T.P. 04.2

Partie I: Présentation

Formellement, pour un ensemble D, un multi-ensemble fini de D est une fonction de D dans \mathcal{N} nulle presque partout. Un peu moins formellement, c'est un sous-ensemble fini de D dont les éléments ont un ordre de multiplicité.

Informatiquement, n-uplet, multi-ensembles et ensembles finis peuvent tous être stocké sous forme de listes. Les opérations doivent par contre maintenir des invarients spécifique dans chacun des cas.

Pour les multi-ensembles par exemple, les listes [4; 1; 3; 1; 1; 3] et [1; 1; 3; 4; 3; 1] sont 2 représentations du même objet mais [1;4;3;4] est différent.

On peut définir 4 opérations ensemblistes sur les multi-ensembles :

- La somme $M +_m N$: l'ordre de multiplicité d'un élément x de $(M +_m N)$ est la somme de son ordre de multiplicité dans M et dans N (i.e. $\forall x, (M +_m N)(x) = M(x) + N(x)$).
 - Par exemple, $\{0,0,1,2\}+_m\{0,2,2,2\}$ est égal à $\{0,0,1,2,0,2,2,2\}=\{0,0,0,1,2,2,2,2\}$.
- **L'union** $M \cup_m N$: l'ordre de multiplicté d'un élément x de $(M \cup_m N)$ est le maximum des deux ordres de multiplicité de x dans M et N (i.e. $\forall x, (M \cup_m N)(x) = \max(M(x), N(x))$). Par exemple, $\{0,0,1,2\} \cup_m \{0,2,2,2\}$ est égal à $\{0,0,1,2,2,2\}$.
- **L'intersection** $M \cap_m N$: l'ordre de multiplicté d'un élément x de $(M \cap_m N)$ est le minimum des deux ordres de multiplicité de x dans M et N (i.e. $\forall x, (M \cap_m N)(x) =$ $\min(M(x), N(x))$.

Par exemple, $\{0,0,1,2\} \cap_m \{0,2,2,2\}$ est égal à $\{0,2\}$.

La différence $M -_m N$: l'ordre de multiplicité d'un élément x de $M -_m N$ est égal à $\max(0, M(x) - N(x)).$

Par exemple, $\{0, 0, 1, 2\}$ - $_m \{0, 2, 2, 2\}$ est égal à $\{0, 1\}$.

Exercice 1. Définissez une fonction remove prenant pour argument un élément x et une liste m. Cette fonction retournera la liste m dans laquelle la première occurence de x aura été supprimée. Si x n'apparaît pas dans m, la liste sera retournée inchangée.

value remove : $\alpha \to \alpha \ list \to \alpha \ list$

Exercice 2. Programmez quatres fonctions sum m, union m, intersect m et subtract m implémentant les opérations décrites ci-dessus.

```
value sum m: \alpha \ list \rightarrow \alpha \ list \rightarrow \alpha \ list
value union m: \alpha \ list \rightarrow \alpha \ list \rightarrow \alpha \ list
value intersect m: \alpha \ list \rightarrow \alpha \ list \rightarrow \alpha \ list
value subtract m: \alpha \ list \rightarrow \alpha \ list \rightarrow \alpha \ list
```

Partie II: Représentation canonique d'un multi-ensemble

On suppose dans cette partie que l'ensemble de base D est totalement ordonné. On appelle représentant canonique d'un multi-ensemble $m = \{x_1, \dots, x_n\}$ l'unique liste $\overline{m} = [x_{\sigma(1)}; \dots; x_{\sigma(n)}]$ telle que σ soit une permutation de [1, n] et \overline{m} soit triée (i.e. $x_{\sigma(1)} \leqslant \cdots \leqslant x_{\sigma(n)}$). Calculer le représentant canonique d'un multi-ensemble revient donc à trier n'importe quelle liste le représentant.

Stanislas P. Boutillier & A. Camanes Caml. T.P. 04.2 MPSI 1&2

Nous allons écrire pour cela un algorithme de tri simple. Le principe du tri par insertion est le suivant : pour trier une liste $[x_0; x_1; \ldots; x_{n-1}]$, on part de la liste vide $[\]$ à laquelle on ajoute successivement x_0 , puis x_1 , ..., puis x_{n-1} à la "bonne place", c'est-à-dire de manière à ce que la liste formée reste triée. Ce mécanisme peut s'énoncer d'une manière équivalente faisant apparaître un schéma récursif : pour trier la liste t :: q, il suffit de trier q et d'insérer t à sa place.

Exercice 3. Essayez d'appliquer cet algorithme « à la main » sur un exemple simple.

Exercice 4. Écrivez une fonction insert qui prenne pour arguments un objet x et une liste m supposée déja triée et insàre x dans la liste à une place convenable.

Exercice 5. Déduisez-en une fonction sort prenant une liste pour argument et la retournant triée. Quel st le coût de cette algorithme de tri en fonction de la longueur de la liste à trier?

Exercice 6. Déduisez-en une fonction testant l'égalité de deux multi-ensembles.

Partie III : ensemble des représentants d'un multi-ensemble

Exercice 7. Ecrivez une fonction qui à partir d'un représentant d'un multi-ensemble renvoie la liste de tous ces représentants.

Pour cela, pensez que réccursivement, construire les permutations de t :: q c'est insérer t à toutes les positions possibles dans toutes les permutations de q.

Partie IV: itérateurs (bonus)

Plutôt que d'utiliser du filtrage pour manipuler des listes, il est possible de tout écrire à partir des fonctions :

```
value it_list: (\alpha \to \beta \to \alpha) \to \alpha \to \beta \ list \to \alpha it_list f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn. value list_it: (\alpha \to \beta \to \beta) \to \alpha \ list \to \beta \to \beta list_it f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)). que l'on appelle les itérateurs sur les listes.
```

Exercice 8. Sauriez vous réécrire un troisième itérateur classique sur les listes :

```
value map : (\alpha \to \beta) \to \alpha \ list \to \beta \ list
```

map f [a1; ...; an] applies function f to a1, ..., an, and builds the list [f a1; ...; f an] with the results returned by f.

à partir des précédants.

Tentez le même jeu avec la fonction

value list append : $\alpha \ list \ list \rightarrow \alpha \ list$

qui prend une iste de liste et renvoie la liste de toutes les listes mises bout à bout.

Stanislas P. Boutillier & A. Camanes