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ABSTRACT

While much used in practice, latent variable models raise challenging estimation problems related
with the intractability of their likelihoods. Monte Carlo Maximum Likelihood (MCML) is a
simulation-based approach to likelihood approximation that has been proposed for complex
latent variable models for which deterministic optimization procedures such as the Expectation-
Maximization approach are not applicable. It is based on an importance sampling identity for
the likelihood ratio, where the importance function is the complete model density at a given
parameter value ¢. This paper studies the asymptotic performance of the MCML method (in
the number of observations n) against the choice of ¢ and of the number of simulations s,, used
in the importance sampling approximation. We provide sufficient conditions for the MCML
estimator to converge to the true value of the parameter with n. Our results imply in particular
that the initialization parameter ¢ must be a \/n-consistent estimate. Otherwise, the number of
simulations necessary to attain convergence increases exponentially fast with the sample size.
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1 Introduction

Monte Carlo Maximum Likelihood (MCML hereafter), as introduced by Geyer and Thomp-
son (1992), is a widely accepted method for maximum likelihood estimation in cases where
direct computation and/or maximization of the likelihood is intractable. The method can
be used for quite general models but is particularly relevant for latent variable models,
possibly with unknown normalizing constants (see Geyer, 1996, Sandmann and Koopman,
1998, Thompson, 1994). The method is based on an importance sampling identity that
represents the (observed) likelihood ratio ¢, (y1.n;0)/gn(Y1.n; ©) as the expectation of the
complete likelihood ratio
fn(}’m, Zl:n;e) ‘ ) :|

E
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for an arbitrary value of the parameter ¢ (where y;., denotes the sample and Z;., the
corresponding latent variables). The replacement of the expected ratio by a Monte Carlo
average, where s, realizations of Zi.,, are simulated conditionally on y;.,, and the pa-
rameter value ¢, then provides a simulated approximation to the (observed) likelihood
ratio.

Note that the terminology used to describe some related methods is not yet unified:
the “Simulated Likelihood Ratio” of Billio et al. (1998) is equivalent to the MCML
method, while the “Simulated Maximum Likelihood” approach of Danielson and Richard
(1993) is distinct. The “Simulated Maximum Likelihood Estimator” considered by Lee
(1995) is a variation of MCML with improved convergence properties, but is more limited
in scope and more computationally intensive. For a more complete survey of simulation
based approaches, see Gouriéroux and Monfort (1993). As indicated above, MCML is a
special case of importance sampling ideas (see Geyer, 1996) which is particularly relevant
in applications where the sampling density is not chosen from the family of conditional
densities associated with the model, as in Sandmann and Koopman (1998).

Geyer (1996) argues that the efficiency of MCML stems from its simplicity, given that
the unknown likelihood (ratio) is first approximated using a single round of simulations
and the approximation is then maximized via a standard maximization tool. Indeed, when
compared with other generally applicable simulation based approaches to maximum likeli-
hood estimation, like the Stochastic Approximation approach of Younes (1988), the Monte
Carlo EM of Wei and Tanner (1990), the Stochastic EM of Celeux and Diebolt (1985), or
the Stochastic Approximation EM of Lavielle, Delyon and Moulines (1999), a strong in-
centive for using MCML is that conditional simulations are run only once and for a single
fized value of . Hence, the maximization and the simulation steps are not nested, unlike
the algorithms above. In Geyer’s (1996) terminology, this classifies MCML as a stochastic
approzimation technique, as opposed to these stochastic optimization techniques. There
is however clear empirical evidence that the choice of ¢ has a strong influence on the
behavior of MCML (see Geyer, 1996, or Billio et al, 1996). While the convergence to the
maximum likelihood estimator as s, goes to infinity clearly holds for a fixed n, as shown
by Geyer (1996) and recalled in Section 2, a deeper and thus asymptotic examination of
the dependence of the method, and of the convergence of the MCML estimator, on the
parameters ¢ and s, is thus most timely.

After a brief description of the method in Section 2, a simple latent variable example
is discussed in Section 3. This example is truly an illustration, rather than a represen-
tative statistical application of the method, since it corresponds to a trivial case where
the maximum likelihood estimate is known analytically. For this example, the asymptotic




variance of the estimates is found to be extremely sensitive to the parameter value ¢ used
for simulating the unobserved data. This sensitivity is basically exponential in the sample
size n, with larger data sets requiring increasingly larger Monte Carlo simulations for the
method to actually converge. It is then shown in Section 4 that this seemingly counterin-
tuitive behavior is quite representative of what happens in a large class of latent variable
models: the number of simulations s, has to increase exponentially fast with n for the
MCML estimator to be consistent and asymptotically efficient. In Section 5, we attain
a more positive result in the sense that the asymptotic covariance matrix of the MCML
estimate is bounded (in n) when the initialization parameter ¢, is a y/n-consistent esti-
mate of the true parameter. In this case, s, can grow at any rate and even be constant,
and the MCML algorithm will still be consistent. The overall conclusion of this paper is
therefore that the MCML method should only be used in settings where a preliminary
\/n-consistent estimate of # is available. A natural candidate is a noninformative Bayes
estimate, given that the MCML algorithm can be complemented by a parameter simu-
lation stage to provide a Gibbs sampler for the approximation of Bayes estimates, as in
Billio et al. (1998).

For simplicity’s sake, we focus on models for which the probability distribution of the
complete data is known exactly (that is, including the normalizing constant) and assume
that exact independent sampling from the conditional distribution of the latent variable
is feasible (which is to say that Gibbs sampling applies for this component). Moreover,
the results of Sections 4 and 5 are derived under the more restrictive hypothesis that the
random variables from the complete model (i.e, the actual observations and the latent
variables) are mutually independent. This class of models includes in particular mixture
models. Similar results do hold for more general latent variable models and notably for
hidden Markov models (where the latent variables are assumed to be Markovian, as in
Robert and Titterington, 1998) under the appropriate extensions of technical conditions.

2 Conditional convergence to the maximum likeli-
hood estimate

We first consider the convergence of the MCML estimates to the maximum likelihood
estimate as the number of simulations of the latent data increases. Following a remark of
Geyer (1994), this type of convergence is referred to as “conditional convergence”. In fact,
the properties of the MCML estimates are very different in this setting from those in the
framework of Sections 4 and 5, when the number n of available observations increases, the
number s, of simulations being then a function of n. Proofs for this section are omitted
since Theorems 1 and 2 are basically restatements of Theorems 4 and 7 of Geyer (1994).

2.1 The MCML Algorithm

We begin with a brief description of the method and of the associated notations. For
a more complete account of MCML, including its application to unnormalized density
functions, see Geyer (1994, 1996).

Let yi., = (y1,- .. ,yn) denote the observation and Z., = (Z1, ..., Z,) the associated
vector of latent variables. The likelihood function is then

gn(y1:n; 9) é /fn(Yl:na Z1.p, g)ﬂn(dzlzn)a



where the complete data density f,,(¥1.n, Z1.n; @) belongs to a parametric family of positive
functions, normalized with respect to some dominating measure p,,, with parameter €
© C R?. The conditional density of the latent variables is denoted by

In(yimzinif) e In(Y1:n;0) >0,

. e h A gn(¥1:n30)
Pr(Z1:m|Y1:m; 0) { 0 otherwise,

with respect to the appropriate dominating measure (see Billio et al., 1998, for a descrip-
tion of the conditioning issues and of the dominating measures) and Py(-|y;.,) stands for
the associated probability distribution. Furthermore, for a measurable function ¢ (y 1., Z1:),
we denote by

E0 [w(ytn; Zl:n)|y1:n] é /w(}’m, Zl:n)pn(zl:n|y1:n; e)un(dzlzn)a

the conditional expectation under parameter value 6, and similarly use Vary[-|yi.,] for
the conditional variance.

MCML is based on the fact that the observed likelihood ratio may be expressed as the
conditional expectation of the complete data likelihood ratio (see Geyer, 1994):

n ne) fn(y1:n Zl:n'e)
lngég(yl, = ’ , an;ny;n;QOMndZ:n, 1
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where ¢ is any arbitrary point in the parameter space O, as can be seen by a standard
importance sampling argument. The method builds on this identity by deriving a Monte
Carlo approximation of the likelihood ratio [, (),

7. 1 - fn(YI:na Z]f ,9)
5,(0) = - i 2
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where the (Z¥ )’s (k = 1,...,s) are s simulated replications of the complete latent data
vector, distributed according to the conditional distribution p,(:|y1..; ©), where @ is the
same fixed arbitrary point as in (1). The Monte Carlo maximum likelihood (MCML)
estimate éfpn is then defined as the maximizer of (2) with respect to 6. One of the
advantages of the method is that (2) can be readily adapted to the case where the complete
data probability density is only known up to a normalizing constant as in Geyer (1994).
For simplicity’s sake, we however assume here that the normalizing constant is also known.

Note that we focus on the case where the Z¥ ’s are independent (in k) generations from
Pn(Z1:0|Y1:m; ). We are thus omitting the natural extension to Markov Chain Monte Carlo
simulations. This is an important issue in practice since exact independent simulation
is not feasible in many cases. This extension simply requires additional assumptions on
the mixing rate of the chain associated with Z¥  so that the rates of convergence are
preserved. It will not be considered any further in this paper for simplicity’s sake.

2.2 Conditional convergence results

We first recall some convergence results for fixed sample sizes.
Theorem 1 Let ¢ be an arbitrary point in © and suppose that

(a) © is compact with a nonempty interior,
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(b) fu(¥1ms 2103 0) ) fr(Y1ims Z1m; @) @S iy almost everywhere continuous with respect to
0 on O,

n :n!z 'n;g
(©) By [subpeo { 5t} yia] < oo
(d) lyn(0) has a unique mazimum on ©, B, which belongs to the interior of ©.

Then, R X
lim 6% =4, w. p. 1

n
s—o0 P

For a proof of this theorem, see Geyer (1994, Theorem 4), with weaker conditions.
Note that condition (c) is not innocuous, as it guarantees that the variance of 67 is
finite, which does not always hold, as pointed out by Billio et al. (1998).

Theorem 2 (Geyer, 1994 - Th. 7) Suppose that

(a) The mazimum likelihood estimate 0, is unique and belongs to the interior of O,

(b) éfpn converges in probability to 0,

(©) gn(y1:0:0) = [ [u(Y1ns Z1n; O) i (dZ1.) can be differentiated twice under the integral

sign w.r.t. 6,

(d) 51/QVQ IOg Z(Sp’n(én) # N(O; Vnp,n(ylzn));

500
(e) The observed information matriz Dy (Y1) = —V3108 gn(Y1m: 0n) is positive definite,
(f) Vilogls , (0) is bounded in probability uniformly in a neighborhood of 0,.
Then
V5030 = 00) 5 N(O,Tpn(yrn), (3)

w,n
where
Fap,n(ytn) = (Dnilvap,nDnil) (y1:n)-

In the setup of this paper (i.e., with exact independent simulations of the latent
variables), the term V,,,,(y1.,) can be readily computed as

V9fn(y1:n; Zl:n; én) ngn(ylzn; Zl:n; én)
fn(Yl:m Zl:n; 90) fn(YI:n; Zl:n; 90)

V%n(yl:n) = Etp yl:n] (lw,n(én))_Qv

using assumptions (b) and (¢) of Theorem 2. Then, by definition of 6,,

~ ~
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so that
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pn(Zln |y1n7 én)
pn(Zln |y1n7 gp)

VG logpn(zln|y1na én)vg logpn(zln|y1na én)

Yin| - (4

Note that D,,(y1.,) is the observed Fisher information matrix; V,, ,(y1.,) closely resembles
the Fisher information matrix associated with the conditional distribution Py (-|y1.s),

save for the presence of the conditional likelihood ratio py,(2z1.n|y1m; én)/pn(z1:n|y1:n; ©).
Anticipating the results of Section 4, the asymptotic behavior of the method is mainly
governed by the fact that for most models of interest the conditional likelihood ratio
pn(zlm|y1m;én)/pn(zlm|y1m; ¢) has an exponentially diverging behavior as n increases.
Before investigating this general behavior of V,,,(y1.n,) in Section 4, we first consider an
illustrative example.

3 A Simple illustration

3.1 Asymptotic results

Assume that the complete data consist of observed scalar variables Y;, for i = 1,... ,n
supplemented by corresponding latent variables Z; (also scalar) such that the complete
data distribution is bivariate normal

(2)==((5)-( %) g

i.e. the observed and latent variables are jointly normal. Moreover, the complete data
model is assumed to be i.i.d. and the mean of the observation 6 is the only parameter of
interest, whereas the correlation p is known and fixed.

Of course, in this particular example, the (observed) maximum likelihood estimate
of 0 is 6, = (1/n) 3.7, yi. Note however that the (complete) maximum likelihood 6, —
(p/n) i, 2 usually differs from the observed maximum likelihood estimate (at least if
p # 0), so that this example, although extremely simplified, is nontrivial.

The asymptotic covariance terms as defined in Theorem 2 are easily evaluated as

Dn(Yl:n) =n, (6)
Vw,n(Y1:n) — (171_/)/)2) 1+ 1n_pp2 (én - 90)2] exp <1n_/)p2 (én - 90)2) . (7)

For this particular model, V,, ,(¥1.,) only depends upon the observed data through 0, the
maximum likelihood estimate. As n increases, V,,,(y1.,) diverges exponentially fast with
an exponential rate which is proportional to the squared difference between the initial
guess of the parameter value, ¢, and the actual maximum likelihood estimate én, unless
@ also varies with n.



3.2 Simulation results

In Theorem 2, terms that decrease at a rate faster than s '/? are ignored. For finite

sample sizes however, these terms may play an important role in the performance of the
method. We therefore conducted a series of numerical simulations to illustrate the finite
sample behavior of MCML.

The MCML is straightforward in this particular example because the conditional dis-
tribution (under which sampling is done) factorizes through a sufficient statistic with
known distribution: the Monte Carlo approximation to the likelihood ratio I, ,,(6) is then

~ 1< n 0 + _ N
lap,n(Yl:n; 0) = ; Zexp {_1 _ p2 (9 - 90) (T(p + ka - 071) } ) (8)
=1

with Z% = (1/n) Y, ZF, where (Z,,) denotes the kth simulation of the complete vector
of latent variables, and

75~ N (plBs = 9). (1= ) /) (9)

[Figure 1 about here.]

Figure 1 displays the dispersion of the algorithm estimates as a function of the number
of simulations (from one to one million, on a log scale) for different sample sizes. The

~

quantity displayed is \/E(éj,n —0,), that is the output of the algorithm recentered around
the MLE 6, and scaled by the asymptotic normalizing factor s~/2. Each boxplot was
obtained from 500 independent runs of the algorithm, using fixed data sets (one for each
size from 15 to 120) and starting the algorithm from a fixed distance from the MLE
(p — 6, = —0.1). The black box on the right of each figure corresponds to the quartiles
computed from the asymptotic variance I'y, ,(y1.,) assuming normality.

Two interesting features can be observed from Figure 1. The first is that, when
comparing the four plots, for a given number of simulations, the normalized estimates
\/E(éfpn — én) get more and more dispersed as the sample size increases, as expected in
the form of T', ,,(y1.n). The normal quartiles, based on the value of T, ,,(y1.n), displayed on
the right of each plot show that the observed dispersion of the estimates for a large number
of simulations is generally in accordance with the Central Limit Theorem dispersion of
Section 2, although the asymptotic spread is clearly not yet achieved after 10° simulations
for the larger data set (120 observations).

[Figure 2 about here.]

The second noteworthy feature is that each plot, when considered from left to right,
shows three different stages. For small numbers of simulations, the normalized dispersion
of the estimates is very small. For moderate numbers of simulations, the dispersion
increases and the distribution of the normalized estimates is distinctively positively skewed
with a heavy positive tail. Finally, for large numbers of simulations the distribution of the
normalized estimates is more symmetric and compatible with the Central Limit Theorem.
Moreover, the transition between these three stages occurs for numbers of simulations
which increase with the sample size. This is almost certainly due to the fact that the
higher order terms which are neglected when obtaining the CLT of Theorem 2 also exhibit
exponential dependence on the sample size. As a consequence, for moderate numbers of



simulations (several hundred to several thousand) and large sample sizes (one hundred
observations or more), the asymptotic stage (third one) is not yet reached and the bias
term is prevalent. This last point is particularly clear when looking at the dispersion of
the unscaled recentered estimates (éj’n —0,) displayed on Figure 2 (which corresponds to
the larger data set in Figure 1). For moderate numbers of simulations, the predominant
effect is thus an important bias of the estimates towards ¢, as also observed in Billio et
al. (1998) on other models. In the extreme case where a single simulation is used, it is
easy to check that é}pn = 0, — pZy, where Z, is distributed from (9), so the bias is equal
to

E(é;,n - éﬂ) = pQ(SO - én)a

which gives —0.081 in the case of Figs. 1-2. The bias then decreases slowly with the
number of simulations as it still amounts to —0.017 after 1000 iterations.

3.3 Comparison with the Stochastic EM approach

For comparison purpose, we consider the application of the Stochastic Expectation-
Maximization (or SEM) approach to the same model. In the SEM approach introduced
by Celeux and Diebolt (1985), each iteration consists of maximizing the complete data
likelihood where the missing data is imputed stochastically by drawing the latent variables
according to their conditional distribution given the current estimate of the parameters.
The SEM iterates form a Markovian sequence which converges under general conditions
to a stationary distribution (Diebolt and Ip, 1996). Precise characterization of this limit
law is a difficult issue (Ip, 1994), except in some particular cases such as the simple ex-
ample considered in this section (see below). Recent results by Nielsen (2000) however
suggest that although the stationary distribution of the SEM iterations cannot in general
be directly related to the maximum likelihood estimate, it nonetheless provides a mean
to construct efficient parameter estimators.

As already noted, the complete data maximum likelihood estimation of 6 is given by
0, — pZ where Z is the normalized conditional mean of the unobserved component which
is distributed according to (9) (¢ being our current guess of the parameter). Denoting
the sequence of SEM iterates by (82)ss1, it is then easily checked that

05t — 0, = p* (6 — 6,) + Uyss,
where (Us)s>2 is and iid sequence of zero mean Gaussian random variables with variance
p*(1 — p*)/n; That is, the sequence of SEM iterates forms and AR 1 Gaussian process
with stationary distribution
2

N (én, m> . (10)

As suggested by Diebolt and Ip (1996), the ergodic average of (6%);<,<, yields a rate /s
estimate of 6, with asymptotic variance p?/(n(1 — p?)). The above results are conditional
upon a particular outcome of the observations Yi.,. Nielsen (2000) however shows that
if #° denotes the limiting variable distributed according to the stationary distribution of
SEM for a given value of n, HNTC;" satisfies an unconditional central limit result, which may
be written (in our example)

\/ﬁ(égo—e*)LN<o,1+ v ) (11)

1+ p?




For more general models, it does not hold true that the ergodic average of the SEM
iterates converges to the MLE for a fixed value of n. However, the dependence on n
observed both in (10) and (11) suggests that it is possible to build efficient parameter
estimators from the SEM approach with a reasonable number of simulations — see (Nielsen,
2000) for details. This behavior is of course in sharp contrast with that of the conditional
asymptotic variance of the MCML estimate computed in (6)-(7) which diverges as n
increases.

4 Asymptotic properties of MCML under fixed ini-
tialization

In this section, we show that the behavior observed for the simple example above is
characteristic of a large class of models where the method applies. For simplicity’s sake,
we only consider i.i.d. complete data models, i.e. such that

fo(Yim: 2103 0) = Hf(yi, 23 0).
i=1

Insight into the following results stems from rewriting (2) as

[;’n(g) S0 F i pn((zlf:nb’l:n; 9)] _ (12)

S 1 Pn Zlf;n|y1:n; 90)

In fact, MCML is equivalent to approximating the constant 1 by importance sampling with
Pn(Z1:0|Y1:m; 0) as target density and p,(21.,|y1.m; @) as importance (or proposal) density.
But, for identifiable regular models, the supports of these two densities tend to separate as
n goes to infinity when ¢ # 6 (see (9) for the example of Section 3). Thus the importance
weights in (12) degenerate, becoming either very small or very large depending on the
value of 6, which is a well-known cause of instability for the importance sampling method
(Geweke, 1988).

In contrast with the results of Section 2, the results in this section bear on the conver-
gence to the actual value 6, of the parameter when both n and the number of simulations
s, increase. Note that, since we are primarily interested in the growth rate of s, with
n, the former is explicitly written as a function of the latter. For technical simplicity
and coherence with Section 5 (where the initialization of MCML varies with n) we also
consider that the Z, ;.,’s are simulated independently for each sample size n, hence the
notation Zﬁ’i where 1 < i < n denotes the observation index, 1 < k < s,, the simulation
index and n refers to the sample size. In a sequential setting, this assumption would be
quite subefficient, but this is not the problem here, where we are rather focusing on the
asymptotic properties of the MCML estimator.

In addition to the notations Py(-|Y1.,) and Ey[-|Y1.,] defined in Section 2, we use
P(-) and E[] to denote respectively the distribution and expectation of functions of
{Y, }nen, under the true value 6, of the parameter. The switch from lower case to upper
case notation for the observations Y, is meant to stress the fact that from now on the
observations themselves will be considered as random rather than being fixed.

The first item of this section is Theorem 3 which describes the asymptotic behavior of
the limiting covariance I'y, ,,(Y.,) featured in Theorem 2 (conditional CLT). The obtained
asymptotic form shows that the number s, of simulations should grow exponentially fast



with n in order to guarantee that I'y,,(Y;.,,) remains bounded. In this case, MCML
estimation is indeed consistent (Theorem 4) and asymptotically efficient (Theorem 5) if s,
has a fast enough exponential growth rate. In practice, the perspective of performing such
large numbers of simulations is obviously unrealistic. As shown in Section 5, a solution to

this shortcoming relies on initializing the MCML algorithm from a \/n-consistent estimate
of 6.

4.1 Asymptotic conditional covariance

In the following, we need further regularity conditions in addition to those of Theorems
1-2. For technical simplicity, we mostly use basic Wald-type regularity conditions. Denote

t(y; 0, 0) = /%u(d@,
Ay ( |y7 )

p(zly; ¢, 0) = t(y, 0) p(zly; @)

Aly;0.0) 2 / [Volog p(zly: 0) VT log p(zly; 0)] pzly: . O)uldz)

b(y;0.0) = | Vologp(zly; 0)p(zly; ¢, 0)p(dz) . (13)

We assume that

(H1) The functions

(y;0) = Vilogg(y;0),
(y;0) = logt(y; ,0)),
o (y;0) = A(y; ,0),
(y;0) —
(y:0) —

y; b(y, ©,0),
y; b(y; ¢, 0)(b(y; ¢, 0))7,

satisfy Wald-type conditions in 6,.

We moreover assume that the model under consideration is regular and in particular that
(H2) I,(0) & —E(V2logg(Y,0)) is positive definite at 0 = 6,.
Theorem 3 Under the hypotheses of Theorems 1-2, (H1) and (H2),

Lpn(Yin) =exp(nd(p,b.) + o(n)) [Ig(ﬂ*)le(cp, 0.)1,(0.) " + o(1)]  w.p.1, (14)
where

5(p,0,) = E(logt(Y;p,0,)) >0, (15)

1,(0.) & —E (Vjlogg(Y;6.)) , (16)
and

B(p,0.) £ E[b(Y;9,0.)] E b(Y;0,0.)]".
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If E[b(Y;¢,0.)] =0, then

Lo (Yim) > exp(nd(e, 0.) + o(n)) %19(9*)—10(¢,9*)1g(9*)—1 wp.1,

where

Clp,0.) = E[A(Y;0,0.) —b(Y;0,0.)b(Y;0,0,)"] > 0.

Using Jensen’s inequality, the exponential rate d(¢, 6,) introduced in Theorem 3 can
be bounded from below by

6(p, 0.) > E[K, (Y5 0,0.)],

where

Ko(via,5) 2 [0 BEC ey puta),

is the Kullback divergence between the conditional distributions at « and . Thus, except
in cases where the conditional model is non-identifiable (in the sense that there exist values
of ¢ # 6, such that K,(Y; ¢, 6,) is null a.e.), the limiting variance I, ,,(Y1.,) is dominated
by a factor which is, in the most favorable case, of order exp(d(y, 6.)n)/n. This result
implies that the number of Monte Carlo simulations must increase exponentially fast for
the variance to decrease with n in (3).

4.2 Consistency and asymptotic efficiency

In this section, we naturally extend the previous result to show that, under some ad-
ditional assumptions, the MCML procedure is (strongly) consistent when s, increases
exponentially fast with n.

Theorem 4 If the model is identifiable, under the hypotheses of Theorems 1-2, (H2),
and

(H3) (y,0) — loggl(y,0) satisfies a Wald-type condition at 0.,

(H4) The families {log g(y,0),0 € ©}, {||Vo{logg(y,8)|,0 € O}
and {||Vzlogg(y,0)|,0 € ©} are dominated by integrable functions

(H5) logp(z|y; 0) satisfies a Wald-type condition for all § € ©, where the exponent « and
the bounding function M() defined in (17) may be chosen such that

e « and M() do not depend 6,
e there exists A > 0 such that

E [log Eg(e’\M(Z’Y)|Y)] < 00,
for all 0 in ©.

Then, if s, = exp(n~y) with v > 6(p,0,) as in (15), éfp’:n converges to 6, with probability
one.

10



Theorem 5 Under the hypotheses of Theorem j and assuming that

(H6) The parametric functions

e logt(y; ¢, ),
e log [ [ p(z]y; 0)e*ME) pu(dz)],
o log [ [ p(zly; ¢, 0)eMMEY) u(dz)],

are dominated by integrable functions independent of 0,
Va0, — 0.) 5 N(0,1,(0.) ")

Note that the condition v > (¢, #.) indeed imply that \/ﬁ(é;"n — 0,) tends to zero
in probability (see appendix A.5), and thus the asymptotic efficiency of MCML simply
follows as a consequence of the standard efficiency properties of the maximum likelihood
estimator. The case where éfp’fn — 0, is exactly of order n='/2, that is when MCML is \/n-
consistent but not necessarily asymptotically efficient, is somewhat artificial (remember
that §(¢, 6,) is not known in practice) and has not been investigated.

5 Asymptotic behavior of MCML under consistent
initialization

The main message of Section 4 is that MCML, used with an arbitrary value of ¢ does not
perform well for large sample sizes because the number of simulations has to be increased
exponentially in order to counter the augmentation of the variance. However, (14) and
(15) (see also (7) for the example of Section 3) suggest that s, may be allowed to grow
much more slowly if the parameter value ¢ used in the simulations stays “close enough
to” 0, (in the sense of the Kullback divergence). Except for the trivial case where ¢ = 0,,
this requirement cannot hold when simulating from a single fixed value of ¢ as in Section
4. We thus consider in this section that a preliminary sequence ,, of parameter estimates
is available. That is, for a given sample size, we assume that the MCML algorithm is run
from an estimate ¢, rather than an arbitrary fixed value .
Our assumptions on this preliminary sequence of estimates are

(H7) The sequence {ppnen is independent of the observations {Y;,},en used for com-
puting the MCML estimates, and satisfies ¢,, — 0.,

(H8) +/n||¢n — 6. is bounded from above.

As previously, the simulations {Zﬁ,i}nemgign,lgkgsn are conditionally independent given
the sequence {¢y }nen With Z¥ ; depending only upon ¢,. An interesting extension of (HT)
would of course consist of allowing the sequence {¢, },en to depend upon the observations
(up to time index n). A closer look at the proofs in appendix A.5 however shows that
such an extension is not tractable with the technique we are using. We thus focus on the
simpler case of independent preliminary estimates.

We first show in Section 5.1 that (HT) is not sufficient and that (H8) is necessary
to guarantee that the limiting conditional covariance matrix of Theorem 2 is bounded.
We then show that the MCML algorithm initialized with ¢,, is consistent for an arbitrary
choice of s,.
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5.1 Asymptotic conditional covariance

We first provide an equivalent to Theorem 3 where the leading term is no longer expo-
nential.

Theorem 6 Under the hypotheses of Theorems 1-2, (H2), (H7), and assuming that
(H9) The functions
o (y:,0) = Vi logt(y: ¢.0),
o (y;0,0) = Aly;0,0),
o (1:0,0) = Viob(y; ¢, 0),
o (y3%,0) = by ,0)(b(y; 0, 6))",

satisfy Wald-type conditions at (¢, 0) = (0.,0.),

then

(Y1) = exp (€1 [1,(6.) + (1] &)
{0007 1,0 + 0000 [1,0)7" + 6067) (1,60 + o] (0 |

where

~

n £ \/ﬁ(on - (pn),

and

B0 2 B [ [ alogplely 0.9 10gp(e1Y5 061V 0.0(02)]

Interestingly enough, Theorem 6 indicates that the behavior of the limiting conditional
covariance matrix I'y,, ,,(Y1.,) depends only on &, = \/ﬁ(én — ¢n) as n tends to infinity.
As a consequence, the consistency of the ,’s is not sufficient to guarantee satisfactory
convergence properties for the MCML method, since ¢, must converge sufficiently fast,
that is with a rate of at least n~'/2. Indeed, (H8) together with the asymptotic normality
of én and the assumption that {¢,},en is independent of the observations imply that
(8, — ¢,) converges in distribution, and hence that T, (Y1) is an O,(1).

5.2 Consistency

The above remark implies the following result:

Theorem 7 Under the hypotheses of Theorems 1, 2 and 4, (HT),
(H10) (y, ) — logt(y; ¢, 0.) satisfies a Wald-type condition at o = 0,,

and assuming in addition that the model is identifiable, the MCMLE 95"
w.p. 1.

n converges to 0,

The proof of this theorem is similar to that of Theorem 4 in Section 4, the only
difference being between Lemma 9 and Lemma 6, where the convergence of

1 1 °n pn( n1n|Y1na *)
| -
b (13-

k—1 pn( n,l:n|Y1:n’ (Pn)

12



to 0 is a consequence of ,, converging to 6, rather than of s, diverging exponentially fast
to infinity. Note that the result of Theorem 7 holds even when s, = C', where C' is any
fixed integer. This generalizes the result observed in Section 3, where

1—p?

il _ 2\ ) 2
Opon =1 —=p )00+ p 00 +p

Un, U, ~ N(0,1),

with U, independent from én, which implies that é(lpnn is a y/n-consistent estimate of 6,
under (H7) and (HS).

More surprisingly, Theorem 7 does not rely on (H8). This counterintuitive result
follows from ¢, being a consistent estimate of 6,. However, Theorem 6 as well as the
example of Section 3 suggests that (H8) is indeed necessary when considering the rate of
convergence of éfpjl . to .. At this point, however, we cannot extend Theorem 5 when ¢,
depends on n.

6 Conclusion

We have presented results which demonstrate that the MCML method suffers from severe
drawbacks in terms of robustness to the choice of the parameter value ¢ used for simu-
lating the latent variables. The fact that the variance of the MCML estimator increases
exponentially fast with the sample size n implies that the validity of the approximation of
the likelihood function and in particular of the maximum likelihood estimate are clearly
restricted to small values of n, for given values of s,. Asymptotically the relevance of
the method can only be argued in cases where the importance value ¢ is a consistent
estimate of #,. In practice, MCML should thus be used in conjunction with another con-
sistent maximum likelihood estimation method, as suggested by Geyer (1996) and Billio
et al. (1998), like noninformative Bayes estimators. Moreover, this study does not shed
any light on the proposal of iterative MCML of Geyer (1996), where the solution of one
MCML run is used as the reference value ¢ for the next MCML run.

More generally, these results suggest that simulation based numerical optimization (or
at least stochastic approximation in numerical optimization) can hardly be carried out
without somehow restricting the range of plausible values of # as the sample size increases.
Therefore, nesting the maximization (or parameter search) stage and the latent variable
simulation stage within one another seems to some extent unavoidable for this type of
method.

Appendix

A Proofs of Section 4

Before considering Theorems 3-5, we first state two technical lemmas which are used
repeatedly in the sequel.

A.1 Wald-type condition

Definition 1 (Wald-type condition) Let ¢ : (R? x © — RY?) denote an integrable
parameterized function. ¢ satisfies a Wald-type condition at 0, if

13



o Ellp(Y;0)] < oo,
o There exist p > 0 and o > 0 such that

sup 1 (y;n) — ¥ (y; 0)]]

lIn—6]|<p |ln — 0|

< M(y) for all y, (17)

where M (y) is a positive Borel function such that E(M(Y)) < oo.

Lemma 1 Assume that 1) : (RP x © — RY) satisfies a Wald-type condition at 0 and let
{0n}n>0 denote a sequence such that lim,_,oo 0, =60 w.p.1. Then,

S T w(Vis0,) = nE{$(Y50)} +o(n) wp.1.

i=1

A.2 Conditional Borel-Cantelli Lemma

Lemma 2 Let F,, denote a family of Borel functions,

n,l:n?

+00
> P, (Fu(Z)5,, Yim) € B| Y1) < +00
n=1

implies that, w.p.1, F,(Z-5" Y 1.,) € B for sufficiently large n’s.

n,l:n?

This lemma is a simple consequence of the remarks that Z ; and Zﬁf’i, are conditionally
independent given {Y,},en whenever (n,i k) # (n',4', k"), and that ZT’f’Z. depends only
upon Y;.

A.3 Asymptotic behavior of the limiting covariance of MCML
estimates

The following result is needed in the proof of Theorem 3.
Proposition 1 Under the assumptions of Theorems 1-2 and (H1),
D, (Y1) = nl,(6,) + o(n), (18)
almost surely, where 1,(8,) is the Fisher information matriz defined by (16).
Proof. Since 0,, minimizes 9n(Y1.4;0) in a point which belongs to the interior of O,
Dp(Yim) = =V310g gn(Yim, 0n) = = > Vilogg(Vi; 0). (19)
i=1

Lemma 1 along with (H1) complete the proof. O
The proof of Theorem 3 then goes as follows:

14



Proof. (Theorem 3) The variance V,,,(Y1.,), defined in (4), can be rewritten as

V%H(Yl:n) = Ht(}/i;@a én)
=1

n R n R T
X DAY 0.) = Y b(Yii 0, 0,)b(Vis 0, 6,)
i=1 i=1

+ (Z b(Yii0,0.) (D b(Yiie,0)" | - (20)

Jj=1

~

The product [, t(Y;; ¢, 6,) can be rewritten as

exp » logt(Yi; ¢, 0,).

=1

The result of Theorem 3 is then obtained by applications of Lemma 1 for the functions
defined in (H1). In the particular case where E(b(Y;¢,0.)) = 0, the term between
brackets in (20) can be bounded from below by its first two terms which are of order n.
Finally, C'(y,0,) is easily seen to be positive since A(Y;,0,) — b(Y;,0,)b(Y;0,0,)" is
the covariance matrix of V} log p(Z|Y’; §) under the probability measure p(z|y; ¢, 0)u(dz).
U

A.4 Consistency of MCML

Denote
Qu0) £ 2 @)
and
T,(0) 2 log Qu(0). (22)

logly.n(0)
n

Assumption (H3) implies that converges w.p.1 to

L(0) £ —K,y(0,0.) + K,(0., ¢), (23)

where K (a, §) denotes the Kullback divergence between o and . For an identifiable
model, 6, is the unique minimizer of K,(6,6,). The proof of Theorem 4 thus proceeds as
follows: first, we show that 7,,(6) is bounded from above by 0 (w.p.1) uniformly in © for
sufficiently large values of n (Lemma 5), and, second, we show that T,,(6.) converges to 0
w.p.1.

Lemma 3 For any 6 in O,

lim 7,,(9) <0 w.p.1.

n— 00
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Proof.

and thus E,(Q,(0)|Y1.,) = 1. As a consequence, P,(Q,(6)/(n(logn)'*%)|Y1.,) is summable
for any ¢ > 0. Application of the conditional Borel-Cantelli Lemma then shows that
Q.(0)/n(logn)'*¢ = o(1) w.p.1 and hence that n@oTn(G) <0 w.p.1. O

The following lemma ensures that under some additional regularity conditions on
p(z|y;0), T,.() can be bounded from above by an arbitrary positive constant, uniformly
in an open neighborhood of 6.

Lemma 4 Under (H5), for all & € © and all € > 0, there exist ng. > 0 and Ny € N
such that for all n > Ny,

sup  T,(0") <e. (24)
0'€B(0.mp,c)

Proof. Let € be a strictly positive real number, and € an arbitrary point of ©. For
sufficiently small values of n, (H5) implies

. 0/)
V(z.) € R, p(zly;
(y) € R Clyi0)

for any 0’ € B(#,n), the open ball of radius n centered in #. Then,

<exp (n*M(z,y)), (25)

1 1 O p(Z) 1Y 0)
T,(0) < —log | — LA LEEA *M(ZE, V)| . 26
(0") < —log SHZE (Zk’im;%p)exp(n (Z},Y7)) (26)
Denoting by D,(,n) the term between brackets in (26),

D, (60, n)
E0(Dn(07 77) |Y1:n)

1 1 1
- log D, (68,7n) = - log + - log Eg(Dy,(0,1)|Y 1.0)- (27)

The first term in the r.h.s. of (27) can be shown to verify

e 1 Dn(07 770 6)
lim —lo ’ <0,
n—o0 N, & Eg(Dn(H, 7’]0,6) |Y1:n) -

proceeding as in the proof of Lemma 3. The second term in the r.h.s. of (27) writes

log By(Da(0, ) Y1) = -3 log Eo(expl M(Z,Yi) V),
— Blog Eaexp(n M(Z,V)) V)] + o(1).

that is, converges to 0 as n — 0. U
The proof of the following lemma is omitted since it is a direct corollary of Lemma 4
under compactness of ©.

Lemma 5 Under assumptions (H5) and (H7), lim supycqo T,(0) < 0 w.p.1.
n—o0
Lemma 6 7,(0,) — 0 w.p.1.
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Proof. In the course of proving Lemma 3, we have already seen that F,(Q,(0.)| Y1) =1,
moreover

Sn pn(zn,1n|Y1n;(P) T

1 n
< = logt(Yi; 0,0,) |, 2
< e (Z ogt(Yi; v, 0 )) (28)

=1

<
)
3
S
O
S
—
>
*
-
=
2.
A\

where () was defined in (13). For s, = exp(ny), (H1) implies that the upper bound
in (28) is summable, and hence that @,(f.) — 1 w.p.1 by application of the conditional
Borel-Cantelli Lemma. O
Proof. (Theorem 4) First note that +logl,,(#) — L(6) where L(f) is defined by (23).

Now, by definition of éfp’fn

1 S Asn 1 S
ﬁ log lnp?n(enp,n) 2 ﬁ log lnp,n(e*)a (29)

which is equivalent to

R 1 1 1 ~
L) > L(0,) — L(0.) + —logl,,(0.) — —logl,.(0.) + —logls" (6.
(625 > L(0.) ~ L(0.) + g1, (6. — log (0. + 1ol 0.
- 1 A 1 A 1 a A
+ L(03,) — - log l,n(07,) + - log l,n(07,) — - log I3, (05,). (30)
Thus,

. 1
L(Gj,"n) > L(6.) —2sup |L() — —logl,n(0)| + T,.(6.) — sup T,,(). (31)
’ ) n Ee)

Lemmas 5 and 6 then show that L(0",) —— L(6.) by application of the uniform strong

n—o0
law of large numbers. O

A.5 Asymptotic efficiency of MCML

From the proof of Lemma 6, we know that Q,(f.) — 1 w.p.1. In order to prove theorem 5
however, a much stronger version of the same result is needed:

Lemma 7 There exists a compact neighborhood K of 0, such that

sup |@Q,(0) — 1| =0 w.p.1
0eK

Proof. By continuity of 8 — d(p, ), there exists a closed ball K centered in 6, such that
for all 0 € K, 0(¢,0) < o' < 7. Let G, denote a p,-net covering K and {0;}1<j<x(g.}
the associated grid points. The grid spacing p, is set to p, = n~2/® where « is defined in
(H5). G, is set so as to minimize the number of grid points while covering K, and thus
#{G.} = p,* where d is the dimension of the parameter vector 6.

Yl:n] )

(32)

sup  |@Qn(0) —1| > ¢

P, |sup |Qn(0) — 1| > €
0eK 0€B(0;,pn)

Yl:n:| S #{gn} omgagx Pnp
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where B(0;, p,) denotes the ball of radius p, centered in 6. Applying (H5) in 6, (see the
proof of Lemma 4) yields,

Q;,j < Qn(G) < Q:,j for 0 € B(ejapn)a (33)
where
Qs 1$ ﬁfw P M2}
’ Sn k=1 i=1 p(Zn,z|Y;7 80)
and

+ IS ﬁp PaM(Zy \Y5)
L= — —_——_p@Pn n,ir i)
p

We now consider the behavior of |Q:{ ;—1]in more details (identical results are obtained
for @y, — 1))

7 [ Y] = TT [ eIV et =0,
=1

Applications of Jensen’s inequality yield,

np® 1 — :
1< B, [Q)] Vi) Sexp< > o | p(zm;ej)ewwu(dz)]), (34)
i=1

where \ is the constant defined in (H5). By application of the uniform law of large
numbers, the upper bound in (34) is equivalent to

exp (L flog B, (0| )] )

and thus converges to 1, uniformly on K, as a consequence of the choice of the grid spacing
pn and of (H5)-(H6).
Thus, for sufficiently large values of n,

PLp “Q;] - ]-| 2 6‘ Yl:n] S Pap HQ;] - Etp [Q;]‘ Yl:n” 2 el‘ Yl:n]

1
e,—gvm“go [Q:{,j‘ Yl:n] )

IN

where € is any positive real number smaller than e. Now,

i 1Y 0,00) 71 [ - o M (2
Vary [Qf ;] Yin] < B (8 ) H/p(zm;so, 0;)e’ M =YD 1y (dz), (35)
n i=1

where the function ¢ and p are as defined in (13). Proceeding as in the case of E, [Q:{’j‘ Yl:n] ,
one obtains

o . npi 1 i .
1< H/p(zm; 0, 0;)er" MY 1 (d2) < exp (Tﬁ Zlog {/p(zm‘;% 0;)eM ’mu(dz)]> ,
i=1 i=1
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and thus the rightmost term of (35) converges uniformly to 1. Hence, for n sufficiently

large,
Var, [Qf | Yin] =0 <— exp [ ( Zlogt Vi 0, 0; )]) :

From the uniform law of large numbers, + 3"  logt(Y;; ¢, 0;) converges to d(p,0;), and
thus Var, [Q) ;| Yim] = O(e077) where v >

Using analog results concerning @, ;, (32) implies that

P, {sup |Qn(0) — 1| > €
DK

Yl:n:| = O(nZd/aefn('Y*'Y,)),

which is summable as required. X X 0]
Proof. (Theorem 5) Denote €, = Vn(03r, — 0,). We will show that ¢, — 0 w.p.1, which
is sufficient to prove Theorem 5 since

V(05, = 0.) = € + V/n(0, — 0.).
Since éfo’jn is the maximizer of lAfp’:n(G),
log lA;’jn(é;’j ) > loglsn (6,).
Equivalently,

10g Qn(é;?n) - log Qn(én) 2 log l%n(én) - log l%n(éns;n)’
1 ~
> e Viloglon(tfn + (1= )i )en,  (36)

for some constant ¢, in [0, 1]. Since (y,0) — V3log g(y, 0) satisfies a Wald type condition
at 0,

1 A ~
—EVZ log Ly (tnln + (1 —1,)077,) — 1,(0.).

Because I,(f.) is positive definite, there exists M > 0 such that, for n sufficiently large,

log Qn(631,) —1og Qn(0,) > M|le,|*. (37)
The proof is completed by application of Lemma 7. 0]

B Proofs of Section 5

B.1 Asymptotic behavior of the limiting covariance

Proof. (Theorem 6) Starting from V,,,(Y.,) as given by (20), where the functions ¢, A
and b are defined in (13), repeated applications of Lemma 1 for the functions defined in
(H9) yield

[ 1105 00, 60) = exp {&] [ (V} logt(¥is6..6.) + o(1)] &0}
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> A0, 0) = nF (A(V6.,00) +o(1)],

n

DbV, 800V 0.6, =0 { B [b(¥10.,0.b(1:6.,0.)"] +0(1)}

[Z b(Yi; ¢, én)] [Z b(Yj5 9, 0n)

n{E [Vob(Y;0.,0.)] + o(1)} & {E [Vob(Y56.,0.)] +o(1)} .

Theorem 6 follows from
2 .
E [V logt(Y;; 0.0,
EA(Y;0.,0.
B [b(56.,0.0(56..0.)"
E[V,b(Y;0.,0.

~—

| = 21,000,
] = Ip(e*)a

~—

—_
I
o

~—"

] = L(0.)

B.2 Consistency

The proofs for this section closely follow those of Section A.4 where the notation intro-
duced in (22) now stands for

1 ~
T.(0) = — (log l;’;’n(ﬁ) —logl,, .(8)) .
n

Lemmas 5 and 6 of Section A.4 are now to be replaced respectively by Lemmas 8 and 9.
Only the proof of Lemma 9 is given because it significantly differs from that of Lemma 6.

Lemma 8 Under (H7), lim supyce T (6) < 0 w.p.1.
n—oo

Lemma 9 Under (H7) and (H10), T,(6.) — 0 w.p.1.

Proof. Denoting

R 2 ﬁ pn(Zﬁ,1:n|Y1:n§ Spn) E pn(ZfL,lln|Y12n; 9071)
" be1 pn(ZZ,1:n|Y1:n; 0.) o pn(Z2,1:n|Y1:n3 0.)

one obtains

Yl:n)) )

Y) . (38)

1 p(Z1Yi; on
T(0)>——10g S"——ZlOngn <ﬁ

Moreover,

1 L

n—00 n
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since E(R,) =1 (see the proof of Lemma 3). The second term in the r.h.s. of (38) writes

1 & Z|Yi; ¢n
—ZlogE@n (p( Y55 ¢n)
n

i=1

1 n
Y| =— E log t(Y;; n, 04).
p(Z|Yi; 0:) ) n <= ( )

Thus, ¢, — 6, and (H10) imply that the second term of (38) converges with probability
one to F(logt(Y;6.,0.)) = 0. Hence,

lim 7, (6.) > 0,

n—oo

which, together with Lemma 8, completes the proof. 0]

References

Billio, M., Monfort, A., Robert, C.P. (1998). The simulated likelihood method. Tech.
report 9821, CREST, INSEE, Paris.

Danielson, J., Richard, J.F. (1993). Quadratic acceleration for simulated maximum
likelihood evaluation. J. Applied Econometrics, 8, 153-173.

Celeux, G., Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher algorithm
derived from the EM algorithm for the mixture problem. Comput. Statist. Quart.,
2, 73-82.

Diebolt, J., Ip, E. H. S. (1996) Stochastic EM: method and application. In Markov
Chain Monte Carlo in Practice, (W. R. Gilks, S. Richardson and D. J. Spiegelhalter
eds.). Chapman and Hall, London.

Geweke, J. (1988) Antithetic acceleration of Monte Carlo integration in Bayesian infer-
ence. J. Econometrics 38, 73-90.

Gu, M.G., Kong, F.H. (1998). A stochastic approximation algorithm with Markov chain
Monte-Carlo method for incomplete data estimation problems. Proc. National
Academy of Sciences 95(13).

Geyer, C.J., Thompson, E.A. (1992). Constrained Monte Carlo maximum likelihood for
dependent data, (with discussion). J. Roy. Statist. Soc. (Ser. B), 54 657-699.

Geyer, C.J. (1994). On the convergence of Monte Carlo maximum likelihood calculations.
J. Roy. Statist. Soc. (Ser. B), 56 261-274.

Geyer, C.J. (1996). Estimation and optimization of functions. In Markov Chain Monte
Carlo in Practice, (W. R. Gilks, S. Richardson and D. J. Spiegelhalter eds.). Chap-
man and Hall, London.

Gouriéroux, C., Monfort, A. (1993) Simulation-based inference: A survey with special
reference to panel data models. J. Econometrics, 59, 5-33.

Ip, E. H. S. (1994) A stochastic EM estimator in the presence of missing data - The-
ory and applications. Technical report #304, Department of Statistics, Stanford
University.

21



Lavielle, M., Delyon, B., Moulines., E. (1999) On a stochastic approximation version of
the EM algorithm. The Annals of Statistics, 27 94-128.

Lee, L.-F. (1995). Statistical inference with simulated likelihood functions. Working
Paper No. 96/1, Hong Kong University of Science and Technology, Department of
Economics.

Nielsen, S. F. (2000) The stochastic EM algorithm: Estimation and asymptotic results.
To appear in Bernoulli.

Sandmann, G., Koopman, S.J. (1998). Estimation of stochastic volatility models via
Monte Carlo maximum likelihood. J. Econometrics, 87(2), 271 - 301.

Thompson, E.A. (1994). Monte Carlo likelihood in genetic mapping. Statistical Science,
9(3), 355-366.

Wei, G., Tanner, M. (1990). A Monte-Carlo implementation of the EM algorithm and the
Poor’s Man’s data augmentation algorithm. J. Amer. Statist. Assoc. 85 699-704.

Younes, L. (1988). Estimation and annealing for Gibbsian fields. Annales de I’Institut
Henri Poincaré, 24(2) 269-294.

Corresponding author
Olivier Cappé
ENST, Dpt. TSI

46 rue Barrault, 75634 Paris cedex 13, France
tel  +3314581 7111 far  +33 1458879 35 email cappe@tsi.enst.fr

22



List of Figures

1

MCML estimates, recentered around the maximum likelihood estimate and
rescaled by s7'/2, as a function of the number of iterations s (on a log
scale) for different numbers of observation (500 runs of the algorithm, p =
0.9, ¢ — 0, = —0.1). The black box on the right features the quartiles
corresponding to the asymptotic normal approximation. . . . . . . . . . ..
Unscaled MCML estimates, recentered around the maximum likelihood es-
timate, as a function of the number of iterations (500 runs of the algorithm,

p=0.9, p—0, =—0.1, 120 observations). . .. .. ... ..........

23



Data size 15 Data size 30

5 T F 5
i i o+
EERE
T - T T -
| | | | | $ | | | |
*
o+ BHHRH o= BHHE R
1 | 1 T
# Lo l N Lo l |
1
T + + ¥
+ +
-5 -5
0o 1 2 3 4 5 6 0 1 2 3 4 5 6
number of simulations (log10 scale) number of simulations (log10 scale)
Data size 60 Data size 120
5 + T F 5 T
; | | | |
| : | E
| |
i :
wrbofitl  rtefin g
L | | 1
1
- L
Lo P
|
-5 -5 .
0o 1 2 3 4 5 6 0o 1 2 3 4 5 6
number of simulations (log10 scale) number of simulations (log10 scale)

Figure 1: MCML estimates, recentered around the maximum likelihood estimate and
rescaled by s7/2, as a function of the number of iterations s (on a log scale) for different
numbers of observation (500 runs of the algorithm, p = 0.9, ¢—6, = —0.1). The black box
on the right features the quartiles corresponding to the asymptotic normal approximation.
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Figure 2: Unscaled MCML estimates, recentered around the maximum likelihood esti-
mate, as a function of the number of iterations (500 runs of the algorithm, p = 0.9,
¢ — 0, = —0.1, 120 observations).

25



