
Equality for λ-terms with list primitives

Equality for λ-terms with list primitives

Pierre Boutillier
under the supervision of Conor McBride

May - July 2009

Equality for λ-terms with list primitives

Plan

1 A goal

2 An implementation

3 A formalisation

Ideas

Intentional equality decision

Internalize specific laws for common operators

Normalizing in two phases vs extending rewrite rules

Equality for λ-terms with list primitives

Before the beggining

Semantic rules

Tips

several hypothesis
conclusion

or
axiom

Trust names to get what object are

Functionnal rules presentation follows the calculus

outputinput

Figure: Rule schema

Equality for λ-terms with list primitives

Before the beggining

Variable value storage makes life easier

Env := ε | (Env, v := ChkTm)

Figure: Definition of environment

Closure and Environment

Closure is a pair of term and environment

Value of variable in a term is its definition if it exists

In a way, substitution is delayed

(ε, x := λy .y !λz .x) = (ε, x := λy .y !λz .λy .y)
(ε, x := λy .y !λz .x) 6= (ε!λz .x)

(ε, x := λy .y !λz .x) = (ε!λz .λy .y) = (ε, x := λy .t!λz .λy .y)

Equality for λ-terms with list primitives

Before the beggining

Variable value storage makes life easier

Env := ε | (Env, v := ChkTm)

Figure: Definition of environment

Closure and Environment

Closure is a pair of term and environment

Value of variable in a term is its definition if it exists

In a way, substitution is delayed

(ε, x := λy .y !λz .x) = (ε, x := λy .y !λz .λy .y)
(ε, x := λy .y !λz .x) 6= (ε!λz .x)

(ε, x := λy .y !λz .x) = (ε!λz .λy .y) = (ε, x := λy .t!λz .λy .y)

Equality for λ-terms with list primitives

A goal

A Gödel system T like λ-calculus : types and terms

Ty := 1 | Ty→ Ty |

Ty×Ty |
Ty List

Figure: Definition of types

Elim := recTy ChkTm ChkTm |
first | mapTy ChkTm |
second | app ChkTm

Figure: Definition of Primitive elimination
operators

InfTm := v | Elim InfTm | ChkTm : Ty

ChkTm := λv .ChkTm | () | (ChkTm,ChkTm) | InfTm

Figure: Definition of inferable term and checkable term

Equality for λ-terms with list primitives

A goal

A Gödel system T like λ-calculus : types and terms

Ty := 1 | Ty→ Ty |
Ty×Ty |
Ty List

Figure: Definition of types

Elim := recTy ChkTm ChkTm |
first | mapTy ChkTm |
second | app ChkTm

Figure: Definition of Primitive elimination
operators

InfTm := v | Elim InfTm | ChkTm : Ty

ChkTm := λv .ChkTm | () | (ChkTm,ChkTm) | InfTm

Figure: Definition of inferable term and checkable term

Equality for λ-terms with list primitives

A goal

A Gödel system T like λ-calculus : types and terms

Ty := 1 | Ty→ Ty |
Ty×Ty |
Ty List

Figure: Definition of types

Elim := recTy ChkTm ChkTm |
first | mapTy ChkTm |
second | app ChkTm

Figure: Definition of Primitive elimination
operators

InfTm := v | Elim InfTm | ChkTm : Ty

ChkTm := λv .ChkTm | () | (ChkTm,ChkTm) | InfTm

Figure: Definition of inferable term and checkable term

Equality for λ-terms with list primitives

A goal

A Gödel system T like λ-calculus : types and terms

Ty := 1 | Ty→ Ty |
Ty×Ty |
Ty List

Figure: Definition of types

Elim := recTy ChkTm ChkTm |
first | mapTy ChkTm |
second | app ChkTm

Figure: Definition of Primitive elimination
operators

InfTm := v | Elim InfTm | ChkTm : Ty

ChkTm := λv .ChkTm | () | (ChkTm,ChkTm) | InfTm

Figure: Definition of inferable term and checkable term

Equality for λ-terms with list primitives

A goal

What does it stand for ?

calculus behaviour and meaning

1 Everything are functions

2 The arrow type stand for
this

3 Calculus goes when a term
is destruct

Practically

(app s) λx .t β-reduce to
t[s/x]

t[s/x] stand for t where every
occurrence of x is replaced by
s

Bidirectionnal type checking

Equivalent to Chuch presentation of term.

Ready for dependant type system

Type unicity of term allow type follow to normalize without
“most general type” problem.

Equality for λ-terms with list primitives

A goal

What does it stand for ?

calculus behaviour and meaning

1 Everything are functions

2 The arrow type stand for
this

3 Calculus goes when a term
is destruct

Practically

(app s) λx .t β-reduce to
t[s/x]

t[s/x] stand for t where every
occurrence of x is replaced by
s

Bidirectionnal type checking

Equivalent to Chuch presentation of term.

Ready for dependant type system

Type unicity of term allow type follow to normalize without
“most general type” problem.

Equality for λ-terms with list primitives

A goal

What does it stand for ?

calculus behaviour and meaning

1 Everything are functions

2 The arrow type stand for
this

3 Calculus goes when a term
is destruct

Practically

(app s) λx .t β-reduce to
t[s/x]

t[s/x] stand for t where every
occurrence of x is replaced by
s

Bidirectionnal type checking

Equivalent to Chuch presentation of term.

Ready for dependant type system

Type unicity of term allow type follow to normalize without
“most general type” problem.

Equality for λ-terms with list primitives

A goal

What are equals terms ?

α-conversion

Variables of λ are
mute so λx .x ≡ λy .y

If you change a part
of a term, ambiguitys
can occur.

β equivalence

Represents a step of calculus. Is
the consequence of an elimination.

Expressed by substitution of
variables for terms alone but only a
environment change for closures.

η-equality

Suppose that f is a
function, There is no
diference between f and
λx .(app x) f behavour
but syntaxes can be
different.

Open term complement for list

mapσ f (mapτ g l) ≡
mapσ (f ◦ g) l

mapτ id l ≡ l

mapτ f (append ys xs) ≡
append (mapτ f ys) (mapτ f xs)

Equality for λ-terms with list primitives

A goal

What are equals terms ?

α-conversion

Variables of λ are
mute so λx .x ≡ λy .y

If you change a part
of a term, ambiguitys
can occur.

β equivalence

Represents a step of calculus. Is
the consequence of an elimination.

Expressed by substitution of
variables for terms alone but only a
environment change for closures.

η-equality

Suppose that f is a
function, There is no
diference between f and
λx .(app x) f behavour
but syntaxes can be
different.

Open term complement for list

mapσ f (mapτ g l) ≡
mapσ (f ◦ g) l

mapτ id l ≡ l

mapτ f (append ys xs) ≡
append (mapτ f ys) (mapτ f xs)

Equality for λ-terms with list primitives

A goal

Normalisation by evaluation

Syntactic transformation

γ ` s ⇓ s ′ γ ` t ⇓ t ′

γ ` (s, t) ⇓ (s ′, t ′)
γ ` f ⇓ f ′ γ ` s ⇓ s ′ f ′ @ s ′ → v

γ ` f s ⇓ v

γ, x := v , γ′ ` x ⇓ v γ ` λx .t ⇓ λ [γ] x .t

No simplification is made under λ

Computation

e @ t → e t
f @ h → v mapτ f @ l → w

mapτ f @ h :: l → v :: w

γ, x := s ` t ⇓ v
app s @ λ [γ] x .t → v mapτ f @ [] → []

Equality for λ-terms with list primitives

A goal

Normalisation by evaluation

Syntactic transformation

γ ` s ⇓ s ′ γ ` t ⇓ t ′

γ ` (s, t) ⇓ (s ′, t ′)
γ ` f ⇓ f ′ γ ` s ⇓ s ′ f ′ @ s ′ → v

γ ` f s ⇓ v

γ, x := v , γ′ ` x ⇓ v γ ` λx .t ⇓ λ [γ] x .t

No simplification is made under λ

Computation

e @ t → e t
f @ h → v mapτ f @ l → w

mapτ f @ h :: l → v :: w

γ, x := s ` t ⇓ v
app s @ λ [γ] x .t → v mapτ f @ [] → []

Equality for λ-terms with list primitives

A goal

Normalisation by evaluation

Syntactic transformation

γ ` s ⇓ s ′ γ ` t ⇓ t ′

γ ` (s, t) ⇓ (s ′, t ′)
γ ` f ⇓ f ′ γ ` s ⇓ s ′ f ′ @ s ′ → v

γ ` f s ⇓ v

γ, x := v , γ′ ` x ⇓ v γ ` λx .t ⇓ λ [γ] x .t

No simplification is made under λ

Computation

e @ t → e t
f @ h → v mapτ f @ l → w

mapτ f @ h :: l → v :: w

γ, x := s ` t ⇓ v
app s @ λ [γ] x .t → v mapτ f @ [] → []

Equality for λ-terms with list primitives

A goal

Type based simplification

Principe

Follow unique Church form term types

All non elementary typed terms are
expanded

Simplification rules go bottom up

New declared variable are build to
evaluate under λ

Terms are syntaxtally rewrite on a
writable way

v

t’

n v’

t Quot

comp simpl

Norm

Eval

Figure: General picture

Γ ` tyCtxt
Γ ` 1 3 x ⇒ ()

Γ ` t ⇑ t ′ ∈ τ
Γ ` τList 3 t ⇑ t ′

Γ, x : σ ` app x f ⇓ v
Γ ` σ → τ 3 f ⇒ v

Equality for λ-terms with list primitives

A goal

Type based simplification

Principe

Follow unique Church form term types

All non elementary typed terms are
expanded

Simplification rules go bottom up

New declared variable are build to
evaluate under λ

Terms are syntaxtally rewrite on a
writable way

v

t’

n v’

t Quot

comp simpl

Norm

Eval

Figure: General picture

Γ ` tyCtxt
Γ ` 1 3 x ⇒ ()

Γ ` t ⇑ t ′ ∈ τ
Γ ` τList 3 t ⇑ t ′

Γ, x : σ ` app x f ⇓ v
Γ ` σ → τ 3 f ⇒ v

Equality for λ-terms with list primitives

An implementation

Variable representation

Näıve λx .λy .mapτ f x : σ Hard to compare and to
compute but easily readable by human.

Fonctional language fun x → fun y → List.map f x difficulties to
compute are hide. Impossible to compare or to show.

deBruijn index λ.λ.mapτ ? 1 : σ unreadable by human but
canonical form to compare. Tricky but unambigous
to compute.

Locally nameless λ.λ.mapτ f 1 : σ Avoid mess of free variable
index but still canonical unambigous form.

Toolbox

v a l v a r c a r e i n f f d e f f l a m f v a r env term
v a l v a r c a r e c h e c k f d e f f l a m f v a r env term

Equality for λ-terms with list primitives

An implementation

Structure

v a l e v a l I n f : Ttype . v a l u e l i s t −>
(Ttype . name ∗ Ttype . v a l u e) l i s t −>
Ttype . in fTerm −> Ttype . v a l u e

v a l e v a l C h e c k : Ttype . v a l u e l i s t −>
(Ttype . name ∗ Ttype . v a l u e) l i s t −>
Ttype . checkTerm −> Ttype . v a l u e

v a l e q u i v f u n : i n t −> Ttype . tType −>
Ttype . v a l u e −> Ttype . v a l u e −> b o o l

v a l s i m p l i f y : i n t −> Ttype . n e u t r a l −>
Ttype . n e u t r a l

v a l qu ot eV a l ue : i n t −> Ttype . tType −>
Ttype . v a l u e −> Ttype . checkTerm

v a l quoteNeu : i n t −> Ttype . n e u t r a l −>
Ttype . in fTerm ∗ Ttype . tType

Equality for λ-terms with list primitives

An implementation

Results

Experimental discovery

Going bottom up catches the most simplification
map (map id) l = l

Develop vs factorize when ordering simplification
map + 1 (append (map + 1 x) y) =

append (map + 2 x) (map + 1 y)

η-expantion is exactly non elementary types destruction
makes neutrals bigger and leave value unchanged

Over non elementary types, Identity function has different
form. Equality with it must be done with it’s quotation over
the given type.
λx .x : (ONE ,ONE) = λx .(first x , second x) : (ONE ,ONE)

Equality for λ-terms with list primitives

An implementation

Demonstration

\x . x : (a−>a)−>(a−>a) \ 1 .\ 2 . (1) 2
(a L i s t) L i s t −>(a L i s t) L i s t
\ 1 . map {a L i s t }

(\ x . map {a} (\ y . y) x) (1)
\ 1 . 1

(c −> b) −> (b −> a) −>
c L i s t −> a L i s t

\g f xs . (map {a} f (((\ x .
append (map {b} g x) ()) :
c L i s t −> b L i s t) xs))

\ 1 2 3 . map {a}
(\ 4 . (2) (1) 4) (3)

l e t swap : (a ∗ b) −> b ∗ a
= \ x . (second x , f i r s t x)

l e t swap2 : (b ∗ a) −> a ∗ b
= \ x . (second x , f i r s t x)

(a ∗ b) L i s t −> (a ∗ b) L i s t
\ x . map {(a ∗ b)} swap2

(map {(b ∗ a)} swap x)

\ 1 . 1

Equality for λ-terms with list primitives

A formalisation

Big step evaluation rules

Exact functionnal language behaviour with no scheduling question

Strong normalization makes strategies equivalent

Determinism is obvious, there is only one rule for each
constructor

Functionnality implys terminaison to ensure consistance

Dependant types makes life rigourous

Only deBruijn indexes are used here because definition are ommited

Environments are characterized by the number of declared variable
and of all kind variable it store.

Terms/Values are charaterized by their kind, their direction of
typing and how many variable they are dealing with.

This homogenous presentation gives a lot of factorization in proof.

Equality for λ-terms with list primitives

A formalisation

Less index care as possible

1 Thanks to closure, only adding a delared variable at the end
of the environment is require while you compute under λ.

2 Other defined term of the environment must still speak about
same things.

3 Weakening ensure this by converting every number to it’s
succesor.

4 The less elementary operation aren’t necessary.

Equality for λ-terms with list primitives

A formalisation

Sanity for everyone

Environment and context

From types for declared variables, you can get types for defined
one by typing it.

You want that in a well typed closure, allowed operations keep
everything well formed.

Normalisation preserves types

Evaluation, computation, simplification must preserve types. But
typing rules are made to follow the structure and the calculus ...

Elimination form case impose a stronger induction hypothesis than
the obvious one that ensure a well type as output of all possible

type as input.

Equality for λ-terms with list primitives

A formalisation

Soundness

Three kinds of equality rules

Structural rules to say that in different context terms are equals if
their sub-terms are.

Computational rules that expose one step of calculus in a given
environment.

Simplification rule which describe the valid transformation of a
term in an environment.

Proof principle

decorating derivation
with equationnal rule
that makes a
normalistion tree a rules
list linked by transitivity.

Proof requirement

(postcomposition compatibility and
eval-quote unicity)

Equality for λ-terms with list primitives

At last

To conclude

Bilan

A new desert to explore

New ideas to model the λ-calculus behaviour

Bricks to make formal proof

Even more use for types

What’s next ?

1 Completness

2 Generec completness condition over sets of simplification rules

3 What it become with dependant type

4 There is more data structure than list

Questions ?

	Before the beggining
	A goal
	An implementation
	A formalisation
	At last

