Theoretical Limits on Privacy in Overparametrised Machine Learning Models

- **Keywords:** Differential privacy, overparametrised models, interpolation, generalization error
- **Duration:** 6 months
- **Supervisors:**
 - Muni Sreenivas Pydi munip.pydi@lamsade.dauphine.fr
 - Jamal Atif jamal.atif@lamsade.dauphine.fr
 - Olivier Cappé olivier.cappe@cnrs.fr
- **Place:** MILES Team, LAMSADE, Université Paris Dauphine—PSL
 - DI-ENS, Ecole Normale Supérieure—PSL

Context

Modern machine learning models are often over-parametrized, i.e., the number of model parameters typically far exceed the number of data points by orders of magnitude. In the over-parametrized setting, learning algorithms typically achieve close to 100% training accuracy and are said to be in the “interpolation regime” where the algorithm almost perfectly fits all the training data points [1]. By nature, interpolating models memorize almost all the training samples. This makes them particularly vulnerable to membership inference attacks [2], which guess whether a particular data point was used for training the model, and reconstruction attacks, which approximately reconstruct the data points that were used for training [3].

Existing defenses against privacy attacks aim to reduce overfitting through a variety of techniques such as sub-sampling and noise injection [4]. However, defenses often come with a significant drop in accuracy, indicating the necessity of sacrificing utility to guarantee privacy in the interpolation regime. The loss in accuracy is particularly steep for high-dimensional and long-tail distributions [5]. This insight is in sharp contrast to some recent theoretical results on the generalization benefits of differential privacy [6].

The ubiquity of interpolating algorithms in modern machine learning combined with their unique drawbacks in data privacy, calls for a focused study of privacy in the overparametrised setting.

Goals

The primary goal is to reevaluate the privacy utility trade-off in the interpolation regime by deriving new theoretical bounds that precisely capture the trade-off between privacy and generalization in overparametrised models. A good starting point for this is the recent work on differentially private learning with margin guarantees [7].
Organisation

- Survey existing literature on generalization error bounds for differentially private algorithms
- Survey existing literature on generalization error bounds for overparametrised algorithms
- Develop new theoretical results on privacy in the overparametrised setting
- Publish the results in the form of a research paper at top machine learning conferences (ICML, NeurIPS, ICLR, AISTATS, AAAI).

Profile

The ideal candidate will meet the following criteria.

- Pursuing a Masters degree or equivalent in Computer Science, Mathematics, Data Science or Electrical Engineering
- A strong theoretical background in probability theory, statistics and machine learning
- Exposure to differential privacy and generalization error bounds is a plus

References

