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ABSTRACT

This paper presents an improved method for the estimation of a

continuous frequency-envelope when the value of this envelope is

specified only at discrete frequencies. It is based on the Galas/Rodet

approach which consists of fitting a cepstral amplitude envelope to

the specified frequency points by minimizing a frequency-domain

least-squares criterion. This paper introduces a regularization tech-

nique which increases the robustness of the estimation procedure.

Used in combination with a warped frequency-scale, the proposed

method is shown to provide an efficient model for the frequency

envelope of speech signals.

1. Introduction

This paper deals with the problem of estimating a continu-

ous frequency-envelope when the value of this envelope is

specified only at discrete frequencies. This problem arises

naturally in sinusoidal analysis/synthesis systems in which

the signal is modeled as the discrete sum of sinusoids. Such

a continuous envelope is needed for example for pitch-scale

modifications of speech signals (because the amplitudes of the

modified harmonics must be extrapolated from the knowledge

of the original harmonic amplitudes).

A number of methods for amplitude envelope estimation have

been proposed. El-Jaroudi and Makhoul suggested to fit an all-

pole transfer function to the discrete set of frequency points,

but the minimizationstage requires the use of a costly iterative

procedure [4]. McAulay and Quatieri’s technique consists of

linearly interpolating the discrete frequency points, then ap-

plying a standard cepstrum modeling method to this contin-

uous interpolated envelope [9]. However, the method yields

accurate envelopes only when a sufficient number of cepstral

coefficients are used. Galas and Rodet proposed to estimate

directly the cepstral coefficients through the minimization of

a frequency-domain least-squares criterion [5]. As will be

shown below, the method proves very efficient but is plagued

with ill-conditioning problems.

The advantages of the cepstral coefficients representation [10]

are numerous: it was found to provide a perceptually-realistic

distance measure for assessing the similarity of sound en-

velopes, making it a natural candicate for speech/speaker

recognition problems; it usually provides smooth envelopes

(by contrast with autoregressive envelope modeling), which

is a desirable feature in the context of speech synthesis.

The method proposed in this contribution is based on the

Galas/Rodet approach, but makes use of a regularization tech-

nique to increase the robustness of the estimation procedure,

providing for the use of warped frequency scales.

2. Basic discrete cepstrum

2.1. Description

In the following, we will assume that the amplitude envelope

is known at L discrete normalized frequencies f
k

. We will

denote a
k

the amplitude envelope measured at frequency f
k

.

A typical case is the analysis of quasi-periodic signals such as

speech or music, in which the frequenciesf
k

are the harmonics

of the fundamental frequency f
1

and the harmonic amplitudes

are determined by a Fourier analysis [1] or a least-squares

minimization [2, 3].

The log-amplitude envelopeA
c

(f) in dB will be described by

the so called ‘real cepstrum parameters’ c
i

and take the form

A
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As is well known, this expression is consistent with the defi-

nition of the cepstrum as the inverse Fourier transform of the

logarithm of the modulus of the signal’s Fourier transform. In

the following we will consider that the order p of the cepstrum

is known a priori.

The problem is now to determine the set of cepstrum coeffi-

cients c
i

such that the log-amplitude envelope A
c

(f) in dB

evaluated at frequencies f
k

is maximally close to the desired

amplitudes a
k

. This can be expressed by a weighted least-

squares criterion which takes the simple form
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in which w

k

are weights that can be used to obtain a better

fit at certain discrete frequencies [4]. This criterion can be

expressed in a matrix form as
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and c is the vector of unknown cepstrum parameters:

c = [c

0

: : : c

p

]

T

and W is a diagonal matrix with diagonal elements

[w

1

; : : : ; w

L

]. The least-squares solution is easily found to

be

c = (M

T

WM )

�1

M

T

Wa (4)

i.e., the cepstrum coefficients are obtained by a simple matrix

inversion (provided p < L).

2.2. Problems associated with the standard

method

When used as described above, the standard discrete cepstrum

method is known to yield meaningless results because the

matrix M

T

WM is frequently poorly conditioned [7]. This

means that non-significant perturbations of the data (f
k

or

a

k

) such as machine rounding errors can induce very large

variations of the estimated cepstrum coefficients and of the

log-amplitude envelope A
c

(f). Fig. 1 presents such a case:

the frequency points (the circles in the figure) correspond to

the amplitudes of the harmonics of a voiced speech signal.

The resulting amplitude envelope obviously lacks smooth-

ness and even takes abnormally high and low values in the

high frequency range. It is also observed that the envelope

tends to have important oscillations in the region where the

amplitude differences between successive points are large. In

this case, the conditionnumber of matrixMT

WM was found

to be of the order of 105. In practice, such problems occur fre-

quently, especially 1) when there are broad frequency regions

in which no frequency point is specified, 2) when some fre-

quency points are closely spaced in frequency but very differ-

ent in magnitude, or 3) when the number cepstral coefficients

approaches the number of frequency points. In addition, the

standard method requires the number of frequency points to

be larger than the number of cepstral coefficients (otherwise,

matrixMT

WM is singular), which can be a problem in prac-

tice as the the number of frequency points is usually related

to the pitch of the signal.

3. Regularized discrete cepstrum

To overcome the problems associated with the standard dis-

crete cepstrum method, Galas and Rodet [5] suggested to in-

crease the numberL of frequency points by replacing the orig-

inal f
k

by clusters of neighboring points. In many cases, this

technique yields satisfying results, at the price of an increased
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Figure 1: Log-amplitude envelope estimated by the direct

minimization of the least-squares criterion (with an identity

weighting matrix W ) for a cepstrum of order p = 27. The

circles show the specified frequency points.

numerical complexity. However, this technique breaks down

in the case 1) described in the preceding section. Moreover,

the resulting envelope depends significantly on the choice and

number of points in the clusters, as well as other parameters

(weights etc...).

By contrast, the method proposed in this this paper is based on

a well-known regularization technique which consists of im-

posing additional constraints on the log-amplitude envelope.

The idea consists in seeking an envelope which, in addition to

minimizing the least-squares criterion Eq. (2), is also smooth,

in a sense that will be precized below. Following [8], the

least-squares criterion is modified as follows:
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where R[A

c

(f)] is a penalty functional: R is small if the

envelope is smooth, and large in the other case. � is the reg-

ularization parameter which controls the relative importance

of the smoothness constraint in the criterion to be minimized.

As indicated by Eq. (5), the new criterion favors envelopes

that are close to the specified frequency points (first term in

the right member of Eq. (5)) while exhibiting some degree of

smoothness (second term in the right member of Eq. (5)).

A possible smoothness criterion is

R[A

c

(f)] =

Z

1=2

�1=2

�

d
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A
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which is null when A

c

(f) is a constant. Fortunately, this

smoothness criterion can be expressed as a quadratic form of

the cepstral coefficients: inserting Eq. (1) in Eq. (6) and using
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Figure 2: Log-amplitude envelope estimated by the regu-

larized least-squares procedure (with an identity weighting

matrix) for a cepstrum of order p = 27, with � = 5e� 4. The

circles show the specified frequency points. Arrows indicate

over-oscillations.

straightforward manipulations, one finds that

R[A

c

(f)] = c

T

Rc (7)

where R is a diagonal matrix whose diagonal elements are

8�

2
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]. Finally, the solution to the modified

criterion Eq. (5) is given by
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Fig. 2 displays the results of the regularized technique for the

same signal as in Fig. 1. The problem visible in the high fre-

quency range in the standard method has disappeared. Closer

inspection reveals that unnecessary oscillations (indicated by

the arrows in Fig. 1) have also been removed, and that the en-

velope fit at some of the specified frequency points is slightly

worse than in the standard method. In this case, the condition

number of matrix
�

M

T

WM + �R

�

was found to be about

60. In practice, values of the regularization parameter � of the

order of 10�4 make it possible to eliminate problems associ-

ated with ill-conditioning, while maintaining a good envelope

fit.

4. Warped frequency scale

It is common practice, in many cases, to use a warped (rather

than linear) frequency axis. Examples include speech cod-

ing [9], speech recognition [10] or filter design [11]. The idea

consists of enlarging the low-frequency region relative to the

upper frequency range. Standard warped scales include the

logarithmic scale and the Bark scale [12]. In the following,

we will denote by f ! f

0

= G(f) the frequency warping

function. The normalized warped frequency lies in the range

0 < f

0

< 0:5.
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Figure 3: Estimated log-amplitude envelope with a Bark fre-

quency scale; (a) with the regularized least-squares procedure

(� = 5e� 4); (b) with the direct least-squares minimization.

The cepstrum order p is set to 20 and an identity weighting

matrix is used in both cases.

Frequency warping in the discrete cepstrum method has been

proposed by Galas and Rodet [6] under the name ‘discrete

MFCC’. The modification of the algorithm is quite straight-

forward: In the expression of matrix M , the frequencies f
k

are simply replaced byG(f

k

). Unfortunately, when frequency

warping is used in the standard discrete cepstrum method, ill-

conditioning almost systematically occurs, as exemplified by

Fig. 3, bottom curve, in the case of a Bark frequency scale.

By contrast, the regularized method performs as well with

warped or linear frequency scales (Fig. 3, top curve).

For speech processing, it was found in practice that using a

warped frequency scale to improve the fit in the low-frequency

range is by far more efficient than using a weighting matrix

W . This is especially true when the frequency points are close

to each other, for example in the case of low-pitched signals,

because rapid variations of the log-amplitude envelope cannot

be obtained when few cepstral coefficients are used, whatever

the weighting function. Rather than increasing the number

of cepstral coefficients, the frequency points can be spread

further apart in a given frequency range, thus facilitating the

fit in that area. This is clearly seen in the upper part of Fig. 3:

the fit is extremely good in the lower frequency range, but

becomes looser as frequency increases and frequency points

get closer to one another.

Fig. 4 presents the comparison of results obtained by the reg-

ularized discrete cepstrum method for a linear and a Bark

frequency scale. Approximately 20s of voiced speech sig-

nal were processed, extracted from the voice of a male

speaker with a low fundamental frequency (between 95Hz

and 100Hz). The pitch was found in a first step, then used to
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Figure 4: Standard deviation of the modeling error (in dB) as

a function of the harmonic number; circles correspond to the

use of a linear frequency scale; stars correspond to the use of

a Bark frequency scale.

estimate the harmonic amplitudes every 10ms, yielding 2000

sets of about 40 frequency points each (the speech was sam-

pled at 8kHz). Each set of frequency points was modeled

by use of the regularized discrete cepstrum method, using 17

cepstral coefficients, for a linear then a Bark frequency scale.

For each harmonic, the modeling error was calculated as

E

k

= 20 log

10

a

k

� A

c

(f

k

)

and its standard deviation across all 2000 analyses is plotted

in Fig. 4 as a function of the harmonic rank k. No weighting

was used. When the linear frequency scale is used, (circles in

Fig. 4) the standard deviation of the modeling error is nearly

the same for all harmonics, lying between 3 and 4 dB. As

expected, when the Bark frequency scale is used, the fit is

better in the low-frequency area and slightly worse in the

high-frequency area. In both cases, even though the cepstrum

order is relatively small (16), the modeling error is reasonably

low.

To check the accuracy of the discrete spectrum technique, the

modeled amplitudes A
c

(f

k

) were used in a sinusoidal syn-

thesis system (the HNM synthesis system [3]) in place of

the original amplitudes 20 log
10

a

k

. The experiment demon-

strated that a very good low-frequency fit is necessary to

preserve the voice presence. The voice synthesized using the

amplitudes obtained by the linear frequency-scale analysis

was still of very good quality but slightly differed from the

original voice in its ‘presence’ quality. The voice synthesized

using the amplitudes obtained by the Bark frequency-scale

analysis was indistinguishable from the original voice.

5. Conclusion

The Bark frequency-scale, regularized cepstrum method has

been used successfully for speech analysis/synthesis in the

context of the HNM (Harmonic plus Noise Model) system.

It was found to be much more robust for pitch-scale modi-

fications than either autoregressive, piecewise linear, or the

standard discrete cepstrum envelope modeling. This method

is also currently used in a voice-conversion system (a system

used to transform the voice of a given speaker into that of

another one) [13]. The method could also prove useful in the

context of speech/speaker recognition, as well as for coding

purposes.
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