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Abstrat

While muh used in pratie, latent variable models raise hallenging estimation problems related

with the intratability of their likelihoods. Monte Carlo Maximum Likelihood (MCML) is a

simulation-based approah to likelihood approximation that has been proposed for omplex

latent variable models for whih deterministi optimization proedures suh as the Expetation-

Maximization approah are not appliable. It is based on an importane sampling identity for

the likelihood ratio, where the importane funtion is the omplete model density at a given

parameter value '. This paper studies the asymptoti performane of the MCML method (in

the number of observations n) against the hoie of ' and of the number of simulations s

n

used

in the importane sampling approximation. We provide suÆient onditions for the MCML

estimator to onverge to the true value of the parameter with n. Our results imply in partiular

that the initialization parameter ' must be a

p

n-onsistent estimate. Otherwise, the number of

simulations neessary to attain onvergene inreases exponentially fast with the sample size.
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1 Introdution

Monte Carlo Maximum Likelihood (MCML hereafter), as introdued by Geyer and Thomp-

son (1992), is a widely aepted method for maximum likelihood estimation in ases where

diret omputation and/or maximization of the likelihood is intratable. The method an

be used for quite general models but is partiularly relevant for latent variable models,

possibly with unknown normalizing onstants (see Geyer, 1996, Sandmann and Koopman,

1998, Thompson, 1994). The method is based on an importane sampling identity that

represents the (observed) likelihood ratio g

n

(y

1:n

; �)=g

n

(y

1:n

;') as the expetation of the

omplete likelihood ratio
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for an arbitrary value of the parameter ' (where y

1:n

denotes the sample and Z

1:n

the

orresponding latent variables). The replaement of the expeted ratio by a Monte Carlo

average, where s

n

realizations of Z

1:n

are simulated onditionally on y

1:n

and the pa-

rameter value ', then provides a simulated approximation to the (observed) likelihood

ratio.

Note that the terminology used to desribe some related methods is not yet uni�ed:

the \Simulated Likelihood Ratio" of Billio et al. (1998) is equivalent to the MCML

method, while the \Simulated Maximum Likelihood" approah of Danielson and Rihard

(1993) is distint. The \Simulated Maximum Likelihood Estimator" onsidered by Lee

(1995) is a variation of MCML with improved onvergene properties, but is more limited

in sope and more omputationally intensive. For a more omplete survey of simulation

based approahes, see Gouri�eroux and Monfort (1993). As indiated above, MCML is a

speial ase of importane sampling ideas (see Geyer, 1996) whih is partiularly relevant

in appliations where the sampling density is not hosen from the family of onditional

densities assoiated with the model, as in Sandmann and Koopman (1998).

Geyer (1996) argues that the eÆieny of MCML stems from its simpliity, given that

the unknown likelihood (ratio) is �rst approximated using a single round of simulations

and the approximation is then maximized via a standard maximization tool. Indeed, when

ompared with other generally appliable simulation based approahes to maximum likeli-

hood estimation, like the Stohasti Approximation approah of Younes (1988), the Monte

Carlo EM of Wei and Tanner (1990), the Stohasti EM of Celeux and Diebolt (1985), or

the Stohasti Approximation EM of Lavielle, Delyon and Moulines (1999), a strong in-

entive for using MCML is that onditional simulations are run only one and for a single

�xed value of '. Hene, the maximization and the simulation steps are not nested, unlike

the algorithms above. In Geyer's (1996) terminology, this lassi�es MCML as a stohasti

approximation tehnique, as opposed to these stohasti optimization tehniques. There

is however lear empirial evidene that the hoie of ' has a strong inuene on the

behavior of MCML (see Geyer, 1996, or Billio et al, 1996). While the onvergene to the

maximum likelihood estimator as s

n

goes to in�nity learly holds for a �xed n, as shown

by Geyer (1996) and realled in Setion 2, a deeper and thus asymptoti examination of

the dependene of the method, and of the onvergene of the MCML estimator, on the

parameters ' and s

n

is thus most timely.

After a brief desription of the method in Setion 2, a simple latent variable example

is disussed in Setion 3. This example is truly an illustration, rather than a represen-

tative statistial appliation of the method, sine it orresponds to a trivial ase where

the maximum likelihood estimate is known analytially. For this example, the asymptoti
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variane of the estimates is found to be extremely sensitive to the parameter value ' used

for simulating the unobserved data. This sensitivity is basially exponential in the sample

size n, with larger data sets requiring inreasingly larger Monte Carlo simulations for the

method to atually onverge. It is then shown in Setion 4 that this seemingly ounterin-

tuitive behavior is quite representative of what happens in a large lass of latent variable

models: the number of simulations s

n

has to inrease exponentially fast with n for the

MCML estimator to be onsistent and asymptotially eÆient. In Setion 5, we attain

a more positive result in the sense that the asymptoti ovariane matrix of the MCML

estimate is bounded (in n) when the initialization parameter '

n

is a

p

n-onsistent esti-

mate of the true parameter. In this ase, s

n

an grow at any rate and even be onstant,

and the MCML algorithm will still be onsistent. The overall onlusion of this paper is

therefore that the MCML method should only be used in settings where a preliminary

p

n-onsistent estimate of � is available. A natural andidate is a noninformative Bayes

estimate, given that the MCML algorithm an be omplemented by a parameter simu-

lation stage to provide a Gibbs sampler for the approximation of Bayes estimates, as in

Billio et al. (1998).

For simpliity's sake, we fous on models for whih the probability distribution of the

omplete data is known exatly (that is, inluding the normalizing onstant) and assume

that exat independent sampling from the onditional distribution of the latent variable

is feasible (whih is to say that Gibbs sampling applies for this omponent). Moreover,

the results of Setions 4 and 5 are derived under the more restritive hypothesis that the

random variables from the omplete model (i.e, the atual observations and the latent

variables) are mutually independent. This lass of models inludes in partiular mixture

models. Similar results do hold for more general latent variable models and notably for

hidden Markov models (where the latent variables are assumed to be Markovian, as in

Robert and Titterington, 1998) under the appropriate extensions of tehnial onditions.

2 Conditional onvergene to the maximum likeli-

hood estimate

We �rst onsider the onvergene of the MCML estimates to the maximum likelihood

estimate as the number of simulations of the latent data inreases. Following a remark of

Geyer (1994), this type of onvergene is referred to as \onditional onvergene". In fat,

the properties of the MCML estimates are very di�erent in this setting from those in the

framework of Setions 4 and 5, when the number n of available observations inreases, the

number s

n

of simulations being then a funtion of n. Proofs for this setion are omitted

sine Theorems 1 and 2 are basially restatements of Theorems 4 and 7 of Geyer (1994).

2.1 The MCML Algorithm

We begin with a brief desription of the method and of the assoiated notations. For

a more omplete aount of MCML, inluding its appliation to unnormalized density

funtions, see Geyer (1994, 1996).

Let y

1:n

= (y

1

; : : : ; y

n

) denote the observation and Z

1:n

= (Z

1

; : : : ; Z

n

) the assoiated

vetor of latent variables. The likelihood funtion is then

g

n

(y

1:n

; �) ,

Z

f

n

(y

1:n

; z

1:n

; �)�

n

(dz

1:n

);
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where the omplete data density f

n

(y

1:n

; z

1:n

; �) belongs to a parametri family of positive

funtions, normalized with respet to some dominating measure �

n

, with parameter � 2

� � R

d

. The onditional density of the latent variables is denoted by

p

n

(z

1:n

jy

1:n

; �) ,

(

f

n

(y

1:n

;z

1:n

;�)

g

n

(y

1:n

;�)

if g

n

(y

1:n

; �) > 0,

0 otherwise,

with respet to the appropriate dominating measure (see Billio et al., 1998, for a desrip-

tion of the onditioning issues and of the dominating measures) and P

�

(�jy

1:n

) stands for

the assoiated probability distribution. Furthermore, for a measurable funtion  (y

1:n

; z

1:n

),

we denote by

E

�

[ (y

1:n

;Z

1:n

)jy

1:n

℄ ,

Z

 (y

1:n

; z

1:n

)p

n

(z

1:n

jy

1:n

; �)�

n

(dz

1:n

);

the onditional expetation under parameter value �, and similarly use V ar

�

[�jy

1:n

℄ for

the onditional variane.

MCML is based on the fat that the observed likelihood ratio may be expressed as the

onditional expetation of the omplete data likelihood ratio (see Geyer, 1994):

l

';n

(�) ,

g

n

(y

1:n

; �)

g

n

(y

1:n

;')

=

Z

f

n

(y

1:n

; z

1:n

; �)

f

n
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1:n

; z

1:n

;')

p

n

(z

1:n

jy

1:n

;')�

n

(dz

1:n

); (1)

where ' is any arbitrary point in the parameter spae �, as an be seen by a standard

importane sampling argument. The method builds on this identity by deriving a Monte

Carlo approximation of the likelihood ratio l

';n

(�),

^

l

s

';n

(�) =

1

s

s

X

k=1

f

n

(y

1:n

;Z

k

1:n

; �)

f

n

(y

1:n

;Z

k

1:n

;')

(2)

where the (Z

k

1:n

)'s (k = 1; :::; s) are s simulated repliations of the omplete latent data

vetor, distributed aording to the onditional distribution p

n

(�jy

1:n

;'), where ' is the

same �xed arbitrary point as in (1). The Monte Carlo maximum likelihood (MCML)

estimate

^

�

s

';n

is then de�ned as the maximizer of (2) with respet to �. One of the

advantages of the method is that (2) an be readily adapted to the ase where the omplete

data probability density is only known up to a normalizing onstant as in Geyer (1994).

For simpliity's sake, we however assume here that the normalizing onstant is also known.

Note that we fous on the ase where the Z

k

1:n

's are independent (in k) generations from

p

n

(z

1:n

jy

1:n

;'). We are thus omitting the natural extension to Markov Chain Monte Carlo

simulations. This is an important issue in pratie sine exat independent simulation

is not feasible in many ases. This extension simply requires additional assumptions on

the mixing rate of the hain assoiated with Z

k

1:n

so that the rates of onvergene are

preserved. It will not be onsidered any further in this paper for simpliity's sake.

2.2 Conditional onvergene results

We �rst reall some onvergene results for �xed sample sizes.

Theorem 1 Let ' be an arbitrary point in � and suppose that

(a) � is ompat with a nonempty interior,
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(b) f

n

(y

1:n

; z

1:n

; �)=f

n

(y

1:n

; z

1:n

;') is �

n

almost everywhere ontinuous with respet to

� on �,

() E

'

h

sup

�2�

n

f

n

(y

1:n

;Z

1:n

;�)

f

n

(y

1:n

;Z

1:n

;')

o

�

�

�

y

1:n

i

<1,

(d) l

';n

(�) has a unique maximum on �,

^

�

n

, whih belongs to the interior of �.

Then,

lim

s!1

^

�

s

';n

=

^

�

n

w. p. 1

For a proof of this theorem, see Geyer (1994, Theorem 4), with weaker onditions.

Note that ondition () is not innouous, as it guarantees that the variane of

^

�

s

';n

is

�nite, whih does not always hold, as pointed out by Billio et al. (1998).

Theorem 2 (Geyer, 1994 - Th. 7) Suppose that

(a) The maximum likelihood estimate

^

�

n

is unique and belongs to the interior of �,

(b)

^

�

s

';n

onverges in probability to

^

�

n

,

() g

n

(y

1:n

; �) =

R

f

n

(y

1:n

; z

1:n

; �)�

n

(dz

1:n

) an be di�erentiated twie under the integral

sign w.r.t. �,

(d) s

1=2

r

�

log

^

l

s

';n

(

^

�

n

)

L

���!

s!1

N(0; V

';n

(y

1:n

)),

(e) The observed information matrix D

n

(y

1:n

) = �r

2

�

log g

n

(y

1:n

;

^

�

n

) is positive de�nite,

(f) r

3

�

log l

s

';n

(�) is bounded in probability uniformly in a neighborhood of

^

�

n

.

Then

p

s(

^

�

s

';n

�

^

�

n

)

L

! N(0;�

';n

(y

1:n

)); (3)

where

�

';n

(y

1:n

) =

�

D

n

�1

V

';n

D

n

�1

�

(y

1:n

):

In the setup of this paper (i.e., with exat independent simulations of the latent

variables), the term V

';n

(y

1:n

) an be readily omputed as

V
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) = E

'

"
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�
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)
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�
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�
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#
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n
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;

using assumptions (b) and () of Theorem 2. Then, by de�nition of

^

�

n

,

r

�

f

n
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;

^

�

n
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�

p
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so that

V
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(y
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) = E
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�
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Thus

V

';n

(y

1:n

) = E
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�

n

" 

p

n

(Z

1:n

jy

1:n

;

^

�

n

)

p

n

(Z

1:n
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1:n

;')

!

r

�

log p

n

(Z

1:n
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^

�

n

)r

T
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log p

n

(Z

1:n

jy

1:n

;

^

�

n

)

�

�

�

y

1:n

i

: (4)

Note that D

n

(y

1:n

) is the observed Fisher information matrix; V

';n

(y

1:n

) losely resembles

the Fisher information matrix assoiated with the onditional distribution P

^

�

n

(�jy

1:n

),

save for the presene of the onditional likelihood ratio p

n

(z

1:n

jy

1:n

;

^

�

n

)=p

n

(z

1:n

jy

1:n

;').

Antiipating the results of Setion 4, the asymptoti behavior of the method is mainly

governed by the fat that for most models of interest the onditional likelihood ratio

p

n

(z

1:n

jy

1:n

;

^

�

n

)=p

n

(z

1:n

jy

1:n

;') has an exponentially diverging behavior as n inreases.

Before investigating this general behavior of V

';n

(y

1:n

) in Setion 4, we �rst onsider an

illustrative example.

3 A Simple illustration

3.1 Asymptoti results

Assume that the omplete data onsist of observed salar variables Y

i

, for i = 1; : : : ; n

supplemented by orresponding latent variables Z

i

(also salar) suh that the omplete

data distribution is bivariate normal

�

Y

i

Z

i

�

� N

2

��

�

0

�

;

�

1 �

� 1

��

; (5)

i.e. the observed and latent variables are jointly normal. Moreover, the omplete data

model is assumed to be i.i.d. and the mean of the observation � is the only parameter of

interest, whereas the orrelation � is known and �xed.

Of ourse, in this partiular example, the (observed) maximum likelihood estimate

of � is

^

�

n

= (1=n)

P

n

i=1

y

i

. Note however that the (omplete) maximum likelihood

^

�

n

�

(�=n)

P

n

i=1

z

i

usually di�ers from the observed maximum likelihood estimate (at least if

� 6= 0), so that this example, although extremely simpli�ed, is nontrivial.

The asymptoti ovariane terms as de�ned in Theorem 2 are easily evaluated as

D

n

(y

1:n

) = n; (6)

V

';n

(y

1:n

) =

n�

2

(1� �

2

)

�

1 +

n�

2

1� �

2

(

^

�

n

� ')

2

�

exp

�

n�

2

1� �

2

(

^

�

n

� ')

2

�

: (7)

For this partiular model, V

';n

(y

1:n

) only depends upon the observed data through

^

�

n

the

maximum likelihood estimate. As n inreases, V

';n

(y

1:n

) diverges exponentially fast with

an exponential rate whih is proportional to the squared di�erene between the initial

guess of the parameter value, ', and the atual maximum likelihood estimate

^

�

n

, unless

' also varies with n.
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3.2 Simulation results

In Theorem 2, terms that derease at a rate faster than s

�1=2

are ignored. For �nite

sample sizes however, these terms may play an important role in the performane of the

method. We therefore onduted a series of numerial simulations to illustrate the �nite

sample behavior of MCML.

The MCML is straightforward in this partiular example beause the onditional dis-

tribution (under whih sampling is done) fatorizes through a suÆient statisti with

known distribution: the Monte Carlo approximation to the likelihood ratio l

';n

(�) is then

^

l

s

';n

(y

1:n

; �) =

1

s

s

X

k=1

exp

�

�

n

1� �

2

(� � ')

�

� + '

2

+ �

�

Z

k

�

^

�

n

��

; (8)

with

�

Z

k

= (1=n)

P

n

i=1

Z

k

i

, where (Z

k

1:n

) denotes the kth simulation of the omplete vetor

of latent variables, and

�

Z

k

� N

�

�(

^

�

n

� '); (1� �

2

)=n

�

: (9)

[Figure 1 about here.℄

Figure 1 displays the dispersion of the algorithm estimates as a funtion of the number

of simulations (from one to one million, on a log sale) for di�erent sample sizes. The

quantity displayed is

p

s(

^

�

s

';n

�

^

�

n

), that is the output of the algorithm reentered around

the MLE

^

�

n

and saled by the asymptoti normalizing fator s

�1=2

. Eah boxplot was

obtained from 500 independent runs of the algorithm, using �xed data sets (one for eah

size from 15 to 120) and starting the algorithm from a �xed distane from the MLE

(' �

^

�

n

= �0:1). The blak box on the right of eah �gure orresponds to the quartiles

omputed from the asymptoti variane �

';n

(y

1:n

) assuming normality.

Two interesting features an be observed from Figure 1. The �rst is that, when

omparing the four plots, for a given number of simulations, the normalized estimates

p

s(

^

�

s

';n

�

^

�

n

) get more and more dispersed as the sample size inreases, as expeted in

the form of �

';n

(y

1:n

). The normal quartiles, based on the value of �

';n

(y

1:n

), displayed on

the right of eah plot show that the observed dispersion of the estimates for a large number

of simulations is generally in aordane with the Central Limit Theorem dispersion of

Setion 2, although the asymptoti spread is learly not yet ahieved after 10

6

simulations

for the larger data set (120 observations).

[Figure 2 about here.℄

The seond noteworthy feature is that eah plot, when onsidered from left to right,

shows three di�erent stages. For small numbers of simulations, the normalized dispersion

of the estimates is very small. For moderate numbers of simulations, the dispersion

inreases and the distribution of the normalized estimates is distintively positively skewed

with a heavy positive tail. Finally, for large numbers of simulations the distribution of the

normalized estimates is more symmetri and ompatible with the Central Limit Theorem.

Moreover, the transition between these three stages ours for numbers of simulations

whih inrease with the sample size. This is almost ertainly due to the fat that the

higher order terms whih are negleted when obtaining the CLT of Theorem 2 also exhibit

exponential dependene on the sample size. As a onsequene, for moderate numbers of
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simulations (several hundred to several thousand) and large sample sizes (one hundred

observations or more), the asymptoti stage (third one) is not yet reahed and the bias

term is prevalent. This last point is partiularly lear when looking at the dispersion of

the unsaled reentered estimates (

^

�

s

';n

�

^

�

n

) displayed on Figure 2 (whih orresponds to

the larger data set in Figure 1). For moderate numbers of simulations, the predominant

e�et is thus an important bias of the estimates towards ', as also observed in Billio et

al. (1998) on other models. In the extreme ase where a single simulation is used, it is

easy to hek that

^

�

1

';n

=

^

�

n

� �

�

Z

1

, where

�

Z

1

is distributed from (9), so the bias is equal

to

E(

^

�

1

';n

�

^

�

n

) = �

2

('�

^

�

n

);

whih gives �0:081 in the ase of Figs. 1-2. The bias then dereases slowly with the

number of simulations as it still amounts to �0:017 after 1000 iterations.

3.3 Comparison with the Stohasti EM approah

For omparison purpose, we onsider the appliation of the Stohasti Expetation-

Maximization (or SEM) approah to the same model. In the SEM approah introdued

by Celeux and Diebolt (1985), eah iteration onsists of maximizing the omplete data

likelihood where the missing data is imputed stohastially by drawing the latent variables

aording to their onditional distribution given the urrent estimate of the parameters.

The SEM iterates form a Markovian sequene whih onverges under general onditions

to a stationary distribution (Diebolt and Ip, 1996). Preise haraterization of this limit

law is a diÆult issue (Ip, 1994), exept in some partiular ases suh as the simple ex-

ample onsidered in this setion (see below). Reent results by Nielsen (2000) however

suggest that although the stationary distribution of the SEM iterations annot in general

be diretly related to the maximum likelihood estimate, it nonetheless provides a mean

to onstrut eÆient parameter estimators.

As already noted, the omplete data maximum likelihood estimation of � is given by

^

�

n

� �

�

Z where

�

Z is the normalized onditional mean of the unobserved omponent whih

is distributed aording to (9) (� being our urrent guess of the parameter). Denoting

the sequene of SEM iterates by (

~

�

s

n

)

s�1

, it is then easily heked that

~

�

s+1

n

�

^

�

n

= �

2

(

~

�

s

n

�

^

�

n

) + U

s+1

;

where (U

s

)

s�2

is and iid sequene of zero mean Gaussian random variables with variane

�

2

(1 � �

2

)=n; That is, the sequene of SEM iterates forms and AR 1 Gaussian proess

with stationary distribution

N

�

^

�

n

;

�

2

n(1 + �

2

)

�

: (10)

As suggested by Diebolt and Ip (1996), the ergodi average of (

~

�

k

n

)

1�k�s

yields a rate

p

s

estimate of

^

�

n

with asymptoti variane �

2

=(n(1��

2

)). The above results are onditional

upon a partiular outome of the observations Y

1:n

. Nielsen (2000) however shows that

if

~

�

1

n

denotes the limiting variable distributed aording to the stationary distribution of

SEM for a given value of n,

~

�

1

n

satis�es an unonditional entral limit result, whih may

be written (in our example)

p

n

�

~

�

1

n

� �

�

�

D

�! N

�

0; 1 +

�

2

1 + �

2

�

(11)
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For more general models, it does not hold true that the ergodi average of the SEM

iterates onverges to the MLE for a �xed value of n. However, the dependene on n

observed both in (10) and (11) suggests that it is possible to build eÆient parameter

estimators from the SEM approah with a reasonable number of simulations { see (Nielsen,

2000) for details. This behavior is of ourse in sharp ontrast with that of the onditional

asymptoti variane of the MCML estimate omputed in (6)-(7) whih diverges as n

inreases.

4 Asymptoti properties of MCML under �xed ini-

tialization

In this setion, we show that the behavior observed for the simple example above is

harateristi of a large lass of models where the method applies. For simpliity's sake,

we only onsider i.i.d. omplete data models, i.e. suh that

f

n

(y

1:n

; z

1:n

; �) =

n

Y

i=1

f(y

i

; z

i

; �):

Insight into the following results stems from rewriting (2) as

^

l

s

';n

(�) = l

';n

(�)

"

1

s

s

X

k=1

p

n

(z

k

1:n

jy

1:n

; �)

p

n

(z

k

1:n

jy

1:n

;')

#

: (12)

In fat, MCML is equivalent to approximating the onstant 1 by importane sampling with

p

n

(z

1:n

jy

1:n

; �) as target density and p

n

(z

1:n

jy

1:n

;') as importane (or proposal) density.

But, for identi�able regular models, the supports of these two densities tend to separate as

n goes to in�nity when ' 6= � (see (9) for the example of Setion 3). Thus the importane

weights in (12) degenerate, beoming either very small or very large depending on the

value of �, whih is a well-known ause of instability for the importane sampling method

(Geweke, 1988).

In ontrast with the results of Setion 2, the results in this setion bear on the onver-

gene to the atual value �

�

of the parameter when both n and the number of simulations

s

n

inrease. Note that, sine we are primarily interested in the growth rate of s

n

with

n, the former is expliitly written as a funtion of the latter. For tehnial simpliity

and oherene with Setion 5 (where the initialization of MCML varies with n) we also

onsider that the Z

n;1:n

's are simulated independently for eah sample size n, hene the

notation Z

k

n;i

where 1 � i � n denotes the observation index, 1 � k � s

n

the simulation

index and n refers to the sample size. In a sequential setting, this assumption would be

quite subeÆient, but this is not the problem here, where we are rather fousing on the

asymptoti properties of the MCML estimator.

In addition to the notations P

�

(�jY

1:n

) and E

�

[�jY

1:n

℄ de�ned in Setion 2, we use

P (�) and E[�℄ to denote respetively the distribution and expetation of funtions of

fY

n

g

n2N

, under the true value �

�

of the parameter. The swith from lower ase to upper

ase notation for the observations Y

i

is meant to stress the fat that from now on the

observations themselves will be onsidered as random rather than being �xed.

The �rst item of this setion is Theorem 3 whih desribes the asymptoti behavior of

the limiting ovariane �

';n

(Y

1:n

) featured in Theorem 2 (onditional CLT). The obtained

asymptoti form shows that the number s

n

of simulations should grow exponentially fast

8



with n in order to guarantee that �

';n

(Y

1:n

) remains bounded. In this ase, MCML

estimation is indeed onsistent (Theorem 4) and asymptotially eÆient (Theorem 5) if s

n

has a fast enough exponential growth rate. In pratie, the perspetive of performing suh

large numbers of simulations is obviously unrealisti. As shown in Setion 5, a solution to

this shortoming relies on initializing the MCML algorithm from a

p

n-onsistent estimate

of �.

4.1 Asymptoti onditional ovariane

In the following, we need further regularity onditions in addition to those of Theorems

1-2. For tehnial simpliity, we mostly use basi Wald-type regularity onditions. Denote

t(y;'; �) ,

Z

p(zjy; �)

2

p(zjy;')

�(dz) ;

~p(zjy;'; �) ,

1

t(y;'; �)

p(zjy; �)

2

p(zjy;')

;

A(y;'; �) ,

Z

�

r

�

log p(zjy; �)r

T

�

log p(zjy; �)

�

~p(zjy;'; �)�(dz) ;

b(y;'; �) ,

Z

r

�

log p(zjy; �)~p(zjy;'; �)�(dz) : (13)

We assume that

(H1) The funtions

� (y; �) 7! r

2

�

log g(y; �),

� (y; �) 7! log t(y;'; �)),

� (y; �) 7! A(y;'; �),

� (y; �) 7! b(y;'; �),

� (y; �) 7! b(y;'; �)(b(y;'; �))

T

,

satisfy Wald-type onditions in �

�

.

We moreover assume that the model under onsideration is regular and in partiular that

(H2) I

g

(�) , �E(r

2

�

log g(Y; �)) is positive de�nite at � = �

�

.

Theorem 3 Under the hypotheses of Theorems 1-2, (H1) and (H2),

�

';n

(Y

1:n

) = exp(nÆ('; �

�

) + o(n))

�

I

g

(�

�

)

�1

B('; �

�

)I

g

(�

�

)

�1

+ o(1)

�

w.p.1; (14)

where

Æ('; �

�

) , E(log t(Y ;'; �

�

)) � 0; (15)

I

g

(�

�

) , �E

�

r

2

�

log g(Y ; �

�

)

�

; (16)

and

B('; �

�

) , E [b(Y ;'; �

�

)℄E [b(Y ;'; �

�

)℄

T

:

9



If E [b(Y ;'; �

�

)℄ = 0, then

�

';n

(Y

1:n

) � exp(nÆ('; �

�

) + o(n))

�

1

n

I

g

(�

�

)

�1

C('; �

�

)I

g

(�

�

)

�1

�

w.p.1;

where

C('; �

�

) , E

�

A(Y ;'; �

�

)� b(Y ;'; �

�

)b(Y ;'; �

�

)

T

�

� 0:

Using Jensen's inequality, the exponential rate Æ('; �

�

) introdued in Theorem 3 an

be bounded from below by

Æ('; �

�

) � E [K

p

(Y ;'; �

�

)℄ ;

where

K

p

(Y ;�; �) ,

Z

log

p(zjY ; �)

p(zjY ;�)

p(zjY ; �)�(dz);

is the Kullbak divergene between the onditional distributions at � and �. Thus, exept

in ases where the onditional model is non-identi�able (in the sense that there exist values

of ' 6= �

�

suh that K

p

(Y ;'; �

�

) is null a.e.), the limiting variane �

';n

(Y

1:n

) is dominated

by a fator whih is, in the most favorable ase, of order exp(Æ('; �

�

)n)=n. This result

implies that the number of Monte Carlo simulations must inrease exponentially fast for

the variane to derease with n in (3).

4.2 Consisteny and asymptoti eÆieny

In this setion, we naturally extend the previous result to show that, under some ad-

ditional assumptions, the MCML proedure is (strongly) onsistent when s

n

inreases

exponentially fast with n.

Theorem 4 If the model is identi�able, under the hypotheses of Theorems 1-2, (H2),

and

(H3) (y; �) 7! log g(y; �) satis�es a Wald-type ondition at �

�

,

(H4) The families flog g(y; �); � 2 �g, fkr

�

flog g(y; �)k; � 2 �g

and fkr

2

�

log g(y; �)k; � 2 �g are dominated by integrable funtions

(H5) log p(zjy; �) satis�es a Wald-type ondition for all � 2 �, where the exponent � and

the bounding funtion M() de�ned in (17) may be hosen suh that

� � and M() do not depend �,

� there exists � > 0 suh that

E

�

logE

�

(e

�M(Z;Y )

jY )

�

<1;

for all � in �.

Then, if s

n

= exp(n) with  > Æ('; �

�

) as in (15),

^

�

s

n

';n

onverges to �

�

with probability

one.
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Theorem 5 Under the hypotheses of Theorem 4 and assuming that

(H6) The parametri funtions

� log t(y;'; �),

� log

�
R

p(zjy; �)e

�M(z;y)

�(dz)

�

,

� log

�
R

~p(zjy;'; �)e

�M(z;y)

�(dz)

�

,

are dominated by integrable funtions independent of �,

p

n(

^

�

s

n

';n

� �

�

)

L

! N(0; I

g

(�

�

)

�1

)

Note that the ondition  > Æ('; �

�

) indeed imply that

p

n(

^

�

s

n

';n

�

^

�

n

) tends to zero

in probability (see appendix A.5), and thus the asymptoti eÆieny of MCML simply

follows as a onsequene of the standard eÆieny properties of the maximum likelihood

estimator. The ase where

^

�

s

n

';n

�

^

�

n

is exatly of order n

�1=2

, that is when MCML is

p

n-

onsistent but not neessarily asymptotially eÆient, is somewhat arti�ial (remember

that Æ('; �

�

) is not known in pratie) and has not been investigated.

5 Asymptoti behavior of MCML under onsistent

initialization

The main message of Setion 4 is that MCML, used with an arbitrary value of ' does not

perform well for large sample sizes beause the number of simulations has to be inreased

exponentially in order to ounter the augmentation of the variane. However, (14) and

(15) (see also (7) for the example of Setion 3) suggest that s

n

may be allowed to grow

muh more slowly if the parameter value ' used in the simulations stays \lose enough

to" �

�

(in the sense of the Kullbak divergene). Exept for the trivial ase where ' = �

�

,

this requirement annot hold when simulating from a single �xed value of ' as in Setion

4. We thus onsider in this setion that a preliminary sequene '

n

of parameter estimates

is available. That is, for a given sample size, we assume that the MCML algorithm is run

from an estimate '

n

, rather than an arbitrary �xed value '.

Our assumptions on this preliminary sequene of estimates are

(H7) The sequene f'

n

g

n2N

is independent of the observations fY

n

g

n2N

used for om-

puting the MCML estimates, and satis�es '

n

! �

�

,

(H8)

p

nk'

n

� �

�

k is bounded from above.

As previously, the simulations fZ

k

n;i

g

n2N;1�i�n;1�k�s

n

are onditionally independent given

the sequene f'

n

g

n2N

with Z

k

n;i

depending only upon '

n

. An interesting extension of (H7)

would of ourse onsist of allowing the sequene f'

n

g

n2N

to depend upon the observations

(up to time index n). A loser look at the proofs in appendix A.5 however shows that

suh an extension is not tratable with the tehnique we are using. We thus fous on the

simpler ase of independent preliminary estimates.

We �rst show in Setion 5.1 that (H7) is not suÆient and that (H8) is neessary

to guarantee that the limiting onditional ovariane matrix of Theorem 2 is bounded.

We then show that the MCML algorithm initialized with '

n

is onsistent for an arbitrary

hoie of s

n

.
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5.1 Asymptoti onditional ovariane

We �rst provide an equivalent to Theorem 3 where the leading term is no longer expo-

nential.

Theorem 6 Under the hypotheses of Theorems 1{2, (H2), (H7), and assuming that

(H9) The funtions

� (y;'; �) 7! r

2

'

log t(y;'; �),

� (y;'; �) 7! A(y;'; �),

� (y;'; �) 7! r

'

b(y;'; �),

� (y;'; �) 7! b(y;'; �)(b(y;'; �))

T

,

satisfy Wald-type onditions at ('; �) = (�

�

; �

�

),

then

�

'

n

;n

(Y

1:n

) = exp

�

�

T

n

[I

p

(�

�

) + o(1)℄ �

n

�

�

1

n

I

g

(�

�

)

�1

[I

p

(�

�

) + o(1)℄

�

I

p

(�

�

)

�1

+ �

n

�

T

n

�

[I

p

(�

�

) + o(1)℄ I

g

(�

�

)

�1

�

;

where

�

n

,

p

n(

^

�

n

� '

n

);

and

I

p

(�

�

) , E

�

Z

r

�

log p(zjY ; �

�

)r

�

log p(zjY ; �

�

)

T

p(zjY ; �

�

)�(dz)

�

:

Interestingly enough, Theorem 6 indiates that the behavior of the limiting onditional

ovariane matrix �

'

n

;n

(Y

1:n

) depends only on �

n

=

p

n(

^

�

n

� '

n

) as n tends to in�nity.

As a onsequene, the onsisteny of the '

n

's is not suÆient to guarantee satisfatory

onvergene properties for the MCML method, sine '

n

must onverge suÆiently fast,

that is with a rate of at least n

�1=2

. Indeed, (H8) together with the asymptoti normality

of

^

�

n

and the assumption that f'

n

g

n2N

is independent of the observations imply that

p

n(

^

�

n

� '

n

) onverges in distribution, and hene that �

'

n

;n

(Y

1:n

) is an O

p

(1).

5.2 Consisteny

The above remark implies the following result:

Theorem 7 Under the hypotheses of Theorems 1, 2 and 4, (H7),

(H10) (y; ') 7! log t(y;'; �

�

) satis�es a Wald-type ondition at ' = �

�

,

and assuming in addition that the model is identi�able, the MCMLE

^

�

s

n

'

n

;n

onverges to �

�

w.p.1.

The proof of this theorem is similar to that of Theorem 4 in Setion 4, the only

di�erene being between Lemma 9 and Lemma 6, where the onvergene of

1

n

log

 

1

s

n

s

n

X

k=1

p

n

(Z

k

n;1:n

jY

1:n

; �

�

)

p

n

(Z

k

n;1:n

jY

1:n

;'

n

)

!
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to 0 is a onsequene of '

n

onverging to �

�

rather than of s

n

diverging exponentially fast

to in�nity. Note that the result of Theorem 7 holds even when s

n

= C, where C is any

�xed integer. This generalizes the result observed in Setion 3, where

^

�

1

'

n

;n

= (1� �

2

)

^

�

n

+ �

2

'

n

+ �

r

1� �

2

n

U

n

; U

n

� N(0; 1);

with U

n

independent from

^

�

n

, whih implies that

^

�

1

'

n

;n

is a

p

n-onsistent estimate of �

�

under (H7) and (H8).

More surprisingly, Theorem 7 does not rely on (H8). This ounterintuitive result

follows from '

n

being a onsistent estimate of �

�

. However, Theorem 6 as well as the

example of Setion 3 suggests that (H8) is indeed neessary when onsidering the rate of

onvergene of

^

�

s

n

'

n

;n

to �

�

. At this point, however, we annot extend Theorem 5 when '

n

depends on n.

6 Conlusion

We have presented results whih demonstrate that the MCML method su�ers from severe

drawbaks in terms of robustness to the hoie of the parameter value ' used for simu-

lating the latent variables. The fat that the variane of the MCML estimator inreases

exponentially fast with the sample size n implies that the validity of the approximation of

the likelihood funtion and in partiular of the maximum likelihood estimate are learly

restrited to small values of n, for given values of s

n

. Asymptotially the relevane of

the method an only be argued in ases where the importane value ' is a onsistent

estimate of �

�

. In pratie, MCML should thus be used in onjuntion with another on-

sistent maximum likelihood estimation method, as suggested by Geyer (1996) and Billio

et al. (1998), like noninformative Bayes estimators. Moreover, this study does not shed

any light on the proposal of iterative MCML of Geyer (1996), where the solution of one

MCML run is used as the referene value ' for the next MCML run.

More generally, these results suggest that simulation based numerial optimization (or

at least stohasti approximation in numerial optimization) an hardly be arried out

without somehow restriting the range of plausible values of � as the sample size inreases.

Therefore, nesting the maximization (or parameter searh) stage and the latent variable

simulation stage within one another seems to some extent unavoidable for this type of

method.

Appendix

A Proofs of Setion 4

Before onsidering Theorems 3-5, we �rst state two tehnial lemmas whih are used

repeatedly in the sequel.

A.1 Wald-type ondition

De�nition 1 (Wald-type ondition) Let  : (R

p

� � ! R

q

) denote an integrable

parameterized funtion.  satis�es a Wald-type ondition at �, if

13



� Ek (Y ; �)k <1,

� There exist � > 0 and � > 0 suh that

sup

k���k��

k (y; �)�  (y; �)k

k� � �k

�

�M(y) for all y; (17)

where M(y) is a positive Borel funtion suh that E(M(Y )) <1.

Lemma 1 Assume that  : (R

p

� � ! R

q

) satis�es a Wald-type ondition at � and let

f�

n

g

n�0

denote a sequene suh that lim

n!1

�

n

= � w.p.1. Then,

n

X

i=1

 (Y

i

; �

n

) = nE f (Y ; �)g+ o(n) w.p.1.

A.2 Conditional Borel-Cantelli Lemma

Lemma 2 Let F

n

denote a family of Borel funtions,

+1

X

n=1

P

'

�

F

n

(Z

1:s

n

n;1:n

;Y

1:n

) 2 B

�

�

Y

1:n

�

< +1

implies that, w.p.1, F

n

(Z

1:s

n

n;1:n

;Y

1:n

) 2 B



for suÆiently large n's.

This lemma is a simple onsequene of the remarks that Z

k

n;i

and Z

k

0

n

0

;i

0

are onditionally

independent given fY

n

g

n2N

whenever (n; i; k) 6= (n

0

; i

0

; k

0

), and that Z

k

n;i

depends only

upon Y

i

.

A.3 Asymptoti behavior of the limiting ovariane of MCML

estimates

The following result is needed in the proof of Theorem 3.

Proposition 1 Under the assumptions of Theorems 1{2 and (H1),

D

n

(Y

1:n

) = nI

g

(�

�

) + o(n); (18)

almost surely, where I

g

(�

�

) is the Fisher information matrix de�ned by (16).

Proof. Sine

^

�

n

minimizes g

n

(Y

1:n

; �) in a point whih belongs to the interior of �,

D

n

(Y

1:n

) = �r

2

�

log g

n

(Y

1:n

;

^

�

n

) = �

n

X

i=1

r

2

�

log g(Y

i

;

^

�

n

): (19)

Lemma 1 along with (H1) omplete the proof. �

The proof of Theorem 3 then goes as follows:

14



Proof. (Theorem 3) The variane V

';n

(Y

1:n

), de�ned in (4), an be rewritten as

V

';n

(Y

1:n

) =

n

Y

i=1

t(Y

i

;';

^

�

n

)

�

"

n

X

i=1

A(Y

i

;';

^

�

n

) �

n

X

i=1

b(Y

i

;';

^

�

n

)b(Y

i

;';

^

�

n

)

T

+ (

n

X

i=1

b(Y

i

;';

^

�

n

))(

n

X

j=1

b(Y

j

;';

^

�

n

))

T

#

: (20)

The produt

Q

n

i=1

t(Y

i

;';

^

�

n

) an be rewritten as

exp

n

X

i=1

log t(Y

i

;';

^

�

n

):

The result of Theorem 3 is then obtained by appliations of Lemma 1 for the funtions

de�ned in (H1). In the partiular ase where E(b(Y ;'; �

�

)) = 0, the term between

brakets in (20) an be bounded from below by its �rst two terms whih are of order n.

Finally, C('; �

�

) is easily seen to be positive sine A(Y ;'; �

�

) � b(Y ;'; �

�

)b(Y ;'; �

�

)

T

is

the ovariane matrix of r

T

�

log p(ZjY ; �) under the probability measure ~p(zjy;'; �)�(dz).

�

A.4 Consisteny of MCML

Denote

Q

n

(�) ,

^

l

s

n

';n

(�)

l

';n

(�)

; (21)

and

T

n

(�) ,

1

n

logQ

n

(�): (22)

Assumption (H3) implies that

log l

';n

(�)

n

onverges w.p.1 to

L(�) , �K

g

(�; �

�

) +K

g

(�

�

; '); (23)

where K

g

(�; �) denotes the Kullbak divergene between � and �. For an identi�able

model, �

�

is the unique minimizer of K

g

(�; �

�

). The proof of Theorem 4 thus proeeds as

follows: �rst, we show that T

n

(�) is bounded from above by 0 (w.p.1) uniformly in � for

suÆiently large values of n (Lemma 5), and, seond, we show that T

n

(�

�

) onverges to 0

w.p.1.

Lemma 3 For any � in �,

lim

n!1

T

n

(�) � 0 w.p.1.
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Proof.

Q

n

(�) =

1

s

n

s

n

X

k=1

p

n

(Z

k

n;1:n

jY

1:n

; �)

p

n

(Z

k

n;1:n

jY

1:n

;')

;

and thus E

'

(Q

n

(�)jY

1:n

) = 1. As a onsequene, P

'

(Q

n

(�)=(n(logn)

1+

)jY

1:n

) is summable

for any  > 0. Appliation of the onditional Borel-Cantelli Lemma then shows that

Q

n

(�)=n(logn)

1+

= o(1) w.p.1 and hene that lim

n!1

T

n

(�) � 0 w.p.1. �

The following lemma ensures that under some additional regularity onditions on

p(zjy; �), T

n

() an be bounded from above by an arbitrary positive onstant, uniformly

in an open neighborhood of �.

Lemma 4 Under (H5), for all � 2 � and all � > 0, there exist �

�;�

> 0 and N

�;�

2 N

suh that for all n � N

�;�

,

sup

�

0

2B(�;�

�;�

)

T

n

(�

0

) < �: (24)

Proof. Let � be a stritly positive real number, and � an arbitrary point of �. For

suÆiently small values of �, (H5) implies

8(z; y) 2 R

2

,

p(zjy; �

0

)

p(zjy; �)

� exp (�

�

M(z; y)) ; (25)

for any �

0

2 B(�; �), the open ball of radius � entered in �. Then,

T

n

(�

0

) �

1

n

log

"

1

s

n

s

n

X

k=1

n

Y

i=1

p(Z

k

n;i

jY

i

; �)

p(Z

k

n;i

jY

i

;')

exp

�

�

�

M(Z

k

i

; Y

i

)

�

#

: (26)

Denoting by D

n

(�; �) the term between brakets in (26),

1

n

logD

n

(�; �) =

1

n

log

D

n

(�; �)

E

�

(D

n

(�; �)jY

1:n

)

+

1

n

logE

�

(D

n

(�; �)jY

1:n

): (27)

The �rst term in the r.h.s. of (27) an be shown to verify

lim

n!1

1

n

log

D

n

(�; �

�;�

)

E

�

(D

n

(�; �

�;�

)jY

1:n

)

� 0;

proeeding as in the proof of Lemma 3. The seond term in the r.h.s. of (27) writes

1

n

logE

�

(D

n

(�; �)jY

1:n

) =

1

n

n

X

i=1

logE

�

(exp(�

�

M(Z; Y

i

))jY

i

);

= E [logE

�

(exp(�

�

M(Z; Y ))jY )℄ + o(1) ;

that is, onverges to 0 as � ! 0. �

The proof of the following lemma is omitted sine it is a diret orollary of Lemma 4

under ompatness of �.

Lemma 5 Under assumptions (H5) and (H7), lim

n!1

sup

�2�

T

n

(�) � 0 w.p.1.

Lemma 6 T

n

(�

�

)! 0 w.p.1.
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Proof. In the ourse of proving Lemma 3, we have already seen that E

'

(Q

n

(�

�

)jY

1:n

) = 1,

moreover

V ar

'

[Q

n

(�

�

)jY

1:n

℄ �

1

s

n

Z

p

2

n

(Z

n;1:n

jY

1:n

; �

�

)

p

n

(Z

n;1:n

jY

1:n

;')

�

n

(Z

n;1:n

);

�

1

s

n

exp

 

n

X

i=1

log t(Y

i

;'; �

�

)

!

; (28)

where t() was de�ned in (13). For s

n

= exp(n), (H1) implies that the upper bound

in (28) is summable, and hene that Q

n

(�

�

) ! 1 w.p.1 by appliation of the onditional

Borel-Cantelli Lemma. �

Proof. (Theorem 4) First note that

1

n

log l

';n

(�) ! L(�) where L(�) is de�ned by (23).

Now, by de�nition of

^

�

s

n

';n

1

n

log

^

l

s

n

';n

(

^

�

s

n

';n

) �

1

n

log

^

l

s

n

';n

(�

�

); (29)

whih is equivalent to

L(

^

�

s

n

';n

) � L(�

�

)� L(�

�

) +

1

n

log l

';n

(�

�

)�

1

n

log l

';n

(�

�

) +

1

n

log

^

l

s

n

';n

(�

�

)

+ L(

^

�

s

n

';n

)�

1

n

log l

';n

(

^

�

s

n

';n

) +

1

n

log l

';n

(

^

�

s

n

';n

)�

1

n

log

^

l

s

n

';n

(

^

�

s

n

';n

): (30)

Thus,

L(

^

�

s

n

';n

) � L(�

�

)� 2 sup

�2�

jL(�)�

1

n

log l

';n

(�)j+ T

n

(�

�

)� sup

�2�

T

n

(�): (31)

Lemmas 5 and 6 then show that L(�

s

n

';n

) ���!

n!1

L(�

�

) by appliation of the uniform strong

law of large numbers. �

A.5 Asymptoti eÆieny of MCML

From the proof of Lemma 6, we know that Q

n

(�

�

)! 1 w.p.1. In order to prove theorem 5

however, a muh stronger version of the same result is needed:

Lemma 7 There exists a ompat neighborhood K of �

�

suh that

sup

�2K

jQ

n

(�)� 1j ! 0 w.p.1

Proof. By ontinuity of � 7! Æ('; �), there exists a losed ball K entered in �

�

suh that

for all � 2 K, Æ('; �) < 

0

< . Let G

n

denote a �

n

-net overing K and f�

j

g

1�j�#fG

n

g

the assoiated grid points. The grid spaing �

n

is set to �

n

= n

�2=�

where � is de�ned in

(H5). G

n

is set so as to minimize the number of grid points while overing K, and thus

#fG

n

g � �

�d

n

where d is the dimension of the parameter vetor �.

P

'

�

sup

�2K

jQ

n

(�)� 1j � �

�

�

�

�

Y

1:n

�

� #fG

n

gmax

�

j

2G

n

P

'

"

sup

�2B(�

j

;�

n

)

jQ

n

(�)� 1j � �

�

�

�

�

�

Y

1:n

#

;

(32)
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where B(�

j

; �

n

) denotes the ball of radius �

n

entered in �

j

. Applying (H5) in �

j

(see the

proof of Lemma 4) yields,

Q

�

n;j

� Q

n

(�) � Q

+

n;j

for � 2 B(�

j

; �

n

); (33)

where

Q

�

n;j

=

1

s

n

s

n

X

k=1

n

Y

i=1

p(Z

k

n;i

jY

i

; �

j

)

p(Z

k

n;i

jY

i

;')

e

��

�

n

M(Z

k

n;i

;Y

i

)

;

and

Q

+

n;j

=

1

s

n

s

n

X

k=1

n

Y

i=1

p(Z

k

n;i

jY

i

; �

j

)

p(Z

k

n;i

jY

i

;')

e

�

�

n

M(Z

k

n;i

;Y

i

)

:

We now onsider the behavior of jQ

+

n;j

�1j in more details (idential results are obtained

for jQ

�

n;j

� 1j):

E

'

�

Q

+

n;j

�

�

Y

1:n

�

=

n

Y

i=1

Z

p(zjY

i

; �

j

)e

�

�

n

M(z;Y

i

)

�(dz):

Appliations of Jensen's inequality yield,

1 � E

'

�

Q

+

n;j

�

�

Y

1:n

�

� exp

 

n�

�

n

�

1

n

n

X

i=1

log

�

Z

p(zjY

i

; �

j

)e

�M(z;Y

i

)

�(dz)

�

!

; (34)

where � is the onstant de�ned in (H5). By appliation of the uniform law of large

numbers, the upper bound in (34) is equivalent to

exp

�

n�

�

n

�

E

�

logE

�

j

�

e

�M(Z;Y )

�

�

Y

��

�

;

and thus onverges to 1, uniformly on K, as a onsequene of the hoie of the grid spaing

�

n

and of (H5)-(H6).

Thus, for suÆiently large values of n,

P

'

�

jQ

+

n;j

� 1j � �

�

�

Y

1:n

�

� P

'

�

�

�

Q

+

n;j

� E

'

�

Q

+

n;j

�

�

Y

1:n

�

�

�

� �

0

�

�

Y

1:n

�

�

1

�

0

2

V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

;

where �

0

is any positive real number smaller than �. Now,

V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

�

Q

n

i=1

t(Y

i

;'; �

j

)

s

n

n

Y

i=1

Z

~p(zjY

i

;'; �

j

)e

�

�

n

M(z;Y

i

)

�(dz); (35)

where the funtion t and ~p are as de�ned in (13). Proeeding as in the ase of E

'

�

Q

+

n;j

�

�

Y

1:n

�

,

one obtains

1 �

n

Y

i=1

Z

~p(zjY

i

;'; �

j

)e

�

�

n

M(z;Y

i

)

�(dz) � exp

 

n�

�

n

�

1

n

n

X

i=1

log

�

Z

~p(zjY

i

;'; �

j

)e

�M(z;Y

i

)

�(dz)

�

!

;
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and thus the rightmost term of (35) onverges uniformly to 1. Hene, for n suÆiently

large,

V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

= O

 

1

s

n

exp

"

n

 

1

n

n

X

i=1

log t(Y

i

;'; �

j

)

!#!

:

From the uniform law of large numbers,

1

n

P

n

i=1

log t(Y

i

;'; �

j

) onverges to Æ('; �

j

), and

thus V ar

'

�

Q

+

n;j

�

�

Y

1:n

�

= O(e

�n(�

0

)

) where  > 

0

.

Using analog results onerning Q

�

n;j

, (32) implies that

P

'

�

sup

�2K

jQ

n

(�)� 1j � �

�

�

�

�

Y

1:n

�

= O(n

2d=�

e

�n(�

0

)

);

whih is summable as required. �

Proof. (Theorem 5) Denote �

n

,

p

n(

^

�

s

n

';n

�

^

�

n

). We will show that �

n

! 0 w.p.1, whih

is suÆient to prove Theorem 5 sine

p

n(

^

�

s

n

';n

� �

�

) = �

n

+

p

n(

^

�

n

� �

�

):

Sine

^

�

s

n

';n

is the maximizer of

^

l

s

n

';n

(�),

log

^

l

s

n

';n

(

^

�

s

n

';n

) � log

^

l

s

n

';n

(

^

�

n

):

Equivalently,

logQ

n

(

^

�

s

n

';n

)� logQ

n

(

^

�

n

) � log l

';n

(

^

�

n

)� log l

';n

(

^

�

s

n

';n

);

� �

1

n

�

T

n

r

2

�

log l

';n

(t

n

^

�

n

+ (1� t

n

)

^

�

s

n

';n

)�

n

; (36)

for some onstant t

n

in [0; 1℄. Sine (y; �) 7! r

2

�

log g(y; �) satis�es a Wald type ondition

at �

�

,

�

1

n

r

2

�

log l

';n

(t

n

^

�

n

+ (1� t

n

)

^

�

s

n

';n

)! I

g

(�

�

):

Beause I

g

(�

�

) is positive de�nite, there exists M > 0 suh that, for n suÆiently large,

logQ

n

(

^

�

s

n

';n

)� logQ

n

(

^

�

n

) �Mk�

n

k

2

: (37)

The proof is ompleted by appliation of Lemma 7. �

B Proofs of Setion 5

B.1 Asymptoti behavior of the limiting ovariane

Proof. (Theorem 6) Starting from V

';n

(Y

1:n

) as given by (20), where the funtions t, A

and b are de�ned in (13), repeated appliations of Lemma 1 for the funtions de�ned in

(H9) yield

n

Y

i=1

t(Y

i

;'

n

;

^

�

n

) = exp

�

�

T

n

�

E

�

r

2

'

log t(Y

i

; �

�

; �

�

)

�

+ o(1)

�

�

n

	

;
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n

X

i=1

A(Y

i

;';

^

�

n

) = n [E (A(Y ; �

�

; �

�

)) + o(1)℄ ;

n

X

i=1

b(Y

i

;';

^

�

n

)b(Y

i

;';

^

�

n

)

T

= n

n

E

h

b(Y ; �

�

; �

�

)b(Y ; �

�

; �

�

)

T

i

+ o(1)

o

;

and

"

n

X

i=1

b(Y

i

;';

^

�

n

)

#"

n

X

j=1

b(Y

j

;';

^

�

n

)

#

T

=

n fE [r

'

b(Y ; �

�

; �

�

)℄ + o(1)g �

n

�

T

n

fE [r

'

b(Y ; �

�

; �

�

)℄ + o(1)g

T

:

Theorem 6 follows from

E

�

r

2

'

log t(Y

i

; �

�

; �

�

)

�

= 2I

p

(�

�

);

E [A(Y ; �

�

; �

�

)℄ = I

p

(�

�

);

E

h

b(Y ; �

�

; �

�

)b(Y ; �

�

; �

�

)

T

i

= 0;

E [r

'

b(Y ; �

�

; �

�

)℄ = I

p

(�

�

):

�

B.2 Consisteny

The proofs for this setion losely follow those of Setion A.4 where the notation intro-

dued in (22) now stands for

T

n

(�) =

1

n

�

log

^

l

s

n

'

n

;n

(�)� log l

'

n

;n

(�)

�

:

Lemmas 5 and 6 of Setion A.4 are now to be replaed respetively by Lemmas 8 and 9.

Only the proof of Lemma 9 is given beause it signi�antly di�ers from that of Lemma 6.

Lemma 8 Under (H7), lim

n!1

sup

�2�

T

n

(�) � 0 w.p.1.

Lemma 9 Under (H7) and (H10), T

n

(�

�

)! 0 w.p.1.

Proof. Denoting

R

n

,

 

s

n

Y

k=1

p

n

(Z

k

n;1:n

jY

1:n

;'

n

)

p

n

(Z

k

n;1:n

jY

1:n

; �

�

)

!, 

E

'

n

 

p

n

(Z

k

n;1:n

jY

1:n

;'

n

)

p

n

(Z

k

n;1:n

jY

1:n

; �

�

)

�

�

�

�

�

Y

1:n

!!

s

n

;

one obtains

T

n

(�

�

) � �

1

n

log(R

n

)

1

s

n

�

1

n

n

X

i=1

logE

'

n

�

p(ZjY

i

;'

n

)

p(ZjY

i

; �

�

)

�

�

�

�

Y

i

�

: (38)

Moreover,

lim

n!1

�

1

n

logR

1

s

n

n

� 0;
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sine E(R

n

) = 1 (see the proof of Lemma 3). The seond term in the r.h.s. of (38) writes

1

n

n

X

i=1

logE

'

n

�

p(ZjY

i

;'

n

)

p(ZjY

i

; �

�

)

�

�

�

�

Y

i

�

=

1

n

n

X

i=1

log t(Y

i

;'

n

; �

�

):

Thus, '

n

! �

�

and (H10) imply that the seond term of (38) onverges with probability

one to E(log t(Y ; �

�

; �

�

)) = 0. Hene,

lim

n!1

T

n

(�

�

) � 0 ;

whih, together with Lemma 8, ompletes the proof. �
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Figure 1: MCML estimates, reentered around the maximum likelihood estimate and

resaled by s

�1=2

, as a funtion of the number of iterations s (on a log sale) for di�erent

numbers of observation (500 runs of the algorithm, � = 0:9, '�

^

�

n

= �0:1). The blak box

on the right features the quartiles orresponding to the asymptoti normal approximation.
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Figure 2: Unsaled MCML estimates, reentered around the maximum likelihood esti-

mate, as a funtion of the number of iterations (500 runs of the algorithm, � = 0:9,

'�

^

�

n

= �0:1, 120 observations).
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