
On the Convergen
e of the Monte Carlo Maximum Likelihood

Method for Latent Variable Models

By R. DOUC

y

, O. CAPP

�

E

y

, E. MOULINES

y

and C.P. ROBERT

z

y

Dpt. TSI / CNRS URA 820, ENST, Paris

z

CREST-INSEE, Paris and CNRS UPRES-A 6085, Universit�e de Rouen

Abstra
t

While mu
h used in pra
ti
e, latent variable models raise 
hallenging estimation problems related

with the intra
tability of their likelihoods. Monte Carlo Maximum Likelihood (MCML) is a

simulation-based approa
h to likelihood approximation that has been proposed for 
omplex

latent variable models for whi
h deterministi
 optimization pro
edures su
h as the Expe
tation-

Maximization approa
h are not appli
able. It is based on an importan
e sampling identity for

the likelihood ratio, where the importan
e fun
tion is the 
omplete model density at a given

parameter value '. This paper studies the asymptoti
 performan
e of the MCML method (in

the number of observations n) against the 
hoi
e of ' and of the number of simulations s

n

used

in the importan
e sampling approximation. We provide suÆ
ient 
onditions for the MCML

estimator to 
onverge to the true value of the parameter with n. Our results imply in parti
ular

that the initialization parameter ' must be a

p

n-
onsistent estimate. Otherwise, the number of

simulations ne
essary to attain 
onvergen
e in
reases exponentially fast with the sample size.
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1 Introdu
tion

Monte Carlo Maximum Likelihood (MCML hereafter), as introdu
ed by Geyer and Thomp-

son (1992), is a widely a

epted method for maximum likelihood estimation in 
ases where

dire
t 
omputation and/or maximization of the likelihood is intra
table. The method 
an

be used for quite general models but is parti
ularly relevant for latent variable models,

possibly with unknown normalizing 
onstants (see Geyer, 1996, Sandmann and Koopman,

1998, Thompson, 1994). The method is based on an importan
e sampling identity that

represents the (observed) likelihood ratio g

n

(y

1:n

; �)=g

n

(y

1:n

;') as the expe
tation of the


omplete likelihood ratio

E

'

�

f
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�

�

�

�
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for an arbitrary value of the parameter ' (where y

1:n

denotes the sample and Z

1:n

the


orresponding latent variables). The repla
ement of the expe
ted ratio by a Monte Carlo

average, where s

n

realizations of Z

1:n

are simulated 
onditionally on y

1:n

and the pa-

rameter value ', then provides a simulated approximation to the (observed) likelihood

ratio.

Note that the terminology used to des
ribe some related methods is not yet uni�ed:

the \Simulated Likelihood Ratio" of Billio et al. (1998) is equivalent to the MCML

method, while the \Simulated Maximum Likelihood" approa
h of Danielson and Ri
hard

(1993) is distin
t. The \Simulated Maximum Likelihood Estimator" 
onsidered by Lee

(1995) is a variation of MCML with improved 
onvergen
e properties, but is more limited

in s
ope and more 
omputationally intensive. For a more 
omplete survey of simulation

based approa
hes, see Gouri�eroux and Monfort (1993). As indi
ated above, MCML is a

spe
ial 
ase of importan
e sampling ideas (see Geyer, 1996) whi
h is parti
ularly relevant

in appli
ations where the sampling density is not 
hosen from the family of 
onditional

densities asso
iated with the model, as in Sandmann and Koopman (1998).

Geyer (1996) argues that the eÆ
ien
y of MCML stems from its simpli
ity, given that

the unknown likelihood (ratio) is �rst approximated using a single round of simulations

and the approximation is then maximized via a standard maximization tool. Indeed, when


ompared with other generally appli
able simulation based approa
hes to maximum likeli-

hood estimation, like the Sto
hasti
 Approximation approa
h of Younes (1988), the Monte

Carlo EM of Wei and Tanner (1990), the Sto
hasti
 EM of Celeux and Diebolt (1985), or

the Sto
hasti
 Approximation EM of Lavielle, Delyon and Moulines (1999), a strong in-


entive for using MCML is that 
onditional simulations are run only on
e and for a single

�xed value of '. Hen
e, the maximization and the simulation steps are not nested, unlike

the algorithms above. In Geyer's (1996) terminology, this 
lassi�es MCML as a sto
hasti


approximation te
hnique, as opposed to these sto
hasti
 optimization te
hniques. There

is however 
lear empiri
al eviden
e that the 
hoi
e of ' has a strong in
uen
e on the

behavior of MCML (see Geyer, 1996, or Billio et al, 1996). While the 
onvergen
e to the

maximum likelihood estimator as s

n

goes to in�nity 
learly holds for a �xed n, as shown

by Geyer (1996) and re
alled in Se
tion 2, a deeper and thus asymptoti
 examination of

the dependen
e of the method, and of the 
onvergen
e of the MCML estimator, on the

parameters ' and s

n

is thus most timely.

After a brief des
ription of the method in Se
tion 2, a simple latent variable example

is dis
ussed in Se
tion 3. This example is truly an illustration, rather than a represen-

tative statisti
al appli
ation of the method, sin
e it 
orresponds to a trivial 
ase where

the maximum likelihood estimate is known analyti
ally. For this example, the asymptoti
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varian
e of the estimates is found to be extremely sensitive to the parameter value ' used

for simulating the unobserved data. This sensitivity is basi
ally exponential in the sample

size n, with larger data sets requiring in
reasingly larger Monte Carlo simulations for the

method to a
tually 
onverge. It is then shown in Se
tion 4 that this seemingly 
ounterin-

tuitive behavior is quite representative of what happens in a large 
lass of latent variable

models: the number of simulations s

n

has to in
rease exponentially fast with n for the

MCML estimator to be 
onsistent and asymptoti
ally eÆ
ient. In Se
tion 5, we attain

a more positive result in the sense that the asymptoti
 
ovarian
e matrix of the MCML

estimate is bounded (in n) when the initialization parameter '

n

is a

p

n-
onsistent esti-

mate of the true parameter. In this 
ase, s

n


an grow at any rate and even be 
onstant,

and the MCML algorithm will still be 
onsistent. The overall 
on
lusion of this paper is

therefore that the MCML method should only be used in settings where a preliminary

p

n-
onsistent estimate of � is available. A natural 
andidate is a noninformative Bayes

estimate, given that the MCML algorithm 
an be 
omplemented by a parameter simu-

lation stage to provide a Gibbs sampler for the approximation of Bayes estimates, as in

Billio et al. (1998).

For simpli
ity's sake, we fo
us on models for whi
h the probability distribution of the


omplete data is known exa
tly (that is, in
luding the normalizing 
onstant) and assume

that exa
t independent sampling from the 
onditional distribution of the latent variable

is feasible (whi
h is to say that Gibbs sampling applies for this 
omponent). Moreover,

the results of Se
tions 4 and 5 are derived under the more restri
tive hypothesis that the

random variables from the 
omplete model (i.e, the a
tual observations and the latent

variables) are mutually independent. This 
lass of models in
ludes in parti
ular mixture

models. Similar results do hold for more general latent variable models and notably for

hidden Markov models (where the latent variables are assumed to be Markovian, as in

Robert and Titterington, 1998) under the appropriate extensions of te
hni
al 
onditions.

2 Conditional 
onvergen
e to the maximum likeli-

hood estimate

We �rst 
onsider the 
onvergen
e of the MCML estimates to the maximum likelihood

estimate as the number of simulations of the latent data in
reases. Following a remark of

Geyer (1994), this type of 
onvergen
e is referred to as \
onditional 
onvergen
e". In fa
t,

the properties of the MCML estimates are very di�erent in this setting from those in the

framework of Se
tions 4 and 5, when the number n of available observations in
reases, the

number s

n

of simulations being then a fun
tion of n. Proofs for this se
tion are omitted

sin
e Theorems 1 and 2 are basi
ally restatements of Theorems 4 and 7 of Geyer (1994).

2.1 The MCML Algorithm

We begin with a brief des
ription of the method and of the asso
iated notations. For

a more 
omplete a

ount of MCML, in
luding its appli
ation to unnormalized density

fun
tions, see Geyer (1994, 1996).

Let y

1:n

= (y

1

; : : : ; y

n

) denote the observation and Z

1:n

= (Z

1

; : : : ; Z

n

) the asso
iated

ve
tor of latent variables. The likelihood fun
tion is then

g

n

(y

1:n

; �) ,

Z

f

n

(y

1:n

; z

1:n

; �)�

n

(dz

1:n

);
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where the 
omplete data density f

n

(y

1:n

; z

1:n

; �) belongs to a parametri
 family of positive

fun
tions, normalized with respe
t to some dominating measure �

n

, with parameter � 2

� � R

d

. The 
onditional density of the latent variables is denoted by

p

n

(z

1:n

jy

1:n

; �) ,

(

f

n

(y

1:n

;z

1:n

;�)

g

n

(y

1:n

;�)

if g

n

(y

1:n

; �) > 0,

0 otherwise,

with respe
t to the appropriate dominating measure (see Billio et al., 1998, for a des
rip-

tion of the 
onditioning issues and of the dominating measures) and P

�

(�jy

1:n

) stands for

the asso
iated probability distribution. Furthermore, for a measurable fun
tion  (y

1:n

; z

1:n

),

we denote by

E

�

[ (y

1:n

;Z

1:n

)jy

1:n

℄ ,

Z

 (y

1:n

; z

1:n

)p

n

(z

1:n

jy

1:n

; �)�

n

(dz

1:n

);

the 
onditional expe
tation under parameter value �, and similarly use V ar

�

[�jy

1:n

℄ for

the 
onditional varian
e.

MCML is based on the fa
t that the observed likelihood ratio may be expressed as the


onditional expe
tation of the 
omplete data likelihood ratio (see Geyer, 1994):

l

';n

(�) ,

g

n

(y

1:n

; �)

g

n

(y

1:n

;')

=

Z

f

n

(y

1:n

; z

1:n

; �)

f

n

(y

1:n

; z

1:n

;')

p

n

(z

1:n

jy

1:n

;')�

n

(dz

1:n

); (1)

where ' is any arbitrary point in the parameter spa
e �, as 
an be seen by a standard

importan
e sampling argument. The method builds on this identity by deriving a Monte

Carlo approximation of the likelihood ratio l

';n

(�),

^

l

s

';n

(�) =

1

s

s

X

k=1

f

n

(y

1:n

;Z

k

1:n

; �)

f

n

(y

1:n

;Z

k

1:n

;')

(2)

where the (Z

k

1:n

)'s (k = 1; :::; s) are s simulated repli
ations of the 
omplete latent data

ve
tor, distributed a

ording to the 
onditional distribution p

n

(�jy

1:n

;'), where ' is the

same �xed arbitrary point as in (1). The Monte Carlo maximum likelihood (MCML)

estimate

^

�

s

';n

is then de�ned as the maximizer of (2) with respe
t to �. One of the

advantages of the method is that (2) 
an be readily adapted to the 
ase where the 
omplete

data probability density is only known up to a normalizing 
onstant as in Geyer (1994).

For simpli
ity's sake, we however assume here that the normalizing 
onstant is also known.

Note that we fo
us on the 
ase where the Z

k

1:n

's are independent (in k) generations from

p

n

(z

1:n

jy

1:n

;'). We are thus omitting the natural extension to Markov Chain Monte Carlo

simulations. This is an important issue in pra
ti
e sin
e exa
t independent simulation

is not feasible in many 
ases. This extension simply requires additional assumptions on

the mixing rate of the 
hain asso
iated with Z

k

1:n

so that the rates of 
onvergen
e are

preserved. It will not be 
onsidered any further in this paper for simpli
ity's sake.

2.2 Conditional 
onvergen
e results

We �rst re
all some 
onvergen
e results for �xed sample sizes.

Theorem 1 Let ' be an arbitrary point in � and suppose that

(a) � is 
ompa
t with a nonempty interior,

3



(b) f

n

(y

1:n

; z

1:n

; �)=f

n

(y

1:n

; z

1:n

;') is �

n

almost everywhere 
ontinuous with respe
t to

� on �,

(
) E

'

h

sup

�2�

n

f

n

(y

1:n

;Z

1:n

;�)

f

n

(y

1:n

;Z

1:n

;')

o

�

�

�

y

1:n

i

<1,

(d) l

';n

(�) has a unique maximum on �,

^

�

n

, whi
h belongs to the interior of �.

Then,

lim

s!1

^

�

s

';n

=

^

�

n

w. p. 1

For a proof of this theorem, see Geyer (1994, Theorem 4), with weaker 
onditions.

Note that 
ondition (
) is not inno
uous, as it guarantees that the varian
e of

^

�

s

';n

is

�nite, whi
h does not always hold, as pointed out by Billio et al. (1998).

Theorem 2 (Geyer, 1994 - Th. 7) Suppose that

(a) The maximum likelihood estimate

^

�

n

is unique and belongs to the interior of �,

(b)

^

�

s

';n


onverges in probability to

^

�

n

,

(
) g

n

(y

1:n

; �) =

R

f

n

(y

1:n

; z

1:n

; �)�

n

(dz

1:n

) 
an be di�erentiated twi
e under the integral

sign w.r.t. �,

(d) s

1=2

r

�

log

^

l

s

';n

(

^

�

n

)

L

���!

s!1

N(0; V

';n

(y

1:n

)),

(e) The observed information matrix D

n

(y

1:n

) = �r

2

�

log g

n

(y

1:n

;

^

�

n

) is positive de�nite,

(f) r

3

�

log l

s

';n

(�) is bounded in probability uniformly in a neighborhood of

^

�

n

.

Then

p

s(

^

�

s

';n

�

^

�

n

)

L

! N(0;�

';n

(y

1:n

)); (3)

where

�

';n

(y

1:n

) =

�

D

n

�1

V

';n

D

n

�1

�

(y

1:n

):

In the setup of this paper (i.e., with exa
t independent simulations of the latent

variables), the term V

';n

(y

1:n

) 
an be readily 
omputed as

V

';n

(y

1:n

) = E

'

"

r

�

f

n

(y

1:n

;Z

1:n

;
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�

n

)

f

n

(y
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;Z
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;')

r

T

�

f

n

(y
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;Z
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;

^

�

n

)

f

n

(y

1:n

;Z

1:n

;')

�

�

�

�

�

y

1:n

#

(l

';n

(

^

�

n

))

�2

;

using assumptions (b) and (
) of Theorem 2. Then, by de�nition of

^

�

n

,

r

�

f

n

(y

1:n

; z

1:n

;

^

�

n

) = r

�

p

n

(z

1:n

jy

1:n

;

^

�

n

)g

n

(y

1:n

;

^

�

n

);

so that

V

';n

(y

1:n

) = E

'

"

r

�

p

n

(Z

1:n

jy

1:n

;
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�

n

)

p

n

(Z
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;')

r

T

�

p

n

(Z

1:n
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1:n

;

^

�

n

)

p

n

(Z
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;')

�

�

�

�

�

y

1:n

#

:

4



Thus

V

';n

(y

1:n

) = E

^

�

n

" 

p

n

(Z

1:n

jy

1:n

;

^

�

n

)

p

n

(Z

1:n

jy

1:n

;')

!

r

�

log p

n

(Z

1:n

jy

1:n

;

^

�

n

)r

T

�

log p

n

(Z

1:n

jy

1:n

;

^

�

n

)

�

�

�

y

1:n

i

: (4)

Note that D

n

(y

1:n

) is the observed Fisher information matrix; V

';n

(y

1:n

) 
losely resembles

the Fisher information matrix asso
iated with the 
onditional distribution P

^

�

n

(�jy

1:n

),

save for the presen
e of the 
onditional likelihood ratio p

n

(z

1:n

jy

1:n

;

^

�

n

)=p

n

(z

1:n

jy

1:n

;').

Anti
ipating the results of Se
tion 4, the asymptoti
 behavior of the method is mainly

governed by the fa
t that for most models of interest the 
onditional likelihood ratio

p

n

(z

1:n

jy

1:n

;

^

�

n

)=p

n

(z

1:n

jy

1:n

;') has an exponentially diverging behavior as n in
reases.

Before investigating this general behavior of V

';n

(y

1:n

) in Se
tion 4, we �rst 
onsider an

illustrative example.

3 A Simple illustration

3.1 Asymptoti
 results

Assume that the 
omplete data 
onsist of observed s
alar variables Y

i

, for i = 1; : : : ; n

supplemented by 
orresponding latent variables Z

i

(also s
alar) su
h that the 
omplete

data distribution is bivariate normal

�

Y

i

Z

i

�

� N

2

��

�

0

�

;

�

1 �

� 1

��

; (5)

i.e. the observed and latent variables are jointly normal. Moreover, the 
omplete data

model is assumed to be i.i.d. and the mean of the observation � is the only parameter of

interest, whereas the 
orrelation � is known and �xed.

Of 
ourse, in this parti
ular example, the (observed) maximum likelihood estimate

of � is

^

�

n

= (1=n)

P

n

i=1

y

i

. Note however that the (
omplete) maximum likelihood

^

�

n

�

(�=n)

P

n

i=1

z

i

usually di�ers from the observed maximum likelihood estimate (at least if

� 6= 0), so that this example, although extremely simpli�ed, is nontrivial.

The asymptoti
 
ovarian
e terms as de�ned in Theorem 2 are easily evaluated as

D

n

(y

1:n

) = n; (6)

V

';n

(y

1:n

) =

n�

2

(1� �

2

)

�

1 +

n�

2

1� �

2

(

^

�

n

� ')

2

�

exp

�

n�

2

1� �

2

(

^

�

n

� ')

2

�

: (7)

For this parti
ular model, V

';n

(y

1:n

) only depends upon the observed data through

^

�

n

the

maximum likelihood estimate. As n in
reases, V

';n

(y

1:n

) diverges exponentially fast with

an exponential rate whi
h is proportional to the squared di�eren
e between the initial

guess of the parameter value, ', and the a
tual maximum likelihood estimate

^

�

n

, unless

' also varies with n.
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3.2 Simulation results

In Theorem 2, terms that de
rease at a rate faster than s

�1=2

are ignored. For �nite

sample sizes however, these terms may play an important role in the performan
e of the

method. We therefore 
ondu
ted a series of numeri
al simulations to illustrate the �nite

sample behavior of MCML.

The MCML is straightforward in this parti
ular example be
ause the 
onditional dis-

tribution (under whi
h sampling is done) fa
torizes through a suÆ
ient statisti
 with

known distribution: the Monte Carlo approximation to the likelihood ratio l

';n

(�) is then

^

l

s

';n

(y

1:n

; �) =

1

s

s

X

k=1

exp

�

�

n

1� �

2

(� � ')

�

� + '

2

+ �

�

Z

k

�

^

�

n

��

; (8)

with

�

Z

k

= (1=n)

P

n

i=1

Z

k

i

, where (Z

k

1:n

) denotes the kth simulation of the 
omplete ve
tor

of latent variables, and

�

Z

k

� N

�

�(

^

�

n

� '); (1� �

2

)=n

�

: (9)

[Figure 1 about here.℄

Figure 1 displays the dispersion of the algorithm estimates as a fun
tion of the number

of simulations (from one to one million, on a log s
ale) for di�erent sample sizes. The

quantity displayed is

p

s(

^

�

s

';n

�

^

�

n

), that is the output of the algorithm re
entered around

the MLE

^

�

n

and s
aled by the asymptoti
 normalizing fa
tor s

�1=2

. Ea
h boxplot was

obtained from 500 independent runs of the algorithm, using �xed data sets (one for ea
h

size from 15 to 120) and starting the algorithm from a �xed distan
e from the MLE

(' �

^

�

n

= �0:1). The bla
k box on the right of ea
h �gure 
orresponds to the quartiles


omputed from the asymptoti
 varian
e �

';n

(y

1:n

) assuming normality.

Two interesting features 
an be observed from Figure 1. The �rst is that, when


omparing the four plots, for a given number of simulations, the normalized estimates

p

s(

^

�

s

';n

�

^

�

n

) get more and more dispersed as the sample size in
reases, as expe
ted in

the form of �

';n

(y

1:n

). The normal quartiles, based on the value of �

';n

(y

1:n

), displayed on

the right of ea
h plot show that the observed dispersion of the estimates for a large number

of simulations is generally in a

ordan
e with the Central Limit Theorem dispersion of

Se
tion 2, although the asymptoti
 spread is 
learly not yet a
hieved after 10

6

simulations

for the larger data set (120 observations).

[Figure 2 about here.℄

The se
ond noteworthy feature is that ea
h plot, when 
onsidered from left to right,

shows three di�erent stages. For small numbers of simulations, the normalized dispersion

of the estimates is very small. For moderate numbers of simulations, the dispersion

in
reases and the distribution of the normalized estimates is distin
tively positively skewed

with a heavy positive tail. Finally, for large numbers of simulations the distribution of the

normalized estimates is more symmetri
 and 
ompatible with the Central Limit Theorem.

Moreover, the transition between these three stages o

urs for numbers of simulations

whi
h in
rease with the sample size. This is almost 
ertainly due to the fa
t that the

higher order terms whi
h are negle
ted when obtaining the CLT of Theorem 2 also exhibit

exponential dependen
e on the sample size. As a 
onsequen
e, for moderate numbers of

6



simulations (several hundred to several thousand) and large sample sizes (one hundred

observations or more), the asymptoti
 stage (third one) is not yet rea
hed and the bias

term is prevalent. This last point is parti
ularly 
lear when looking at the dispersion of

the uns
aled re
entered estimates (

^

�

s

';n

�

^

�

n

) displayed on Figure 2 (whi
h 
orresponds to

the larger data set in Figure 1). For moderate numbers of simulations, the predominant

e�e
t is thus an important bias of the estimates towards ', as also observed in Billio et

al. (1998) on other models. In the extreme 
ase where a single simulation is used, it is

easy to 
he
k that

^

�

1

';n

=

^

�

n

� �

�

Z

1

, where

�

Z

1

is distributed from (9), so the bias is equal

to

E(

^

�

1

';n

�

^

�

n

) = �

2

('�

^

�

n

);

whi
h gives �0:081 in the 
ase of Figs. 1-2. The bias then de
reases slowly with the

number of simulations as it still amounts to �0:017 after 1000 iterations.

3.3 Comparison with the Sto
hasti
 EM approa
h

For 
omparison purpose, we 
onsider the appli
ation of the Sto
hasti
 Expe
tation-

Maximization (or SEM) approa
h to the same model. In the SEM approa
h introdu
ed

by Celeux and Diebolt (1985), ea
h iteration 
onsists of maximizing the 
omplete data

likelihood where the missing data is imputed sto
hasti
ally by drawing the latent variables

a

ording to their 
onditional distribution given the 
urrent estimate of the parameters.

The SEM iterates form a Markovian sequen
e whi
h 
onverges under general 
onditions

to a stationary distribution (Diebolt and Ip, 1996). Pre
ise 
hara
terization of this limit

law is a diÆ
ult issue (Ip, 1994), ex
ept in some parti
ular 
ases su
h as the simple ex-

ample 
onsidered in this se
tion (see below). Re
ent results by Nielsen (2000) however

suggest that although the stationary distribution of the SEM iterations 
annot in general

be dire
tly related to the maximum likelihood estimate, it nonetheless provides a mean

to 
onstru
t eÆ
ient parameter estimators.

As already noted, the 
omplete data maximum likelihood estimation of � is given by

^

�

n

� �

�

Z where

�

Z is the normalized 
onditional mean of the unobserved 
omponent whi
h

is distributed a

ording to (9) (� being our 
urrent guess of the parameter). Denoting

the sequen
e of SEM iterates by (

~

�

s

n

)

s�1

, it is then easily 
he
ked that

~

�

s+1

n

�

^

�

n

= �

2

(

~

�

s

n

�

^

�

n

) + U

s+1

;

where (U

s

)

s�2

is and iid sequen
e of zero mean Gaussian random variables with varian
e

�

2

(1 � �

2

)=n; That is, the sequen
e of SEM iterates forms and AR 1 Gaussian pro
ess

with stationary distribution

N

�

^

�

n

;

�

2

n(1 + �

2

)

�

: (10)

As suggested by Diebolt and Ip (1996), the ergodi
 average of (

~

�

k

n

)

1�k�s

yields a rate

p

s

estimate of

^

�

n

with asymptoti
 varian
e �

2

=(n(1��

2

)). The above results are 
onditional

upon a parti
ular out
ome of the observations Y

1:n

. Nielsen (2000) however shows that

if

~

�

1

n

denotes the limiting variable distributed a

ording to the stationary distribution of

SEM for a given value of n,

~

�

1

n

satis�es an un
onditional 
entral limit result, whi
h may

be written (in our example)

p

n

�

~

�

1

n

� �

�

�

D

�! N

�

0; 1 +

�

2

1 + �

2

�

(11)
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For more general models, it does not hold true that the ergodi
 average of the SEM

iterates 
onverges to the MLE for a �xed value of n. However, the dependen
e on n

observed both in (10) and (11) suggests that it is possible to build eÆ
ient parameter

estimators from the SEM approa
h with a reasonable number of simulations { see (Nielsen,

2000) for details. This behavior is of 
ourse in sharp 
ontrast with that of the 
onditional

asymptoti
 varian
e of the MCML estimate 
omputed in (6)-(7) whi
h diverges as n

in
reases.

4 Asymptoti
 properties of MCML under �xed ini-

tialization

In this se
tion, we show that the behavior observed for the simple example above is


hara
teristi
 of a large 
lass of models where the method applies. For simpli
ity's sake,

we only 
onsider i.i.d. 
omplete data models, i.e. su
h that

f

n

(y

1:n

; z

1:n

; �) =

n

Y

i=1

f(y

i

; z

i

; �):

Insight into the following results stems from rewriting (2) as

^

l

s

';n

(�) = l

';n

(�)

"

1

s

s

X

k=1

p

n

(z

k

1:n

jy

1:n

; �)

p

n

(z

k

1:n

jy

1:n

;')

#

: (12)

In fa
t, MCML is equivalent to approximating the 
onstant 1 by importan
e sampling with

p

n

(z

1:n

jy

1:n

; �) as target density and p

n

(z

1:n

jy

1:n

;') as importan
e (or proposal) density.

But, for identi�able regular models, the supports of these two densities tend to separate as

n goes to in�nity when ' 6= � (see (9) for the example of Se
tion 3). Thus the importan
e

weights in (12) degenerate, be
oming either very small or very large depending on the

value of �, whi
h is a well-known 
ause of instability for the importan
e sampling method

(Geweke, 1988).

In 
ontrast with the results of Se
tion 2, the results in this se
tion bear on the 
onver-

gen
e to the a
tual value �

�

of the parameter when both n and the number of simulations

s

n

in
rease. Note that, sin
e we are primarily interested in the growth rate of s

n

with

n, the former is expli
itly written as a fun
tion of the latter. For te
hni
al simpli
ity

and 
oheren
e with Se
tion 5 (where the initialization of MCML varies with n) we also


onsider that the Z

n;1:n

's are simulated independently for ea
h sample size n, hen
e the

notation Z

k

n;i

where 1 � i � n denotes the observation index, 1 � k � s

n

the simulation

index and n refers to the sample size. In a sequential setting, this assumption would be

quite subeÆ
ient, but this is not the problem here, where we are rather fo
using on the

asymptoti
 properties of the MCML estimator.

In addition to the notations P

�

(�jY

1:n

) and E

�

[�jY

1:n

℄ de�ned in Se
tion 2, we use

P (�) and E[�℄ to denote respe
tively the distribution and expe
tation of fun
tions of

fY

n

g

n2N

, under the true value �

�

of the parameter. The swit
h from lower 
ase to upper


ase notation for the observations Y

i

is meant to stress the fa
t that from now on the

observations themselves will be 
onsidered as random rather than being �xed.

The �rst item of this se
tion is Theorem 3 whi
h des
ribes the asymptoti
 behavior of

the limiting 
ovarian
e �

';n

(Y

1:n

) featured in Theorem 2 (
onditional CLT). The obtained

asymptoti
 form shows that the number s

n

of simulations should grow exponentially fast

8



with n in order to guarantee that �

';n

(Y

1:n

) remains bounded. In this 
ase, MCML

estimation is indeed 
onsistent (Theorem 4) and asymptoti
ally eÆ
ient (Theorem 5) if s

n

has a fast enough exponential growth rate. In pra
ti
e, the perspe
tive of performing su
h

large numbers of simulations is obviously unrealisti
. As shown in Se
tion 5, a solution to

this short
oming relies on initializing the MCML algorithm from a

p

n-
onsistent estimate

of �.

4.1 Asymptoti
 
onditional 
ovarian
e

In the following, we need further regularity 
onditions in addition to those of Theorems

1-2. For te
hni
al simpli
ity, we mostly use basi
 Wald-type regularity 
onditions. Denote

t(y;'; �) ,

Z

p(zjy; �)

2

p(zjy;')

�(dz) ;

~p(zjy;'; �) ,

1

t(y;'; �)

p(zjy; �)

2

p(zjy;')

;

A(y;'; �) ,

Z

�

r

�

log p(zjy; �)r

T

�

log p(zjy; �)

�

~p(zjy;'; �)�(dz) ;

b(y;'; �) ,

Z

r

�

log p(zjy; �)~p(zjy;'; �)�(dz) : (13)

We assume that

(H1) The fun
tions

� (y; �) 7! r

2

�

log g(y; �),

� (y; �) 7! log t(y;'; �)),

� (y; �) 7! A(y;'; �),

� (y; �) 7! b(y;'; �),

� (y; �) 7! b(y;'; �)(b(y;'; �))

T

,

satisfy Wald-type 
onditions in �

�

.

We moreover assume that the model under 
onsideration is regular and in parti
ular that

(H2) I

g

(�) , �E(r

2

�

log g(Y; �)) is positive de�nite at � = �

�

.

Theorem 3 Under the hypotheses of Theorems 1-2, (H1) and (H2),

�

';n

(Y

1:n

) = exp(nÆ('; �

�

) + o(n))

�

I

g

(�

�

)

�1

B('; �

�

)I

g

(�

�

)

�1

+ o(1)

�

w.p.1; (14)

where

Æ('; �

�

) , E(log t(Y ;'; �

�

)) � 0; (15)

I

g

(�

�

) , �E

�

r

2

�

log g(Y ; �

�

)

�

; (16)

and

B('; �

�

) , E [b(Y ;'; �

�

)℄E [b(Y ;'; �

�

)℄

T

:

9



If E [b(Y ;'; �

�

)℄ = 0, then

�

';n

(Y

1:n

) � exp(nÆ('; �

�

) + o(n))

�

1

n

I

g

(�

�

)

�1

C('; �

�

)I

g

(�

�

)

�1

�

w.p.1;

where

C('; �

�

) , E

�

A(Y ;'; �

�

)� b(Y ;'; �

�

)b(Y ;'; �

�

)

T

�

� 0:

Using Jensen's inequality, the exponential rate Æ('; �

�

) introdu
ed in Theorem 3 
an

be bounded from below by

Æ('; �

�

) � E [K

p

(Y ;'; �

�

)℄ ;

where

K

p

(Y ;�; �) ,

Z

log

p(zjY ; �)

p(zjY ;�)

p(zjY ; �)�(dz);

is the Kullba
k divergen
e between the 
onditional distributions at � and �. Thus, ex
ept

in 
ases where the 
onditional model is non-identi�able (in the sense that there exist values

of ' 6= �

�

su
h that K

p

(Y ;'; �

�

) is null a.e.), the limiting varian
e �

';n

(Y

1:n

) is dominated

by a fa
tor whi
h is, in the most favorable 
ase, of order exp(Æ('; �

�

)n)=n. This result

implies that the number of Monte Carlo simulations must in
rease exponentially fast for

the varian
e to de
rease with n in (3).

4.2 Consisten
y and asymptoti
 eÆ
ien
y

In this se
tion, we naturally extend the previous result to show that, under some ad-

ditional assumptions, the MCML pro
edure is (strongly) 
onsistent when s

n

in
reases

exponentially fast with n.

Theorem 4 If the model is identi�able, under the hypotheses of Theorems 1-2, (H2),

and

(H3) (y; �) 7! log g(y; �) satis�es a Wald-type 
ondition at �

�

,

(H4) The families flog g(y; �); � 2 �g, fkr

�

flog g(y; �)k; � 2 �g

and fkr

2

�

log g(y; �)k; � 2 �g are dominated by integrable fun
tions

(H5) log p(zjy; �) satis�es a Wald-type 
ondition for all � 2 �, where the exponent � and

the bounding fun
tion M() de�ned in (17) may be 
hosen su
h that

� � and M() do not depend �,

� there exists � > 0 su
h that

E

�

logE

�

(e

�M(Z;Y )

jY )

�

<1;

for all � in �.

Then, if s

n

= exp(n
) with 
 > Æ('; �

�

) as in (15),

^

�

s

n

';n


onverges to �

�

with probability

one.
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Theorem 5 Under the hypotheses of Theorem 4 and assuming that

(H6) The parametri
 fun
tions

� log t(y;'; �),

� log

�
R

p(zjy; �)e

�M(z;y)

�(dz)

�

,

� log

�
R

~p(zjy;'; �)e

�M(z;y)

�(dz)

�

,

are dominated by integrable fun
tions independent of �,

p

n(

^

�

s

n

';n

� �

�

)

L

! N(0; I

g

(�

�

)

�1

)

Note that the 
ondition 
 > Æ('; �

�

) indeed imply that

p

n(

^

�

s

n

';n

�

^

�

n

) tends to zero

in probability (see appendix A.5), and thus the asymptoti
 eÆ
ien
y of MCML simply

follows as a 
onsequen
e of the standard eÆ
ien
y properties of the maximum likelihood

estimator. The 
ase where

^

�

s

n

';n

�

^

�

n

is exa
tly of order n

�1=2

, that is when MCML is

p

n-


onsistent but not ne
essarily asymptoti
ally eÆ
ient, is somewhat arti�
ial (remember

that Æ('; �

�

) is not known in pra
ti
e) and has not been investigated.

5 Asymptoti
 behavior of MCML under 
onsistent

initialization

The main message of Se
tion 4 is that MCML, used with an arbitrary value of ' does not

perform well for large sample sizes be
ause the number of simulations has to be in
reased

exponentially in order to 
ounter the augmentation of the varian
e. However, (14) and

(15) (see also (7) for the example of Se
tion 3) suggest that s

n

may be allowed to grow

mu
h more slowly if the parameter value ' used in the simulations stays \
lose enough

to" �

�

(in the sense of the Kullba
k divergen
e). Ex
ept for the trivial 
ase where ' = �

�

,

this requirement 
annot hold when simulating from a single �xed value of ' as in Se
tion

4. We thus 
onsider in this se
tion that a preliminary sequen
e '

n

of parameter estimates

is available. That is, for a given sample size, we assume that the MCML algorithm is run

from an estimate '

n

, rather than an arbitrary �xed value '.

Our assumptions on this preliminary sequen
e of estimates are

(H7) The sequen
e f'

n

g

n2N

is independent of the observations fY

n

g

n2N

used for 
om-

puting the MCML estimates, and satis�es '

n

! �

�

,

(H8)

p

nk'

n

� �

�

k is bounded from above.

As previously, the simulations fZ

k

n;i

g

n2N;1�i�n;1�k�s

n

are 
onditionally independent given

the sequen
e f'

n

g

n2N

with Z

k

n;i

depending only upon '

n

. An interesting extension of (H7)

would of 
ourse 
onsist of allowing the sequen
e f'

n

g

n2N

to depend upon the observations

(up to time index n). A 
loser look at the proofs in appendix A.5 however shows that

su
h an extension is not tra
table with the te
hnique we are using. We thus fo
us on the

simpler 
ase of independent preliminary estimates.

We �rst show in Se
tion 5.1 that (H7) is not suÆ
ient and that (H8) is ne
essary

to guarantee that the limiting 
onditional 
ovarian
e matrix of Theorem 2 is bounded.

We then show that the MCML algorithm initialized with '

n

is 
onsistent for an arbitrary


hoi
e of s

n

.
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5.1 Asymptoti
 
onditional 
ovarian
e

We �rst provide an equivalent to Theorem 3 where the leading term is no longer expo-

nential.

Theorem 6 Under the hypotheses of Theorems 1{2, (H2), (H7), and assuming that

(H9) The fun
tions

� (y;'; �) 7! r

2

'

log t(y;'; �),

� (y;'; �) 7! A(y;'; �),

� (y;'; �) 7! r

'

b(y;'; �),

� (y;'; �) 7! b(y;'; �)(b(y;'; �))

T

,

satisfy Wald-type 
onditions at ('; �) = (�

�

; �

�

),

then

�

'

n

;n

(Y

1:n

) = exp

�

�

T

n

[I

p

(�

�

) + o(1)℄ �

n

�

�

1

n

I

g

(�

�

)

�1

[I

p

(�

�

) + o(1)℄

�

I

p

(�

�

)

�1

+ �

n

�

T

n

�

[I

p

(�

�

) + o(1)℄ I

g

(�

�

)

�1

�

;

where

�

n

,

p

n(

^

�

n

� '

n

);

and

I

p

(�

�

) , E

�

Z

r

�

log p(zjY ; �

�

)r

�

log p(zjY ; �

�

)

T

p(zjY ; �

�

)�(dz)

�

:

Interestingly enough, Theorem 6 indi
ates that the behavior of the limiting 
onditional


ovarian
e matrix �

'

n

;n

(Y

1:n

) depends only on �

n

=

p

n(

^

�

n

� '

n

) as n tends to in�nity.

As a 
onsequen
e, the 
onsisten
y of the '

n

's is not suÆ
ient to guarantee satisfa
tory


onvergen
e properties for the MCML method, sin
e '

n

must 
onverge suÆ
iently fast,

that is with a rate of at least n

�1=2

. Indeed, (H8) together with the asymptoti
 normality

of

^

�

n

and the assumption that f'

n

g

n2N

is independent of the observations imply that

p

n(

^

�

n

� '

n

) 
onverges in distribution, and hen
e that �

'

n

;n

(Y

1:n

) is an O

p

(1).

5.2 Consisten
y

The above remark implies the following result:

Theorem 7 Under the hypotheses of Theorems 1, 2 and 4, (H7),

(H10) (y; ') 7! log t(y;'; �

�

) satis�es a Wald-type 
ondition at ' = �

�

,

and assuming in addition that the model is identi�able, the MCMLE

^

�

s

n

'

n

;n


onverges to �

�

w.p.1.

The proof of this theorem is similar to that of Theorem 4 in Se
tion 4, the only

di�eren
e being between Lemma 9 and Lemma 6, where the 
onvergen
e of

1

n

log

 

1

s

n

s

n

X

k=1

p

n

(Z

k

n;1:n

jY

1:n

; �

�

)

p

n

(Z

k

n;1:n

jY

1:n

;'

n

)

!
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to 0 is a 
onsequen
e of '

n


onverging to �

�

rather than of s

n

diverging exponentially fast

to in�nity. Note that the result of Theorem 7 holds even when s

n

= C, where C is any

�xed integer. This generalizes the result observed in Se
tion 3, where

^

�

1

'

n

;n

= (1� �

2

)

^

�

n

+ �

2

'

n

+ �

r

1� �

2

n

U

n

; U

n

� N(0; 1);

with U

n

independent from

^

�

n

, whi
h implies that

^

�

1

'

n

;n

is a

p

n-
onsistent estimate of �

�

under (H7) and (H8).

More surprisingly, Theorem 7 does not rely on (H8). This 
ounterintuitive result

follows from '

n

being a 
onsistent estimate of �

�

. However, Theorem 6 as well as the

example of Se
tion 3 suggests that (H8) is indeed ne
essary when 
onsidering the rate of


onvergen
e of

^

�

s

n

'

n

;n

to �

�

. At this point, however, we 
annot extend Theorem 5 when '

n

depends on n.

6 Con
lusion

We have presented results whi
h demonstrate that the MCML method su�ers from severe

drawba
ks in terms of robustness to the 
hoi
e of the parameter value ' used for simu-

lating the latent variables. The fa
t that the varian
e of the MCML estimator in
reases

exponentially fast with the sample size n implies that the validity of the approximation of

the likelihood fun
tion and in parti
ular of the maximum likelihood estimate are 
learly

restri
ted to small values of n, for given values of s

n

. Asymptoti
ally the relevan
e of

the method 
an only be argued in 
ases where the importan
e value ' is a 
onsistent

estimate of �

�

. In pra
ti
e, MCML should thus be used in 
onjun
tion with another 
on-

sistent maximum likelihood estimation method, as suggested by Geyer (1996) and Billio

et al. (1998), like noninformative Bayes estimators. Moreover, this study does not shed

any light on the proposal of iterative MCML of Geyer (1996), where the solution of one

MCML run is used as the referen
e value ' for the next MCML run.

More generally, these results suggest that simulation based numeri
al optimization (or

at least sto
hasti
 approximation in numeri
al optimization) 
an hardly be 
arried out

without somehow restri
ting the range of plausible values of � as the sample size in
reases.

Therefore, nesting the maximization (or parameter sear
h) stage and the latent variable

simulation stage within one another seems to some extent unavoidable for this type of

method.

Appendix

A Proofs of Se
tion 4

Before 
onsidering Theorems 3-5, we �rst state two te
hni
al lemmas whi
h are used

repeatedly in the sequel.

A.1 Wald-type 
ondition

De�nition 1 (Wald-type 
ondition) Let  : (R

p

� � ! R

q

) denote an integrable

parameterized fun
tion.  satis�es a Wald-type 
ondition at �, if

13



� Ek (Y ; �)k <1,

� There exist � > 0 and � > 0 su
h that

sup

k���k��

k (y; �)�  (y; �)k

k� � �k

�

�M(y) for all y; (17)

where M(y) is a positive Borel fun
tion su
h that E(M(Y )) <1.

Lemma 1 Assume that  : (R

p

� � ! R

q

) satis�es a Wald-type 
ondition at � and let

f�

n

g

n�0

denote a sequen
e su
h that lim

n!1

�

n

= � w.p.1. Then,

n

X

i=1

 (Y

i

; �

n

) = nE f (Y ; �)g+ o(n) w.p.1.

A.2 Conditional Borel-Cantelli Lemma

Lemma 2 Let F

n

denote a family of Borel fun
tions,

+1

X

n=1

P

'

�

F

n

(Z

1:s

n

n;1:n

;Y

1:n

) 2 B

�

�

Y

1:n

�

< +1

implies that, w.p.1, F

n

(Z

1:s

n

n;1:n

;Y

1:n

) 2 B




for suÆ
iently large n's.

This lemma is a simple 
onsequen
e of the remarks that Z

k

n;i

and Z

k

0

n

0

;i

0

are 
onditionally

independent given fY

n

g

n2N

whenever (n; i; k) 6= (n

0

; i

0

; k

0

), and that Z

k

n;i

depends only

upon Y

i

.

A.3 Asymptoti
 behavior of the limiting 
ovarian
e of MCML

estimates

The following result is needed in the proof of Theorem 3.

Proposition 1 Under the assumptions of Theorems 1{2 and (H1),

D

n

(Y

1:n

) = nI

g

(�

�

) + o(n); (18)

almost surely, where I

g

(�

�

) is the Fisher information matrix de�ned by (16).

Proof. Sin
e

^

�

n

minimizes g

n

(Y

1:n

; �) in a point whi
h belongs to the interior of �,

D

n

(Y

1:n

) = �r

2

�

log g

n

(Y

1:n

;

^

�

n

) = �

n

X

i=1

r

2

�

log g(Y

i

;

^

�

n

): (19)

Lemma 1 along with (H1) 
omplete the proof. �

The proof of Theorem 3 then goes as follows:

14



Proof. (Theorem 3) The varian
e V

';n

(Y

1:n

), de�ned in (4), 
an be rewritten as

V

';n

(Y

1:n

) =

n

Y

i=1

t(Y

i

;';

^

�

n

)

�

"

n

X

i=1

A(Y

i

;';

^

�

n

) �

n

X

i=1

b(Y

i

;';

^

�

n

)b(Y

i

;';

^

�

n

)

T

+ (

n

X

i=1

b(Y

i

;';

^

�

n

))(

n

X

j=1

b(Y

j

;';

^

�

n

))

T

#

: (20)

The produ
t

Q

n

i=1

t(Y

i

;';

^

�

n

) 
an be rewritten as

exp

n

X

i=1

log t(Y

i

;';

^

�

n

):

The result of Theorem 3 is then obtained by appli
ations of Lemma 1 for the fun
tions

de�ned in (H1). In the parti
ular 
ase where E(b(Y ;'; �

�

)) = 0, the term between

bra
kets in (20) 
an be bounded from below by its �rst two terms whi
h are of order n.

Finally, C('; �

�

) is easily seen to be positive sin
e A(Y ;'; �

�

) � b(Y ;'; �

�

)b(Y ;'; �

�

)

T

is

the 
ovarian
e matrix of r

T

�

log p(ZjY ; �) under the probability measure ~p(zjy;'; �)�(dz).

�

A.4 Consisten
y of MCML

Denote

Q

n

(�) ,

^

l

s

n

';n

(�)

l

';n

(�)

; (21)

and

T

n

(�) ,

1

n

logQ

n

(�): (22)

Assumption (H3) implies that

log l

';n

(�)

n


onverges w.p.1 to

L(�) , �K

g

(�; �

�

) +K

g

(�

�

; '); (23)

where K

g

(�; �) denotes the Kullba
k divergen
e between � and �. For an identi�able

model, �

�

is the unique minimizer of K

g

(�; �

�

). The proof of Theorem 4 thus pro
eeds as

follows: �rst, we show that T

n

(�) is bounded from above by 0 (w.p.1) uniformly in � for

suÆ
iently large values of n (Lemma 5), and, se
ond, we show that T

n

(�

�

) 
onverges to 0

w.p.1.

Lemma 3 For any � in �,

lim

n!1

T

n

(�) � 0 w.p.1.
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Proof.

Q

n

(�) =

1

s

n

s

n

X

k=1

p

n

(Z

k

n;1:n

jY

1:n

; �)

p

n

(Z

k

n;1:n

jY

1:n

;')

;

and thus E

'

(Q

n

(�)jY

1:n

) = 1. As a 
onsequen
e, P

'

(Q

n

(�)=(n(logn)

1+


)jY

1:n

) is summable

for any 
 > 0. Appli
ation of the 
onditional Borel-Cantelli Lemma then shows that

Q

n

(�)=n(logn)

1+


= o(1) w.p.1 and hen
e that lim

n!1

T

n

(�) � 0 w.p.1. �

The following lemma ensures that under some additional regularity 
onditions on

p(zjy; �), T

n

() 
an be bounded from above by an arbitrary positive 
onstant, uniformly

in an open neighborhood of �.

Lemma 4 Under (H5), for all � 2 � and all � > 0, there exist �

�;�

> 0 and N

�;�

2 N

su
h that for all n � N

�;�

,

sup

�

0

2B(�;�

�;�

)

T

n

(�

0

) < �: (24)

Proof. Let � be a stri
tly positive real number, and � an arbitrary point of �. For

suÆ
iently small values of �, (H5) implies

8(z; y) 2 R

2

,

p(zjy; �

0

)

p(zjy; �)

� exp (�

�

M(z; y)) ; (25)

for any �

0

2 B(�; �), the open ball of radius � 
entered in �. Then,

T

n

(�

0

) �

1

n

log

"

1

s

n

s

n

X

k=1

n

Y

i=1

p(Z

k

n;i

jY

i

; �)

p(Z

k

n;i

jY

i

;')

exp

�

�

�

M(Z

k

i

; Y

i

)

�

#

: (26)

Denoting by D

n

(�; �) the term between bra
kets in (26),

1

n

logD

n

(�; �) =

1

n

log

D

n

(�; �)

E

�

(D

n

(�; �)jY

1:n

)

+

1

n

logE

�

(D

n

(�; �)jY

1:n

): (27)

The �rst term in the r.h.s. of (27) 
an be shown to verify

lim

n!1

1

n

log

D

n

(�; �

�;�

)

E

�

(D

n

(�; �

�;�

)jY

1:n

)

� 0;

pro
eeding as in the proof of Lemma 3. The se
ond term in the r.h.s. of (27) writes

1

n

logE

�

(D

n

(�; �)jY

1:n

) =

1

n

n

X

i=1

logE

�

(exp(�

�

M(Z; Y

i

))jY

i

);

= E [logE

�

(exp(�

�

M(Z; Y ))jY )℄ + o(1) ;

that is, 
onverges to 0 as � ! 0. �

The proof of the following lemma is omitted sin
e it is a dire
t 
orollary of Lemma 4

under 
ompa
tness of �.

Lemma 5 Under assumptions (H5) and (H7), lim

n!1

sup

�2�

T

n

(�) � 0 w.p.1.

Lemma 6 T

n

(�

�

)! 0 w.p.1.
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Proof. In the 
ourse of proving Lemma 3, we have already seen that E

'

(Q

n

(�

�

)jY

1:n

) = 1,

moreover

V ar

'

[Q

n

(�

�

)jY

1:n

℄ �

1

s

n

Z

p

2

n

(Z

n;1:n

jY

1:n

; �

�

)

p

n

(Z

n;1:n

jY

1:n

;')

�

n

(Z

n;1:n

);

�

1

s

n

exp

 

n

X

i=1

log t(Y

i

;'; �

�

)

!

; (28)

where t() was de�ned in (13). For s

n

= exp(n
), (H1) implies that the upper bound

in (28) is summable, and hen
e that Q

n

(�

�

) ! 1 w.p.1 by appli
ation of the 
onditional

Borel-Cantelli Lemma. �

Proof. (Theorem 4) First note that

1

n

log l

';n

(�) ! L(�) where L(�) is de�ned by (23).

Now, by de�nition of

^

�

s

n

';n

1

n

log

^

l

s

n

';n

(

^

�

s

n

';n

) �

1

n

log

^

l

s

n

';n

(�

�

); (29)

whi
h is equivalent to

L(

^

�

s

n

';n

) � L(�

�

)� L(�

�

) +

1

n

log l

';n

(�

�

)�

1

n

log l

';n

(�

�

) +

1

n

log

^

l

s

n

';n

(�

�

)

+ L(

^

�

s

n

';n

)�

1

n

log l

';n

(

^

�

s

n

';n

) +

1

n

log l

';n

(

^

�

s

n

';n

)�

1

n

log

^

l

s

n

';n

(

^

�

s

n

';n

): (30)

Thus,

L(

^

�

s

n

';n

) � L(�

�

)� 2 sup

�2�

jL(�)�

1

n

log l

';n

(�)j+ T

n

(�

�

)� sup

�2�

T

n

(�): (31)

Lemmas 5 and 6 then show that L(�

s

n

';n

) ���!

n!1

L(�

�

) by appli
ation of the uniform strong

law of large numbers. �

A.5 Asymptoti
 eÆ
ien
y of MCML

From the proof of Lemma 6, we know that Q

n

(�

�

)! 1 w.p.1. In order to prove theorem 5

however, a mu
h stronger version of the same result is needed:

Lemma 7 There exists a 
ompa
t neighborhood K of �

�

su
h that

sup

�2K

jQ

n

(�)� 1j ! 0 w.p.1

Proof. By 
ontinuity of � 7! Æ('; �), there exists a 
losed ball K 
entered in �

�

su
h that

for all � 2 K, Æ('; �) < 


0

< 
. Let G

n

denote a �

n

-net 
overing K and f�

j

g

1�j�#fG

n

g

the asso
iated grid points. The grid spa
ing �

n

is set to �

n

= n

�2=�

where � is de�ned in

(H5). G

n

is set so as to minimize the number of grid points while 
overing K, and thus

#fG

n

g � �

�d

n

where d is the dimension of the parameter ve
tor �.

P

'

�

sup

�2K

jQ

n

(�)� 1j � �

�

�

�

�

Y

1:n

�

� #fG

n

gmax

�

j

2G

n

P

'

"

sup

�2B(�

j

;�

n

)

jQ

n

(�)� 1j � �

�

�

�

�

�

Y

1:n

#

;

(32)
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where B(�

j

; �

n

) denotes the ball of radius �

n


entered in �

j

. Applying (H5) in �

j

(see the

proof of Lemma 4) yields,

Q

�

n;j

� Q

n

(�) � Q

+

n;j

for � 2 B(�

j

; �

n

); (33)

where

Q

�

n;j

=

1

s

n

s

n

X

k=1

n

Y

i=1

p(Z

k

n;i

jY

i

; �

j

)

p(Z

k

n;i

jY

i

;')

e

��

�

n

M(Z

k

n;i

;Y

i

)

;

and

Q

+

n;j

=

1

s

n

s

n

X

k=1

n

Y

i=1

p(Z

k

n;i

jY

i

; �

j

)

p(Z

k

n;i

jY

i

;')

e

�

�

n

M(Z

k

n;i

;Y

i

)

:

We now 
onsider the behavior of jQ

+

n;j

�1j in more details (identi
al results are obtained

for jQ

�

n;j

� 1j):

E

'

�

Q

+

n;j

�

�

Y

1:n

�

=

n

Y

i=1

Z

p(zjY

i

; �

j

)e

�

�

n

M(z;Y

i

)

�(dz):

Appli
ations of Jensen's inequality yield,

1 � E

'

�

Q

+

n;j

�

�

Y

1:n

�

� exp

 

n�

�

n

�

1

n

n

X

i=1

log

�

Z

p(zjY

i

; �

j

)e

�M(z;Y

i

)

�(dz)

�

!

; (34)

where � is the 
onstant de�ned in (H5). By appli
ation of the uniform law of large

numbers, the upper bound in (34) is equivalent to

exp

�

n�

�

n

�

E

�

logE

�

j

�

e

�M(Z;Y )

�

�

Y

��

�

;

and thus 
onverges to 1, uniformly on K, as a 
onsequen
e of the 
hoi
e of the grid spa
ing

�

n

and of (H5)-(H6).

Thus, for suÆ
iently large values of n,

P

'

�

jQ

+

n;j

� 1j � �

�

�

Y

1:n

�

� P

'

�

�

�

Q

+

n;j

� E

'

�

Q

+

n;j

�

�

Y

1:n

�

�

�

� �

0

�

�

Y

1:n

�

�

1

�

0

2

V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

;

where �

0

is any positive real number smaller than �. Now,

V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

�

Q

n

i=1

t(Y

i

;'; �

j

)

s

n

n

Y

i=1

Z

~p(zjY

i

;'; �

j

)e

�

�

n

M(z;Y

i

)

�(dz); (35)

where the fun
tion t and ~p are as de�ned in (13). Pro
eeding as in the 
ase of E

'

�

Q

+

n;j

�

�

Y

1:n

�

,

one obtains

1 �

n

Y

i=1

Z

~p(zjY

i

;'; �

j

)e

�

�

n

M(z;Y

i

)

�(dz) � exp

 

n�

�

n

�

1

n

n

X

i=1

log

�

Z

~p(zjY

i

;'; �

j

)e

�M(z;Y

i

)

�(dz)

�

!

;
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and thus the rightmost term of (35) 
onverges uniformly to 1. Hen
e, for n suÆ
iently

large,

V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

= O

 

1

s

n

exp

"

n

 

1

n

n

X

i=1

log t(Y

i

;'; �

j

)

!#!

:

From the uniform law of large numbers,

1

n

P

n

i=1

log t(Y

i

;'; �

j

) 
onverges to Æ('; �

j

), and

thus V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

= O(e

�n(
�


0

)

) where 
 > 


0

.

Using analog results 
on
erning Q

�

n;j

, (32) implies that

P

'

�

sup

�2K

jQ

n

(�)� 1j � �

�

�

�

�

Y

1:n

�

= O(n

2d=�

e

�n(
�


0

)

);

whi
h is summable as required. �

Proof. (Theorem 5) Denote �

n

,

p

n(

^

�

s

n

';n

�

^

�

n

). We will show that �

n

! 0 w.p.1, whi
h

is suÆ
ient to prove Theorem 5 sin
e

p

n(

^

�

s

n

';n

� �

�

) = �

n

+

p

n(

^

�

n

� �

�

):

Sin
e

^

�

s

n

';n

is the maximizer of

^

l

s

n

';n

(�),

log

^

l

s

n

';n

(

^

�

s

n

';n

) � log

^

l

s

n

';n

(

^

�

n

):

Equivalently,

logQ

n

(

^

�

s

n

';n

)� logQ

n

(

^

�

n

) � log l

';n

(

^

�

n

)� log l

';n

(

^

�

s

n

';n

);

� �

1

n

�

T

n

r

2

�

log l

';n

(t

n

^

�

n

+ (1� t

n

)

^

�

s

n

';n

)�

n

; (36)

for some 
onstant t

n

in [0; 1℄. Sin
e (y; �) 7! r

2

�

log g(y; �) satis�es a Wald type 
ondition

at �

�

,

�

1

n

r

2

�

log l

';n

(t

n

^

�

n

+ (1� t

n

)

^

�

s

n

';n

)! I

g

(�

�

):

Be
ause I

g

(�

�

) is positive de�nite, there exists M > 0 su
h that, for n suÆ
iently large,

logQ

n

(

^

�

s

n

';n

)� logQ

n

(

^

�

n

) �Mk�

n

k

2

: (37)

The proof is 
ompleted by appli
ation of Lemma 7. �

B Proofs of Se
tion 5

B.1 Asymptoti
 behavior of the limiting 
ovarian
e

Proof. (Theorem 6) Starting from V

';n

(Y

1:n

) as given by (20), where the fun
tions t, A

and b are de�ned in (13), repeated appli
ations of Lemma 1 for the fun
tions de�ned in

(H9) yield

n

Y

i=1

t(Y

i

;'

n

;

^

�

n

) = exp

�

�

T

n

�

E

�

r

2

'

log t(Y

i

; �

�

; �

�

)

�

+ o(1)

�

�

n

	

;
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n

X

i=1

A(Y

i

;';

^

�

n

) = n [E (A(Y ; �

�

; �

�

)) + o(1)℄ ;

n

X

i=1

b(Y

i

;';

^

�

n

)b(Y

i

;';

^

�

n

)

T

= n

n

E

h

b(Y ; �

�

; �

�

)b(Y ; �

�

; �

�

)

T

i

+ o(1)

o

;

and

"

n

X

i=1

b(Y

i

;';

^

�

n

)

#"

n

X

j=1

b(Y

j

;';

^

�

n

)

#

T

=

n fE [r

'

b(Y ; �

�

; �

�

)℄ + o(1)g �

n

�

T

n

fE [r

'

b(Y ; �

�

; �

�

)℄ + o(1)g

T

:

Theorem 6 follows from

E

�

r

2

'

log t(Y

i

; �

�

; �

�

)

�

= 2I

p

(�

�

);

E [A(Y ; �

�

; �

�

)℄ = I

p

(�

�

);

E

h

b(Y ; �

�

; �

�

)b(Y ; �

�

; �

�

)

T

i

= 0;

E [r

'

b(Y ; �

�

; �

�

)℄ = I

p

(�

�

):

�

B.2 Consisten
y

The proofs for this se
tion 
losely follow those of Se
tion A.4 where the notation intro-

du
ed in (22) now stands for

T

n

(�) =

1

n

�

log

^

l

s

n

'

n

;n

(�)� log l

'

n

;n

(�)

�

:

Lemmas 5 and 6 of Se
tion A.4 are now to be repla
ed respe
tively by Lemmas 8 and 9.

Only the proof of Lemma 9 is given be
ause it signi�
antly di�ers from that of Lemma 6.

Lemma 8 Under (H7), lim

n!1

sup

�2�

T

n

(�) � 0 w.p.1.

Lemma 9 Under (H7) and (H10), T

n

(�

�

)! 0 w.p.1.

Proof. Denoting

R

n

,

 

s

n

Y

k=1

p

n

(Z

k

n;1:n

jY

1:n

;'

n

)

p

n

(Z

k

n;1:n

jY

1:n

; �

�

)

!, 

E

'

n

 

p

n

(Z

k

n;1:n

jY

1:n

;'

n

)

p

n

(Z

k

n;1:n

jY

1:n

; �

�

)

�

�

�

�

�

Y

1:n

!!

s

n

;

one obtains

T

n

(�

�

) � �

1

n

log(R

n

)

1

s

n

�

1

n

n

X

i=1

logE

'

n

�

p(ZjY

i

;'

n

)

p(ZjY

i

; �

�

)

�

�

�

�

Y

i

�

: (38)

Moreover,

lim

n!1

�

1

n

logR

1

s

n

n

� 0;
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sin
e E(R

n

) = 1 (see the proof of Lemma 3). The se
ond term in the r.h.s. of (38) writes

1

n

n

X

i=1

logE

'

n

�

p(ZjY

i

;'

n

)

p(ZjY

i

; �

�

)

�

�

�

�

Y

i

�

=

1

n

n

X

i=1

log t(Y

i

;'

n

; �

�

):

Thus, '

n

! �

�

and (H10) imply that the se
ond term of (38) 
onverges with probability

one to E(log t(Y ; �

�

; �

�

)) = 0. Hen
e,

lim

n!1

T

n

(�

�

) � 0 ;

whi
h, together with Lemma 8, 
ompletes the proof. �
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Figure 1: MCML estimates, re
entered around the maximum likelihood estimate and

res
aled by s

�1=2

, as a fun
tion of the number of iterations s (on a log s
ale) for di�erent

numbers of observation (500 runs of the algorithm, � = 0:9, '�

^

�

n

= �0:1). The bla
k box

on the right features the quartiles 
orresponding to the asymptoti
 normal approximation.

24



0 1 2 3 4 5 6

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Data size 120

number of simulations (log10 scale)

Figure 2: Uns
aled MCML estimates, re
entered around the maximum likelihood esti-

mate, as a fun
tion of the number of iterations (500 runs of the algorithm, � = 0:9,
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^
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n

= �0:1, 120 observations).
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