
Ecole normale supérieure de Lyon
Master 1 d’informatique fondamentale

Rapport de stage
Pierre Boutillier
Mai - Juillet 2009

Mathematically Structured Programming
Computer and Information Sciences
University of Strathclyde (Glasgow)

Equality for λ-terms with list primitives

Internship under the supervision of Conor McBride

Contents

1 Motivation, objectives and plan 3
1.1 A λ-calculus like Gödel’s system T . 3

1.1.1 Types definition . 3
1.1.2 Terms definition . 3
1.1.3 Semantics . 5

1.2 Normalisation by evaluation . 5
1.3 Type based clever “simplification” rule . 7

2 Cooking up the normalisation algorithm 9
2.1 Variables representation . 9
2.2 An interpreter in CaML . 10

3 Formalizing the behaviour 11
3.1 Big step reduction without defining substitution 11
3.2 Type soundness for everyone . 12
3.3 Equality and Soundness . 13

1

Introduction

Formal proofs are really valuable for the guarantees they offer but who hasn’t complained about
time lost proving the obvious? More precisely, while good definitions of objects and properties
are made, proving an equality often becomes finding the good variable to make an induction on
and then doing some obvious rewriting. Rather than doing these annoying transformations by
hand, we could try to find heuristics for finding and solving common cases but could we also
define a reduction for both side of an equation that will give exactly the same normal form for
the two terms if they are equal according a given equational theory?

For sure, turning an equational theory into a strongly normalizing rewriting rule system can
only be made on really specific cases. Nevertheless, these cases can be really relevant for objects
used in a strong normalizing way such as programs.

Work has been done to decide the intensional equality of programs : programs that compute
the same way. Starting from here, to internalize specific laws for common operators is a tempting
thing. But extending the rewrite rule system for evaluation makes it quickly unconfluent and
some normalization is necessarily type-directed. Our key idea is consequently to normalize
in two phases, first doing the ordinary computation then standardizing the presentation of
terminated programs. Immediately, questions of how, how many and which rules can be added
this way to get a extended equational theory that stay decidable are raised. More precisely,
figuring out the completeness of the procedure with regards to the elementary transformation
made in the standardisation phase is the ultimate goal. We’ll try here to find clues to solve this
new question by dealing with the example of lists.

My report has three parts. First, explanations about what I am dealing with and how we
want things to go will be given. This part show the “state of the art” and the intuition my
supervisor had to offer me this internship. Then I’ll describe how works the implementation
I’ve made to have a first look at if this idea works. This “concrete” step was also useful to
understand deeply what appends. As a result, by experimentation, we became ready to make a
formal proof of what we hope to get. This work, reported on the last part, is where new ideas
really appear and are exposed.

Preliminary : Reading and understand a semantic rule

This whole report will deal with rules. So before beginning, it’s necessary to explain what they
tell and how they are made.

A rule has always the same form :

Hypothesis
Conclusion

Of course an axiom is a rule without hypothesis so here, you’ve got an :

Axiom

If there is more than one hypothesis they are separated by a big space

Like that
Something relevant

In all rules, variables should have relevant names and follow intuition.
Moreover, when described rules are functional there are given to be naturally read in the

way that computation is made. Left part of the conclusion are the input given to the first

2

hypothesis which right part is its output that will be used by the second if its left side has input
etc until conclusion of the last hypothesis of which is made the output of the conclusion (its
right part).

outputinput

1 Motivation, objectives and plan

1.1 A λ-calculus like Gödel’s system T

In order to find results about programs, we need a mathematical model for them. We also want
a system as small as will allow us to do our experiments. We’ll use one of the standard one:
the simply typed λ-calculus. In this model of the computation, programs are named terms. All
terms are functions and calculating is applying a function to its argument. Moreover, terms
behaviour is described by a type. Types are useful to ensure that we write programs that can be
computed but moreover guarantee the termination of the computation. Here is a more precise
description of how it works.

1.1.1 Types definition

A type can be a variable (Greek letters are often used to represent type variable) and an arrow
between two types. σ → τ represent for example functions that take an argument of type σ
and return a term of type τ .

Stopping here could be enough. But, lists can’t be expressed in a strict simply type system.
We have to add more to get something like Gödel T system (λ-calculus with natural numbers).

Let us call:

ONE the type written 1 that has only one inhabitant

α β PAIR which has one term of α and one of β written α× β.

σ LIST written σList to be either UNIT or σ × σ List.

1 List are exactly like natural numbers, Pairs are nothing more expressive too, [Miq] gives
us system T equivalence.

Ty := 1 | v | Ty→ Ty | Ty×Ty | Ty List

Figure 1: Definition of types

1.1.2 Terms definition

Because we want to be able to ensure by an algorithm that terms behave as the programmer
expects, we’ll put some typing information in them. In fact, terms will be of two mutually
defined kinds : on the one hand checkable terms that we can check against a given type and
on the other hand inferable terms whose type can be infered relatively to a typing context
which gives types for variables. This way of acting follows the bidirectional type checking
process exposed by Pierce and Turner in [PT].

First of all:

3

A variable is an inferable term because the context gives type. . .

A functional abstraction noted λx.t type can also be checked if you give it an arrow
type. This term links the occurrences of the variable x in the term t.

Moreover, giving an inferable term f and a checkable term t, we can build and ensure the
behaviour of the

Elimination f x of which we can infer type (from the eliminator one).

At last, of course an inferable term is a checkable term and if you give explicitly the type
of an checkable term , this pair is an inferable term .

InfTm := v | InfTm Elim | ChkTm : Ty
ChkTm := λv.ChkTm | () | (ChkTm,ChkTm) | InfTm

Figure 2: Definition of inferable term and checkable term

In order to keep minds clear from now, syntactic terms are not all different. As you can
expect λx.x is exactly the same than λy.y. Declared variables (that we call closed) are conse-
quently mute. We’ll see in a moment how carrying this.

As for types, we could stop there but we shall add here for even more deep reasons that
we’ll see later primitives to build and use inhabitants of the types we’ve defined.

(a, b) is the inferable term made from the two inferable terms a and b. It represents
the pair (a , b).

Eliminator are constructors which such as application destruct terms. This is the
operation that represents calculating. We’ll use at least :

app x f to give an argument to a function.

first p to get the first part of a pair p

second p to get the second part of a pair p

mapτ f l which apply the function f over each element of the list l. (For typing reason,
we have to give the output type τ of f) and

recτ m s l the primitive recursion over list: it gives back m if l is empty or compute

app q (app h (app (recτ m s t) s)) if l is (h, t) (For the same typing reason, we have to give
the output type τ)

Elim := recTy ChkTm ChkTm | first | second | mapTy ChkTm | app ChkTm

Figure 3: Definition of Primitive elimination operators

Here is for the syntax. Typing rules follow exactly this so there is no interest in giving more
explanation than the rules.

4

TyCtxt := ε | v : Ty,TyCtxt

Figure 4: Definition of valid typing context

TyCtxt ` InfTm ∈ Ty

Γ, x : τ,Γ′ ` tyCtxt
Γ, x : τ,Γ′ ` x ∈ τ

Γ ` τ 3 m
Γ ` m : τ ∈ τ

Γ ` σ 3 t Γ ` σ [e〉 τ
Γ ` Elim t e ∈ τ

TyCtxt ` Ty [Elim〉 Ty

Γ ` σ 3 t
Γ ` σ → τ [app t〉 τ Γ ` σ × τ [first〉 σ Γ ` σ × τ [second〉 τ

Γ ` τ 3 m Γ ` τ → σ → σ List→ τ 3 s
Γ ` σList [recτ m s〉 τ

Γ ` σ → τ 3 f
Γ ` σList [mapτ f〉 τ List

TyCtxt ` Ty 3 ChkTm

Γ ` tyCtxt
Γ ` 1 3 ()

Γ, x : σ ` τ 3 t
Γ ` σ → τ 3 λx.t

Γ ` σ 3 s Γ ` τ 3 t
Γ ` σ × τ 3 (s, t)

Γ ` t ∈ τ
Γ ` τ 3 t

1.1.3 Semantics

It is the interesting part: one step of computation is defined by the β-reduction. This says
that λx.t s β-reduce to t[s/x] where t[s/x] stands for the term t where every occurrence
of x is replaced by the term s. Caution: we must be careful at this moment because, as
in types, declared variables can have arbitrary names. Consequently if nothing is done af-
ter reduction, ambiguity can appear with what is called variable capture (take a look at
(λx.λy.x) (λx.λy.y) −→ λy.λx.λy.y to see it). To maintain terms only readable one way,
we must ask the programmer to use different names or to rename variable and deal with what
is called α-conversion. In fact, the implementation part will show a standard way to avoid both
of these procedures.

Of course, structural rules have to be added to the semantics to allow us to simplify sub-
terms of terms but here again there is nothing requiring explanation to be understood. The
problem is that they do not look functional at the first glance. The reason for this is that
no priority is made between them but there is still a way to apply all of them which will be
explained now.

1.2 Normalisation by evaluation

Our goal is to convert a semantic equality not apparently algorithmic into a syntactic decidable
equality. We would like to be able to say that at least αβ-equivalent terms are equals. To do
so, we need to normalize, which means finding a functional system of rules that convert any
semantically equal terms in the same syntactic term. In this order, terms will be converted
into value. Values have reduction rules over then both functional and compatible with the
equational theory. So normalizing computation over values is made during this stage. This is
what we call the evaluation step (noted ⇓). Then, from the computed value we read back a
“normal” term: this phase is called quotation (noted ⇑). This principle to obtain decidability

5

of equality by transforming objects into a relevant and computable representation is what is
called normalisation by evaluation.

But what are in our case values ? Again, there are two kinds of values following the terms:
values on which we hope to do more computation and neutral terms (corresponding to inferable
term) under which no more reduction is possible and that can only become bigger and bigger
as far as they are given to elimination terms.

To build values, we’ll use the power of functional languages. λ-abstraction will be represented
by higher order functions of the language and this way, computation is hidden by the language
machinery. Moreover, we show a “big step” presentation of evaluation and we separate issues
of termination, even through this language happens to b total.

Env := ε | Env, v := ChkTm

Figure 5: Definition of environment

Env ` ChkTm ⇓ ChkTm

γ ` env
γ ` λx.t ⇓ λ[γ]x.t

γ ` env
γ ` () ⇓ ()

γ ` t ⇓ v
γ ` t ⇓ v

γ ` s ⇓ s′ γ ` t ⇓ t′
γ ` (s, t) ⇓ (s′, t′)

Env ` Elim ⇓ Elim

γ ` s ⇓ s′

γ ` app s ⇓ app s′ γ ` first ⇓ first γ ` second ⇓ second

γ ` f ⇓ f ′

γ `mapτ f ⇓mapτ f
′

γ ` m ⇓ m′ γ ` s ⇓ s′

γ ` recτ m s ⇓ recτ m′ s′

Elim @ ChkTm → ChkTm

e @ t → e t
γ, x := s ` t ⇓ v

app s @ λ γ x.t → v mapτ f @ [] → []

f @ h → v mapτ f @ l → w
mapτ f @ h :: l → v :: w recτ m s @ [] → m

recτ m s @ l → w app s @ w → w′ app w′ @ h → v′ app v′ @ l → v
recτ m s @ h :: l → v

first @ (s, t) → s second @ (s, t) → t

Env ` InfTm ⇓ ChkTm

γ ` fG ⇓ f ′ γ ` s ⇓ s′ f ′ @ s′ → v
γ ` f s ⇓ v

γ, x := v, γ′ ` env
γ, x := v, γ′ ` x ⇓ v

γ, x, γ′ ` env
γ, x, γ′ ` x ⇓ x

γ ` t ⇓ v
γ ` t : τ ⇓ v

As said before, structural rules such as m n reduces to m′ n′ if m reduces to m′ and n to
n′ induce ambiguity. To compute them, priorities need to be established. But never mind the
priority we’ve chosen because typed λ-calculus is strongly normalizing, so computation will be

6

confluent and stop at the same value each time. An other hidden problem appears with the rule
λx.m reduces to λx.m′ if m reduces to m′. It amounts to a fonctional program rewriting its
own code. Consequently, it is never done by the language however we need it to get a normal
form. The solution is given by quotation. Quotation in its naive version is basially syntactic.
But λ quotation is a bit more complex. In this case, a new “abstract” variable is created. (To
create it, we’ll use for example a counter or a name made from the one given to this declared
variable by the uses if we’ve remembered it.) This created object is a concrete thing we can give
as argument to the function. The β-reduction can consequently now be made under binders
using it to complete evaluation.

In the end, the couple evaluation/quotation made reductions everywhere.

v

t’

n v’

t Quot

comp simpl

Norm

Eval

1.3 Type based clever “simplification” rule

From these good ideas, we would like to go further. We would like to extend not by adding more
strongly normalizing process but by fully using the two phases of the process. In quotation,
one more step can be made : it can be smarter by following types in order to express terms
in a more regular way. We would like for example to figure out that if f is a functional term,
it is equal to λx.f x (this rewriting is called η-expansion). These simplification are based on
the property of Church presentation for the lambda-calculus that because types are put in the
syntax and they are consequently unique. We are as a result allowed to use them as term exact
description.

Lists and their primitives add even more non evaluating equality. Everyone is easily able
to see that mapping the identity function, even if you have an abstract list, is useless or that
because map deals with list elements separately, map f (map g l) ≡ map(f ◦ g) l for example.

To be sure that we won’t miss a simplification, they will have to be done from the more
elementary sub-term to the biggest one. Even if there are still critical pairs, we shall ensure
that we see all the occurrences of transformable terms.

Quotation will now evaluate under λs but also doing simplification. Keep in mind that
“simplification” here means “making more regular” and not necessary shorter. Developing has
always been more syntactic than factorizing, therefore, we will orient equality rules in the easiest
way for computing. For example, λx.x : (A → A) → (A → A) is shorter but less regular than
λx.λy.(x : A→ A) y : (A→ A)→ (A→ A).

7

TyCtxt ` Ty 3 ChkTm⇒ ChkTm

Γ ` l⇒ l′ ∈ τ List Γ ` τ → τ 3 f ⇒ g Γ ` τ → τ 3 λx.x⇒ g
Γ `mapτ f l⇒ l′ ∈ τ List

Γ ` t⇒mapu g l ∈ u List Γ ` l⇒ l′ ∈ σ List Γ ` σ → τ 3 λx.f (g x) ⇓ h
Γ `mapτ f t⇒mapτ h l

′ ∈ τ List

Γ ` first p ⇓ s Γ ` second p ⇓ t
Γ ` σ × τ 3 p⇒ (s, t)

Γ, x : σ ` app x f ⇓ v
Γ ` σ → τ 3 f ⇒ v

Γ ` tyCtxt
Γ ` 1 3 x⇒ ()

TyCtxt ` Ty 3 ChkTm ⇑ ChkTm

Γ, x : σ ` τ 3 v ⇑ t
Γ ` σ → τ 3 λx.v ⇑ λx.t

Γ ` tyCtxt
Γ ` 1 3 () ⇑ ()

Γ ` σ 3 s ⇑ s′ Γ ` τ 3 t ⇑ t′
Γ ` σ × τ 3 (s, t) ⇑ (s′, t′)

Γ ` t ⇑ t′ ∈ τ
Γ ` τList 3 t ⇑ t′

TyCtxt ` InfTm ⇑ InfTm ∈ Ty

Γ ` τ 3 t ⇑ t′
Γ ` t : τ ⇑ t′ : τ ∈ τ

Γ, x : τ,Γ′ ` tyCtxt
Γ, x : τ,Γ′ ` x ⇑ x ∈ τ

Γ ` σ [f ≡ f ′〉 τ Γ ` s ⇑ s′ ∈ σ
Γ ` f s ⇑ f ′ s′ ∈ τ

TyCtxt ` Ty [Elim ≡ Elim〉 Ty

Γ ` σ 3 s ⇑ s′

Γ ` σ → τ [app s ≡ app s′〉 τ

Γ ` σ × τ [first ≡ first〉 σ Γ ` σ × τ [second ≡ second〉 τ

Γ ` τ 3 m ⇑ m′ Γ ` τ → σ → σ List→ τ 3 s ⇑ s′

Γ ` σ List [recτ m s ≡ recτ m′ s′〉 τ

Γ ` σ → τ 3 f ⇑ f ′

Γ ` σ List [mapτ f ≡mapτ f
′〉 τ List

Three things about simplification must be explained. For the reasons described above, it is a
bottom up operation. It first tries to simplify subterms before trying to find if the term has one
of the expected forms. As we can see with map id (map f l), critical pairs can appear too but
evaluating the simplified terms will make result of the two strategies equal. Completeness proof
has to say that this is always so. And for checking that we don’t map the identity function for
example, we need an equality. We’ll use the syntactic equality over quoted terms to catch for
example different forms of the same object. (Identity example will be more precisely described
as an example of the implementation technique.)

Finding generic conditions for admissible simplification rule set question hasn’t been raised
yet but notice that, at least, they must take a neutral term and give a neutral term in order to
be separated from the evaluation.

To finish with, naive formalisation of “the subterms can’t be simplified” is not terminating
each time (it is not strictly positive). But what happens is that quotation recursively does all
the possible simplification. So it only represents the fact that we deal with quoted normal form
for subterms. It is computable and consequently can be expressed in a strictly positive way.

8

2 Cooking up the normalisation algorithm

2.1 Variables representation

λ-calculus can have several representations well described in [Aug06]. The one given at the
beginning is the easiest to understand for humans but, because of α-conversion, finding syntactic
equal terms or β-reduce is difficult. Consequently, we may want to adopt what we call Barendregt
convention where all declared variables have a different name. Substitution is now easier because
ambiguities are avoided. But still the same term has several representations and we deal with
variable name that means nothing for the machine. In a functional language, we can hide
this behind the language interpreter and use language’s higher order functions. By this way,
computing is (for us) trivial even if we’ve lost equality checking in this case.

A solution commonly used is to represent variables as deBruijn indices. The deBruijn index
of a variable is the number of λ to skip before getting the one that declares the variable. Let’s
be more concrete with two examples. λx.λy.x y in the naive representation become λ.λ.1 0
because in x y, x is declared one λ further and y by the last λ seen. λx.x (λy.y) is λ.0 (λ.0)
because in the position where they respectably are , x and y both stand for the last variable
declared. But because they aren’t at the same place, a same number can represent different
variables.

If in its representation, substitution of closed terms is straightforward and especially if terms
have a canonical form, they are not really easy to read by a human being and having names
depending of the position oblige to write really annoying functions to manipulate such terms
(such as shifting free and closed variables).

Moreover, when terms have free variables (which is the case when we want to allow definitions
to make the written terms simpler to read) deBruijn indexes require a closing strategy which
represent that fact to add some λs before the term to represent free variables as its private
parameters. This is one of the bigger source of mistake and you should better separate free and
bound variables and define free variables by an explicit textual name. This is called the locally
nameless approach from [MM04a].

Nevertheless, depending on what you want to do, the best (because in the end easiest thing
to do) is to change representations, and not try to do something for which a representation
is not made. Users will consequently be allowed to write naive terms. They’ll read some
under Barendregt convention in order to be sure that interpreters write output with no possible
confusions. Computation will be done using CaML function and terms with deBruijn indexes
will be compared.

By having a quick look at it, we discover that representation changes only deal with def-
initions, lambdas and variables. Therefore, we should make a generic function to follow the
syntax in other cases and just give what to do in the three above situations. It will require an
environment to keep in memory necessary stuff and can even be use to give back information
about variables such as free variable list or what ever.

It declaration and type is

va l v a r c a r e i n f f d e f f lam f v a r env term :
(’ a −> name −> tType −> checkTerm −> infTerm −> infTerm) −>
(’ a −> name −> checkTerm −> checkTerm) −>
(’ a −> name −> tType −> infTerm) −> ’ a −> infTerm −> infTerm

va l va r ca r e che ck f d e f f lam f v a r env term :
(’ a −> name −> tType −> checkTerm −> infTerm −> infTerm) −>
(’ a −> name −> checkTerm −> checkTerm) −>
(’ a −> name −> tType −> infTerm) −> ’ a −> checkTerm −> checkTerm

9

2.2 An interpreter in CaML

The software written in CaML aims for watching if every simplification is really made in non
trivial cases. Interpreter is written following the clue of [MM04b]. This tool is absolutely not
something built to be user friendly but you can still take a look at it. It’s called first in
byte-code mode with debugging information and inter in native code mode. (Mode is
chosen from the first line of the Makefile). It takes an “Haskell like” text file as an input
and answer in the standard output. More precisely, input is a succession of type then
checkable term definition followed by an inferable term . In answers, variables are
numbers but aren’t deBruijn indexes at all, numbers are here nothing more than a trivial
way to generate names ! They in fact represent the number binders seen before the one
we are talking about and are known as deBruijn levels.

The core of the implementation is made as expected with two mutual definitions for
each step. Here are the evaluation functions as an exemple. They carry two environments
but no types because first bound variable definitions and free variable ones live in a
different space and therefore can be just juxtaposed and second evaluation is an untype
procedure; Types ensure terminaison of it from the outside.

va l e v a l I n f : Ttype . va lue l i s t −>
(Ttype . name ∗ Ttype . va lue) l i s t −> Ttype . infTerm −>
Ttype . va lue

va l evalCheck : Ttype . va lue l i s t −>
(Ttype . name ∗ Ttype . va lue) l i s t −> Ttype . checkTerm −>
Ttype . va lue

Then the machinery to find equality over βηι-expansion is made in the same time as
simplification and quotation because 1 needs 2 needs 3 needs 1.

va l equ iv fun : i n t −> Ttype . tType −> Ttype . va lue −>
Ttype . va lue −> bool

va l s i m p l i f y : i n t −> Ttype . neu t ra l −> Ttype . neu t ra l
va l quoteValue : i n t −> Ttype . tType −> Ttype . va lue −>

Ttype . checkTerm
val quoteNeu : i n t −> Ttype . neu t ra l −>

Ttype . infTerm ∗ Ttype . tType

Even if the proof does not, the interpreter goes a bit further and has the append

primitive over lists which makes a list from two lists by putting all the elements of the
first one in the same order behind the element of the second. It has the properties that
append l Nil ≡ l and map τ f (append x y) ≡ append (map tau f x) (map τ f y). Here
again rewriting orientation is crucial because map (+1) (append (map (+1) x) y) −→
append (map (+2) x) (map (+1) y) is really easier this way.

Now that we’ve got the structure, the best way to make progress is to show some of
the examples we use to find how things have to work.

10

(a ∗ b) −> (a ∗ b)
\x . x \1 . (f i r s t (1) , second (1))

(a−>a)−>(a−>a)
\x . x \ 1 .\ 2 . (1) 2

First of all, generic function can have particular forms that we must recognize. We’ve
work with this simpliest : the identity.

(a L i s t) L i s t −> (a L i s t) L i s t
\ 1 .map {a L i s t } (\x . map {a} (\y . y) x) (1) \ 1 .1

Here, we’ve have been obliged to simplify the inner function to discover the identity.

(c −> b) −> (b −> a) −> c L i s t −> a L i s t
\g f xs . (map {a} f (((\ x . append
(map {b} g x) ()) : c L i s t −> b L i s t) xs))

\ 1 .\ 2 .\ 3 .map {a}
(\ 4 . (2) (1) 4) (3)

Then, succession of differrent simplification rules must be tested.
l e t swap : (a ∗ b) −> b ∗ a

= \ x . (second x , f i r s t x)

l e t swap2 : (b ∗ a) −> a ∗ b
= \ x . (second x , f i r s t x)

(a ∗ b) L i s t −> (a ∗ b) L i s t
\ x . map {(a ∗ b)} swap2 (map {(b ∗ a)}

swap x)

\ 1 .1

In the end, we’ve check the ability to find all simplifications from the bottom to the
top of sub-terms with doing evaluation between two simplifications.

3 Formalizing the behaviour

3.1 Big step reduction without defining substitution

Normalisation seems to behave correctly as far as we have tested. The next step is to prove
it. The tool to ensure proofs will be Agda 2 ([Com]), a Swedish functional programming
language with a dependent type checker based on Martin-Löf theory. To model the
λ-calculus, we’ll use a purely deBruijn indexed representation and omit definitions for
simplicity. Nevertheless, we would like proofs to be as simple as possible and consequently
the fewer operations over indexes we require, the better.

For β-reduction by substitution, terms are moved one into another and consequently
operation over variables must appear. But we can compute without substitutions thanks
to environments.

An environment explains how to interpret the free variables at the time a term is
created with respect to the free variables at the time it is used. So, it is characterized
by two natural numbers. The first argument tells the length of the environment and so
how many different variables can have a term compute in this environment. The second
tells the number of declared variables. As a result, it says how many different variables
values compute in the environment will have.

With this new tool, life is easier. The value of variable i in the environment γ is the
i-th element of γ if i is defined or itself if it is declared. β-reducing in an environment
is also only defining the last variable with the value of the argument and computing the
function in this new environment.

Only one operation over indices has to be defined: weakening. This means adding a
new declared variable on top of an environment and consequently incrementing all indices

11

in the corresponding terms, in order that they deal with the same old variables. We need
it because computing under λ during quotation is exactly computing the term under the
λ in the weakened environment. But we never go further than λ closure and consequently
never insert a variable elsewhere in the environment which is “thinning”.

Defining evaluation and primitive quotation (the one that follows terms) with this
definition is obvious, you’ll just have to be precise to keep in mind that evaluation does
not compute under lambda but only keeps the closure of the term under the λ and the
environment is ready for computation if an argument is given. The model used follows
this principle.

Evaluation and naive quotation have been defined to be obviously deterministic even if
the totality proof in agda are more complicated than that because as you know evaluation
is sure to terminate only on typed terms and agda needs termination to be shown to stay
consistent.

Moreover, the property “can not being simplified” can be expressed on a positive way
and a simplification step terminates because it makes the lexical order “length of type”,
“length of terms” decrease so simplification and our type-directed quotation are just extra
work between the two old phases which is trivially functional.

3.2 Type soundness for everyone

Types are the fuel consummation we constantly use to say that our relations are termi-
nating functions. A primary work indeed was to check if all our transformations preserve
types.

Types validity were one more time defined with regards to an typing context. It will
be represented by a list of types where the ith element of the list gives the type of the
ith deBruijn index.

Environment compatibility with context will have to be ensured first. This will just
means that definition have types coherent with those given for the declared variables. In
the same kind of question, thinning an environment must keep its elements well typed
but everything is made in this purpose.

Env :: TyCtxt 7→ TyCtxt

ε :: Γ 7→ Γ
γ :: Γ 7→ ∆ Γ ` x ∈ τ

x, γ :: Γ 7→ τ,∆

Here again, all elimination rules have a really similar behaviour over types: These
elements all take a non elementary type and destruct it. For example σ × τ [first〉 σ.
There is still no need to break the factorisation made during the term definition.

Evaluation, simplification and quotation must also preserve typing. For evaluation,
typing rules are made in this goal. No problem must occur. Simplification followed
the type structure, consequently no mad behaviour in type arrived. Naive part of the
quotation is the only thing a bit more difficult. In fact, quotation of value takes a type
to quote but quotation of neutral term (which represents inferable term remember)
doesn’t and returns back a term and a type. For this reason, we’ll need a stronger
recursion hypothesis to say that whatever the type given back, we will be able to take
it to continue quotation and we’ll find the same type that the one giving in input in the
end.

12

Beside the induction, easy lemmas about for example variables or composition has
been required but definition are made in order that everything goes directly well.

3.3 Equality and Soundness

Here is the time to formally express which terms we want to be equals. As for evaluating,
we don’t want to define substitution formally. We will consequently work with environ-
ments again. These environments are different of those for the evaluation one because
they are environments of terms and not environments of values. Therefore, at one moment
we’ll have to define and use compatibility between representatives of each kind. After
several failures, we’ve defined it this way: each term stored in the equality environment
evaluates to the value stored at the same place in the evaluation environment.

With this definition, terms meaning depends on which definitions are stored in the
environment they are associated with and the pertinent notion to define equality of it
becomes the closure (environment!term).

Moreover, to catch η-expansion and rewriting for pairs, for example, equality have
to interact with types. For this reason, the equality judgement carries a typing context
of all the declared variables and a type that the two terms accept. (Of course, equal
terms have the same types because we want to define computing in the same way which
is stronger than computing the same thing and the second property is “having the same
type”.)

Now that form of judgement are exposed, there will be three kind of equality rules:

Structural rules to say that in different contexts, terms are equal if their sub-
terms are.

Computational rules that expose one step of calculus in a given environment.

Simplification rules which describe the valid transformation of a term in an
environment.

TyCtxt ` Ty 3 (QEnv!ChkTm) ≡ (QEnv!ChkTm)

Γ ` 1 3 (γ!()) ≡ (γ′!())
Γ ` τ 3 (γ!t) ≡ (δ!s)
Γ ` τ 3 (δ!s) ≡ (γ!t)

Γ ` τ 3 (γ!r) ≡ (δ!s) Γ ` τ 3 (δ!s) ≡ (θ!t)
Γ ` τ 3 (γ!r) ≡ (θ!t)

Γ, σ ` τ 3 (γ, x!t) ≡ (γ′, x!t′)
Γ ` σ → τ 3 (γ!λx.t) ≡ (γ′!λx.t′)

Γ ` σ 3 (γ!f) ≡ (γ′!f ′) Γ ` τ 3 (γ!s) ≡ (γ′!s′)
Γ ` σ × τ 3 (γ!(f, s)) ≡ (γ′!(f ′, s′))

Γ ` τ 3 (γ!t) ≡ (γ′!s)
Γ ` τ 3 (γ!t : τ) ≡ (γ′!s : τ)

Γ ` σ 3 (γ!s) ≡ (γ′!s′) Γ ` σ [(γ!f) ≡ (γ′!f ′)〉 τ
Γ ` τ 3 (γ!f s) ≡ (γ′!f ′ s′)

13

TyCtxt ` Ty [(QEnv!ChkTm) ≡ (QEnv!ChkTm)〉 Ty

Γ ` σ × τ [(γ!first) ≡ (γ′!first)〉 σ Γ ` σ × τ [(γ!second) ≡ (γ′!second)〉 τ
Γ ` σ → τ 3 (γ!f) ≡ (γ′!f ′)

Γ ` σ [(γ!app f) ≡ (γ′!app f ′)〉 τ
Γ ` σ → τ 3 (γ!f) ≡ (γ′!f ′)

Γ ` σList [(γ!mapτ f) ≡ (γ′!mapτ f
′)〉 τList

Γ ` τ 3 (γ!m) ≡ (γ′!m′) Γ ` σ → σList→ τ → τ 3 (γ!s) ≡ (γ′!s′)
Γ ` σList [(γ!recτ m s) ≡ (γ′!recτ m

′ s′)〉 τ

TyCtxt ` Ty 3 (QEnv!ChkTm) ≡ (QEnv!ChkTm)

γ :: Γ 7→ ∆ ∆ ` τ 3 t
Γ ` τ 3 (γ!t) ≡ (γ!t)

Γ ` τ 3 (γ!(λx.t) s) ≡ (γ, x = s!t) Γ ` σ 3 (γ!first (f, s)) ≡ (γ!f)

Γ ` τ 3 (γ!second (f, s)) ≡ (γ!s) Γ ` τList 3 (γ!mapτ f []) ≡ (γ![])

Γ ` τList 3 (γ!mapτ f (h, t)) ≡ (γ!(app f h,mapτ f t))

Γ ` τ 3 (γ!recτ m s []) ≡ (γ!m)

Γ ` τ 3 (γ!recτ m s (h, t)) ≡ (γ!app t (app h ((app recτ m s t) s)))

TyCtxt ` Ty 3 (QEnv!ChkTm) ≡ (QEnv!ChkTm)

γ :: Γ 7→ ∆ ∆ ` σ → τ 3 f
Γ ` σ → τ 3 (γ!λx.f x) ≡ (γ!f)

γ :: Γ 7→ ∆ ∆ ` σ × τ 3 p
Γ ` σ × τ 3 (γ!(firstp, secondp)) ≡ (γ!p)

Γ ` τ List 3 (γ!mapτ λx.x l) ≡ (γ!l)

Γ ` τ List 3 (γ!mapτ f mapu g l) ≡ (γ!mapτ f ◦ g l)

Rules has been made in order to ensure that a term is equal to the quotation of its
evaluation. Nevertheless, the property giving the Soundness of our normalisation is not
that obvious. In fact, it presents two difficulties.

First, evaluation has a tree structure whereas equality proof is a list of one step rules
linked by transitivity property. This means that terms of proof will be long and not
obvious to read but moreover a lot of effort in this deconstruction has to be archived to
find when to do thing on the right time. This mean that when you are still in the right
context to have the piece of information you need and before other rules break the term
structure. It also means that because equality rules are only for terms you need a way to
deal with value compute and so never quote on witch you need equivalent.

The second point is that after evaluation two situations can occur for values. They
can be quoted and in this case we would like them to be equal to the initial terms but
they can also be eliminated by computation with other values and in this case soundness
over the resulting values must be guaranteed too. This implies a proof in two parts with

14

each time lemmas to find the authorized elimination and giving the right recursive call
to say their soundness.

Moreover, the application rule is not elementary at all. It corresponds to three steps
for equality: to introduce the definition, then, remplace variable by definition in all the
terms which make the weakened term, and then, thin to get the evaluate term. Several
new intermediate values has consequently to be explicitly defined to succeed.

Soundness of our procedure has been cut in two parts, we first deal with the naive
untyped quotation, then we add simplification and raise cases where more stuff is done
by quotation. The hardest part is the first one and the second one has a lot of cases.

Conclusion

My internship began with the study of the intuition of my supervisor found during the
development of Epigram that transformation over neutral terms we want to do can be
delayed to after the normal computation. This work rely even more over types of terms
that are already fondamental in other way.

It has also been started with a totally different formallism by [BS06] but trying to
make a formal proof of the properties of our semantic gives us new ideas to formalize
more easily λ-calculus behaviour.

The consequence of the internship is canvas to implement equality decision procedure
by normalisation by evaluation for more than β-equivalence. But more revelant, we also
obtain first bricks to study formaly the λ-calculus and normalisation in two phases in
Agda.

Nevertheless, we are only at the very beginning of this adventure and formal proof of
completeness is not complete. Lists are simple data structure good for a first test but
can we generalize data structure we are working with? Can we keep our result with more
expressive types system or for dependant types? In the end, we would also like to find
generic conditions over rules to say that we can apply our stategy in two phases and
obtain decision for the equality.

15

References

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and
Stephanie Weirich. Engineering formal metatheory. In POPL ’08: Proceed-
ings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 3–15, New York, NY, USA, 2008. ACM.

[Aug06] L. Augustsson. λ-calculus cooked four ways. code avalaible, 2006.

[BS06] Freiric Barral and Sergei Soloviev. Inductive type schemas as functors. In
CSR, pages 35–45, 2006.

[Com] The Agda Community. The Agda Wiki.

[Miq] Alexandre Miquel. Théorie de la démonstration. lecture slides.

[MM04a] Conor McBride and James McKinna. Functional pearl: i am not a number–i
am a free variable. In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN
workshop on Haskell, pages 1–9, New York, NY, USA, 2004. ACM.

[MM04b] Conor McBride and James McKinna. The view from the left. Journal of
Functional Programming, 14(1):69–111, 2004.

[PT] Pierce and Turner. Bidirectional type checking. to be completed.

16

