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Abstract

We consider parameter estimation for a class of discrete-time partially observed Marko-
vian processes, known as switching autoregressive models, which are used in a variety of
applications which range from finance (stochastic volatility), to signal processing (deconvo-
lution) or telecommunications (teletraffic modeling). For such models, maximum likelihood
estimation (be it in the Expectation-Maximization approach or via direct computation of the
log-likelihood and its derivatives) implies the computation of smoothed additive functionals
of the hidden process. A little known property of the class of models under consideration
is that there exists a generic filtering (or recursive in time) procedure for computing such
smoothed additive functionals. However, when the hidden process is not finite valued, this
procedure cannot, in general, be implemented exactly. We thus propose an approximate
simulation-based filtering scheme based on the sequential Monte Carlo (or particle filtering)
approach.

Keywords: Hidden Markov Models, State Space Model, Switching Autoregression, Sequential
Monte Carlo, Particle Filtering, Maximum Likelihood, Expectation-Maximization

1 Introduction

1.1 Model, hypotheses and notations

We consider parametric models consisting of a discrete time homogeneous Markovian process
(X¢)t>1 on a general Polish state space E with Borel o-field B(E), indirectly observed through
R¢ valued observations (Y:)i>1. A particular case of interest is when the Y;s are conditionally
independent given the Xs, that is when

k
PY(Yy, € By,... Y}, € By Xy,,... Xy,) = H/ 9% (v, | Xz, )y, (1)
i=1" Bi
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for any choice of the integer k, of the time indexes ¢; to ¢; and of the Borel subsets of R?
Bi,...Bi. ¢’ is a family of conditional probability density functions (or simply, pdf) with
respect to (abbreviated to “wrt” henceforth) Lebesgue measure on R?, and the superscript @
denotes the dependence upon the parameter. Depending on the context, (1) is generally referred
to as a Hidden Markov Model or HMM (MacDonald and Zucchini, 1997), or as a state space
model (Brockwell and Davis, 1991, §12). Tt turns out that the methods investigated in this
paper apply as well to a slightly more general model known as the switching autoregressive
model which we shall consider for greater generality. In the switching autoregressive model
(Hamilton, 1994, §22), it is assumed that

t
PY(Y1 € By,...Y; € Bi|X1,... Xy) :/ / [h"(y1|X1) T 9" sl Xesys1) | dy ... dyy
B JB 5

(2)

where h? is a probability density wrt Lebesgue measure on RY. Thus (1) is a particular example
of (2) where g?(ys|xs,ys 1) does not depend on the previous observation g, ;.

Let R denote a generic transition kernel, A and v two measures and = a point, the following
standard notations will be used: d\/dv, the Radon-Nikodym derivative of the A wrt v; AR, the
image of the measure X\ obtained when applying one step of the transition kernel; d,, the Dirac
mass in z, and R, the measure 0, R. C(E,R?) and C(E?,R?) respectively denote the space of
continuous R? valued functions on F and E x E.

We further assume that the transition kernel K? of the hidden chain (X;) is dominated by
some Radon measure y on E (for all values of §) and denote by k%(z,e) the pdf of K? wrt p.
Likewise, we denote by ﬂf the probability measure corresponding to the initial state X; and its
pdf (wrt p) is denoted by 1.

1.2 Motivations

The main contribution of the paper consists in a systematic scheme for computing recursively
in the time index t quantities of the form

@ziW@ﬁ .) + ZW( (X, 1, X,)
s=1

where the subscripting “r:s” is generically used to denote the collection of variables with time
indexes from r to s (included); (ms)%, € C(E,R?) and (rs)’s, € C(E? R?) (for some q) are
functions which may depend on the parameter 6. Q! as defined in (3) is a smoothed additive
functional of the hidden chain conditioned on the observations Y7 up to Y;. Such functionals are
of prime importance for estimation of the parameter 6.

To illustrate this point, consider first the Expectation-Maximization (EM) framework of
(Dempster et al., 1977). In this approach, the log-likelihood is optimized iteratively by repeated
maximizations of intermediate quantities defined as

Qrni(016) = B (1ogp (X1, Yiua)| Y ) 4)

where  denotes the current estimate of the parameters. Computatlon of (4) is generally referred
to as the E step whereas the maximization § < arg maxy Qg\i(0]6) is the so-called M step (with
the left arrow denoting variable substitution). Because the joint process (X}, Y});>1 is Markovian,
(4) may be decomposed as

Yu) (3)

Qi (610) = B (1og1”(X1) + log h”(Vi|X1)| Vi )

+ZE€ (108 9° (Vi] X, Vi ‘Yu) ZE" (tog K (X1, X) Yia)  (5)
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which is of the form defined in (3). In general settings however, numerical computation (5) for
a given value of 6 is not sufficient to implement the EM approach since maximization wrt 6
is required. A very frequent case examined in detail by (Dempster et al., 1977), is when the
complete data distribution (joint distribution of X7, and Yj.,) is from the exponential family,
that is when

p" (X1, Y1) = exp[A(0) B(X 1.4, Yiit) + C(X1, Y1) + D(0)]

where B(X1., Y1) is a (possibly vector-valued) complete data sufficient statistic. Because of
the Markovian dependence of (X, Y;);>1, B is a sum of terms which only involve two successive
time indexes. Thus, maximization of Qg (6]6) wrt € only requires the computation of

E9 (B(X1:t7 Yl:t) |Y1:t)

which still has the general form given in (3).
As a representative example of this situation, consider the stochastic volatility model (Kim
et al., 1998) where

Y; = e N,

where (N;);>1 is an iid sequence of standard Gaussian random variables, independent of the
volatility process (X;);>1 which is described by a first order Gaussian autoregressive model

Xt+1 == 01 + 92(Xt —_ 01) + 93Et+1

(Et)¢>2 being a standardized Gaussian iid sequence. The distribution of the initial state X is
here chosen such that the observed process (Y;);>1 is stationary. For this model,

K (mi—1, 1) = n(ze; 01 + Oa(z4-1 — 61), 03)
go(yt|$tayt71) = n(y:;0,e™)
W (y1|z1) = n(yi;0,e™)
1°(z1) = n(z1;0,05/(1 - 63)) (6)

where n(e; 1, 0%) denotes the Gaussian pdf with mean p and variance 0. For this particular

model, the complete data sufficient statistic is four dimensional and thus each iteration of the
EM algorithm can be carried out by computing the vector

t ~
(Z B Yy
s=1

whose components all are particular cases of (3).

Another important application is the computation of the gradient of the log-likelihood,
through Fisher identity (Dempster et al., 1977, discussion by B. Efron): Under standard regu-
larity assumptions, the gradient of the log-likelihood may be written as

t t—1 t
nmzwmmujﬁﬂﬁm¢zﬁmHmnﬂ

s=1 s=2 §=2

VG‘ logpa(Yl:t) = EH (VG’ logpg(Xlzta Yl:t)‘ Yl:t) (7)

From (5) it is easily seen that for switching autoregressive models, (7) is an instance of (3) for
the particular choice
md(z1) = Vglogl®(z1) + Vglog h (Yi|z1)
mf(z;) = Vologg’ (Vilz, Yi1) (¢ >2)
r(xy 1, m0) = Vologk? (z; 1, zy) (8)
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The EM approach is well known for being simple to implement and numerically well-behaved.
On the other hand, optimization of the log-likelihood using its gradient is potentially much faster
thanks to the availability of quadratically converging optimization strategies (quasi Newton, or
conjugate directions) — see (Cappé et al., 1998) for a comparison of both approaches in a simple
case. Depending on the constraints of the application under consideration, both strategies can
thus be useful.

1.3 Known solutions and open problems

For general models, the main difficulty in computing (3) lies in the evaluation of the smoothing
distributions. For finite state space HMMs (when FE is finite), the smoothed distributions can
be evaluated efficiently by a procedure known as the forward-backward due to Baum and his
coworkers (MacDonald and Zucchini, 1997). A similar procedure is available for linear Gaussian
state space models (when E = R? for some ¢ and the joint distribution of (X141, Yiy1) for
any index t is multivariate normal) (De Jong, 1989). Both procedures however share the same
shortcoming that a double recursion, for increasing time indexes and then for decreasing time
indexes, is required. In practice, this means that a storage space that grows linearly with the
number of observations is needed, which can be problematic for applications involving large
datasets such as finance of bioinformatics.

In addition, the non causal nature of these smoothing procedures is a real obstacle when
trying to devise efficient on-line (recursive in the time index t) strategies to estimate the param-
eter f. This last problem is considered by (LeGland and Mevel, 1997) and (Collings and Ryden,
1998) who used the fact that the gradient of the log-likelihood can be updated recursively us-
ing formulas obtained by formal differentiation of the filtering recursion. More specifically, the
log-likelihood may be decomposed as

log p° (Yi:t41) = log p’ (Y1) + log (/ 99(Y2+1|xt+1,YZ)WfH(dxm)) (for ¢ > 2) (9)
FE

Thus, differentiation, wrt 6, of (9) together with the filtering relations (11)-(12) described in
section 2.1 yields recursive update formulas for computing Vg log p?(Y1.141).

Another approach (upon which we will draw in the next section) is based on the EM inter-
mediate quantity for which exact recursive filters have been proposed by (Zeitouni and Dembo,
1988) and further developed by Elliot and coworkers — see (Elliott and Krishnamurthy, 1999) for
instance. The fact that the same principle can be applied generically for all additive functionals
of the form given in (3), and hence for the computation of the log-likelihood and its gradient,
has apparently not been recognized by these authors.

Of course, except in some specific cases (including finite state space HMMSs and linear Gaus-
sian state space models), even the forward-backward approach can not be applied anymore
because the smoothing distributions no longer have closed form expressions. This is already
the case for the simple stochastic volatility model defined in (6). The techniques used in this
situation are usually based on Markov Chain Monte Carlo (MCMC) simulations (Kim et al.,
1998), (Cappé et al., 1999) which are very similar in principle to the forward-backward approach
in that they imply conditioning both on past and future indexes of the hidden process (X;).

Attempts to circumvent this limitation with sequential Monte Carlo methods (also known
as particle filtering) include (Pitt and Shephard, 1999) and (Hiirzeler and Kunsch, 2000). These
authors however only consider the evaluation of the log-likelihood which can be straightforwardly
approximated from (9). Maximization of the log-likelihood is then carried out by a grid search
which would clearly be impractical for large (multidimensional) parameter spaces.
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2 Recursive update formulas

2.1 Preliminary: Standard prediction and filtering

Let 7Tg and cpg denote respectively the prediction and filtering probability measures defined as
71'5(0) = Pa (Xs € .|Y1:s—1) and Qog(.) = Pa (Xs S .|Y1:s)

Both of these quantities may be computed according to the following recursions:

d K (Y,
41 T =wf T1) = (Yilz1) initialization 10
0 0
dr{ [z W (Y1|zy) 7! (day)
Fors=1,...t—1,
ﬂ'f_i_l = /K" (prediction) (11)
dy? . )
d7r;+1 =wl (filtering) (12)
s+1
where
0
9" Vetr|zs41,Y5)
wg—l—l(Ierl): [29%( siilfost Ys (13)
E

Yos1|woyr, Yo)ml 4 (dzesr)

The filter-to-predictor update thus consists of one step of the transition kernel of the hidden
chain, while the predictor-to-filter update corresponds to an application of Bayes rule.

2.2 Extension: computing smoothed functionals

For a time index ¢, let A € o(X;,) denote a past event. The important remark used by
(Zeitouni and Dembo, 1988) is that, whereas P?(A|Y1.141) cannot be directly computed from
P?(A|Y1.), it is possible to update the (unnormalized) measure P?(A, X; € o|Y}.;) so as to obtain
P?(A, X1 € ®|Y1.411). To build on this remark, first note that the Markovian structure implies
that

PY(A, X,y € oY1) = / PY(A, dxy|Viy) K (24, ) (14)
FE

Next, apply Bayes’ rule to obtain

dP? (A, Xi11 € o|Yi441) 0
1) _ )
dP9(A, Xi11 € o|Y1y) Yt (15)

where w! 41 is defined in (13). Perhaps surprisingly, the above equations show that the unnor-
malized measure IP)G(A, X; € o|Y1,) can be updated recursively using the same formulas as for
the standard filtering probability measure.

In order to generalize this observation to the computation of general QY functionals given in
(3), define the signed measures

t
M(e) =3 /E m ()P (diy, Xy € oY1)
s=1

t

+ 3 w20 (oo, dg, Xy € o|Y1y 1) (16)
s=2 E?
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and

t
ol(e) =3 /E m® ()P (diy, X, € o|Yig)
s=1

t
+ Z ’I“g(Isfl,Is)]Pg(dIS,I,dIs,Xt S .|Y1;t) (]_7)
§=2 B2

for t > 2, with dl1¢/dr{ = m{ and d®{/dpf = m{. Proceeding as for (14) and (15), one obtains
the following updating equations

W)= [ [ K o dsinn) (o) + 18 Gors0))
z€E Jxi 1 EB

+ / & (dzy) K% (2, B) (for B € B(E)) (18)
E
and
avf,,
_ 19
dHf+1 W41 ( )

An important remark to be used in what follows is that ! (dz;)K?(x,dxs, 1) featured in (16)
is the joint distribution of X; and X;;; given Yi..

For any time index ¢, the quantity of interest can be evaluated by integration wrt T or &/
with

Q! = [E W (o)W (dzy) or Q! = BY(E) (20)

Thus (18)-(19) and (20) together with (11)-(12) define our recursive algorithm for computing
Q! for all times indexes.

3 Particle approximation

This part of the paper deals with sequential Monte Carlo approximation to the recursive mech-
anism presented in the previous section. A hat sign is placed over approximate quantities com-
puted from Monte Carlo averages to distinguish them from their exacts counterparts introduced
so far.

3.1 Particle filtering

The motivation for the basic approach to particle filtering, usually referred to as “the bootstrap
filter” (Doucet et al., 2000), is the following: Assume that at time index ¢, the predictive distri-
bution is approximated the empirical probability measure associated with a sample { X7 [i]}1<i<p,

p
ﬁf = 1/1025)(5[1'] (21)
i=1

where X/[i] € E are generally referred to as the “particles”.
Applying one complete step of the mapping defined by (12)-(11) yields (for ¢ > 2)

p
7~"er1 = Z wf [1] K)ogf [i] (22)
i=1
where wY, | [i] = ¢® (Y| X?[i], Yio1)/ 30—, g(Y2|X?[i],Yi—1). The resulting predictive distribution

7,1 defined by (22) is a mixture distribution, from which it is possible to obtain p (conditionally)
independent samples by
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1. Drawing (I?[1],... I?[p]) from a discrete distribution with probabilities (wf[1],...w{[p]) (p
iid draws with replacement).

2. Drawing independent samples X/ ,[i] from each of the the distributions K’ for

X[ 1a]
1=1,...p

The predictive measure at time step ¢ + 1 is then approximated by the empirical probability
measure associated with the new particles {X/,[i]}1<i<p. For obvious reasons, the step 1 above
is generally referred to as “multinomial resampling”. Although the bootstrap filter is certainly
not the only approach for constructing a sequential Monte Carlo approximation, (Del Moral and
Miclo, 2000) show that the fact that each step of the algorithm can be decomposed into, first,
an application of the ezact prediction mapping to the current approximation of the predictive
measure, followed by, the approximation of the resulting distribution by an empirical measure,
is instrumental in proving the convergence of the approximation (as the number p of particle
increases) under reasonable conditions. Thus, the distinctive feature of the bootstrap filter
compared to other approaches to sequential Monte Carlo — see (Doucet et al., 2000) for a
recent review of these — is that given 7, = o (X{[1:p], (Y2)i>1), the “particles” at time index
t + 1 are conditionally iid with a distribution that satisfies

P (Xfli) € B| F) = z; 7 1?;)(]0[?;;) SKSy(B) (for B € B(B)) (23)

which coincides with the result of (12)-(11) applied to #?.
Note that both

p

i=1
provide approximations to the filtering probability measure ¢,;, the latter having an increased

(conditional) variance due to the resampling. For the same reason,

P

> (x100]. X2, 1)

=1

is an approximation of the joint distribution of (X, X;11) given Y7..

3.2 Approximation of smoothed functionals

We now consider approximating general functionals of the form (3) with a recursive particle type
algorithm which follows the bootstrap filter philosophy outlined in the previous section. The
closing remark of the previous section suggests a very simple way of approximating IT¢ since the
updating equation obtained in (18) essentially involves integrating wrt the joint distribution of
X; and Xy, given Yy,. First note that from its definition in (16), T1? is absolutely continuous
wrt to the (standard) prediction distribution 7rt In the context of the particle approximation,
it is thus reasonable to approximate H with

P
Hg =1/p Z %? [i]fsxf 4] (24)

where (v/[i])1<i<p are weights. To update the weights 7 [i], we propose to use the relation

Vali) = il (XL i) + ol (XF[101] S XPalil) +f |70 ] (25)
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Using (19) and (20), the resulting approximation to @7, is then given by
p
30 0 -0 2
Qiy1 = Z Wiy 874 [1] (26)
i=1

It is clear from (25) that the couples (X7, [i],7?,,[i]) obtained with this scheme are still condi-
tionally iid given F, = o (X{[L:p], v{[1:p], (Y;);>1) and that the marginal distribution of X/, | [4]
is the same as for the standard bootstrap filter.

For a set B € B(E), denote by Ip the indicator function of the set B. First write

B (X0 i) 1710, 72 ) =
[ (@) ot (x2 [1260).0) +f [1000]} & (x2 [2200) )~ 20
And thus
B (Yl s(X )| 7) =

Sl /B (i (@) + 7y (Xifi], ) ) KO (X0, dr) + S wl itk (x?1i1, B)
=1 =1
(28)

(28) indeed coincides with what would be obtained by application of (19)-(18) and (12) to 7
and 11, as defined in (21) and (24). Using standard arguments concerning the convergence of
empirical measures, it is then easily shown that when p gets large,

P
Hg—l—l = 1/?27?+1[i]5)(9 [4]

t+1
=1

is a good approximation to the exact mapping (19)-(18) applied to f[f It is of course a very
weak result in itself and only constitutes a small step towards proving that flf is indeed a
good approximation to IIY. Note also that results concerning the filtered approximation Y =

P w6 x¢};) are more difficult to obtain because of the weights w?[i] which couple the

particles together (this is equally true for standard particle filtering).

4 Numerical experiment

For reason of space, it is not possible to present here a detailed set of numerical simulations.
We however give a very simple example which illustrates some of the differences between the
algorithm presented in the previous section and more conventional uses of the particle filter
(such as for tracking, etc.)

We consider, the case of a first order scalar Gaussian autoregressive model observed in
additive uncorrelated Gaussian white noise, for which it is easily checked that

K (z1-1,20) = n(z; B+ d(z1-1 — B), 07)
9" Wilz, yi—1) = nlys; @0, °) (29)

where (3 is the mean value of the hidden chain X;, ¢ is the AR parameter, o2 the innovation
variance and p? is the variance of the additive noise. We further assume that X; has pdf
n(e; 8,02/(1 — ¢?)) which corresponds to the stationary distribution of the hidden chain. We

focus on the computation of the gradient of the log-likelihood, that is when the functions m!
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and rf are fixed according to (8). For this model, it is possible to carry out the computations
of section 2 exactly, using Gaussian formulas — see (Charalambous and Logothetis, 1998) for
details. For this simple toy example it is thus possible to contrast the results of the proposed
algorithm with exact (recursive) evaluations of the gradient of the log-likelihood.

Note that since we expect the maximum likelihood estimator to be consistent for this model,
it implies that the gradient of the log-likelihood satisfies

1
lim —Vylogp?(Yir) — L(0,6,)  (in P’ probability) (30)
T—oo T

where L is a deterministic function which depends both on the test parameter value 6 and on
the actual parameter value 6, under which the observations Yi.p are distributed. Eq. (30) shows
that normalization by T is indeed necessary if we want to compare the results obtained on
different time horizons T'.

P=10 P =250

0.1 0.1

0.05 0.05¢

-
I
I
I
|

GRADIENT VALUE
o
A
[
A
GRADIENT VALUE
o

-0.05 -0.05¢1

SHE---

-0.1 : : -0.1 : : : ‘
50 100 10 20 50 100
(TIME INDEX) T (TIME INDEX)

—

Figure 1: Box and whiskers plots summarizing 200 independent runs of the proposed algorithm
compared with exact computations (triangles) , for different combination of p and T'.

In the case of figure 1, the actual parameter vector is set to (3, ¢, 02, p?) = (1,0.9,0.05,0.01)
and the test parameter vector is (3, ¢, 02, p?) = (0.8,0.8,0.06,0.015). The number of particles
p is 10 for the left plot, and 250 for the right plot. The time horizon T' varies, in each plot,
from 10 to 100, and all simulations use the same observation sequence. As explained above, the
quantity displayed is %Vg log p? (Y1.7) — L(6,6,), as computed by implementing the recursion in
section 2 (triangles), and as approximated with the proposed algorithm (box and whiskers plots).
L(6,6,) is determined empirically by running the exact gradient recursions for up to 100 000
observations. Note that only the component of the gradient corresponding to the first parameter
(08) is shown since the situation is comparable for the other components of the gradient. The box
and whiskers plots correspond to 200 independent Monte Carlo runs of the proposed algorithm
and thus give and idea of the stochastic variability due to the particle approximation.

Comparing the left and right plots in figure 1, clearly shows that the precision of the approx-
imation of the gradient improves when augmenting the number of particles. Since the square
root of p is increased by a factor 5 in the right plot compared to the left one, the reduction in
variance appears to be compatible with the results obtained for the standard bootstrap filter
on some models (for which a CLT with ,/p normalization was shown to hold) (Del Moral and
Miclo, 2000). In this application however, increasing the number of particles is not the only
source of stochastic averaging: When looking at any of the two plots for different values of
the time horizon T, one clearly sees that the normalized gradient gets closer to L(0,60,) as T
increases (which means that, on figure 1, the triangles gets closer to zero with increasing ob-
servation sizes), which is expected from (30). There is thus an interplay between the number
of particles p and the time horizon T' which makes fixing the number of particles for practical
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applications a challenging issue. One final difference with more standard uses of particle filters
is the fact that the observations are not distributed under P (the test parameter value) but
under P?<. This point is crucial because we need to be able to reliably approximate the gradient
of the log-likelihood for different values @ of the parameter. Figure 1, suggests that the proposed
algorithm is reasonably efficient in this respect (since in this example 6 is indeed different from
0.) but robustness wrt large deviations of # from 0, is certainly an aspect which deserves more
investigations.

5 Conclusion

We recall the complete algorithm for recursively approximating general Q% functionals: First,
initialize the recursion with,

XY[i] ~ 7
wé‘[i] _ ho(Yl|X10[Z])
' NIV ARn)
i) = mf (X{[) (31)

for i = 1,...p (with independent draws for X¢[i]). Then, for ¢ > 1,

I'[i] ~ Discrete(w?[1],... ,w?[p]))
p [
Xip1 ~ Kxf [17141]
0(v,, 11X . [4,Y;

019° (Yo | X7, [4], Y2)
el =+ [10 1] +rly (X2 [1100], XL li]) + mol s (X2 i) (32)

for i = 1,...p (where the random draws are independent and conditionally independent from
previous draws). For any time index ¢, the partial smoothed functional may be evaluated by
computing (26).

The above algorithm provides an efficient solution for computing recursively the functionals
that are needed for likelihood-based estimation of partially observed Markovian processes in
general settings. Because of its resemblance with the standard bootstrap filter, it is expected
that the finite horizon behavior of the method may be analyzed using the tools developed by (Del
Moral and Miclo, 2000). The long-term behavior (large values of t) of the particle approximation
is probably different however from the case considered by (Del Moral and Miclo, 2000) because
of the limiting behavior of Q7 — see (Douc et al., 2000) for recent results on that point. Finally,
dependence in the parameter value @ is also an important issue.
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