poly wire run between 2 vias (�g. C.1.a), then

poly inputs are interlaced with metal2 rails. This is speci�ed by the command :

polyvia onaxis = 0

83

84 APPENDIX C. CUSTOMIZATION OF MODEL

* 8-channel style file for Model in mcmos technology *

metal2 name = metal2

metal2 pitch = 15

metal2 size = 7

metal2 distance = 6

metal1 name = metal1

metal1 pitch = 15

metal1 size = 7

metal1 distance = 5

poly name = polysilicon

poly size = 4

polycontact name = polycontact

polycontact size = 8

via name = via

via size = 9

cell size = 150

power size = 12

Table C.1: example of style �le

This leads to a given style for the location of poly inputs of the cells (see techno mcmos in

section A.5.1).

� Else not, via and polysilicon are aligned on the same grid. This is speci�ed by the

command :

polyvia onaxis = 1

When a via must be stacked on a polysilicon wire, polysilicon square is drawn around the

via location to move away the polysilicon boundary. The command :

polyvia oversize = 3

de�nes the overhang of polysilicon under the vias (�g. C.1.b). This leads to a given style

for the location of poly inputs of the cells (see techno ecpd in section B.5.1).

When a new con�guration �le has been created, it is important to publish the new con-

straints in the new technology. The L

a

T

E

X source of the two �rst appendices is available in

~cad/ulm/src/tex/mcmos.tex and in ~cad/ulm/src/tex/ecpd.tex. It is up to the local

model maintainer to copy and modify it in order to describe the new constraints on the cell

for the data-path generator for every new technology.

It is also important to develop in the new technology few basic cells complying with the

new constraints in order to provide examples for the users.

C.2 Development of a new pad family

If a new technology (newtechno) is used, its important to provide a pad library for the user.

The convention is to locate this pad library in the ~cad/ulm/newtechno/pad directory. This

C.2. DEVELOPMENT OF A NEW PAD FAMILY 85

m2pitch

m2pitch

via stacking area

polysilicon
input

a) first strategy

polysilicon
input

polyvia oversize

m2pitch

b) second strategy

cell boundary

Figure C.1: via/polysilicon stacking rule problem

directory should contain:

� the layouts (.mag) of the pads (see below),

� their extracted netlist (.ext),

� their model description (.mod) (automatically generated by ext2mod),

� a general model pad �le which provides a generic interface for the pads (pad.mod).

A pad mag name (declared by the PadPart keyword) must possess two layouts (�g. C.2):

� name.mag, a slim layout for pad ring limited chips (left of �g. C.2).

� flat name.mag, a
at layout for core limited chips (right of �g. C.2).

Figure C.2: the two layouts of a pad

The di�erent sides of the pad ring are generated with compliance to the following constraints:

� the size of the hole of the pad ring must greater than the side of the core (there is enough

room in the center of the ring to contain the core of the chip);

86 APPENDIX C. CUSTOMIZATION OF MODEL

� the whole circuit occupies the smallest area.

This optimization leads to 3 generation styles for each sides (independently):

� empty : no pad is present,

�
at : there few pads : the circuit is core{limited.

� slim : there numerous pads : the circuit is pad{limited.

empty,
at and slim. Pads are regularly disposed along the side. Connections between the pads

are drawn automatically thanks to layout cells de�ned in the corner.mag shown on �gure C.3.

c_slim

c_flat

c_sf

c_empty

c_ef

c_se

stretchc_eside

stretchc_fside

stretchc_sside

Figure C.3: the corner layouts

3 tiles de�nes the section of the ring side according to the style:

� c eside is the side section of the empty style.

� c fside is the side section of the
at style.

� c sside is the side section of the slim style.

Each tile is cut by a stretch label which indicates the section where to stretch the tile if

necessary.

6 other tiles are the corners between the di�erent ring styles:

� c empty between two empty sides.

� c flat between two
at sides.

� c slim between two slim sides.

� c ef between an empty side and a
at side.

� c se between a slim side and an empty side.

� c sf between a slim side and an
at side.

It is up to the local Mod2mag maintainer to develop the new corner cell and also to

provide a minimal library of pads.

Appendix D

Layout Libraries

This appendix presents the layout libraries for the mcmos technology (the ECDM20 process of

the ES2 company). Layouts are organized in 4 groups :

� basic cells (logic gates and
ip-
ops) compatible with the Data-Path compiler. Layouts

and model descriptions are located in the directory ~cad/ulm/mcmos/lib8. The �rst

section of this appendix is dedicated to them;

� parametrical fan-in/fanout bu�ers ~cad/ulm/mcmos/lib8/niceinv.mod,

� input/output pads. They are located in the directory ~cad/ulm/mcmos/pad;

� the PLA generator (~cad/ulm/mcmos/pla).

D.1 Mcmos Lib8 Library

The lib8.mod contains the basic library cell compatible with the data-path compiler. It con-

tains logic gates and
ip-
ops (table D.1).

D.1.1 The logic.mod Library

Include "lib8.mod"

Part nand [i(0:*)] -> o

Part and [i(0:*)] -> o

Part nor [i(0:*)] -> o

Part or [i(0:*)] -> o

The library ~cad/ulm/mcmos/operators/logic.mod contains generic cells describing the 4

logic gates nand, nor, and and or. These logic gates are recursively built with the basic cells

of the lib8.mod library. If the number of inputs is large, the cells are built with several gates

which are layout along the x-axis.

87

88 { Niceinv version of Tue Sep 11 20:57:18 1990 Mcmos/Lib8

cell function

bu�ers & inverters

inv an inverter

biginv an inverter bu�er

buf a bu�er

tribuf a tristate bu�er

basic logic gates

nand2 a 2-input nand

nand3 a 3-input nand

nand4 a 4-input nand

and2 a 2-input and

and3 a 3-input and

and4 a 4-input and

nor2 a 2-input nor

nor3 a 3-input nor

or2 a 2-input or

or3 a 3-input or

xor2 a 2-input xor

xnor2 a 2-input xnor

oax2 an or and xor 2-input gate

multiplexer

mux21 a 2-to-1 multiplexer

latches &
ip-
ops

gff a latch

gffb a latch

dff a D-
ip
op

dffb a D-
ip
op

adder basic cells

pg a propagate/generate gate

composepg composition cell for look ahead

addcell an adder cell

addcell1 an adder cell (odd position)

addcarry an adder cell

addcarry1 an adder cell (odd position)

Table D.1: the cells of the lib8.mod library

D.1.2 Niceinv.mod: parametrical bu�ers

Part niceinv(ci,co) [i] -> o

Part nicebuf(ci,co) [i] -> o

The library ~cad/ulm/mcmos/lib8/niceinv.mod contains the de�nition of the two parts:

� niceinv, a parametrical fan-in/fanout inverter;

� nicebuf, a parametrical fan-in/fanout bu�er;

Mcmos/Lib8 version of Tue Sep 11 20:57:18 1990 Niceinv { 89

The parameters c

i

and c

o

represent the equivalence expected capacitances of the input of the

part and of the load of the output. 10 units correspond to the input capacitance of an inverter

with a 2�m�10�m n-transistor and a 2�m�20�m p-transistor.

According to the c

i

=c

o

ratio, an odd (resp. even) number n is chosen as number of basic

inverters required to build the �nal inverter (resp. bu�er). The fanout of each basic inverter

follow a geometric sequence such that the input/output capacitances complies with the con-

straints

90{ Inv version of Tue Sep 11 20:57:18 1990 Mcmos/Lib8

D.1.3 Cell Inv: an inverter

MagicPart mag_inv [i] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 2.35

Inputs Capacitance �t ns

i 0.09 pF 0.26

Description

oi

/ 70� = 35�m .

o

GND!

bb_p Vdd!

i

this_is_an_inverter

Mcmos/Lib8 version of Sat Dec 15 22:59:48 1990 Biginv { 91

D.1.4 Cell Biginv: an inverter bu�er

MagicPart mag_biginv [i] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 0.78

Inputs Capacitance �t ns

i 0.28 pF 0.24

Description

oi

/ 86� = 43�m .

bb_p

o

GND!

Vdd!

i

this_is_an_inverter_buffer

92{ Buf version of Wed Nov 14 10:32:29 1990 Mcmos/Lib8

D.1.5 Cell Buf: a bu�er

MagicPart mag_buf [i] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 0.78

Inputs Capacitance �t ns

i 0.09 pF 1.17

Description

i o

/ 94� = 47�m .

bb_p

o

GND!

Vdd!

i

this_is_a_buffer

Mcmos/Lib8 version of Thu Oct 3 19:42:24 1991 Tribuf { 93

D.1.6 Cell Tribuf: a tristate bu�er

MagicPart mag_tribuf [d,en] -> out

Inputs and Outputs

Outputs out

�t=�C (ns/pF) 1.85

Inputs Capacitance �t ns

d 0.08 pF 1.39

en 0.07 pF 0.24

out 0.13 pF 0.00

Description

out

en

d

/ 113� = 56:5�m .

bb_p

out

GND!

Vdd!

this_is_a_tristate_buffer

d

en

94{ Nand2 version of Thu Dec 13 12:12:03 1990 Mcmos/Lib8

D.1.7 Cell Nand2: a 2-input nand

MagicPart mag_nand2 [i(0:1)] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 2.82

Inputs Capacitance �t ns

i(0) 0.09 pF 0.54

i(1) 0.09 pF 0.54

Description

o
i(1)

i(0)

/ 77� = 38:5�m .

o

GND!

bb_p Vdd!

i0

i1

this_is_a_2-input_nand

Mcmos/Lib8 version of Fri Dec 14 00:01:12 1990 Nand3 { 95

D.1.8 Cell Nand3: a 3-input nand

MagicPart mag_nand3 [i(0:2)] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 4.41

Inputs Capacitance �t ns

i(0) 0.09 pF 0.90

i(1) 0.09 pF 0.90

i(2) 0.09 pF 0.90

Description

o

i(2)

i(1)

i(0)

/ 84� = 42�m .

oi2

bb_p

GND!

Vdd!

i0

i1

this_is_a_3-input_nand

96{ Nand4 version of Thu Sep 6 15:16:08 1990 Mcmos/Lib8

D.1.9 Cell Nand4: a 4-input nand

MagicPart mag_nand4 [a,b,c,d] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 5.22

Inputs Capacitance �t ns

a 0.09 pF 1.41

b 0.10 pF 1.41

c 0.08 pF 1.41

d 0.10 pF 1.41

Description

y

d

c

b

a

/ 89� = 44:5�m .

GND!

bb_p

a

b

d

y

Vdd!

c

this_is_a_4-input_nand

Mcmos/Lib8 version of Fri Oct 4 12:04:28 1991 And2 { 97

D.1.10 Cell And2: a 2-input and

MagicPart mag_and2 [a,b] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 3.00

Inputs Capacitance �t ns

a 0.09 pF 1.01

b 0.09 pF 1.01

Description

b

a o

/ 85� = 42:5�m .

bb_p

GND!

o

a

Vdd!

b

this_is_a_2-input_and

98{ And3 version of Sun Sep 9 14:22:59 1990 Mcmos/Lib8

D.1.11 Cell And3: a 3-input and

MagicPart mag_and3 [a,b,c] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 1.98

Inputs Capacitance �t ns

a 0.09 pF 2.13

b 0.10 pF 2.13

c 0.08 pF 2.13

Description

c

b

a y

/ 103� = 51:5�m .

GND!

bb_p

a

b

c

Vdd!

y

this_is_a_3-input_and

Mcmos/Lib8 version of Thu Sep 6 16:40:35 1990 And4 { 99

D.1.12 Cell And4: a 4-input and

MagicPart mag_and4 [a,b,c,d] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 1.98

Inputs Capacitance �t ns

a 0.09 pF 2.29

b 0.10 pF 2.29

c 0.08 pF 2.29

d 0.10 pF 2.29

Description

d

c

b

a y

/ 111� = 55:5�m .

GND!

bb_p

a

b

d

Vdd!

c

y

this_is_a_4-input_and

100{ Nor2 version of Tue Sep 11 20:57:18 1990 Mcmos/Lib8

D.1.13 Cell Nor2: a 2-input nor

MagicPart mag_nor2 [a,b] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 4.62

Inputs Capacitance �t ns

a 0.09 pF 0.78

b 0.09 pF 0.78

Description

o
b

a

/ 76� = 38�m .

o

GND!

bb_p

a

b

Vdd!

this_is_a_2-input_nor

Mcmos/Lib8 version of Tue Feb 13 21:16:34 1990 Nor3 { 101

D.1.14 Cell Nor3: a 3-input nor

MagicPart mag_nor3 [a,b,c] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 7.05

Inputs Capacitance �t ns

a 0.09 pF 1.39

b 0.09 pF 1.39

c 0.09 pF 1.39

Description

o

c

b

a

/ 84� = 42�m .

bb_p

GND!

o

a

b

Vdd!

c

this_is_a_3-input_nor

102{ Or2 version of Sat Dec 15 22:59:48 1990 Mcmos/Lib8

D.1.15 Cell Or2: a 2-input or

MagicPart mag_or2 [a,b] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 2.31

Inputs Capacitance �t ns

a 0.08 pF 1.37

b 0.08 pF 1.37

Description

b

a o

/ 85� = 42:5�m .

bb_p

o
a

b

GND!

Vdd!

this_is_a_2-input_or

Mcmos/Lib8 version of Fri Oct 19 10:03:30 1990 Or3 { 103

D.1.16 Cell Or3: a 3-input or

MagicPart mag_or3 [a,b,c] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 2.35

Inputs Capacitance �t ns

a 0.09 pF 2.52

b 0.09 pF 2.52

c 0.09 pF 2.52

Description

c

b

a o

/ 91� = 45:5�m .

bb_p

o

GND!

Vdd!

a

b

c

this_is_a_3-input_or

104{ Xor2 version of Thu Sep 19 15:58:37 1991 Mcmos/Lib8

D.1.17 Cell Xor2: a 2-input xor

MagicPart mag_xor2 [a,b] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 4.53

Inputs Capacitance �t ns

a 0.18 pF 2.38

b 0.19 pF 2.38

Description

a

b

y

/ 95� = 47:5�m .

bb_p

GND!

Vdd!

a

b

y

this_is_a_2-input_xor

Mcmos/Lib8 version of Thu Sep 19 17:21:34 1991 Xnor2 { 105

D.1.18 Cell Xnor2: a 2-input xnor

MagicPart mag_xnor2 [a,b] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 4.59

Inputs Capacitance �t ns

a 0.18 pF 2.26

b 0.19 pF 2.26

Description

a

b

y

/ 95� = 47:5�m .

bb_p

b GND!

Vdd!

a

y

this_is_a_2-input_xnor

106{ Oax2 version of Thu Oct 3 17:42:35 1991 Mcmos/Lib8

D.1.19 Cell Oax2: an or and xor 2 input gate

MagicPart mag_oax2 [a,b] -> g,p,x

Inputs and Outputs

Outputs g p x

�t=�C (ns/pF) 2.31 2.35 4.53

Inputs Capacitance �t ns �t ns �t ns

a 0.40 pF 0.99 1.32 2.38

b 0.37 pF 0.99 1.32 2.38

Description

a

b

x

g

p

/ 225� = 112:5�m .

bb_p

a

b

GND!

Vdd!

p xg

this_is_an_or_and_xor_2_input_gate

Mcmos/Lib8 version of Tue Dec 11 17:09:49 1990 Mux21 { 107

D.1.20 Cell Mux21: a 2-to-1 multiplexer

MagicPart mag_mux21 [d(0:1),s] -> o

Inputs and Outputs

Outputs o

�t=�C (ns/pF) 2.33

Inputs Capacitance �t ns

d(0) 0.05 pF 2.45

d(1) 0.04 pF 2.45

s 0.07 pF 3.12

Description

s

d(1)

d(0) o

/ 97� = 48:5�m .

bb_p

GND!

o

Vdd!

d1

s

d0

this_is_a_2-to-1_multiplexer

108{ Gff version of Fri Dec 14 20:24:47 1990 Mcmos/Lib8

D.1.21 Cell G�: a latch

MagicPart mag_gff [d,g] -> q

Inputs and Outputs

Outputs q

�t=�C (ns/pF) 2.17

Inputs Capacitance �t ns

d 0.10 pF 0.85

g 0.03 pF 0.57

Description

d

g

q

/ 98� = 49�m .

GND!

Vdd!bb_p

g

d

q

this_is_a_latch

Mcmos/Lib8 version of Sat Dec 15 20:19:43 1990 Gffb { 109

D.1.22 Cell G�b: a latch

MagicPart mag_gffb [ck,d] -> q

Inputs and Outputs

Outputs q

�t=�C (ns/pF) 1.95

Inputs Capacitance �t ns

ck 0.07 pF 0.75

d 0.11 pF 1.12

Description

d

ck

q

/ 98� = 49�m .

bb_p

d

ck

GND!

Vdd!

q

this_is_a_latch

110{ Dff version of Fri Dec 14 20:43:13 1990 Mcmos/Lib8

D.1.23 Cell D�: a D-
ip
op

MagicPart mag_dff [ck,d] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 2.01

Inputs Capacitance �t ns

ck 0.11 pF 1.39

d 0.11 pF |

Description

d

ck

y

/ 153� = 76:5�m .

bb_p

d

ck

y

GND!

Vdd!

this_is_a_D-flipflop

Mcmos/Lib8 version of Fri Dec 14 20:30:47 1990 Dffb { 111

D.1.24 Cell D�b: a D-
ip
op

MagicPart mag_dffb [ck,d] -> y

Inputs and Outputs

Outputs y

�t=�C (ns/pF) 1.83

Inputs Capacitance �t ns

ck 0.11 pF 1.57

d 0.10 pF |

Description

d

ck

y

/ 153� = 76:5�m .

GND!

bb_p

d

y

ck

Vdd!

this_is_a_D-flipflop

112{ Pg version of Fri Dec 21 16:09:59 1990 Mcmos/Lib8

D.1.25 Cell Pg: a propagate/generate gate

MagicPart mag_pg [cin,g,p] -> cout

Inputs and Outputs

Outputs cout

�t=�C (ns/pF) 2.31

Inputs Capacitance �t ns

cin 0.08 pF 1.73

g 0.07 pF 1.73

p 0.08 pF 1.73

Description

p

cin

g cout

/ 92� = 46�m .

bb_p

GND!

cin cout

Vdd!

g

p

this_is_a_propagate/generate_gate

Mcmos/Lib8 version of Thu Oct 3 17:44:35 1991 Composepg { 113

D.1.26 Cell Composepg: composition gate for look ahead

MagicPart mag_composepg [cin,gin(0:1),pin(0:1)] -> cout,gout,pout

Inputs and Outputs

Outputs cout gout pout

�t=�C (ns/pF) 2.31 2.66 3.06

Inputs Capacitance �t ns �t ns �t ns

cin 0.09 pF 1.73 | |

gin(0) 0.17 pF 1.73 1.78 |

gin(1) 0.13 pF | 1.78 1.90

pin(0) 0.16 pF 1.73 | 1.90

pin(1) 0.16 pF | 1.78 1.90

Description

cin

gin(0)

pin(1)

pin(0)

gin(1)

cout

gout

pout

114{ Composepg version of Thu Oct 3 17:44:35 1991 Mcmos/Lib8

/ 296� = 148�m .

pout

gin0

gout cout

cin

bb_p

pin0

pin1

gin1

GND!

Vdd!

this_is_composition_gate_for_look_ahead

Mcmos/Lib8 version of Mon Sep 30 17:10:52 1991 Addcell { 115

D.1.27 Cell Addcell: an adder cell

MagicPart mag_addcell [a,b,cin] -> cout,s

Inputs and Outputs

Outputs cout s

�t=�C (ns/pF) 2.31 7.15

Inputs Capacitance �t ns �t ns

a 0.14 pF 3.61 5.01

b 0.14 pF 3.61 5.01

cin 0.23 pF 1.72 2.16

Description

a

b

cin

s

cout

/ 344� = 172�m .

Vdd!

GND!a

b

coutcins

bb_p

this_is_an_adder_cell

116{ Addcell1 version of Thu Oct 3 15:09:55 1991 Mcmos/Lib8

D.1.28 Cell Addcell1: an adder cell

MagicPart mag_addcell1 [a,b,cin] -> cout,s

Inputs and Outputs

Outputs cout s

�t=�C (ns/pF) 2.39 7.15

Inputs Capacitance �t ns �t ns

a 0.14 pF 3.78 5.02

b 0.14 pF 3.78 5.02

cin 0.24 pF 1.91 2.16

Description

a

b

cin

s

cout

/ 344� = 172�m .

Vdd!

GND!a

b

s

bb_p

this_is_an_adder_cell

cincout

Mcmos/Lib8 version of Thu Oct 3 11:10:43 1991 Addcarry { 117

D.1.29 Cell Addcarry: an adder cell

MagicPart mag_addcarry [a,b,c(0:1),cin] -> cout(0:1),s

Inputs and Outputs

Outputs cout(0) cout(1) s

�t=�C (ns/pF) 2.47 3.00 7.15

Inputs Capacitance �t ns �t ns �t ns

a 0.14 pF 3.88 3.89 5.25

b 0.14 pF 3.88 3.89 5.25

c(0) 0.16 pF 1.75 | 4.71

c(1) 0.15 pF | 1.77 4.71

cin 0.07 pF | | 4.71

Description

a

b

c(1) cinc(0)

s

cout(0)

cout(1)

/ 529� = 264:5�m .

a

b

s

bb_p

this_is_an_adder_cell

GND!

Vdd!

c1 c0 cout0cout1cin

118{ Addcarry1 version of Thu Oct 3 16:19:41 1991 Mcmos/Lib8

D.1.30 Cell Addcarry1: an adder cell

MagicPart mag_addcarry1 [a,b,c(0:1),cin] -> cout(0:1),s

Inputs and Outputs

Outputs cout(0) cout(1) s

�t=�C (ns/pF) 3.00 2.71 7.15

Inputs Capacitance �t ns �t ns �t ns

a 0.14 pF 3.87 3.95 5.25

b 0.14 pF 3.87 3.95 5.25

c(0) 0.16 pF 1.76 | 4.71

c(1) 0.15 pF | 1.85 4.71

cin 0.07 pF | | 4.71

Description

a

b

c(1) cinc(0)

s

cout(0)

cout(1)

/ 529� = 264:5�m .

a

b

s

bb_p

this_is_an_adder_cell

GND!

Vdd!

cin c1cout1 c0cout0

D.2. MCMOS PAD LIBRARY 119

D.2 Mcmos pad library

The pad.mod library (~cad/ulm/mcmos/pad) contains generic Parts which call layouts (ta-

ble D.2):

Part inpad(type)[pad] -> out

Part outpad[out] -> pad

Part tripad(type)[in,oe] -> out,pad

Part dirpad[] -> pad

Part gndpad[]

Part vddpad []

The layouts exists in slim and
at style.

generic cell cell function

inpad(cmos) padic a cmos input pad

inpad(ttl) padit a ttl input pad

outpad pado an output pad

tripad(cmos) pad3c a cmos tristate pad

tripad(ttl) pad3t a ttl tristate pad

dirpad paddirect a direct pad

gndpad padgnd a ground power-supply pad

vddpad padvdd a vdd power-supply pad

Table D.2: the cells of the pad.mod library

120{ Padic version of Wed Sep 25 11:20:13 1991 Mcmos/Pad

D.2.1 Cell Padic: a cmos input pad

PadPart mag_padic [pad] -> in,inb,raw_in

Inputs and Outputs

Outputs in inb raw_in

�t=�C (ns/pF) 0.50 0.48 1.05

Inputs Capacitance �t ns �t ns �t ns

pad 4.58 pF 2.33 2.09 1.65

Description

pad in

inb

raw_in

/ 509� = 254:5�m .

GND!

Vdd!

Vdd!

empty

nopad

in inb raw_in

GND!

pad

this_is_a_cmos_input_pad

Mcmos/Pad version of Sat Dec 9 20:52:49 1989 Padit { 121

D.2.2 Cell Padit: a ttl input pad

PadPart mag_padit [pad] -> in,inb,raw_in

Inputs and Outputs

Outputs in inb raw_in

�t=�C (ns/pF) 0.50 0.48 1.05

Inputs Capacitance �t ns �t ns �t ns

pad 4.56 pF 4.74 4.50 4.05

Description

pad in

inb

raw_in

/ 509� = 254:5�m .

GND!

Vdd!

Vdd!

empty

nopad

in inb raw_in

GND!

pad

this_is_a_ttl_input_pad

122{ Pado version of Sat Dec 9 18:47:58 1989 Mcmos/Pad

D.2.3 Cell Pado: an output pad

PadPart mag_pado [out] -> pad

Inputs and Outputs

Outputs pad

�t=�C (ns/pF) 0.06

Inputs Capacitance �t ns

out 0.11 pF 3.23

Description

out pad

/ 509� = 254:5�m .

Vdd!

empty

nopad

GND!

Vdd!

GND!

out

pad

this_is_an_output_pad

Mcmos/Pad version of Sat Dec 9 18:47:58 1989 Pad3c { 123

D.2.4 Cell Pad3c: a cmos tristate pad

PadPart mag_pad3c [oe,out] -> in,pad

Inputs and Outputs

Outputs in pad

�t=�C (ns/pF) 1.05 0.06

Inputs Capacitance �t ns �t ns

oe 0.13 pF 2.15 0.27

out 0.14 pF 3.53 1.66

pad 4.56 pF 1.87 0.00

Description

pad

oeout

in

pad

/ 509� = 254:5�m .

GND!

Vdd!

GND!

Vdd!

empty

nopad

in out oe

pad

this_is_a_cmos_tristate_pad

124{ Pad3t version of Sat Dec 9 18:47:58 1989 Mcmos/Pad

D.2.5 Cell Pad3t: a ttl tristate pad

PadPart mag_pad3t [oe,out] -> in,pad

Inputs and Outputs

Outputs in pad

�t=�C (ns/pF) 1.05 0.06

Inputs Capacitance �t ns �t ns

oe 0.16 pF 3.90 0.28

out 0.14 pF 5.28 1.66

pad 4.57 pF 3.62 0.00

Description

pad

oeout

in

pad

/ 509� = 254:5�m .

GND!

Vdd!

GND!

Vdd!

empty

nopad

in out oe

pad

this_is_a_ttl_tristate_pad

Mcmos/Pad version of Sat Dec 9 18:47:58 1989 Paddirect { 125

D.2.6 Cell Paddirect: a direct pad

PadPart mag_paddirect [pad]

Description

/ 506� = 253�m .

GND!

Vdd!

empty

nopad

pad

GND!

Vdd!

this_is_a_direct_pad

126{ Padgnd version of Sat Dec 9 18:47:58 1989 Mcmos/Pad

D.2.7 Cell Padgnd: a ground power-supply pad

PadPart mag_padgnd []

Description

/ 509� = 254:5�m .

Vdd!

Vdd!

GND!

this_is_a_ground_power-supply_pad

Mcmos/Pad version of Sat Dec 9 18:47:58 1989 Padvdd { 127

D.2.8 Cell Padvdd: a vdd power-supply pad

PadPart mag_padvdd []

Description

/ 509� = 254:5�m .

Vdd!

GND!

GND!

this_is_a_vdd_power-supply_pad

128 { PLA generator version of Mon Oct 28 13:32:50 1991 Mcmos

D.3 Mcmos PLA generator

PLA Generator

Include "pla.mod"

PavePart mypla[i1,i2,...,in] -> o1,o2,...,op

Integer fd,t

fd = Open ("mypla.tab")

t = Read(fd)

pla(n,p,fd,t,0)[i1,i2,...,in] -> o1,o2,...,op

{ pla(n,p,fd,t,1)[i1,i2,...,in] -> o1,o2,...,op

End

eqntott −l −r

tt2tab [−b]

mypla.eqn

mypla.tt

espresso

mypla.tab

mypla.mod

mypla.mag

pla.modmodel −m

Usage

The PLA generator (see diagram) consists of:

� a model �le (~cad/ulm/mcmos/pla/pla.mod)

� the classical programs of the Berkeley distribution (eqntott and espresso) for the gen-

eration of the optimized .tt format.

� the tt2tab program which converts the .tt format to the .tab format.

Mcmos version of Mon Oct 28 13:32:50 1991 PLA generator { 129

The designer provides the mypla.eqn �le (see eqntott(1)). The unix command

eqntott -l -r mypla.eqn | espresso > mypla.tt

generates the mypla.tt �le which contains the optimized description of the PLA in the table

format. The unix command

tt2tab [-b] mypla > mypla.mod

generates the two �les:

� mypla.tab the description of the pla in a format readable by the pla.modmodel program.

� mypla.mod the model interface of the pla.

When the -b
ag is set in the tt2tab command, the 5

th

argument of the call to the pla part

is set to 1 and mod2mag generates internal bu�ers for the intermediate terms of the PLA.

Vdd! i0 i1 i2 i3 a b c d e f g GND!

bb_p

130 { PLA generator version of Mon Oct 28 13:32:50 1991 Mcmos

Appendix E

Examples

In this appendix, we presents di�erent examples of circuits described in the model language.

These examples are teaching projects given at the Ecole Nationale Sup�erieure des Techniques

Avanc�ees.

E.1 Temperature and voltage measurement

This example is located in ~cad/ulm/mcmos/more examples/tvm.

This circuit has been developed in collaboration with Georges Quenot. Thermal dissipation

and power distribution may be critical in large systems. The goal of this circuit is to measure

the voltage between the power-supply and the temperature of the circuit. This circuit is a only

a test circuit. In a real application this circuit must be a part of a larger circuit. The size of

the circuit (< 2�m

2

) is small enough to use it as a part of a large VLSI.

The circuit contains two ring-oscillators:

� an n-transistor delay oscillator,

� an n-di�usion delay oscillator.

The frequency of these oscillators are around 10 MHz and depends of both the temperature

and the voltage. Each oscillator drives a counter which can be loaded and downloaded via a

common scan-path. Used in another circuit, the scan-path may take place in the scan-path of

the whole circuit in order to save pads.

The inputs/outputs of the circuit are:

� the input of the scan-path,

� the output of the scan-path,

� the clock of the scan-path,

� the enable of the ring-oscillators.

The directory contains the following �les:

� delayinv.mag and delayinv.mod: the n-transistor delay cell,

131

132 APPENDIX E. EXAMPLES

Figure E.1: layout of the TVM chip

� delayres.mag and delayres.mod: the n-di�usion delay cell,

� chip.mod: the model source �le of the circuit.

� chip.stim: simulation stimuli for msim.

E.1.1 Generation of the layout

The command:

model chip -m

generates the layout (chip.mag, tvm 2.mag and core.mag), and the netlist �le tvm 2.net. The

circuit tvm 2 can be �nished under magic by the command:

:route

The help of the user is required for the connection of the power-supplies to the core of the

circuit. It is simple for this chip. The �gure E.1 shows the metal layers of the layout of the

tvm chip.

E.2. A 16 BY 16 CROSS-BAR 133

Figure E.2: layout of the cross{bar

E.1.2 Simulation

the command:

model chip -l

generates the logical netlist (chip.log,chip.beh and chip.al). the command:

ana chip -f chip.stim

starts the msim simulator in its graphical framework.

E.2 A 16 by 16 Cross-bar

This example is located in ~cad/ulm/mcmos/more examples/cross.

This circuit allows to interconnect 16 serial links. The circuit is con�gured through a

command bus (com(0:5)), an address bus (a(0:3)) and a enable (v). Each link is successively

con�gured. The address bus selects the current link to con�gure. A positive pulse on the enable

saves the states of the command bus into the internal table of the chip.

� com(4) de�nes whether the current link is an input (1) or an output (0),

� com(5) de�nes if the output is inverted,

� com(0:3) de�nes the number of the selected link if the current link is an output.

This circuit has been developed in collaboration with Thierry Bernard. It contains:

� the control of each link

� a 16� 16 crossbar

134 APPENDIX E. EXAMPLES

0 us 1 us 2 us

 COM 16 36 1 3 33 37 4 0 34 5 35 0

 A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

 v

 data0

 data1

 data2

 data3

 data4

 data5

 data6

 data7

 data8

 data9

 data10

 data11

 data12

 data13

 data14

 data15

Figure E.3: simulation of the cross{bar

E.2.1 Generation of the layout

The �gure E.2 shows the layout of the cross-bar. The command:

model chip -m

generates the layout (chip.mag, tvm 2.mag and core.mag), and the netlist �le tvm 2.net. The

circuit tvm 2 can be �nished under magic by the command:

:route

The help of the user is required for the connection of the power-supplies to the core of the

circuit. It is simple for this chip. The �gure E.1 shows the metal layers of the layout of the

tvm chip.

E.2.2 Simulation

the command:

model chip -l

generates the logical netlist (chip.log,chip.beh and chip.al). the command:

ana chip -f chip.stim

starts the msim simulator in its graphical framework. The �gure E.2 shows the wave-form of

the cross-bar during the initialization and during the use of the links.

E.3 A microcoded divider

This example is located in ~cad/ulm/mcmos/more examples/div. The generated circuit is a

microcoded divider. The method used is this circuit is not the classical one but the method

E.3. A MICROCODED DIVIDER 135

+

shifter

signshift

A

B

cin

d0

d1
d0

d1

d0

d1X

Y
d0

d1

d0

d1

d0

d1

x

y

xx

yy

op2

op1

op3

sum
left

xloop

ain

constant

shift signxx

ckstx

ldx

ls2
ls1

rs

Figure E.4: schematic of the ALU

proposed by [Li85]. Every denominator n can be written:

n = 2

k

� p

with an odd p. The division by a power of 2 is done by a right shift operation. It remains the

problem of dividing by an odd number. As

8podd; 9n; k; 2

n

� 1 = p� k;

the division by p is equivalent to a multiplication by k and a division by 2

n

�1. But 1=(2

n

�1)

may be written:

0:

n�1

z }| {

0 � � �0 1

n�1

z }| {

0 � � �0 1

n�1

z }| {

0 � � �01 � � �

If n is big enough, this number contains a lot of 0: it limits the problem of the carry propagation

for the multiplication. The division will be performed by addition and shift. The precision

problem can be avoided by adding sometimes a constant.

The table E.1 shows the sequence of operations for each odd denominator less than 16.

E.3.1 Organization of the divisor

The ALU of the divisor

The systematic structure of the instructions of the table E.1 allows us to de�ne the basic

organization of the ALU E.4. Two variables x and y are used. At each step, one of the variable

is modi�ed as the result of an addition. It left operand is either a variable or a constant between

0 and 5. The right operand is the result of a shift (left, right or no shift) of a variable x or y

by a constant.

136 APPENDIX E. EXAMPLES

micro−code ROM

data

address data

mapping ROM address

d0

d1 s

B run

start

ck

microcode

Figure E.5: schematic of the sequencer

The sequencer

The sequencer (�g. E.5) contains 4 parts:

� a microcode ROM with the micronstruction for the control of the ALU.

� a sequencing register which clocks the current state and the microinstruction,

� a multiplexer to force the start of the microinstruction sequence,

� a mapping rom, which converts the B operand into the starting address of the microin-

struction sequence.

The sequencer is a �nite state automaton (�g. E.6). The value of B (the squares on the �g-

ure) are converted by the mapping ROM into starting states. From these states, the microcode

is executed until the �nite state automaton reaches the idle state 0. Even denominators �rst

execute a shift instruction before jumping to the sequence of an odd denominator.

E.3.2 The layout

The program \micro" reads the �le div.c (�g. E.1) and generates the informations for the 2

PLA :

� map.tn for the mapping ROM,

� micro.tn for the microcode ROM.

These tables are optimized by espresso and then converted to the .tab format by tt2tab.

The model source is split in 6 �les:

� chip.mod the whole circuit,

� div.mod the core of the circuit,

� alu.mod the operators of the ALU,

� map.mod the map ROM,

� micro.mod the microcode ROM.

E.3. A MICROCODED DIVIDER 137

3

4

5

6

7

8

2

1

0 0

2 3 4 5 6 7

8 9 10 11 12 13

14 15 16 17 18 19 20

51

52

53

54

21 22 23 24 25 26 279

10 55

Figure E.6: part of the �nite state automaton

The test.mod contains an instance of the core of the chip in order to facilitate the simulation of

the circuit. At last the �le beh.mod which contains the behavioral descriptions of the operators.

The command

make chip.mag

generates the layout (�g. E.7).

The core of the circuit contains 4 parts:

� the data-path of the ALU,

� the microcode ROM,

� the mapping ROM,

� the data-path of the sequencer

The circuit is then �nished under magic:

� the connections of the power{supplies rails,

� the global routing.

138 APPENDIX E. EXAMPLES

Figure E.7: layout of the divisor chip (metal2 layer)

E.3.3 Simulation

The command:

make test.slo

generates the simulation. The �gure E.8 shows the 9 step division of 95182059 by 14.

E.3. A MICROCODED DIVIDER 139

2600 ns 2700 ns 2800 ns 2900 ns 3000 ns 3100 ns

 B 7 14 1111

 A 95182059

 R 11719366 95182059 47591029 47591030 217505879 217558981 217558993

 Y 369160056 190364120 214159635214159635

 map 14 57 2929

 adrmicro 0 57 14 15 16 17 18 19 20 0

 shift 5 0 1 0 30 1 6 12 24 5 00

 constante 0 1 00

 sum 11719366 11719366 47591029 47591030 190364120 6798718

 op1 0 1 0 190364120 214159635 217505879 217558981 00

 op2 11719366 95182059 47591029 47591030 214159635 217505879 217558981 217558993

 op3 11719366 11719366 47591029 47591029 190364120 23795515 3346244 53102 12 6798718

 x 95182059 47591029 47591030 6798718

 micro 2496 6478 133455 123152 7441 27730 53075 102228 22848 2496

 inst 357 39 101 2085 1924 116 433 829 1597 357 3939

 ck

 start

 core_0/lda

ore_0/ldanck

Figure E.8: wave-forms of the divisor

140 APPENDIX E. EXAMPLES

case 3 :

x = x + (x<<2);

x = 5 + x;

x = x + (x>>4);

x = x + (x>>8);

x = x + (x>>16);

x = 0 + (x>>4);

break;

case 5 :

x = x + (x<<1);

x = 3 + x;

x = x + (x>>4);

x = x + (x>>8);

x = x + (x>>16);

x = 0 + (x>>4);

break;

case 7 :

x = 1 + x;

y = 0 + (x<<2);

y = y + (x>>1);

x = y + (y>>6);

x = x + (x>>12);

x = x + (x>>24);

x = 0 + (x>>5);

break;

case 9 :

x = 1 + x;

y = 0 + (x<<1);

y = y + (x>>1);

x = x + y;

x = x + (x>>6);

x = x + (x>>12);

x = x + (x>>24);

x = 0 + (x>>5);

break;

case 11 :

x = 1 + x;

y = x + (x<<2);

y = y + (y>>4);

x = y + (x>>1);

x = x + (x>>10);

x = x + (x>>20);

x = 0 + (x>>6);

break;

case 13 :

x = 1 + x;

y = 0 + (x<<2);

y = y + (x>>1);

x = 0 + (y<<2);

x = y + (y>>5);

x = x + (y>>4);

x = x + (x>>12);

x = x + (x>>24);

x = 0 + (x>>6);

break;

case 15 :

x = 1 + x;

y = 0 + (x << 2);

x = y + (x >> 2);

x = x + (x >> 8);

x = x + (x >> 16);

x = 0 + (x >> 6);

break;

Table E.1: basic operations for odd numbers less than 16

Appendix F

Manuel pages

This appendix contains the manual pages of �le formats and programs. In the section 1:

� model,

� msim.

� ana,

� mag2ps,

� ext2mod.

In the section 5:

� log,

� slo.

141

160 APPENDIX F. MANUEL PAGES

Bibliography

[Li85] Shuo-Yen Robert Li. Fast Constant Division Routines. IEEE transactions on com-

puters, Vol. C{34 No 9, Septembre 1985.

[Mod86] The MODEL Language Reference Manual. Wemyss Place Edinburgh EH3 6DH UK,

1986.

[SMHO86] Walter S. Scott, Robert N. Mayo, Gordon Hamachi, and John K. Ousterhout. 1986

VLSI Tools: Still More Works by the Original Artists. Technical Report UCB/CSD

86/272, Computer Science Division (EECS), University of California Berkeley, Cal-

ifornia 94720, 1986.

161

162 BIBLIOGRAPHY

Contents

1 Introduction 3

1.1 Presentation of Mod2mag : 3

1.2 Libraries, examples and technologies : 4

1.3 Presentation of the global environment : 4

1.3.1 File formats : 4

1.3.2 Programs : 6

1.3.3 Organization of this document : 7

2 Getting Started 9

2.1 Preparing an input �le : 9

2.2 First lesson : the basic syntax : 9

2.2.1 De�nition and instance of Parts : 9

2.2.2 Signals and buses : 11

2.2.3 Construction of signal lists : 11

2.2.4 Special signals: the power-supplies : 12

2.2.5 Keywords : 12

2.2.6 Identi�ers : 12

2.2.7 Various lexical elements : 12

2.2.8 Compiling a model �le : 13

2.3 Second lesson : more about the basic syntax : 14

2.3.1 Integers : 15

2.3.2 Flow control : 17

2.3.3 Signals merging : 20

2.3.4 Debugging messages : 21

2.4 Third lesson : last re�nement about the syntax : : : : : : : : : : : : : : : : : : 21

2.4.1 Use of star (*) as implicit parameter : 22

2.4.2 Built-in functions and procedures : 23

2.4.3 Log function : 23

2.4.4 Sqrt function : 23

2.4.5 Input functions : 23

2.4.6 Recursivity : 23

2.4.7 How to debug complex �les? : 24

2.5 Fourth lesson : scope of signals and integers : 24

163

164 CONTENTS

3 Description for the simulation 25

3.1 Electrical Rule Checking mechanism : 26

3.2 Generation of the simulation netlists : 27

3.3 Behavioral cell description : 28

3.3.1 The aim of behavioral modeling : 28

3.3.2 Organization of the behavioral modeling : : : : : : : : : : : : : : : : : : 29

3.3.3 Variables : 30

3.3.4 Signal value acquisition : 30

3.3.5 Behavioral expressions : 30

3.3.6 The modi�cation of signals : 31

3.3.7 The modeling of the inputs/outputs : 31

3.3.8 The modeling of a multitalker bus : 32

3.3.9 Debugging functions : 32

3.3.10 Scheduling
ow control : 32

3.4 Ext2mod: an automatic cell characterization : : : : : : : : : : : : : : : : : : : 36

3.4.1 Layout optimization : 38

3.4.2 Automatic documentation : 38

4 Hardware Generation 41

4.1 Importing external layout : 42

4.2 Tessellation of layout : 42

4.2.1 Placement constructors : 43

4.2.2 Transformation operators : 44

4.3 The building a basic cell : 45

4.3.1 Speed of a CMOS inverting driver : 45

4.3.2 The model �le of the driver : 45

4.3.3 Labeling the input/outputs of a generated cell : : : : : : : : : : : : : : 49

4.4 The building of a regular macro-cell : 49

4.4.1 Building the PLA structure from the .tab �le : : : : : : : : : : : : : : 52

4.4.2 Stretching the power{supplies : 55

4.5 Data-path generation : 55

4.5.1 Use of the data-path generator : 56

4.5.2 Placement and Recursivity : 60

4.5.3 Data-path building : 61

4.6 Chip generation : 63

4.6.1 Layout �nishing : 65

4.6.2 PCB interface : 67

4.6.3 Declaration of existing circuits : 68

4.7 Pcb generation : 68

A The constraints on cells in mcmos technology 71

A.1 Cell size : 71

A.2 Power-supplies and routing layers : 71

A.3 Power-supplies : 72

A.4 Routing organization : 72

A.5 De�nition of the inputs/outputs of the cells : 74

A.5.1 Polysilicon input/output : 74

CONTENTS 165

A.5.2 Metal1 input/output : 74

A.6 Design rule constraints : 75

B The constraints on cells in ecpd technology 77

B.1 Cell size : 77

B.2 Power-supplies and routing layers : 77

B.3 Power-supplies : 78

B.4 Routing organization : 78

B.5 De�nition of the inputs/outputs of the cells : 80

B.5.1 Polysilicon input/output : 80

B.5.2 Metal1 input/output : 80

B.6 Design rule constraints : 81

C Customization of model 83

C.1 Con�guration �le : 83

C.2 Development of a new pad family : 84

D Layout Libraries 87

D.1 Mcmos Lib8 Library : 87

D.1.1 The logic.mod Library : 87

D.1.2 Niceinv.mod: parametrical bu�ers : 88

D.1.3 Cell Inv: an inverter : 90

D.1.4 Cell Biginv: an inverter bu�er : 91

D.1.5 Cell Buf: a bu�er : 92

D.1.6 Cell Tribuf: a tristate bu�er : 93

D.1.7 Cell Nand2: a 2-input nand : 94

D.1.8 Cell Nand3: a 3-input nand : 95

D.1.9 Cell Nand4: a 4-input nand : 96

D.1.10 Cell And2: a 2-input and : 97

D.1.11 Cell And3: a 3-input and : 98

D.1.12 Cell And4: a 4-input and : 99

D.1.13 Cell Nor2: a 2-input nor : 100

D.1.14 Cell Nor3: a 3-input nor : 101

D.1.15 Cell Or2: a 2-input or : 102

D.1.16 Cell Or3: a 3-input or : 103

D.1.17 Cell Xor2: a 2-input xor : 104

D.1.18 Cell Xnor2: a 2-input xnor : 105

D.1.19 Cell Oax2: an or and xor 2 input gate : : : : : : : : : : : : : : : : : : : 106

D.1.20 Cell Mux21: a 2-to-1 multiplexer : 107

D.1.21 Cell G�: a latch : 108

D.1.22 Cell G�b: a latch : 109

D.1.23 Cell D�: a D-
ip
op : 110

D.1.24 Cell D�b: a D-
ip
op : 111

D.1.25 Cell Pg: a propagate/generate gate : 112

D.1.26 Cell Composepg: composition gate for look ahead : : : : : : : : : : : : 113

D.1.27 Cell Addcell: an adder cell : 115

D.1.28 Cell Addcell1: an adder cell : 116

D.1.29 Cell Addcarry: an adder cell : 117

166 CONTENTS

D.1.30 Cell Addcarry1: an adder cell : 118

D.2 Mcmos pad library : 119

D.2.1 Cell Padic: a cmos input pad : 120

D.2.2 Cell Padit: a ttl input pad : 121

D.2.3 Cell Pado: an output pad : 122

D.2.4 Cell Pad3c: a cmos tristate pad : 123

D.2.5 Cell Pad3t: a ttl tristate pad : 124

D.2.6 Cell Paddirect: a direct pad : 125

D.2.7 Cell Padgnd: a ground power-supply pad : : : : : : : : : : : : : : : : : 126

D.2.8 Cell Padvdd: a vdd power-supply pad : : : : : : : : : : : : : : : : : : : 127

D.3 Mcmos PLA generator : 128

E Examples 131

E.1 Temperature and voltage measurement : 131

E.1.1 Generation of the layout : 132

E.1.2 Simulation : 133

E.2 A 16 by 16 Cross-bar : 133

E.2.1 Generation of the layout : 134

E.2.2 Simulation : 134

E.3 A microcoded divider : 134

E.3.1 Organization of the divisor : 135

E.3.2 The layout : 136

E.3.3 Simulation : 138

F Manuel pages 141

List of Tables

2.1 the nand gate : �rst implementation : 10

2.2 power-supplies special signals : 12

2.3 the nand gate : second implementation : 14

2.4 the integer operators and their arities : 16

2.5 comparator functionality : 17

2.6 the nand gate : third implementation : 22

3.1 the nand gate : the electrical speci�cation of the IOs of the nand cell : : : : : 26

3.2 de�nitions of nmos and pmos : 28

3.3 behavioral model of a nand : 29

3.4 electrical description of the nand6 gate generated by ext2mod : : : : : : : : : 38

4.1 transformation operators : 44

4.2 optimum stages number for a given k factor : 46

4.3 de�nition of a one-stage parametrical inverter : : : : : : : : : : : : : : : : : : : 47

4.4 the model description of the scalable driver niceinv : : : : : : : : : : : : : : : 50

4.5 the equation describing an hexadecimal 7 segment decoder (�le hexa.eqn) : : : 52

4.6 the table describing hexadecimal 7 segment decoder (�le hexa.tt) : : : : : : : 52

4.7 the model interface of the hexadecimal 7 segment decoder : : : : : : : : : : : 53

4.8 the generation of the �rst nor matrix : 54

4.9 a general shifter : 59

4.10 a generic tree structure with its placement : 61

4.11 a whole chip: the 74C138 : 64

4.12 the declaration of an existing circuit(374.mod) : : : : : : : : : : : : : : : : : : 69

4.13 a whole board: a register bank(bank.mod) : 70

4.14 the input data �le for the Pcb router (register bank.pcbnet) : : : : : : : : : 70

A.1 the location of the metal2 channels from the bottom of the cell : : : : : : : : : 73

A.2 the location of the polysilicon inputs/outputs in a cell : : : : : : : : : : : : : : 74

A.3 drc constraints between layers depending on the side of the cell : : : : : : : : : 76

B.1 the location of the metal2 channels from the bottom of the cell : : : : : : : : : 79

B.2 the metal2 pitches : 80

B.3 drc constraints between layers depending on the side of the cell : : : : : : : : : 82

C.1 example of style �le : 84

167

168 LIST OF TABLES

D.1 the cells of the lib8.mod library : 88

D.2 the cells of the pad.mod library : 119

E.1 basic operations for odd numbers less than 16 : : : : : : : : : : : : : : : : : : : 140

List of Figures

1.1 software environment : 5

3.1 organization of behavioral description of the ROM : : : : : : : : : : : : : : : : 33

3.2 wave-forms of the ROM : 35

3.3 wave-forms of the ROM : 36

3.4 layout of the nand2 gate : 37

4.1 examples of the constructors : 44

4.2 layout of the invlib library cell : 48

4.3 layouts of di�erent instances of niceinv : 51

4.4 PLA template : 53

4.5 the nor matrix tiles : 55

4.6 the resulting hexa PLA : 56

4.7 the data-path structure : 57

4.8 the shifter scheme : 58

4.9 the shifter: tessellation of cells : 60

4.10 placement of a binary{tree : 62

4.11 the �nal layout of the shifter : 62

4.12 the un�nished layout : 66

4.13 a di�erent pad con�guration : 66

4.14 the �nal layout of the chip : 67

4.15 the chip placement �le (pcb register bank.mag : : : : : : : : : : : : : : : : : 68

A.1 A basic cell for the data-path generator : 72

A.2 A basic cell for the data-path generator : 73

B.1 A basic cell for the data-path generator : 78

B.2 A basic cell for the data-path generator : 79

C.1 via/polysilicon stacking rule problem : 85

C.2 the two layouts of a pad : 85

C.3 the corner layouts : 86

E.1 layout of the TVM chip : 132

E.2 layout of the cross{bar : 133

E.3 simulation of the cross{bar : 134

E.4 schematic of the ALU : 135

169

170 LIST OF FIGURES

E.5 schematic of the sequencer : 136

E.6 part of the �nite state automaton : 137

E.7 layout of the divisor chip (metal2 layer) : 138

E.8 wave-forms of the divisor : 139

Index

addition (+), 16

And, 12, 17

and (logical) (&), 16

arithmetical shift right (>>), 16

arrow (->), 12, 20

assignment (=), 15

At, 35

automatic cell characterization, 36

backslash (n), 16

BlockPart, 41, 55

boolean expressions, 17

buses, 11

By, 11

Capa, 31

caret (^), 16

carriage return <CR>, 12

Case, 20

cell constraints, 71, 77

cell size, 71, 77

cell type

BlockPart, 41, 55

ChipPart, 41, 63

MagicPart, 41

PadPart, 41

Part, 41

PavePart, 41

Pcb, 67

PcbPart, 41, 68

Pin, 67

Change, 34

characterization (automatic cell), 36

ChipPart, 41, 63

Close, 23

colon \:", 11

comma \,", 11

comments , 12

comparators, 17

#, 17

=, 17

greater or equal<=, 17

greater>, 17

less or equal>=, 17

less<, 17

Compilation, 13

complement (to 1's) (n), 16

Con�guration, 13

connect operator, 20

Constant, 15

Continue, 18

curly brackets , 12

Cycle, 18

data-path, 55

debug, 24

Default, 20

Dest, 26

di�erent#, 17

division (/), 16

Do, 34

Done, 34

DRC (cell constraints), 75, 81

Electrical Rule Checking, 10, 26

Else, 18

End, 9

Endif, 18

equal (=), 15

equal=, 17

erc

ERC, 26

ERC

Dest, 26

Source, 26

Tristate, 26

euclidean division (/), 16

Eval, 30, 35

171

172 INDEX

Exit, 18

.ext �les, 36

Ext2mod, 36

FF, 30

ow control, 17

For, 18, 19

functions

Eval, 30, 35

Length, 22

Log, 23, 31

Net, 27

Open, 23, 31

Random, 30, 31

Read, 23, 31

Sqrt, 23, 31

Value, 30

greater or equal>=, 17

greater >, 17

High, 31, 34

HighZ, 31, 34

identi�ers, 12

If, 12, 18

Include, 9

Inherit, 24

input/output, 74, 80

metal1, 74, 80

polysilicon, 74, 80

Integer, 15

Integer expressions, 16

integers, 15

inverter, 88

keywords

And, 12, 17

At, 35

BlockPart, 41, 55

By, 11

Capa, 31

Case, 20

Change, 34

ChipPart, 41, 63

Close, 23

Constant, 15

Continue, 18

Cycle, 18

Default, 20

Dest, 26

Do, 34

Done, 34

Earth, 12

Else, 18

End, 9

Endif, 18

Eval, 30, 35

Exit, 18

FF, 30

For, 18, 19

Gnd, 12

Ground, 12

High, 31, 34

HighZ, 31, 34

If, 12, 18

Include, 9

Inherit, 24

Integer, 15

Length, 22

lexical aspects, 12

Log, 23, 31

Logic, 27

Logicf, 27

Low, 31, 34

MagicLib, 45

MagicPart, 41

MS, 30

Net, 27

NF, 30

Not, 17

NS, 30

One, 12

Open, 23, 31

Or, 12, 17

Output, 27

Outputf, 27

PadPart, 41

Part, 9, 41

PavePart, 41, 43

Pcb, 67

PcbPart, 41, 68

PF, 30

Pile, 43

Zplace, 43

INDEX 173

Pin, 67

Power, 12

Print, 32

Printf, 32

PS, 30

Random, 30, 31

Read, 23, 31

Repeat, 18

Rotate270, 43

Rotate180, 43

Rotate90, 43

Set, 31

Signal, 11, 12

Slew, 31

Source, 26

Sqrt, 23, 31

Switch, 20

Then, 18

Time, 30

Tristate, 26

UF, 30

Undef, 31, 34

Until, 18, 19

US, 30

Value, 30

Vdd, 12

Vss, 12

When, 34

While, 18, 19

Xmirror, 43

Xplace, 43

Ymirror, 43

Yplace, 43

Zero, 12

layers (routing), 71, 77

left (shift) (<<), 16

Length, 22

less or equal<=, 17

less <, 17

list

of integers, 18, 19

lists, 11

of integers, 11, 15

of signals, 11

Log, 23, 31

Logic, 27

logical and (&), 16

logical or (

), 16

Logicf, 27

loops, 18

Low, 31, 34

.mag �les, 36

.magic, 13

MagicLib, 45

MagicPart, 41

merge (signal), 20

metal1 input/output, 74, 80

minus-, 12

minus (-), 16

minus minus (--), 20

modulo (%), 16

MS, 30

multiplication (*), 16

Net, 27

netlists for the simulation, 27

NS, 30

niceinv, 88

Not, 17

NS, 30

numbers, 16

numerical constants, 16

Open, 23, 31

operator precedence, 16

operators, 16

*, 16

(->), 12

/, 16

=, 15

concatenation \,", 11

enumeration \: By", 11

(&), 16

And, 12, 17

(n), 16

, 16

-, 16

Not, 17

Or, 12, 17

(%), 16

+, 16

174 INDEX

<<, 16

operators (->), 20

Or, 12, 17

or (logical) (

), 16

Output, 27

Outputf, 27

PadPart, 41

pads, 3

Part, 9, 41

PavePart, 41, 43

Pcb, 67

PcbPart, 41, 68

PF, 30

Pile, 43

Zplace, 43

Pin, 67

plus (+), 16

polysilicon input/output, 74, 80

power (^), 16

power-supplies, 71, 77

0V

Earth, 12

Gnd, 12

Ground, 12

Vss, 12

Zero, 12

5V

One, 12

Power, 12

Vdd, 12

precedence, 16

Print, 32

Printf, 32

procedures

Close, 23

PS, 30

Random, 30, 31

Read, 23, 31

Repeat, 18

right (arithmetical shift) (>>), 16

Rotate270, 43

Rotate180, 43

Rotate90, 43

router, 72, 78

routing layers, 71, 77

Set, 31

sharp#, 17

shift left (<<), 16

shift right (arithmetical) (>>), 16

Signal, 11

signal merging, 20

signals, 11

simulation netlists, 27

size of cells, 71, 77

Slew, 31

Source, 26

Sqrt, 23, 31

star (*), 16, 22

statement

Source, 26

statements

At, 35

Capa, 31

Case, 20

Constant, 15

Continue, 18

Cycle, 18

Default, 20

Dest, 26

Do, 34

Done, 34

Earth, 12

Else, 18

End, 9

Endif, 18

Exit, 18

For, 18, 19

Gnd, 12

Ground, 12

High, 31

HighZ, 31

If, 12, 18

Include, 9

Inherit, 24

Integer, 15

Logic, 27

Logicf, 27

Low, 31

MagicLib, 45

One, 12

Output, 27

Outputf, 27

INDEX 175

Part, 9

PavePart, 43

Pile, 43

Zplace, 43

Power, 12

Print, 32

Printf, 32

Repeat, 18

Rotate270, 43

Rotate180, 43

Rotate90, 43

Set, 31

Signal, 11, 12

Slew, 31

Switch, 20

Then, 18

Tristate, 26

Undef, 31

Until, 18, 19

Vdd, 12

Vss, 12

When, 34

While, 18, 19

Xmirror, 43

Xplace, 43

Ymirror, 43

Yplace, 43

Zero, 12

subtraction (-), 16

Switch, 20

technology, 3

ECDM20, 3

ecpd, 3

ECPD12, 3

ECPD15, 3

ECPD8, 3

mcmos, 3

Then, 18

Time, 30

to 1's complement (n), 16

transitions

Change, 34

High, 34

HighZ, 34

Low, 34

Undef, 34

Tristate, 26

UF, 30

unary subtraction (-), 16

unconnect (--), 20

Undef, 31, 34

Until, 18, 19

US, 30

Value, 30

When, 34

While, 18, 19

wires, 11

Xmirror, 43

Xplace, 43

Ymirror, 43

Yplace, 43

