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Abstrat

We onsider parameter estimation for a lass of disrete-time partially observed Marko-

vian proesses, known as swithing autoregressive models, whih are used in a variety of

appliations whih range from �nane (stohasti volatility), to signal proessing (deonvo-

lution) or teleommuniations (teletraÆ modeling). For suh models, maximum likelihood

estimation (be it in the Expetation-Maximization approah or via diret omputation of the

log-likelihood and its derivatives) implies the omputation of smoothed additive funtionals

of the hidden proess. A little known property of the lass of models under onsideration

is that there exists a generi �ltering (or reursive in time) proedure for omputing suh

smoothed additive funtionals. However, when the hidden proess is not �nite valued, this

proedure annot, in general, be implemented exatly. We thus propose an approximate

simulation-based �ltering sheme based on the sequential Monte Carlo (or partile �ltering)

approah.

Keywords: Hidden Markov Models, State Spae Model, Swithing Autoregression, Sequential

Monte Carlo, Partile Filtering, Maximum Likelihood, Expetation-Maximization

1 Introdution

1.1 Model, hypotheses and notations

We onsider parametri models onsisting of a disrete time homogeneous Markovian proess

(X

t

)

t�1

on a general Polish state spae E with Borel �-�eld B(E), indiretly observed through

R

d

valued observations (Y

t

)

t�1

. A partiular ase of interest is when the Y

t

s are onditionally

independent given the X

t

s, that is when
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for any hoie of the integer k, of the time indexes t

1

to t

k

and of the Borel subsets of R

d

B

1

; : : : B

k

. g

�

is a family of onditional probability density funtions (or simply, pdf) with

respet to (abbreviated to \wrt" heneforth) Lebesgue measure on R

d

, and the supersript �

denotes the dependene upon the parameter. Depending on the ontext, (1) is generally referred

to as a Hidden Markov Model or HMM (MaDonald and Zuhini, 1997), or as a state spae

model (Brokwell and Davis, 1991, x12). It turns out that the methods investigated in this

paper apply as well to a slightly more general model known as the swithing autoregressive

model whih we shall onsider for greater generality. In the swithing autoregressive model

(Hamilton, 1994, x22), it is assumed that

P
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: : : dy

t

(2)

where h

�

is a probability density wrt Lebesgue measure on R

d

. Thus (1) is a partiular example

of (2) where g

�

(y

s

jx

s

; y

s�1

) does not depend on the previous observation y

s�1

.

Let R denote a generi transition kernel, � and � two measures and x a point, the following

standard notations will be used: d�=d�, the Radon-Nikodym derivative of the � wrt �; �R, the

image of the measure � obtained when applying one step of the transition kernel; Æ

x

, the Dira

mass in x, and R

x

, the measure Æ

x

R. C(E;R

q

) and C(E

2

;R

q

) respetively denote the spae of

ontinuous R

q

valued funtions on E and E �E.

We further assume that the transition kernel K

�

of the hidden hain (X

t

) is dominated by

some Radon measure � on E (for all values of �) and denote by k

�

(x; �) the pdf of K

�

x

wrt �.

Likewise, we denote by �

�

1

the probability measure orresponding to the initial state X

1

and its

pdf (wrt �) is denoted by l

�

.

1.2 Motivations

The main ontribution of the paper onsists in a systemati sheme for omputing reursively

in the time index t quantities of the form

Q

�

t

=

t

X
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E

�

�

m

�

s

(X

s

)

�

�

�

Y
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t

X

s=2

E

�

�

r

�

s
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s�1
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s

)

�

�

�
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�

(3)

where the subsripting \r :s" is generially used to denote the olletion of variables with time

indexes from r to s (inluded); (m

s

)

�

s�1

2 C(E;R

q

) and (r

s

)

�

s�2

2 C(E

2

;R

q

) (for some q) are

funtions whih may depend on the parameter �. Q

�

t

as de�ned in (3) is a smoothed additive

funtional of the hidden hain onditioned on the observations Y

1

up to Y

t

. Suh funtionals are

of prime importane for estimation of the parameter �.

To illustrate this point, onsider �rst the Expetation-Maximization (EM) framework of

(Dempster et al., 1977). In this approah, the log-likelihood is optimized iteratively by repeated

maximizations of intermediate quantities de�ned as

Q
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(�j

^
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^

�

�
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�
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)

�

�

�
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�

(4)

where

^

� denotes the urrent estimate of the parameters. Computation of (4) is generally referred

to as the E step whereas the maximization

^

� - argmax

�

Q

EM

(�j

^

�) is the so-alled M step (with

the left arrow denoting variable substitution). Beause the joint proess (X

t

; Y

t

)

t�1

is Markovian,

(4) may be deomposed as

Q

EM

(�j
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^

�

�
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�

(X

1

) + log h

�
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�

�
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s
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�
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log k
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(5)
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whih is of the form de�ned in (3). In general settings however, numerial omputation (5) for

a given value of � is not suÆient to implement the EM approah sine maximization wrt �

is required. A very frequent ase examined in detail by (Dempster et al., 1977), is when the

omplete data distribution (joint distribution of X

1:t

and Y

1:t

) is from the exponential family,

that is when

p

�

(X

1:t

; Y

1:t

) = exp [A(�)B(X

1:t

; Y

1:t

) + C(X

1:t

; Y

1:t

) +D(�)℄

where B(X

1:t

; Y

1:t

) is a (possibly vetor-valued) omplete data suÆient statisti. Beause of

the Markovian dependene of (X

t

; Y

t

)

t�1

, B is a sum of terms whih only involve two suessive

time indexes. Thus, maximization of Q

EM

(�j

^

�) wrt � only requires the omputation of

E

^

�

(B(X

1:t

; Y

1:t

)jY

1:t

)

whih still has the general form given in (3).

As a representative example of this situation, onsider the stohasti volatility model (Kim

et al., 1998) where

Y

t

= e

X

t

N

t

where (N

t

)

t�1

is an iid sequene of standard Gaussian random variables, independent of the

volatility proess (X

t

)

t�1

whih is desribed by a �rst order Gaussian autoregressive model

X
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= �

1

+ �

2

(X

t

� �

1

) + �

3

E

t+1

(E

t

)

t�2

being a standardized Gaussian iid sequene. The distribution of the initial state X

1

is

here hosen suh that the observed proess (Y

t

)

t�1

is stationary. For this model,

k

�

(x
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t
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t

; �

1
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2
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1
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2

3

)

g

�
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t

jx

t
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t�1

) = n(y

t

; 0; e

x

t

)

h
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(y

1

jx

1

) = n(y

1

; 0; e

x

1

)

l

�

(x

1

) = n(x

1

; 0; �

2

3

=(1� �

2

2

)) (6)

where n(� ;�; �

2

) denotes the Gaussian pdf with mean � and variane �

2

. For this partiular

model, the omplete data suÆient statisti is four dimensional and thus eah iteration of the

EM algorithm an be arried out by omputing the vetor
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!

whose omponents all are partiular ases of (3).

Another important appliation is the omputation of the gradient of the log-likelihood,

through Fisher identity (Dempster et al., 1977, disussion by B. Efron): Under standard regu-

larity assumptions, the gradient of the log-likelihood may be written as

r

�

log p

�

(Y

1:t

) = E

�

�

r

�

log p

�

(X

1:t

; Y

1:t

)

�

�

�

Y

1:t

�

(7)

From (5) it is easily seen that for swithing autoregressive models, (7) is an instane of (3) for

the partiular hoie

m

�

1

(x

1

) = r

�

log l

�

(x

1

) +r

�

log h

�

(Y

1

jx

1

)

m

�

t

(x

t

) = r

�

log g

�

(Y

t

jx

t

; Y

t�1

) (t � 2)

r

�

t

(x

t�1

; x

t

) = r

�

log k

�

(x

t�1

; x

t

) (8)



Reursive omputation for hidden Markovian proesses 4

The EM approah is well known for being simple to implement and numerially well-behaved.

On the other hand, optimization of the log-likelihood using its gradient is potentially muh faster

thanks to the availability of quadratially onverging optimization strategies (quasi Newton, or

onjugate diretions) { see (Capp�e et al., 1998) for a omparison of both approahes in a simple

ase. Depending on the onstraints of the appliation under onsideration, both strategies an

thus be useful.

1.3 Known solutions and open problems

For general models, the main diÆulty in omputing (3) lies in the evaluation of the smoothing

distributions. For �nite state spae HMMs (when E is �nite), the smoothed distributions an

be evaluated eÆiently by a proedure known as the forward-bakward due to Baum and his

oworkers (MaDonald and Zuhini, 1997). A similar proedure is available for linear Gaussian

state spae models (when E = R

q

for some q and the joint distribution of (X

t:t+1

; Y

t:t+1

) for

any index t is multivariate normal) (De Jong, 1989). Both proedures however share the same

shortoming that a double reursion, for inreasing time indexes and then for dereasing time

indexes, is required. In pratie, this means that a storage spae that grows linearly with the

number of observations is needed, whih an be problemati for appliations involving large

datasets suh as �nane of bioinformatis.

In addition, the non ausal nature of these smoothing proedures is a real obstale when

trying to devise eÆient on-line (reursive in the time index t) strategies to estimate the param-

eter �. This last problem is onsidered by (LeGland and Mevel, 1997) and (Collings and Ryden,

1998) who used the fat that the gradient of the log-likelihood an be updated reursively us-

ing formulas obtained by formal di�erentiation of the �ltering reursion. More spei�ally, the

log-likelihood may be deomposed as

log p

�

(Y

1:t+1

) = log p

�

(Y

1:t

) + log

�

Z

E

g

�

(Y

t+1

jx

t+1

; Y

t

)�

�

t+1

(dx

t+1

)

�

(for t � 2) (9)

Thus, di�erentiation, wrt �, of (9) together with the �ltering relations (11)-(12) desribed in

setion 2.1 yields reursive update formulas for omputing r

�

log p

�

(Y

1:t+1

).

Another approah (upon whih we will draw in the next setion) is based on the EM inter-

mediate quantity for whih exat reursive �lters have been proposed by (Zeitouni and Dembo,

1988) and further developed by Elliot and oworkers { see (Elliott and Krishnamurthy, 1999) for

instane. The fat that the same priniple an be applied generially for all additive funtionals

of the form given in (3), and hene for the omputation of the log-likelihood and its gradient,

has apparently not been reognized by these authors.

Of ourse, exept in some spei� ases (inluding �nite state spae HMMs and linear Gaus-

sian state spae models), even the forward-bakward approah an not be applied anymore

beause the smoothing distributions no longer have losed form expressions. This is already

the ase for the simple stohasti volatility model de�ned in (6). The tehniques used in this

situation are usually based on Markov Chain Monte Carlo (MCMC) simulations (Kim et al.,

1998), (Capp�e et al., 1999) whih are very similar in priniple to the forward-bakward approah

in that they imply onditioning both on past and future indexes of the hidden proess (X

t

).

Attempts to irumvent this limitation with sequential Monte Carlo methods (also known

as partile �ltering) inlude (Pitt and Shephard, 1999) and (H�urzeler and Kunsh, 2000). These

authors however only onsider the evaluation of the log-likelihood whih an be straightforwardly

approximated from (9). Maximization of the log-likelihood is then arried out by a grid searh

whih would learly be impratial for large (multidimensional) parameter spaes.
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2 Reursive update formulas

2.1 Preliminary: Standard predition and �ltering

Let �

�

s

and '

�

s

denote respetively the predition and �ltering probability measures de�ned as

�

�

s

(�) = P

�

(X

s

2 �jY

1:s�1

) and '

�

s

(�) = P

�

(X

s

2 �jY

1:s

)

Both of these quantities may be omputed aording to the following reursions:

d'

�

1

d�

�

1

(x

1

) = w

�

1

(x

1

) =

h

�

(Y

1

jx

1

)

R

E

h

�

(Y

1

jx

1

)�

�

1

(dx

1

)

(initialization) (10)

For s = 1; : : : t� 1,

�

�

s+1

= '

�

s

K

�

(predition) (11)

d'

�

s+1

d�

�

s+1

= w

�

s+1

(filtering) (12)

where

w

�

s+1

(x

s+1

) =

g

�

(Y

s+1

jx

s+1

; Y

s

)

R

E

g

�

(Y

s+1

jx

s+1

; Y

s

)�

�

s+1

(dx

s+1

)

(13)

The �lter-to-preditor update thus onsists of one step of the transition kernel of the hidden

hain, while the preditor-to-�lter update orresponds to an appliation of Bayes rule.

2.2 Extension: omputing smoothed funtionals

For a time index t, let A 2 �(X

1:t

) denote a past event. The important remark used by

(Zeitouni and Dembo, 1988) is that, whereas P

�

(AjY

1:t+1

) annot be diretly omputed from

P

�

(AjY

1:t

), it is possible to update the (unnormalized) measure P

�

(A;X

t

2 �jY

1:t

) so as to obtain

P

�

(A;X

t+1

2 �jY

1:t+1

). To build on this remark, �rst note that the Markovian struture implies

that

P

�

(A;X

t+1

2 �jY

1:t

) =

Z

E

P

�

(A; dx

t

jY

1:t

)K

�

(x

t

; �) (14)

Next, apply Bayes' rule to obtain

dP

�

(A;X

t+1

2 �jY

1:t+1

)

dP

�

(A;X

t+1

2 �jY

1:t

)

= w

�

t+1

(15)

where w

�

t+1

is de�ned in (13). Perhaps surprisingly, the above equations show that the unnor-

malized measure P

�

(A;X

t

2 �jY

1:t

) an be updated reursively using the same formulas as for

the standard �ltering probability measure.

In order to generalize this observation to the omputation of general Q

�

t

funtionals given in

(3), de�ne the signed measures

�

�

t

(�) =

t

X

s=1

Z

E

m

�

s

(x

s

)P

�

(dx

s

;X

t

2 �jY

1:t�1

)

+

t

X

s=2

Z

E

2

r

�

s

(x

s�1

; x

s

)P

�

(dx

s�1

; dx

s

;X

t

2 �jY

1:t�1

) (16)
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and

�

�

t

(�) =

t

X

s=1

Z

E

m

�

s

(x

s

)P

�

(dx

s

;X

t

2 �jY

1:t

)

+

t

X

s=2

Z

E

2

r

�

s

(x

s�1

; x

s

)P

�

(dx

s�1

; dx

s

;X

t

2 �jY

1:t

) (17)

for t � 2, with d�

�

1

=d�

�

1

= m

�

1

and d�

�

1

=d'

�

1

= m

�

1

. Proeeding as for (14) and (15), one obtains

the following updating equations

�

�

t+1

(B) =

Z

x

t

2E

Z

x

t+1

2B

'

�

t

(dx

t

)K

�

(x

t

; dx

t+1

)

�

m

�

t+1

(x

t+1

) + r

�

t+1

(x

t

; x

t+1

)

�

+

Z

E

�

�

t

(dx

t

)K

�

(x

t

; B) (for B 2 B(E)) (18)

and

d�

�

t+1

d�

�

t+1

= w

t+1

(19)

An important remark to be used in what follows is that '

�

t

(dx

t

)K

�

(x

t

; dx

t+1

) featured in (16)

is the joint distribution of X

t

and X

t+1

given Y

1:t

.

For any time index t, the quantity of interest an be evaluated by integration wrt �

�

t

or �

�

t

with

Q

�

t

=

Z

E

w

�

t

(x

t

)�

�

t

(dx

t

) or Q

�

t

= �

�

t

(E) (20)

Thus (18)-(19) and (20) together with (11)-(12) de�ne our reursive algorithm for omputing

Q

�

t

for all times indexes.

3 Partile approximation

This part of the paper deals with sequential Monte Carlo approximation to the reursive meh-

anism presented in the previous setion. A hat sign is plaed over approximate quantities om-

puted from Monte Carlo averages to distinguish them from their exats ounterparts introdued

so far.

3.1 Partile �ltering

The motivation for the basi approah to partile �ltering, usually referred to as \the bootstrap

�lter" (Douet et al., 2000), is the following: Assume that at time index t, the preditive distri-

bution is approximated the empirial probability measure assoiated with a sample fX

�

t

[i℄g

1�i�p

,

�̂

�

t

= 1=p

p

X

i=1

Æ

X

�

t

[i℄

(21)

where X

�

t

[i℄ 2 E are generally referred to as the \partiles".

Applying one omplete step of the mapping de�ned by (12)-(11) yields (for t � 2)

~�

�

t+1

=

p

X

i=1

w

�

t

[i℄K

�

X

�

t

[i℄

(22)

where w

�

t+1

[i℄ = g

�

(Y

t

jX

�

t

[i℄; Y

t�1

)=

P

p

i=1

g(Y

t

jX

�

t

[i℄; Y

t�1

). The resulting preditive distribution

~�

�

t+1

de�ned by (22) is a mixture distribution, from whih it is possible to obtain p (onditionally)

independent samples by
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1. Drawing (I

�

t

[1℄; : : : I

�

t

[p℄) from a disrete distribution with probabilities (w

�

t

[1℄; : : : w

�

t

[p℄) (p

iid draws with replaement).

2. Drawing independent samples X

�

t+1

[i℄ from eah of the the distributions K

�

X

�

t

[

I

�

t

[i℄

℄

for

i = 1; : : : p.

The preditive measure at time step t + 1 is then approximated by the empirial probability

measure assoiated with the new partiles fX

�

t+1

[i℄g

1�i�p

. For obvious reasons, the step 1 above

is generally referred to as \multinomial resampling". Although the bootstrap �lter is ertainly

not the only approah for onstruting a sequential Monte Carlo approximation, (Del Moral and

Milo, 2000) show that the fat that eah step of the algorithm an be deomposed into, �rst,

an appliation of the exat predition mapping to the urrent approximation of the preditive

measure, followed by, the approximation of the resulting distribution by an empirial measure,

is instrumental in proving the onvergene of the approximation (as the number p of partile

inreases) under reasonable onditions. Thus, the distintive feature of the bootstrap �lter

ompared to other approahes to sequential Monte Carlo | see (Douet et al., 2000) for a

reent review of these | is that given F

t

= �

�

X

�

t

[1 :p℄; (Y

t

)

t�1

�

, the \partiles" at time index

t+ 1 are onditionally iid with a distribution that satis�es

P

�

�

X

�

t+1

[i℄ 2 B

�

�

�

F

t

�

=

p

X

i=1

g

�

(Y

t

jX

�

t

[i℄; Y

t�1

)

P

p

i=1

g

�

(Y

t

jX

�

t

[i℄; Y

t�1

)

K

�

X

�

t

[i℄

(B) (for B 2 B(E)) (23)

whih oinides with the result of (12)-(11) applied to �̂

�

t

.

Note that both

p

X

i=1

w

�

t

[i℄ Æ

X

�

t

[i℄

and 1=p

p

X

i=1

Æ

X

�

t

[

I

�

t

[i℄

℄

provide approximations to the �ltering probability measure �

t

, the latter having an inreased

(onditional) variane due to the resampling. For the same reason,

p

X

i=1

Æ

(

X

�

t

[

I

�

t

[i℄

℄

;X

�

t+1

[i℄

)

is an approximation of the joint distribution of (X

t

;X

t+1

) given Y

1:t

.

3.2 Approximation of smoothed funtionals

We now onsider approximating general funtionals of the form (3) with a reursive partile type

algorithm whih follows the bootstrap �lter philosophy outlined in the previous setion. The

losing remark of the previous setion suggests a very simple way of approximating �

�

t

sine the

updating equation obtained in (18) essentially involves integrating wrt the joint distribution of

X

t

and X

t+1

given Y

1:t

. First note that from its de�nition in (16), �

�

t

is absolutely ontinuous

wrt to the (standard) predition distribution �

�

t

. In the ontext of the partile approximation,

it is thus reasonable to approximate �

�

t

with

^

�

�

t

= 1=p

p

X

i=1



�

t

[i℄Æ

X

�

t

[i℄

(24)

where (

�

t

[i℄)

1�i�p

are weights. To update the weights 

�

t

[i℄, we propose to use the relation



�

t+1

[i℄ = m

�

t+1

(X

�

t+1

[i℄) + r

�

t+1

�

X

�

t

h

I

�

t

[i℄

i

; X

�

t+1

[i℄

�

+ 

�

t

h

I

�

t

[i℄

i

(25)
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Using (19) and (20), the resulting approximation to Q

�

t+1

is then given by

^

Q

�

t+1

=

p

X

i=1

w

�

t+1

[i℄

�

t+1

[i℄ (26)

It is lear from (25) that the ouples (X

�

t+1

[i℄; 

�

t+1

[i℄) obtained with this sheme are still ondi-

tionally iid given F

t

= �

�

X

�

t

[1 :p℄; 

�

t

[1 :p℄; (Y

t

)

t�1

�

and that the marginal distribution of X

�

t+1

[i℄

is the same as for the standard bootstrap �lter.

For a set B 2 B(E), denote by I

B

the indiator funtion of the set B. First write

E

�

�



�

t+1

[i℄I

B

(X

�

t+1

[i℄)

�

�

�

I

�

t

[i℄;F

t

�

=

Z

B

n

m

�

t+1

(x) + r

�

t+1

�

X

�

t

h

I

�

t

[i℄

i

; x

�

+ 

�

t

h

I

�

t

[i℄

io

K

�

�

X

�

t

h

I

�

t

[i℄

i

; dx

�

(27)

And thus

E

�

�



�

t+1

[i℄I

B

(X

�

t+1

[i℄)

�

�

�

F

t

�

=

p

X

i=1

w

�

t

[i℄

Z

B

�

m

�

t+1

(x) + r

�

t+1

(X

t

[i℄; x)

�

K

�

�

X

�

t

[i℄; dx

�

+

p

X

i=1

w

�

t

[i℄

�

t

[i℄K

�

�

X

�

t

[i℄; B

�

(28)

(28) indeed oinides with what would be obtained by appliation of (19)-(18) and (12) to �̂

�

t

and

^

�

�

t

, as de�ned in (21) and (24). Using standard arguments onerning the onvergene of

empirial measures, it is then easily shown that when p gets large,

^

�

�

t+1

= 1=p

p

X

i=1



�

t+1

[i℄Æ

X

�

t+1

[i℄

is a good approximation to the exat mapping (19)-(18) applied to

^

�

�

t

. It is of ourse a very

weak result in itself and only onstitutes a small step towards proving that

^

�

�

t

is indeed a

good approximation to �

�

t

. Note also that results onerning the �ltered approximation

^

�

�

t

=

P

p

i=1

w

�

t

[i℄

�

t

[i℄Æ

X

�

t

[i℄

are more diÆult to obtain beause of the weights w

�

t

[i℄ whih ouple the

partiles together (this is equally true for standard partile �ltering).

4 Numerial experiment

For reason of spae, it is not possible to present here a detailed set of numerial simulations.

We however give a very simple example whih illustrates some of the di�erenes between the

algorithm presented in the previous setion and more onventional uses of the partile �lter

(suh as for traking, et.)

We onsider, the ase of a �rst order salar Gaussian autoregressive model observed in

additive unorrelated Gaussian white noise, for whih it is easily heked that

k

�

(x

t�1

; x

t

) = n(x

t

;� + �(x

t�1

� �); �

2

)

g

�

(y

t

jx

t

; y

t�1

) = n(y

t

;x

t

; �

2

) (29)

where � is the mean value of the hidden hain X

t

, � is the AR parameter, �

2

the innovation

variane and �

2

is the variane of the additive noise. We further assume that X

1

has pdf

n(�;�; �

2

=(1 � �

2

)) whih orresponds to the stationary distribution of the hidden hain. We

fous on the omputation of the gradient of the log-likelihood, that is when the funtions m

�

t
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and r

�

t

are �xed aording to (8). For this model, it is possible to arry out the omputations

of setion 2 exatly, using Gaussian formulas { see (Charalambous and Logothetis, 1998) for

details. For this simple toy example it is thus possible to ontrast the results of the proposed

algorithm with exat (reursive) evaluations of the gradient of the log-likelihood.

Note that sine we expet the maximum likelihood estimator to be onsistent for this model,

it implies that the gradient of the log-likelihood satis�es

lim

T!1

1

T

r

�

log p

�

(Y

1:T

)! L(�; �

�

) (in P

�

�

probability) (30)

where L is a deterministi funtion whih depends both on the test parameter value � and on

the atual parameter value �

�

under whih the observations Y

1:T

are distributed. Eq. (30) shows

that normalization by T is indeed neessary if we want to ompare the results obtained on

di�erent time horizons T .
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Figure 1: Box and whiskers plots summarizing 200 independent runs of the proposed algorithm

ompared with exat omputations (triangles) , for di�erent ombination of p and T .

In the ase of �gure 1, the atual parameter vetor is set to (�; �; �

2

; �

2

) = (1; 0:9; 0:05; 0:01)

and the test parameter vetor is (�; �; �

2

; �

2

) = (0:8; 0:8; 0:06; 0:015). The number of partiles

p is 10 for the left plot, and 250 for the right plot. The time horizon T varies, in eah plot,

from 10 to 100, and all simulations use the same observation sequene. As explained above, the

quantity displayed is

1

T

r

�

log p

�

(Y

1:T

)�L(�; �

�

), as omputed by implementing the reursion in

setion 2 (triangles), and as approximated with the proposed algorithm (box and whiskers plots).

L(�; �

�

) is determined empirially by running the exat gradient reursions for up to 100 000

observations. Note that only the omponent of the gradient orresponding to the �rst parameter

(�) is shown sine the situation is omparable for the other omponents of the gradient. The box

and whiskers plots orrespond to 200 independent Monte Carlo runs of the proposed algorithm

and thus give and idea of the stohasti variability due to the partile approximation.

Comparing the left and right plots in �gure 1, learly shows that the preision of the approx-

imation of the gradient improves when augmenting the number of partiles. Sine the square

root of p is inreased by a fator 5 in the right plot ompared to the left one, the redution in

variane appears to be ompatible with the results obtained for the standard bootstrap �lter

on some models (for whih a CLT with

p

p normalization was shown to hold) (Del Moral and

Milo, 2000). In this appliation however, inreasing the number of partiles is not the only

soure of stohasti averaging: When looking at any of the two plots for di�erent values of

the time horizon T , one learly sees that the normalized gradient gets loser to L(�; �

�

) as T

inreases (whih means that, on �gure 1, the triangles gets loser to zero with inreasing ob-

servation sizes), whih is expeted from (30). There is thus an interplay between the number

of partiles p and the time horizon T whih makes �xing the number of partiles for pratial
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appliations a hallenging issue. One �nal di�erene with more standard uses of partile �lters

is the fat that the observations are not distributed under P

�

(the test parameter value) but

under P

�

�

. This point is ruial beause we need to be able to reliably approximate the gradient

of the log-likelihood for di�erent values � of the parameter. Figure 1, suggests that the proposed

algorithm is reasonably eÆient in this respet (sine in this example � is indeed di�erent from

�

�

) but robustness wrt large deviations of � from �

�

is ertainly an aspet whih deserves more

investigations.

5 Conlusion

We reall the omplete algorithm for reursively approximating general Q

�

T

funtionals: First,

initialize the reursion with,

X

�

1

[i℄ � �

�

1

w

�

1

[i℄ =

h

�

(Y

1

jX

�

1

[i℄)

P

p

i=1

h

�

(Y

1

jX

�

1

[i℄)



�

1

[i℄ = m

�

1

(X

�

1

[i℄) (31)

for i = 1; : : : p (with independent draws for X

�

1

[i℄). Then, for t � 1,

I

�

t

[i℄ � Disrete(w

�

t

[1℄; : : : ; w

�

t

[p℄))

X

p

t+1

� K

�

X

�

t

[

I

�

t

[i℄

℄

w

�

t+1

[i℄ =

g

�

(Y

t+1

jX

�

t+1

[i℄; Y

t

)

P

p

j=1

g

�

(Y

t+1

jX

�

t+1

[j℄; Y

t

)



�

t+1

[i℄ = 

�

t

h

I

�

t

[i℄

i

+ r

�

t+1

�

X

�

t

h

I

�

t

[i℄

i

; X

�

t+1

[i℄

�

+m

�

t+1

(X

�

t+1

[i℄) (32)

for i = 1; : : : p (where the random draws are independent and onditionally independent from

previous draws). For any time index t, the partial smoothed funtional may be evaluated by

omputing (26).

The above algorithm provides an eÆient solution for omputing reursively the funtionals

that are needed for likelihood-based estimation of partially observed Markovian proesses in

general settings. Beause of its resemblane with the standard bootstrap �lter, it is expeted

that the �nite horizon behavior of the method may be analyzed using the tools developed by (Del

Moral and Milo, 2000). The long-term behavior (large values of t) of the partile approximation

is probably di�erent however from the ase onsidered by (Del Moral and Milo, 2000) beause

of the limiting behavior of Q

�

t

{ see (Dou et al., 2000) for reent results on that point. Finally,

dependene in the parameter value � is also an important issue.
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