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Context

Modern machine learning models are often over-parametrized, i.e., the number of model parameters
typically far exceed the number of data points by orders of magnitude. In the over-parametrized
setting, learning algorithms typically achieve close to 100% training accuracy and are said to be
in the “interpolation regime” where the algorithm almost perfectly fits all the training data points
[1]. By nature, interpolating models memorize almost all the training samples. This makes them
particularly vulnerable to membership inference attacks [2], which guess whether a particular data
point was used for training the model, and reconstruction attacks, which approximately reconstruct
the data points that were used for training [3].

Existing defenses against privacy attacks aim to reduce overfitting through a variety of techniques
such as sub-sampling and noise injection [4]. However, defenses often come with a significant drop
in accuracy, indicating the necessity of sacrificing utility to guarantee privacy in the interpolation
regime. The loss in accuracy is particularly steep for high-dimensional and long-tail distributions
[5]. This insight is in sharp contrast to some recent theoretical results on the generalization benefits
of differential privacy [6].

The ubiquity of interpolating algorithms in modern machine learning combined with their unique
drawbacks in data privacy, calls for a focused study of privacy in the overparametrised setting.

Goals

The primary goal is to reevaluate the privacy utility trade-off in the interpolation regime by deriving
new theoretical bounds that precisely capture the trade-off between privacy and generalization in
overparametrised models. A good starting point for this is the recent work on differentially private
learning with margin guarantees [7].
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Organisation

– Survey existing literature on generalization error bounds for differentially private algorithms
– Survey existing literature on generalization error bounds for overparametrised algorithms
– Develop new theoretical results on privacy in the overparametrised setting
– Publish the results in the form of a research paper at top machine learning conferences (ICML,
NeurIPS, ICLR, AISTATS, AAAI).

Profile

The ideal candidate will meet the following criteria.

– Pursuing a Masters degree or equivalent in Computer Science, Mathematics, Data Science or
Electrical Engineering

– A strong theoretical background in probability theory, statistics and machine learning
– Exposure to differential privacy and generalization error bounds is a plus
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