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Abstract

This paper presents a new method for the statistical

learning of the correspondence between spectral pa-

rameters measured from two di�erent speakers utter-

ing the same text. This method is based on the use

of a gaussian mixture model of the speaker's spec-

tral parameters. It is shown to be more e�cient and

robust than previously known techniques based on

the use of vector quantization. The results obtained

on large speech database demonstrate e�ective high-

quality transformations of the voice characteristics.

1 Introduction

Text-independent speaker recognition aims at ex-

tracting from the speech waves the information rela-

tive to the speaker individuality without explicit ref-

erences to what is uttered. It proceeds by extract-

ing from the speech samples the information which is

characteristic of the way a particular speaker utters

individual phonemes, articulates string of phonemes,

and then produces words and sentences. The infor-

mation which is pertinent for such purpose are of

course related to the physiological and the behavioral

characteristics of the speaker. These characteristics

exist both in the short-term spectral envelope (vo-

cal tract characteristics) and in the supra-segmental

features (voice source characteristics) of speech.

Voice conversion consists exactly in the reverse op-

eration: starting from the speech signal uttered by

a speaker, it aims at transforming the characteristics

of the speech signal, in such a way that a human

listener could believe that the transformed speech

is produced by another (target) speaker. In other

words, the machine disguises the voice of the speaker

to mislead the listener. The potential applications

of such techniques are numerous; at the �rst place,

voice conversion would be an essential component of

future text-to-speech systems based on concatenation

of acoustical units. It is now more or less admit-

ted that high-quality synthesis system will use huge

amounts of speech data. These data are di�cult to

collect and uneasy to handle (segment, store, access
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in real time). Developing a new voice will be an ex-

tremely expensive process. Voice conversion could be

an alternative. Other applications include: voice in-

dividuality disguise for secure communications, voice

individuality restoral for interpreting telephony, and

so on... [1]

2 Main features of the method

In this contribution, we concentrate on the transfor-

mation at the segmental level. Our aim is to learn a

conversion function that maps the acoustic space of

a source speaker to the acoustic space of the target

speaker. Since it is likely that the conversion should

depend on the `class' (in a broad sense), an initial

clustering is performed. Speci�c transformations can

then be learned for each class.

This kind of approach to the voice conversion prob-

lem was �rst pioneered by Abe et al. using the map-

ping codebook method [2]. In this approach, the clus-

tering is achieved through Vector Quantization (VQ)

of the acoustic spaces of the two speakers. The main

shortcoming of this method is the fact that the acous-

tic space of the converted signal is limited to a dis-

crete set of envelopes. As of today, none of the sub-

sequent developements of the original mapping code-

book method has been entirely successful in overcom-

ing this drawback [3]. Compared to these methods,

the main originalities of our system are the following:

� Soft clustering: During the learning phase, the

spectral data are modelled by a mixture of Gaus-

sian densities. In contrast with VQ, the mixture

model allows to obtain continuous `smooth' clas-

si�cation indexes (the classi�cation is probabilis-

tic and is a continuous function of the spectral

parameters). This characteristic improves the

synthesis quality, avoiding the artefacts gener-

ated by unnatural discontinuities in the transfor-

mation which typically occurs in the VQ model,

when a vector jumps from one class to the other.

� Incremental learning: In oder to minimize the

in
uence of local errors in the time alignment

path between the two speakers, it is proposed to

learn the conversion function incrementally. In a

�rst iteration, the data from the source speaker



and the target speaker are aligned by a standard

Dynamic TimeWarping (DTW) algorithm. This

alignment is used to obtain the initial parame-

ters of the conversion function. In subsequent

iterations, the DTW procedure is applied to the

converted data and the target data in order to

re�ne the alignment path.

� Continuous transform: The proposed para-

metric conversion function makes use of the

probabilistic classi�cation achieved by the mix-

ture model as well as the characteristics of each

class (mean vector and covariance matrix). Each

class is thus considered as a complete cluster

rather than as a single vector as is the case in

VQ-based methods. This conversion function

drastically reduces the unwanted spectral distor-

tions observed with most current voice conver-

sion techniques.

3 Training of the conversion

function

This section is concerned with the learning of the

spectral conversion function from the time-aligned

spectral data corresponding to both speakers. We

consider that the available data consists of two sets

of paired p-dimensional spectral vectors fx

t

; t =

1; : : : ; ng (source) and fy

t

; t = 1; : : : ; ng (target) with

the same length n.

3.1 Gaussian mixture model

The �rst step consists in �tting a gaussian mixture

model to the source vectors fx

t

g. The gaussian mix-

ture model implies two fundamental assumptions:

1. The probability distribution of the observed pa-

rameters can be written as [4]
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where N (x;�;�) denotes the p-dimensional nor-

mal distribution with mean vector � and covari-
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are normalized positive

scalar weights (
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2. The observation vectors x

t

are independent from

one another.

The gaussian mixture model is used for its ability to

model the acoustic space of a speaker as a combi-

nation of several components [5]. Each component,

or class, C

i

(i = 1; : : : ;m) is characterized its center

(mean vector �

i

) as well as by a characteristic spread-

ing around the center of the class (covariance matrix
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). The mixture weights �
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represent the statistical

frequency of each class in the observations.

The 'soft clustering' mentioned above is achieved

by computation of the conditional probabilities
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i

. A straightforward

application of Baye's rule yields [4]
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In the present work, the parameters of the gaussian

mixture model (�

i

, �

i

, �

i

) are estimated using the

classic Expectation-Maximization (EM) algorithm of

[6]. The EM algorithm provides a general framework

for iteratively �nding local maximum-likelihood esti-

mates of the unknown parameters. The EM method-

ology as found numerous applications which include

the cases of mixture densities and hidden Markov

models. The details of the EM algorithm in the case

of gaussian mixture models can be found in [5].

3.2 Conversion function

The following parametric form is assumed for the con-

version function F():
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The unknown parameters of the conversion function

F() are the p-dimensional vectors �

i

and the p � p

matrices �

i

, for i = 1; : : : ;m (where m is the number

of mixture components). In (3), the term between

brackets is easily recognized as the conditional ex-

pectation of y

t

given the observed value of x

t

in the

jointly gaussian case. If the gaussian components of

the mixture could be separated, the proposed conver-

sion function would thus result in a modi�cation of

the posterior mean and covariance of each component.

In practice, the components of the mixture cannot be

separated since the conditional probabilities P (C

i

jx

t

)

are not restricted to be equal to either 0 or 1. It

was thus decided to weight the gaussian conditional

expectation term mentioned above by the conditional

probability that the observed vector x

t

belongs to the

acoustic classes C

i

.

The parameters of the conversion function are ob-

tained by least squares optimization on the learning

data so as to minimize the total squared conversion

error between the converted and the target data

� =

n

X

t=1

jjy

t

�F(y

t

)jj

2

(4)

Note that since we use a cepstral parametrization for

the spectral vectors, � can also be interpreted as the

total quadratic log-spectral distortion between the

converted and the target spectra.



It can be shown that the optimal values of the pa-

rameters of the conversion function can be computed

by resolving the following set of normal equations:
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Where y is a n � p matrix that contains the target

spectral vectors ordered the following way
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contains the parameters of the conversion function.

As is usual with least-squares problems, the matrix

that need to be inverted (between parentheses in (5))

is symmetric and positive de�nite so that the nor-

mal equations can advantageously be solved using the

Cholesky decomposition. The attention of the reader

is drawn however on the fact that the dimension of

this matrix ((m + mp) � (m +mp)) becomes pretty

large as the number of components of the mixture m

increases. Simpli�ed versions of (5) can be obtained

in special cases such as when the matrices �

i

and �

i

are diagonal.

4 Voice conversion system

This conversion function was tested using the Har-

monic + Noise Model (HNM) which allows high-

quality modi�cations of speech signals [7]. The gen-

eral principle of HNM consist in decomposing the

speech signal as the sum of a purely harmonic sig-

nal and of a modulated noise [7].

The present work uses a simpli�ed version of HNM

in which the harmonic part of the signal is sup-

posed to cover the frequency range 0-4kHz (for voiced

frames) and the analysis is performed at a constant

frame rate of 10 ms. The method presented in the pre-

vious section is used in order to modify the harmonic

part of the signal. The noise part is only roughly mod-

i�ed by use of two separate time invariant �lters (one

for voiced frames and the other for unvoiced frames).

This simple transformation scheme was found to be

su�cient since the exact frequency content of the

noise part does not seem to contribute signi�cantly

to speaker individuality.

The amplitudes of the harmonics that constitute

the voiced part of speech are determined by a time-

domain weighted least-squares technique [7]. A con-

tinuous model of the spectral envelope that connects

the obtained harmonics is then estimated using the

discrete regularized cepstrum method [8]. For this

purpose, the frequencies of the harmonics are �rst

converted to a non-linear Bark frequency scale. The

spectral envelope is thus described by parameters

that are analogous to the standard Mel-Frequency

Cepstrum Coe�cients (MFCC). The discrete cep-

strum method has the advantage of providing a very

good match of the spectral envelope with the ampli-

tudes of the harmonics for reasonable values of the

order of the cepstrum [8]. In this study an order of

the cepstrum of p=20 was used and the �rst cepstral

coe�cients c(0) was omitted from the training param-

eters.

5 Results

The database used in order to train the conversion

function consists of the diphones of the french lan-

guage uttered in context by two di�erent male speak-

ers. The time alignment between the source and tar-

get signals was performed on each diphone separately

using a standard DTW technique and discarding the

unvoiced potions of the signal. The remaining time-

aligned data consisted of approximately 20 000 spec-

tral vectors which corresponds to more than 3 mn of

speech.

Figure 1 presents the relative spectral distortion

(average quadratic spectral distortion of (4) normal-

ized by the initial distortion between the two speak-

ers) measured on the training data sets. The pro-

posed method, featured on part (a) of �gure 1, is

compared with a VQ-based system on part (b). What
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Figure 1: Relative spectral distortion between the

converted and target data (stars) and the converted

and source data (circles) for di�erent sizes of the un-

derlying model. (a) conversion with the proposed

conversion function. (b) conversion with the VQ-

based system.

is striking is the way the proposed conversion scheme

steadily approaches the target data as the number

of mixture component increases: on part (a) of �g-

ure 1, the distortion between the converted and target

vectors (stars) decreases while the distortion between

the converted and source vectors (circle) gradually

increases. This is in total contrast with what is ob-

served on part (b) of �gure 1 for the VQ-based system

where the unwanted spectral distortion due to the dis-

cretization of the speaker space causes the converted

vectors to be very di�erent from both the target and

source vectors.

Moreover the reduction of the spectral distortion

(between the converted and target vectors) achieved

by the proposed system is by far superior to that of

the VQ system: the VQ-based system used with a

codebook of 512 vectors still produces a distortion

that is 17% higher than that obtained with the pro-

posed system when using a mixture of 64 components.

The iterative re�nement of the time alignment

path (the above mentioned incremental learning) was

found to produces only a marginal improvement of

the results: the conversion distortion obtained after

the second iteration of the whole learning process is

generally around 5% lower than that obtained for the

�rst iteration. This is believed to be due to the fact

that the DTW is only performed on very short seg-

ments of speech in our case.

6 Conclusion

Informal listening tests indicate that the proposed

system produces speech signals which are free of arte-

facts (burbles and other oddities) associated with the

VQ technique. The obtained conversion e�ect is im-

pressive and the general quality of the transformed

speech signal is satisfying although a mu�ing e�ect is

perceptible when the number of mixture components

is too small. Future developments of the conversion

method introduced in this paper will include its eval-

uation with other sets of speech parameters (such as

formant parameters) which may be best suited for

voice conversion.
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