
Re
ursive 
omputation of smoothed fun
tionals of hidden

Markovian pro
esses using a parti
le approximation

Olivier Capp�e

Centre National de la Re
her
he S
ienti�que

et E
ole Nationale Sup�erieure des T�el�e
ommuni
ations

�

, Paris

Corresponding Address:

O. Capp�e

ENST, Dpt. TSI

46 rue Barrault

75634 Paris 
edex 13, Fran
e

email: 
appe�tsi.enst.fr

phone: +33 1 45 81 71 11 / fax: + 33 1 45 88 79 35

Abstra
t

We 
onsider parameter estimation for a 
lass of dis
rete-time partially observed Marko-

vian pro
esses, known as swit
hing autoregressive models, whi
h are used in a variety of

appli
ations whi
h range from �nan
e (sto
hasti
 volatility), to signal pro
essing (de
onvo-

lution) or tele
ommuni
ations (teletraÆ
 modeling). For su
h models, maximum likelihood

estimation (be it in the Expe
tation-Maximization approa
h or via dire
t 
omputation of the

log-likelihood and its derivatives) implies the 
omputation of smoothed additive fun
tionals

of the hidden pro
ess. A little known property of the 
lass of models under 
onsideration

is that there exists a generi
 �ltering (or re
ursive in time) pro
edure for 
omputing su
h

smoothed additive fun
tionals. However, when the hidden pro
ess is not �nite valued, this

pro
edure 
annot, in general, be implemented exa
tly. We thus propose an approximate

simulation-based �ltering s
heme based on the sequential Monte Carlo (or parti
le �ltering)

approa
h.

Keywords: Hidden Markov Models, State Spa
e Model, Swit
hing Autoregression, Sequential

Monte Carlo, Parti
le Filtering, Maximum Likelihood, Expe
tation-Maximization

1 Introdu
tion

1.1 Model, hypotheses and notations

We 
onsider parametri
 models 
onsisting of a dis
rete time homogeneous Markovian pro
ess

(X

t

)

t�1

on a general Polish state spa
e E with Borel �-�eld B(E), indire
tly observed through

R

d

valued observations (Y

t

)

t�1

. A parti
ular 
ase of interest is when the Y

t

s are 
onditionally

independent given the X

t

s, that is when
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for any 
hoi
e of the integer k, of the time indexes t

1

to t

k

and of the Borel subsets of R

d

B

1

; : : : B

k

. g

�

is a family of 
onditional probability density fun
tions (or simply, pdf) with

respe
t to (abbreviated to \wrt" hen
eforth) Lebesgue measure on R

d

, and the supers
ript �

denotes the dependen
e upon the parameter. Depending on the 
ontext, (1) is generally referred

to as a Hidden Markov Model or HMM (Ma
Donald and Zu

hini, 1997), or as a state spa
e

model (Bro
kwell and Davis, 1991, x12). It turns out that the methods investigated in this

paper apply as well to a slightly more general model known as the swit
hing autoregressive

model whi
h we shall 
onsider for greater generality. In the swit
hing autoregressive model

(Hamilton, 1994, x22), it is assumed that

P

�

(Y

1

2 B

1

; : : : Y

t

2 B

t

jX

1

; : : : X

t

) =

Z

B

1

� � �

Z

B

t

"

h

�

(y

1

jX

1

)

t

Y

s=2

g

�

(y

s

jX

s

; y

s�1

)

#

dy

1

: : : dy

t

(2)

where h

�

is a probability density wrt Lebesgue measure on R

d

. Thus (1) is a parti
ular example

of (2) where g

�

(y

s

jx

s

; y

s�1

) does not depend on the previous observation y

s�1

.

Let R denote a generi
 transition kernel, � and � two measures and x a point, the following

standard notations will be used: d�=d�, the Radon-Nikodym derivative of the � wrt �; �R, the

image of the measure � obtained when applying one step of the transition kernel; Æ

x

, the Dira


mass in x, and R

x

, the measure Æ

x

R. C(E;R

q

) and C(E

2

;R

q

) respe
tively denote the spa
e of


ontinuous R

q

valued fun
tions on E and E �E.

We further assume that the transition kernel K

�

of the hidden 
hain (X

t

) is dominated by

some Radon measure � on E (for all values of �) and denote by k

�

(x; �) the pdf of K

�

x

wrt �.

Likewise, we denote by �

�

1

the probability measure 
orresponding to the initial state X

1

and its

pdf (wrt �) is denoted by l

�

.

1.2 Motivations

The main 
ontribution of the paper 
onsists in a systemati
 s
heme for 
omputing re
ursively

in the time index t quantities of the form

Q

�

t

=

t

X

s=1

E

�

�

m

�

s

(X

s

)

�

�

�

Y

1:t

�

+

t

X

s=2

E

�

�

r

�

s

(X

s�1

;X

s

)

�

�

�

Y

1:t

�

(3)

where the subs
ripting \r :s" is generi
ally used to denote the 
olle
tion of variables with time

indexes from r to s (in
luded); (m

s

)

�

s�1

2 C(E;R

q

) and (r

s

)

�

s�2

2 C(E

2

;R

q

) (for some q) are

fun
tions whi
h may depend on the parameter �. Q

�

t

as de�ned in (3) is a smoothed additive

fun
tional of the hidden 
hain 
onditioned on the observations Y

1

up to Y

t

. Su
h fun
tionals are

of prime importan
e for estimation of the parameter �.

To illustrate this point, 
onsider �rst the Expe
tation-Maximization (EM) framework of

(Dempster et al., 1977). In this approa
h, the log-likelihood is optimized iteratively by repeated

maximizations of intermediate quantities de�ned as

Q

EM

(�j

^

�) = E

^

�

�

log p

�

(X

1:t

; Y

1:t

)

�

�

�

Y

1:t

�

(4)

where

^

� denotes the 
urrent estimate of the parameters. Computation of (4) is generally referred

to as the E step whereas the maximization

^

� - argmax

�

Q

EM

(�j

^

�) is the so-
alled M step (with

the left arrow denoting variable substitution). Be
ause the joint pro
ess (X

t

; Y

t

)

t�1

is Markovian,

(4) may be de
omposed as

Q

EM

(�j

^

�) = E

^

�

�

log l

�

(X

1

) + log h

�

(Y

1

jX

1

)

�

�

�

Y

1:t
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t

X

s=2

E

^

�

�

log g

�

(Y

s

jX

s

; Y

s�1

)

�

�

�

Y

1:t

�

+

t

X

s=2

E

^

�

�

log k

�

(X

s�1

;X

s

) Y

1:t

�

(5)
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whi
h is of the form de�ned in (3). In general settings however, numeri
al 
omputation (5) for

a given value of � is not suÆ
ient to implement the EM approa
h sin
e maximization wrt �

is required. A very frequent 
ase examined in detail by (Dempster et al., 1977), is when the


omplete data distribution (joint distribution of X

1:t

and Y

1:t

) is from the exponential family,

that is when

p

�

(X

1:t

; Y

1:t

) = exp [A(�)B(X

1:t

; Y

1:t

) + C(X

1:t

; Y

1:t

) +D(�)℄

where B(X

1:t

; Y

1:t

) is a (possibly ve
tor-valued) 
omplete data suÆ
ient statisti
. Be
ause of

the Markovian dependen
e of (X

t

; Y

t

)

t�1

, B is a sum of terms whi
h only involve two su

essive

time indexes. Thus, maximization of Q

EM

(�j

^

�) wrt � only requires the 
omputation of

E

^

�

(B(X

1:t

; Y

1:t

)jY

1:t

)

whi
h still has the general form given in (3).

As a representative example of this situation, 
onsider the sto
hasti
 volatility model (Kim

et al., 1998) where

Y

t

= e

X

t

N

t

where (N

t

)

t�1

is an iid sequen
e of standard Gaussian random variables, independent of the

volatility pro
ess (X

t

)

t�1

whi
h is des
ribed by a �rst order Gaussian autoregressive model

X

t+1

= �

1

+ �

2

(X

t

� �

1

) + �

3

E

t+1

(E

t

)

t�2

being a standardized Gaussian iid sequen
e. The distribution of the initial state X

1

is

here 
hosen su
h that the observed pro
ess (Y

t

)

t�1

is stationary. For this model,

k

�

(x

t�1

; x

t

) = n(x

t

; �

1

+ �

2

(x

t�1

� �

1

); �

2

3

)

g

�

(y

t

jx

t

; y

t�1

) = n(y

t

; 0; e

x

t

)

h

�

(y

1

jx

1

) = n(y

1

; 0; e

x

1

)

l

�

(x

1

) = n(x

1

; 0; �

2

3

=(1� �

2

2

)) (6)

where n(� ;�; �

2

) denotes the Gaussian pdf with mean � and varian
e �

2

. For this parti
ular

model, the 
omplete data suÆ
ient statisti
 is four dimensional and thus ea
h iteration of the

EM algorithm 
an be 
arried out by 
omputing the ve
tor

 

t
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s
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s
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�
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�

;
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�
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�

;

t
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s

j Y

1:t

℄

!

whose 
omponents all are parti
ular 
ases of (3).

Another important appli
ation is the 
omputation of the gradient of the log-likelihood,

through Fisher identity (Dempster et al., 1977, dis
ussion by B. Efron): Under standard regu-

larity assumptions, the gradient of the log-likelihood may be written as

r

�

log p

�

(Y

1:t

) = E

�

�

r

�

log p

�

(X

1:t

; Y

1:t

)

�

�

�

Y

1:t

�

(7)

From (5) it is easily seen that for swit
hing autoregressive models, (7) is an instan
e of (3) for

the parti
ular 
hoi
e

m

�

1

(x

1

) = r

�

log l

�

(x

1

) +r

�

log h

�

(Y

1

jx

1

)

m

�

t

(x

t

) = r

�

log g

�

(Y

t

jx

t

; Y

t�1

) (t � 2)

r

�

t

(x

t�1

; x

t

) = r

�

log k

�

(x

t�1

; x

t

) (8)
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The EM approa
h is well known for being simple to implement and numeri
ally well-behaved.

On the other hand, optimization of the log-likelihood using its gradient is potentially mu
h faster

thanks to the availability of quadrati
ally 
onverging optimization strategies (quasi Newton, or


onjugate dire
tions) { see (Capp�e et al., 1998) for a 
omparison of both approa
hes in a simple


ase. Depending on the 
onstraints of the appli
ation under 
onsideration, both strategies 
an

thus be useful.

1.3 Known solutions and open problems

For general models, the main diÆ
ulty in 
omputing (3) lies in the evaluation of the smoothing

distributions. For �nite state spa
e HMMs (when E is �nite), the smoothed distributions 
an

be evaluated eÆ
iently by a pro
edure known as the forward-ba
kward due to Baum and his


oworkers (Ma
Donald and Zu

hini, 1997). A similar pro
edure is available for linear Gaussian

state spa
e models (when E = R

q

for some q and the joint distribution of (X

t:t+1

; Y

t:t+1

) for

any index t is multivariate normal) (De Jong, 1989). Both pro
edures however share the same

short
oming that a double re
ursion, for in
reasing time indexes and then for de
reasing time

indexes, is required. In pra
ti
e, this means that a storage spa
e that grows linearly with the

number of observations is needed, whi
h 
an be problemati
 for appli
ations involving large

datasets su
h as �nan
e of bioinformati
s.

In addition, the non 
ausal nature of these smoothing pro
edures is a real obsta
le when

trying to devise eÆ
ient on-line (re
ursive in the time index t) strategies to estimate the param-

eter �. This last problem is 
onsidered by (LeGland and Mevel, 1997) and (Collings and Ryden,

1998) who used the fa
t that the gradient of the log-likelihood 
an be updated re
ursively us-

ing formulas obtained by formal di�erentiation of the �ltering re
ursion. More spe
i�
ally, the

log-likelihood may be de
omposed as

log p

�

(Y

1:t+1

) = log p

�

(Y

1:t

) + log

�

Z

E

g

�

(Y

t+1

jx

t+1

; Y

t

)�

�

t+1

(dx

t+1

)

�

(for t � 2) (9)

Thus, di�erentiation, wrt �, of (9) together with the �ltering relations (11)-(12) des
ribed in

se
tion 2.1 yields re
ursive update formulas for 
omputing r

�

log p

�

(Y

1:t+1

).

Another approa
h (upon whi
h we will draw in the next se
tion) is based on the EM inter-

mediate quantity for whi
h exa
t re
ursive �lters have been proposed by (Zeitouni and Dembo,

1988) and further developed by Elliot and 
oworkers { see (Elliott and Krishnamurthy, 1999) for

instan
e. The fa
t that the same prin
iple 
an be applied generi
ally for all additive fun
tionals

of the form given in (3), and hen
e for the 
omputation of the log-likelihood and its gradient,

has apparently not been re
ognized by these authors.

Of 
ourse, ex
ept in some spe
i�
 
ases (in
luding �nite state spa
e HMMs and linear Gaus-

sian state spa
e models), even the forward-ba
kward approa
h 
an not be applied anymore

be
ause the smoothing distributions no longer have 
losed form expressions. This is already

the 
ase for the simple sto
hasti
 volatility model de�ned in (6). The te
hniques used in this

situation are usually based on Markov Chain Monte Carlo (MCMC) simulations (Kim et al.,

1998), (Capp�e et al., 1999) whi
h are very similar in prin
iple to the forward-ba
kward approa
h

in that they imply 
onditioning both on past and future indexes of the hidden pro
ess (X

t

).

Attempts to 
ir
umvent this limitation with sequential Monte Carlo methods (also known

as parti
le �ltering) in
lude (Pitt and Shephard, 1999) and (H�urzeler and Kuns
h, 2000). These

authors however only 
onsider the evaluation of the log-likelihood whi
h 
an be straightforwardly

approximated from (9). Maximization of the log-likelihood is then 
arried out by a grid sear
h

whi
h would 
learly be impra
ti
al for large (multidimensional) parameter spa
es.
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2 Re
ursive update formulas

2.1 Preliminary: Standard predi
tion and �ltering

Let �

�

s

and '

�

s

denote respe
tively the predi
tion and �ltering probability measures de�ned as

�

�

s

(�) = P

�

(X

s

2 �jY

1:s�1

) and '

�

s

(�) = P

�

(X

s

2 �jY

1:s

)

Both of these quantities may be 
omputed a

ording to the following re
ursions:

d'

�

1

d�

�

1

(x

1

) = w

�

1

(x

1

) =

h

�

(Y

1

jx

1

)

R

E

h

�

(Y

1

jx

1

)�

�

1

(dx

1

)

(initialization) (10)

For s = 1; : : : t� 1,

�

�

s+1

= '

�

s

K

�

(predi
tion) (11)

d'

�

s+1

d�

�

s+1

= w

�

s+1

(filtering) (12)

where

w

�

s+1

(x

s+1

) =

g

�

(Y

s+1

jx

s+1

; Y

s

)

R

E

g

�

(Y

s+1

jx

s+1

; Y

s

)�

�

s+1

(dx

s+1

)

(13)

The �lter-to-predi
tor update thus 
onsists of one step of the transition kernel of the hidden


hain, while the predi
tor-to-�lter update 
orresponds to an appli
ation of Bayes rule.

2.2 Extension: 
omputing smoothed fun
tionals

For a time index t, let A 2 �(X

1:t

) denote a past event. The important remark used by

(Zeitouni and Dembo, 1988) is that, whereas P

�

(AjY

1:t+1

) 
annot be dire
tly 
omputed from

P

�

(AjY

1:t

), it is possible to update the (unnormalized) measure P

�

(A;X

t

2 �jY

1:t

) so as to obtain

P

�

(A;X

t+1

2 �jY

1:t+1

). To build on this remark, �rst note that the Markovian stru
ture implies

that

P

�

(A;X

t+1

2 �jY

1:t

) =

Z

E

P

�

(A; dx

t

jY

1:t

)K

�

(x

t

; �) (14)

Next, apply Bayes' rule to obtain

dP

�

(A;X

t+1

2 �jY

1:t+1

)

dP

�

(A;X

t+1

2 �jY

1:t

)

= w

�

t+1

(15)

where w

�

t+1

is de�ned in (13). Perhaps surprisingly, the above equations show that the unnor-

malized measure P

�

(A;X

t

2 �jY

1:t

) 
an be updated re
ursively using the same formulas as for

the standard �ltering probability measure.

In order to generalize this observation to the 
omputation of general Q

�

t

fun
tionals given in

(3), de�ne the signed measures

�

�

t

(�) =

t

X

s=1

Z

E

m

�

s

(x

s

)P

�

(dx

s

;X

t

2 �jY

1:t�1

)

+

t

X

s=2

Z

E

2

r

�

s

(x

s�1

; x

s

)P

�

(dx

s�1

; dx

s

;X

t

2 �jY

1:t�1

) (16)
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and

�

�

t

(�) =

t

X

s=1

Z

E

m

�

s

(x

s

)P

�

(dx

s

;X

t

2 �jY

1:t

)

+

t

X

s=2

Z

E

2

r

�

s

(x

s�1

; x

s

)P

�

(dx

s�1

; dx

s

;X

t

2 �jY

1:t

) (17)

for t � 2, with d�

�

1

=d�

�

1

= m

�

1

and d�

�

1

=d'

�

1

= m

�

1

. Pro
eeding as for (14) and (15), one obtains

the following updating equations

�

�

t+1

(B) =

Z

x

t

2E

Z

x

t+1

2B

'

�

t

(dx

t

)K

�

(x

t

; dx

t+1

)

�

m

�

t+1

(x

t+1

) + r

�

t+1

(x

t

; x

t+1

)

�

+

Z

E

�

�

t

(dx

t

)K

�

(x

t

; B) (for B 2 B(E)) (18)

and

d�

�

t+1

d�

�

t+1

= w

t+1

(19)

An important remark to be used in what follows is that '

�

t

(dx

t

)K

�

(x

t

; dx

t+1

) featured in (16)

is the joint distribution of X

t

and X

t+1

given Y

1:t

.

For any time index t, the quantity of interest 
an be evaluated by integration wrt �

�

t

or �

�

t

with

Q

�

t

=

Z

E

w

�

t

(x

t

)�

�

t

(dx

t

) or Q

�

t

= �

�

t

(E) (20)

Thus (18)-(19) and (20) together with (11)-(12) de�ne our re
ursive algorithm for 
omputing

Q

�

t

for all times indexes.

3 Parti
le approximation

This part of the paper deals with sequential Monte Carlo approximation to the re
ursive me
h-

anism presented in the previous se
tion. A hat sign is pla
ed over approximate quantities 
om-

puted from Monte Carlo averages to distinguish them from their exa
ts 
ounterparts introdu
ed

so far.

3.1 Parti
le �ltering

The motivation for the basi
 approa
h to parti
le �ltering, usually referred to as \the bootstrap

�lter" (Dou
et et al., 2000), is the following: Assume that at time index t, the predi
tive distri-

bution is approximated the empiri
al probability measure asso
iated with a sample fX

�

t

[i℄g

1�i�p

,

�̂

�

t

= 1=p

p

X

i=1

Æ

X

�

t

[i℄

(21)

where X

�

t

[i℄ 2 E are generally referred to as the \parti
les".

Applying one 
omplete step of the mapping de�ned by (12)-(11) yields (for t � 2)

~�

�

t+1

=

p

X

i=1

w

�

t

[i℄K

�

X

�

t

[i℄

(22)

where w

�

t+1

[i℄ = g

�

(Y

t

jX

�

t

[i℄; Y

t�1

)=

P

p

i=1

g(Y

t

jX

�

t

[i℄; Y

t�1

). The resulting predi
tive distribution

~�

�

t+1

de�ned by (22) is a mixture distribution, from whi
h it is possible to obtain p (
onditionally)

independent samples by
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1. Drawing (I

�

t

[1℄; : : : I

�

t

[p℄) from a dis
rete distribution with probabilities (w

�

t

[1℄; : : : w

�

t

[p℄) (p

iid draws with repla
ement).

2. Drawing independent samples X

�

t+1

[i℄ from ea
h of the the distributions K

�

X

�

t

[

I

�

t

[i℄

℄

for

i = 1; : : : p.

The predi
tive measure at time step t + 1 is then approximated by the empiri
al probability

measure asso
iated with the new parti
les fX

�

t+1

[i℄g

1�i�p

. For obvious reasons, the step 1 above

is generally referred to as \multinomial resampling". Although the bootstrap �lter is 
ertainly

not the only approa
h for 
onstru
ting a sequential Monte Carlo approximation, (Del Moral and

Mi
lo, 2000) show that the fa
t that ea
h step of the algorithm 
an be de
omposed into, �rst,

an appli
ation of the exa
t predi
tion mapping to the 
urrent approximation of the predi
tive

measure, followed by, the approximation of the resulting distribution by an empiri
al measure,

is instrumental in proving the 
onvergen
e of the approximation (as the number p of parti
le

in
reases) under reasonable 
onditions. Thus, the distin
tive feature of the bootstrap �lter


ompared to other approa
hes to sequential Monte Carlo | see (Dou
et et al., 2000) for a

re
ent review of these | is that given F

t

= �

�

X

�

t

[1 :p℄; (Y

t

)

t�1

�

, the \parti
les" at time index

t+ 1 are 
onditionally iid with a distribution that satis�es

P

�

�

X

�

t+1

[i℄ 2 B

�

�

�

F

t

�

=

p

X

i=1

g

�

(Y

t

jX

�

t

[i℄; Y

t�1

)

P

p

i=1

g

�

(Y

t

jX

�

t

[i℄; Y

t�1

)

K

�

X

�

t

[i℄

(B) (for B 2 B(E)) (23)

whi
h 
oin
ides with the result of (12)-(11) applied to �̂

�

t

.

Note that both

p

X

i=1

w

�

t

[i℄ Æ

X

�

t

[i℄

and 1=p

p

X

i=1

Æ

X

�

t

[

I

�

t

[i℄

℄

provide approximations to the �ltering probability measure �

t

, the latter having an in
reased

(
onditional) varian
e due to the resampling. For the same reason,

p

X

i=1

Æ

(

X

�

t

[

I

�

t

[i℄

℄

;X

�

t+1

[i℄

)

is an approximation of the joint distribution of (X

t

;X

t+1

) given Y

1:t

.

3.2 Approximation of smoothed fun
tionals

We now 
onsider approximating general fun
tionals of the form (3) with a re
ursive parti
le type

algorithm whi
h follows the bootstrap �lter philosophy outlined in the previous se
tion. The


losing remark of the previous se
tion suggests a very simple way of approximating �

�

t

sin
e the

updating equation obtained in (18) essentially involves integrating wrt the joint distribution of

X

t

and X

t+1

given Y

1:t

. First note that from its de�nition in (16), �

�

t

is absolutely 
ontinuous

wrt to the (standard) predi
tion distribution �

�

t

. In the 
ontext of the parti
le approximation,

it is thus reasonable to approximate �

�

t

with

^

�

�

t

= 1=p

p

X

i=1




�

t

[i℄Æ

X

�

t

[i℄

(24)

where (


�

t

[i℄)

1�i�p

are weights. To update the weights 


�

t

[i℄, we propose to use the relation




�

t+1

[i℄ = m

�

t+1

(X

�

t+1

[i℄) + r

�

t+1

�

X

�

t

h

I

�

t

[i℄

i

; X

�

t+1

[i℄

�

+ 


�

t

h

I

�

t

[i℄

i

(25)
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Using (19) and (20), the resulting approximation to Q

�

t+1

is then given by

^

Q

�

t+1

=

p

X

i=1

w

�

t+1

[i℄


�

t+1

[i℄ (26)

It is 
lear from (25) that the 
ouples (X

�

t+1

[i℄; 


�

t+1

[i℄) obtained with this s
heme are still 
ondi-

tionally iid given F

t

= �

�

X

�

t

[1 :p℄; 


�

t

[1 :p℄; (Y

t

)

t�1

�

and that the marginal distribution of X

�

t+1

[i℄

is the same as for the standard bootstrap �lter.

For a set B 2 B(E), denote by I

B

the indi
ator fun
tion of the set B. First write

E

�

�




�

t+1

[i℄I

B

(X

�

t+1

[i℄)

�

�

�

I

�

t

[i℄;F

t

�

=

Z

B

n

m

�

t+1

(x) + r

�

t+1

�

X

�

t

h

I

�

t

[i℄

i

; x

�

+ 


�

t

h

I

�

t

[i℄

io

K

�

�

X

�

t

h

I

�

t

[i℄

i

; dx

�

(27)

And thus

E

�

�




�

t+1

[i℄I

B

(X

�

t+1

[i℄)

�

�

�

F

t

�

=

p

X

i=1

w

�

t

[i℄

Z

B

�

m

�

t+1

(x) + r

�

t+1

(X

t

[i℄; x)

�

K

�

�

X

�

t

[i℄; dx

�

+

p

X

i=1

w

�

t

[i℄


�

t

[i℄K

�

�

X

�

t

[i℄; B

�

(28)

(28) indeed 
oin
ides with what would be obtained by appli
ation of (19)-(18) and (12) to �̂

�

t

and

^

�

�

t

, as de�ned in (21) and (24). Using standard arguments 
on
erning the 
onvergen
e of

empiri
al measures, it is then easily shown that when p gets large,

^

�

�

t+1

= 1=p

p

X

i=1




�

t+1

[i℄Æ

X

�

t+1

[i℄

is a good approximation to the exa
t mapping (19)-(18) applied to

^

�

�

t

. It is of 
ourse a very

weak result in itself and only 
onstitutes a small step towards proving that

^

�

�

t

is indeed a

good approximation to �

�

t

. Note also that results 
on
erning the �ltered approximation

^

�

�

t

=

P

p

i=1

w

�

t

[i℄


�

t

[i℄Æ

X

�

t

[i℄

are more diÆ
ult to obtain be
ause of the weights w

�

t

[i℄ whi
h 
ouple the

parti
les together (this is equally true for standard parti
le �ltering).

4 Numeri
al experiment

For reason of spa
e, it is not possible to present here a detailed set of numeri
al simulations.

We however give a very simple example whi
h illustrates some of the di�eren
es between the

algorithm presented in the previous se
tion and more 
onventional uses of the parti
le �lter

(su
h as for tra
king, et
.)

We 
onsider, the 
ase of a �rst order s
alar Gaussian autoregressive model observed in

additive un
orrelated Gaussian white noise, for whi
h it is easily 
he
ked that

k

�

(x

t�1

; x

t

) = n(x

t

;� + �(x

t�1

� �); �

2

)

g

�

(y

t

jx

t

; y

t�1

) = n(y

t

;x

t

; �

2

) (29)

where � is the mean value of the hidden 
hain X

t

, � is the AR parameter, �

2

the innovation

varian
e and �

2

is the varian
e of the additive noise. We further assume that X

1

has pdf

n(�;�; �

2

=(1 � �

2

)) whi
h 
orresponds to the stationary distribution of the hidden 
hain. We

fo
us on the 
omputation of the gradient of the log-likelihood, that is when the fun
tions m

�

t
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and r

�

t

are �xed a

ording to (8). For this model, it is possible to 
arry out the 
omputations

of se
tion 2 exa
tly, using Gaussian formulas { see (Charalambous and Logothetis, 1998) for

details. For this simple toy example it is thus possible to 
ontrast the results of the proposed

algorithm with exa
t (re
ursive) evaluations of the gradient of the log-likelihood.

Note that sin
e we expe
t the maximum likelihood estimator to be 
onsistent for this model,

it implies that the gradient of the log-likelihood satis�es

lim

T!1

1

T

r

�

log p

�

(Y

1:T

)! L(�; �

�

) (in P

�

�

probability) (30)

where L is a deterministi
 fun
tion whi
h depends both on the test parameter value � and on

the a
tual parameter value �

�

under whi
h the observations Y

1:T

are distributed. Eq. (30) shows

that normalization by T is indeed ne
essary if we want to 
ompare the results obtained on

di�erent time horizons T .
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U
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Figure 1: Box and whiskers plots summarizing 200 independent runs of the proposed algorithm


ompared with exa
t 
omputations (triangles) , for di�erent 
ombination of p and T .

In the 
ase of �gure 1, the a
tual parameter ve
tor is set to (�; �; �

2

; �

2

) = (1; 0:9; 0:05; 0:01)

and the test parameter ve
tor is (�; �; �

2

; �

2

) = (0:8; 0:8; 0:06; 0:015). The number of parti
les

p is 10 for the left plot, and 250 for the right plot. The time horizon T varies, in ea
h plot,

from 10 to 100, and all simulations use the same observation sequen
e. As explained above, the

quantity displayed is

1

T

r

�

log p

�

(Y

1:T

)�L(�; �

�

), as 
omputed by implementing the re
ursion in

se
tion 2 (triangles), and as approximated with the proposed algorithm (box and whiskers plots).

L(�; �

�

) is determined empiri
ally by running the exa
t gradient re
ursions for up to 100 000

observations. Note that only the 
omponent of the gradient 
orresponding to the �rst parameter

(�) is shown sin
e the situation is 
omparable for the other 
omponents of the gradient. The box

and whiskers plots 
orrespond to 200 independent Monte Carlo runs of the proposed algorithm

and thus give and idea of the sto
hasti
 variability due to the parti
le approximation.

Comparing the left and right plots in �gure 1, 
learly shows that the pre
ision of the approx-

imation of the gradient improves when augmenting the number of parti
les. Sin
e the square

root of p is in
reased by a fa
tor 5 in the right plot 
ompared to the left one, the redu
tion in

varian
e appears to be 
ompatible with the results obtained for the standard bootstrap �lter

on some models (for whi
h a CLT with

p

p normalization was shown to hold) (Del Moral and

Mi
lo, 2000). In this appli
ation however, in
reasing the number of parti
les is not the only

sour
e of sto
hasti
 averaging: When looking at any of the two plots for di�erent values of

the time horizon T , one 
learly sees that the normalized gradient gets 
loser to L(�; �

�

) as T

in
reases (whi
h means that, on �gure 1, the triangles gets 
loser to zero with in
reasing ob-

servation sizes), whi
h is expe
ted from (30). There is thus an interplay between the number

of parti
les p and the time horizon T whi
h makes �xing the number of parti
les for pra
ti
al
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appli
ations a 
hallenging issue. One �nal di�eren
e with more standard uses of parti
le �lters

is the fa
t that the observations are not distributed under P

�

(the test parameter value) but

under P

�

�

. This point is 
ru
ial be
ause we need to be able to reliably approximate the gradient

of the log-likelihood for di�erent values � of the parameter. Figure 1, suggests that the proposed

algorithm is reasonably eÆ
ient in this respe
t (sin
e in this example � is indeed di�erent from

�

�

) but robustness wrt large deviations of � from �

�

is 
ertainly an aspe
t whi
h deserves more

investigations.

5 Con
lusion

We re
all the 
omplete algorithm for re
ursively approximating general Q

�

T

fun
tionals: First,

initialize the re
ursion with,

X

�

1

[i℄ � �

�

1

w

�

1

[i℄ =

h

�

(Y

1

jX

�

1

[i℄)

P

p

i=1

h

�

(Y

1

jX

�

1

[i℄)




�

1

[i℄ = m

�

1

(X

�

1

[i℄) (31)

for i = 1; : : : p (with independent draws for X

�

1

[i℄). Then, for t � 1,

I

�

t

[i℄ � Dis
rete(w

�

t

[1℄; : : : ; w

�

t

[p℄))

X

p

t+1

� K

�

X

�

t

[

I

�

t

[i℄

℄

w

�

t+1

[i℄ =

g

�

(Y

t+1

jX

�

t+1

[i℄; Y

t

)

P

p

j=1

g

�

(Y

t+1

jX

�

t+1

[j℄; Y

t

)




�

t+1

[i℄ = 


�

t

h

I

�

t

[i℄

i

+ r

�

t+1

�

X

�

t

h

I

�

t

[i℄

i

; X

�

t+1

[i℄

�

+m

�

t+1

(X

�

t+1

[i℄) (32)

for i = 1; : : : p (where the random draws are independent and 
onditionally independent from

previous draws). For any time index t, the partial smoothed fun
tional may be evaluated by


omputing (26).

The above algorithm provides an eÆ
ient solution for 
omputing re
ursively the fun
tionals

that are needed for likelihood-based estimation of partially observed Markovian pro
esses in

general settings. Be
ause of its resemblan
e with the standard bootstrap �lter, it is expe
ted

that the �nite horizon behavior of the method may be analyzed using the tools developed by (Del

Moral and Mi
lo, 2000). The long-term behavior (large values of t) of the parti
le approximation

is probably di�erent however from the 
ase 
onsidered by (Del Moral and Mi
lo, 2000) be
ause

of the limiting behavior of Q

�

t

{ see (Dou
 et al., 2000) for re
ent results on that point. Finally,

dependen
e in the parameter value � is also an important issue.
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