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Summary. Importance sampling methods can be iterated like MCMC algorithms, while being

more robust against dependence and starting values, as shown in this paper. The population

Monte Carlo principle we describe here consists of iterated generations of importance samples,

with importance functions depending on the previously generated importance samples. The

advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus

be stopped at any time, while iterations improve the performances of the importance function,

thus leading to an adaptive importance sampling. We first illustrate this method on a toy mixture

example with multiscale importance functions. A second example reanalyses the ion channel

model of Hodgson (1999), using an importance sampling scheme based on a hidden Markov

representation, and compares population Monte Carlo with a corresponding MCMC algorithm.
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1. Introduction

When reviewing the literature on MCMC methodology, a striking feature is that it has

predominantly fo
ussed on produ
ing single outputs from a given target distribution, �.

This may sound a paradoxi
al statement when 
onsidering that one of the major appli
ations

of MCMC algorithms is the approximation of integrals

I =

Z

h(x)�(x)dx

with empiri
al sums

^

I =

1

T

T

X

t=1

h(x

(t)

) ;

where (x

(t)

) is a Markov 
hain with stationary distribution �. But the main issue is that � is


onsidered as the limiting distribution of x

t

per se and that the Markov 
orrelation between
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the x

t

's is eva
uated through the ergodi
 theorem (Meyn and Tweedie, 1993). There only

exist a few referen
es to the use of MCMC algorithms for the produ
tion of samples of

size n from �, in
luding Warnes (2001) and Mengersen and Robert (2003), although the


on
ept of simulation from a produ
t distribution �

N

n

is not fundamentally di�erent from

the produ
tion of a single output from the target distribution.

Another striking feature in the MCMC literature is the early attempt to disso
iate itself

from pre-existing te
hniques su
h as importan
e sampling, although the latter shared with

MCMC algorithms the property of simulating from the wrong distribution to produ
e ap-

proximate generation from the 
orre
t distribution (see Robert and Casella, 1999, Chap. 3).

It is only lately that the realisation that both approa
hes 
an be su

essfully 
oupled 
ame

upon the MCMC 
ommunity, as shown for instan
e by Ma
Ea
hern and Peruggia (2000),

Liu (2001), or Liu et al. (2001). One 
lear example of this fruitful symbiosis is given by

iterated parti
le systems (Dou
et et al., 2001). Originally, iterated parti
le systems were in-

trodu
ed to deal with dynami
 target distributions, as for instan
e in radar tra
king, where

the imperatives of on-line pro
essing of rapidly 
hanging target distributions prohibited to

resort to repeated MCMC sampling. Fundamentally, the basi
 idea, from a Monte Carlo

point of view, 
onsists in re
y
ling previous weighted samples primarily through a modi�-


ation of the weights (Gordon et al., 1993), possibly enhan
ed by additional sampling steps

(Berzuini et al., 1997; Pitt and Shephard, 1999; Gilks and Berzuini, 2001). As pointed out

in Chopin (2002), a parti
le system simpli�es into a parti
ular type of importan
e sampling

s
heme in a stati
|as opposed to dynami
|setup, where the target distribution � is �xed,

whi
h is the setting we 
onsider here.

We thus study in this paper a method, 
alled population Monte Carlo, that aims at

simulating from the target distribution �

N

n

and that tries to link these di�erent \loose

ends" into a 
oherent simulation prin
iple: Population Monte Carlo borrows from MCMC

algorithms for the 
onstru
tion of the proposal, from importan
e sampling for the 
onstru
-

tion of appropriate estimators, from SIR (Rubin, 1987) for sample equalisation, and from

iterated parti
le systems for sample improvement. The population Monte Carlo (PMC)

algorithm is in essen
e an iterated importan
e sampling s
heme that simultaneously pro-

du
es, at ea
h iteration, a sample approximately simulated from a target distribution and

(approximately) unbiased estimates

^

I of integrals I under that distribution. The sample

is 
onstru
ted using sample dependent proposals for generation and importan
e sampling

weights for pruning the proposed sample.

We des
ribe in Se
tion 2 the population Monte Carlo te
hnique, and apply these devel-

opment, �rst to a simple mixture example in Se
tion 3, and se
ond to the more ambitious

ion 
hannel model that we assess in Se
tion 4. While reasonable in 
omplexity, the mixture

example still o�ers an interesting media to assess the adaptivity of the population Monte

Carlo sampler and the resistan
e to degenera
y. The ion 
hannel model is more 
hallenging

in that there is no 
losed form representation of the observed likelihood, while the 
omple-

tion step is more deli
ate than in mixture settings. In parti
ular, Se
tion 4.6 explains why

a Metropolis{Hastings algorithm based on the same proposal as population Monte Carlo

does not work. Se
tion 5 
ontains the overall 
on
lusions of the paper.
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2. The population Monte Carlo approach

As noted in Mengersen and Robert (2003), it is possible to 
onstru
t an MCMC algorithm

asso
iated with the target distribution

�

N

n

(x

1

; : : : ; x

n

) =

n

Y

i=1

�(x

i

) ; (1)

on the spa
e X

n

, rather than with the distribution �(x

1

), on the spa
e X . All standard

results and s
hemes for MCMC algorithms apply in this parti
ular 
ase, and irredu
ible

Markov 
hains asso
iated with su
h MCMC algorithms 
onverge to the target �

N

n

in dis-

tribution, that is, get approximately distributed as an iid sample from � after a \suÆ
ient"

number of iterations. Mengersen and Robert (2003) point out that additional sampling

devi
es 
an be used to 
onstru
t the proposal distributions, like Gibbs-type 
omponent-

wise repulsive proposals that ex
lude immediate neighbourhoods of the other points in the

sample.

When 
onsidering, at MCMC iteration t, a sample x

(t)

= (x

(t)

1

; : : : ; x

(t)

n

), we 
an think

of produ
ing the next iteration of the sample x

(t+1)

su
h that the 
omponents x

(t+1)

i

are

generated from a proposal q(xjx

(t)

i

). However, rather than a

epting ea
h proposed x

(t+1)

i

individually (whi
h would be a standard form of parallel MCMC sampling) or the whole

sample x

(t+1)

globally (whi
h would su�er from the 
urse of dimensionality), we 
an al-

together remove the issue of assessing the 
onvergen
e to the stationary distribution by


orre
ting at ea
h iteration for the use of the wrong distribution by importan
e weighting.

Thus, instead of using an asymptoti
 justi�
ation to an MCMC iterated simulation

s
heme, we 
an instead resort to importan
e sampling arguments: if the sample x

(t)

is

produ
ed by simulating the x

(t)

i

's from distributions q

it

, independently of one another, and

if we asso
iate to ea
h point x

(t)

i

of this sample the importan
e weight

%

(t)

i

=

�(x

(t)

i

)

q

it

(x

(t)

i

)

; i = 1; : : : ; n ;

estimators of the form

I

t

=

1

n

n

X

i=1

%

(t)

i

h(x

(t)

i

)

are unbiased for every integrable fun
tion h and at every iteration t.

This is the starting point for population Monte Carlo methods, namely that extending

regular importan
e sampling te
hniques to 
ases where the importan
e distribution for

x

(t)

i

may depend on both the sample index i and the iteration index t does not modify

their validity. As already indi
ated in Robert and Casella (1999, Lemma 8.3.1) in a more

restri
tive setting, importan
e sampling estimators have the interesting property that the

terms %

(t)

i

h(x

(t)

i

) are un
orrelated, even when the proposal q

it

depends on the whole past

of the experiment: assuming that the varian
es var

�

%

(t)

i

h(x

(t)

i

)

�

exist for every 1 � i � n,

whi
h means that the proposals q

it

should have heavier tails than �, we have

var (I

t

) =

1

n

2

n

X

i=1

var

�

%

(t)

i

h(x

(t)

i

)

�

; (2)
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due to the 
an
eling e�e
t of the weights %

(t)

i

.

Obviously, in most settings, the distribution of interest � is uns
aled and we have to use

instead

%

(t)

i

/

�(x

(t)

i

)

q

it

(x

(t)

i

)

; i = 1; : : : ; n ;

s
aled so that the weights %

(t)

i

sum up to 1. In this 
ase, the above unbiasedness property

and the varian
e de
omposition are lost, although they approximately hold. In fa
t, the

estimation of the normalising 
onstant of � improves with ea
h iteration t, sin
e the overall

average

$

t

=

1

tn

t

X

�=1

n

X

i=1

�(x

(�)

i

)

q

i�

(x

(�)

i

)

(3)

is a 
onvergent estimator of the inverse of the normalising 
onstant. Therefore, as t in
reases,

$

t

is 
ontributing less and less to the variability of I

t

and the above properties 
an be


onsidered as holding for t large enough. In addition, if the sum (3) is only based on the

(t� 1) �rst iterations, that is, if

%

(t)

i

=

�(x

(t)

i

)

$

t�1

q

it

(x

(t)

i

)

;

the varian
e de
omposition (2) 
an be re
overed, via the same 
onditioning argument.

A related point is that attention must be paid to the sele
tion of the proposals q

it

so

that the normalising 
onstants in these densities (or at least the part that depend on i)

must be available in 
losed form.

As pointed out by Rubin (1987) for regular importan
e sampling, it is preferable, rather

than to update the weights %

(t)

i

at ea
h iteration t, to resample (with repla
ement) n values

y

(t)

i

from (x

(t)

1

; : : : ; x

(t)

n

) using the weights %

(t)

i

(and possibly the varian
e redu
tion devi
e

of systemati
 sampling, as in Carpenter et al., 1998). This partially avoids the degenera
y

phenomenon, that is, the preservation of negligible weights and 
orresponding irrelevant

points in the sample. The sample (y

(t)

1

; : : : ; y

(t)

n

) resulting from this sampling importan
e

resampling (SIR) step is thus akin to an iid sample extra
ted from the weighted empiri
al

distribution asso
iated with �

N

n

(x

1

; : : : ; x

n

).

A pseudo-
ode rendering of the PMC algorithm is as follows

PMCA: Population Monte Carlo Algorithm

For t = 1; : : : ; T

For i = 1; : : : ; n,

(i) Select the generating distribution q

it

(�)

(ii) Generate x

(t)

i

� q

it

(x)

(iii) Compute %

(t)

i

= �(x

(t)

i

)=q

it

(x

(t)

i

)

Normalise the %

(t)

i

’s to sum up to 1
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Resample n values from the x

(t)

i

’s with replacement, using the weights %

(t)

i

, to create

the sample (x

(t)

1

; : : : ; x

(t)

n

)

Step (i) in this representation is stressed be
ause this is an essential feature of the PMC

algorithm: the proposal distributions 
an be individualized at ea
h step of the algorithm

without jeopardising the validity of the method. The proposals q

it


an therefore be pi
ked

a

ording to the performan
es of the previous q

i(t�1)

's and, in parti
ular, they 
an depend

on the previous sample (x

(t�1)

1

; : : : ; x

(t�1)

n

) or even on all the previously simulated samples,

if storage allows. For instan
e, in the mixture setting of Se
tion 3, the q

it

's are random

walk proposals 
entered at the x

(t�1)

1

's, with various possible s
ales 
hosen from earlier

performan
es, and they 
ould also in
lude large tails proposals as in the defensive sampling

strategy of Hesterberg (1998), to ensure �nite varian
e. Similarly, Warnes (2001) uses the

previous sample to build a kernel non-parametri
 approximation to �.

The fa
t that the proposal distribution q

i(t�1)


an depend on the past iteration in any

possible way without modifying the weight %

(t)

i

is due to the feature that the unbiasedness

equation

E

h

%

(t)

i

h(x

(t)

i

)

i

=

Z Z

�(x)

q

it

(x)

h(x)q

it

(x)dx g(�)d�

=

Z Z

h(x)�(x)dx g(�)d� = E

�

[h(X)℄ ;

where � denotes the ve
tor of past random variates that 
ontribute to q

it

, does not depend

on the distribution g(�) of this random 
onstituent.

There are similarities between PMC and earlier proposals in the parti
le system litera-

ture, in parti
ular with Berzuini et al.'s (1997) and Gilks and Berzuini (2001), sin
e these

authors also 
onsider iterated samples with (SIR) resampling steps based on importan
e

weights. A major di�eren
e though (besides their dynami
 setting of moving target distri-

butions) is that they remain within the MCMC realm by using the resample step before

the proposal move. These authors are thus for
ed to use Markov transition kernels with

given stationary distributions. There is also a similarity with Chopin (2002) who 
onsiders

iterated importan
e sampling with 
hanging proposals. His setting is a spe
ial 
ase of PMC

in a Bayesian framework, where the proposals q

it

are the posterior distributions asso
iated

with a portion k

t

of the observed dataset (and are thus independent of i and of the previous

samples).

As noted earlier, a most noti
eable property of the PMC method is that the generality

in the 
hoi
e of the proposal distributions q

it

is due to the relinquishment of the MCMC

framework. Indeed, without the importan
e resampling 
orre
tion, a regular Metropolis{

Hastings a

eptan
e step for ea
h point of the n-dimensional sample produ
es a parallel

MCMC sampler whi
h simply 
onverges to the target �

N

n

in distribution. Similarly, a

regular Metropolis{Hastings a

eptan
e step for the whole ve
tor x

(t)


onverges to �

N

n

;

the advantage in produ
ing an asymptoti
 approximation to an iid sample is balan
ed by the

drawba
k that the a

eptan
e probability de
reases approximately as a power of n. Sin
e,

in PMC, we pi
k at ea
h iteration the points in the sample a

ording to their importan
e

weight %

(t)

i

, we both remove the 
onvergen
e issue and 
onstru
t a sele
tion me
hanism over

both the points of the previous sample and the proposal distributions. This is not solely a

theoreti
al advantage: In the example of the ion 
hannel in Se
tion 4.6, it a
tually o

urs
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that a Metropolis{Hastings s
heme based on the same proposal does not work well, while

a PMC algorithm produ
es 
orre
t answers.

The PMC framework thus allows for a mu
h easier 
onstru
tion of adaptive s
hemes,

i.e. of proposals that 
orre
t themselves against past performan
es, than in MCMC setups.

Indeed, while adaptive importan
e sampling strategies have already been 
onsidered in the

pre-MCMC area, as in, e.g., Oh and Berger (1992,1993), the MCMC environment is mu
h

harsher for adaptive algorithms, be
ause the adaptivity 
an
els the Markovian nature of

the sequen
e and thus 
alls for more elaborate 
onvergen
e studies to establish ergodi
ity.

See, e.g., Andrieu and Robert (2001) and Haario et al. (1999,2001) for re
ent developments

in this area. For PMC methods, ergodi
ity is not an issue sin
e the validity is obtained via

importan
e sampling justi�
ations.

The samples produ
ed by the PMC method 
an be exploited as regular importan
e

sampling outputs at any iteration T , and thus do not require the 
onstru
tion of stopping

rules as for MCMC samples (Robert and Casella, 1999, Chap. 8). Quite interestingly

though, the whole sequen
e of samples 
an be exploited, both for adaptation of the proposals

and for estimation purposes, as illustrated with the 
onstant approximation (2). This does

not require a stati
 storage of all samples produ
ed though, sin
e approximations like (2) 
an

be updated dynami
ally. In addition, this possibility to exploit the whole set of simulations

implies that the sample size n is not ne
essarily very large, sin
e the e�e
tive simulation

size is n � T . A last remark is that the number of points in the sample is not ne
essarily


onstant over iterations. As in Chopin (2002), one may in
rease the number of points in

the sample on
e the algorithm seems to stabilise in a stationary regime.

3. Mixture model

Our �rst example is a Bayesian modelling of a mixture model, whi
h is a problem simple

enough to introdu
e but 
omplex enough to lead to poor performan
es for badly designed

algorithms (Robert and Casella, 1999, Chap. 9; Capp�e et al., 2003). The mixture problem

we 
onsider is based on an iid sample x = (x

1

; : : : ; x

n

) from the distribution

pN (�

1

; �

2

) + (1� p)N (�

2

; �

2

);

where both p 6= 1=2 and � > 0 are known. The prior asso
iated with this model, �, is a

normal N (�; �

2

=�) prior on both �

1

and �

2

. We thus aim at simulating from the posterior

distribution

�(�

1

; �

2

jx) / f(xj�

1

; �

2

)�(�

1

; �

2

) :

Although the \standard"MCMC resolution of the mixture problem is to use a Gibbs sampler

based on a data augmentation step via indi
ator variables, re
ent developments (Celeux et

al., 2000; Chopin, 2002; Capp�e et al., 2003) have shown that the data augmentation step

is not ne
essary to run an MCMC sampler. We will now demonstrate that a PMC sampler


an be eÆ
iently implemented without this augmentation step either.

Our PMC algorithm is adaptive in the following sense: The initialization step 
onsists

�rst in 
hoosing a set of initial values for �

1

and �

2

(e.g., a grid of points around the

empiri
al mean of the x

i

's). The proposals are then random walks, that is, random isotropi


perturbations of the points of the 
urrent sample. As noted above, a very appealing feature

of the PMC method is that the proposal may vary from one point of the sample to another

without jeopardizing the validity of the method. At a �rst level, the proposals are all

di�erent, sin
e they are normal distributions 
entered in every sample point. At a se
ond
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level, we 
an also 
hoose di�erent varian
es for these normal distributions, for instan
e

within a predetermined set of p s
ales v

i

(1 � i � p) ranging from 10

3

down to 10

�3

, and

sele
t these varian
es at ea
h step of the PMC algorithm a

ording to the performan
es

of the s
ales on the previous iterations. In our implementation, we de
ided to sele
t a

s
ale proportionally to its non-degenera
y rate on the previous iterations. (Note the formal

similarity of this s
heme with Stavropoulos and Titterington's (1999) smooth bootstrap, or

adaptive importan
e sampling, and Warnes' (2001) kernel 
oupler, when the kernel used in

their mixture approximation of � is normal. The main di�eren
e is that we do not aim at a

good approximation of � using standard kernel results like bandwidth sele
tion, but rather

keep the di�erent s
ales v

i

over the iterations.) Our PMC algorithm thus looks as follows:

Mixture PMC

Step 0: Initialisation

For j = 1; : : : ; n = pm, choose (�

1

)

(0)

j

; (�

2

)

(0)

j

For k = 1; : : : ; p, set r
k

= m

Step i: Update (i = 1; : : : ; I)

For k = 1; : : : ; p,

(a) generate a sample of size r

k

as

(�

1

)

(i)

j

� N

�

(�

1

)

(i�1)

j

; v

k

�

and (�

2

)

(i)

j

� N

�

(�

2

)

(i�1)

j

; v

k

�

(b) compute the weights

%

j

/

f

�

x

�

�

�

(�

1

)

(i)

j

; (�

2

)

(i)

j

�

�

�

(�

1

)

(i)

j

; (�

2

)

(i)

j

�

'

�

(�

1

)

(i)

j

�

�

�

(�

1

)

(i�1)

j

; v

k

�

'

�

(�

2

)

(i)

j

�

�

�

(�

2

)

(i�1)

j

; v

k

�

Resample the
�

(�

1

)

(i)

j

; (�

2

)

(i)

j

�

j

using the weights %

j

,

For k = 1; : : : ; p,

update r

k

as the number of elements generated with variance v

k

which have
been resampled.

where '(qjs; v) is the density of the normal distribution with mean s and varian
e v at the

point q.

As mentioned above, the weight asso
iated with ea
h varian
e v

k

is thus proportional to

the regeneration (or survival) rate of the 
orresponding sample. If most �

j

's asso
iated with

a given v

k

are not resampled, the next step will see less generations using this varian
e v

k

.

However, to avoid the 
omplete removal of a given varian
e v

k

, we modi�ed the algorithm

to ensure that a minimum number of points is simulated from ea
h varian
e level, namely

1% of the whole sample.
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The performan
es of the above algorithm are illustrated on a simulated dataset of 1000

observations from the distribution 0:2N (0; 1)+ 0:8N (2; 1). We also took � = 1 and � = 0:1

as hyperparameters of the prior. Applying the above PMC algorithm to this sample, we

see that it produ
es a non-degenerate sample, that is, not restri
ted to n repli
ations of

the same point. In addition, the adaptive feature for 
hoosing among the v

k

's is de�nitely

helpful to explore the state spa
e of the unknown means. In this 
ase, p = 5 and the �ve

varian
es are equal to 5; 2; :1; :05 and :01. Moreover, at ea
h step i of the PMC algorithm,

we generated n = 1050 sample points.

The two upper graphs of Figure 1 illustrate the degenera
y phenomenon asso
iated with

the PMC algorithm: they represent the sizes of the samples issued from the di�erent pro-

posals, that is, the number of di�erent points resulting from the resampling step: the upper

left graph exhibits a nearly 
y
li
 behavior for the largest varian
es v

k

, alternating from

no point issued from these proposals to a large number of points. This behaviour agrees

with intuition: proposals that have too large a varian
e mostly produ
e points that are ir-

relevant for the distribution of interest, but on
e in a while they happen to generate points

that are 
lose to one of the modes of the distribution of interest. In the later situation,

the 
orresponding points are asso
iated with large weights %

j

and are thus heavily resam-

pled. The upper right graph shows that the other proposals are rather evenly 
onsidered

along iterations. This is not surprising for the smaller varian
es, sin
e they modify very

little the 
urrent sample, but the 
y
li
 predominan
e of the three possible varian
es is

quite reassuring about the mixing abilities of the algorithm and thus about its exploration

performan
es.

We 
an also study the in
uen
e of the variation in the proposals on the estimation of

the means �

1

and �

2

, as illustrated by the middle and lower panels of Figure 1. First,

when 
onsidering the 
umulative means of these estimations over iterations, the quantities

qui
kly stabilise. The 
orresponding varian
es are not so stable over iterations, but this is

to be expe
ted, given the regular reappearan
e of subsamples with large varian
es.

Figure 2 provides an additional insight into the performan
es of the PMC algorithm, by

representing a weighted sample of means with dots proportional to the weights. As should

be obvious from this graph, there is no overwhelming point that 
on
entrates most of the

weight. On the opposite, the 1050 points are rather evenly weighted, espe
ially for those


lose to the posterior modes of the means.

Note that a better PMC s
heme 
ould be 
hosen. The approa
h sele
ted for this se
tion

does not take advantage of the latent stru
ture of the model, as in Chopin (2002), and


ontrary to the following se
tion. Indeed, after an initialization step, one 
ould �rst simulate

the latent indi
ator variable 
onditionally on the previous sample of (�

1

; �

2

) and then

simulate a new sample of means 
onditionally on the latent indi
ator variables. Iterating

this PMC s
heme seems to 
onstitute a sort of parallel Gibbs sampling, but this s
heme is

valid at any iteration and 
an thus be stopped at any time. That we have not used this

approa
h is to emphasize that the PMC method has no real need of the latent stru
ture of

the model to work satisfa
torily.

4. Ion channels

4.1. The stylised model

As a realisti
 example of implementation of the PMC s
heme, we 
onsider here a formalised

version of the ion 
hannel model of Hodgson (1999). We refer the reader to this paper, as
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Fig. 1. Performances of the mixture PMC algorithm: (upper left) Number of resampled points for

the variances v

1

= 5 (darker) and v

2

= 2; (upper right) Number of resampled points for the other

variances, v
3

= 0:1 is the darkest one; (middle left) Variance of the simulated �

1

’s along iterations;

(middle right) Complete average of the simulated �

1

’s over iterations; (lower left) Variance of the

simulated �

2

’s along iterations; (lower right) Complete average of the simulated �

2

’s over iterations.

well as to Ball et al. (1999) and Carpenter et al. (1999), for a biologi
al motivation of this

model, alternative formulations, and additional referen
es. Let us insist at this point on the

formalised aspe
t on our model, whi
h predominantly serves as a realisti
 support for the


omparison of a PMC approa
h with a more standard MCMC approa
h in a semi-Markov

setting. The �ner points of model 
hoi
e and model 
omparison for the modelling of ion


hannel kineti
s, while of importan
e as shown by Ball et al. (1999) and Hodgson and

Green (1998), are not addressed by the present paper. Note also that, while a Bayesian

analysis of this model provides a 
omplete inferential perspe
tive, the fo
us of attention is

generally set on the restoration of the true 
hannel 
urrent, rather than on the estimation

of the parameters of the model.

Consider, thus, observables y = (y

t

)

1�t�T

dire
ted by a hidden Gamma (indi
ator)

pro
ess x = (x

t

)

1�t�T

in the following way:

y

t

jx

t

� N (�

x

t

; �

2

) ;

while x

t

2 f0; 1g, with durations d

j

� Ga(s

i

; �

i

) (i = 0; 1). More exa
tly, the hidden pro
ess

(x

t

)

t

is a (
ontinuous time) Gamma jump pro
ess with jump times t

j

(j = 1; 2; : : :) su
h
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Fig. 2. Representation of the log-posterior distribution via grey levels (darker stands for lower and

lighter for higher) and of a weighted sample of means. (The weights are proportional to the surface

of the circles.)
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that

d

j+1

= t

j+1

� t

j

� Ga(s

i

; �

i

)

if x

t

= i for t

j

� t < t

j+1

, that is, E [d

j+1

℄ = s

i

=�

i

. Figure 3 provides a simulated sample

of size 4000 from this model.

0 1000 2000 3000 4000

−2
0

2
4

t

y

Fig. 3. Simulated sample of size 4000 from the ion channel model

A �rst modi�
ation of Hodgson's (1999) ion 
hannel model is introdu
ed at this level:

we assume that the durations d

j

, that is, the time intervals in whi
h the pro
ess (x

t

)

1�t�T

remains in a given state, are integer valued, rather than real valued. The reasons for this


hange are that

(a) the true durations of the Gamma pro
ess are not identi�able;

(b) this model is a straightforward generalisation of the hidden Markov model where the

jumps do o

ur at integer times (see Ball et al., 1999, or Carpenter et al., 1999).

A natural generalisation of the geometri
 duration of the hidden Markov model is

a negative binomial distribution, N eg(s; !), whi
h is very 
lose to a Gamma den-

sity Ga(s + 1;� log(1 � !)) (up to a 
onstant) for s small. Indeed, the former is

approximately

d

s

s!

(1� !)

d

�

!

1� !

�

s

while the later is

d

s

s!

(1� !)

d

f� log(1� !)g

s+1

(The simulations detailed below were also implemented using a negative binomial

modelling, leading to very similar results in the restoration pro
ess.)

(
) inferen
e on the d

j

's given (x

t

)

1�t�T

involves an extra level of simulations, even

if it 
an be easily implemented via a sli
e sampler, as long as we do not 
onsider

the possibility of several jumps between two integer observational times. (This later

possibility is a
tually negligible for the datasets we 
onsider.); and

(d) the repla
ement of d

j

by its integral part does not strongly modify the likelihood.

In a similar vein, we omit the 
ensoring e�e
t of both the �rst and the last intervals, given

that the in
uen
e of this 
ensoring on a long series is bound to be small.

A se
ond modi�
ation of Hodgson's (1999) model is that we 
hoose a uniform prior for

the shape parameters s

0

and s

1

on the �nite set f1; : : : ; Sg, rather than an exponential

Exp(�) prior on R

+

. The reasons for this modi�
ation are that
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(a) the hidden Markov pro
ess has geometri
 swit
hing times, whi
h 
orrespond to expo-

nential durations. A natural extension is to 
onsider that the durations of the stays

within ea
h state (or r�egime) 
an be represented as the 
umulated duration of s

i

ex-

ponential stays, with s

i

an unknown integer, whi
h exa
tly 
orresponds to gamma

durations. This representation thus removes the need to 
all for a level of variable

dimension modelling. Carpenter et al. (1999) and Hodgson and Green (1999) use

a di�erent approa
h, based on the repli
ation of the \open" and "
losed" sets into

several states, to approximate the semi-Markov model.

(b) the following simulations show that the parameters s

0

and s

1

are strongly identi�ed

by the observables (y

t

)

1�t�T

;

(
) the prior information on the parameters s

0

and s

1

is most likely to be sparse and thus

a uniform prior is less informative than a Gamma prior when S is large; and

(d) the use of a �nite support prior allows for the 
omputation of the normalising 
onstant

in the posterior 
onditional distribution of the parameters s

0

and s

1

, a feature that is

paramount for the implementation of PMC.

A third modi�
ation, when 
ompared with both Hodgson (1999) and Carpenter et al.

(1999), is that the observables are assumed to be independent, given the x

t

's, rather than

distributed from either an AR(15) (Hodgson, 1999) or an ARMA(1,1) (Carpenter et al.,

1999) model. This modi�
ation somehow weakens the identi�ability of both r�egimes as the

data be
omes potentially more volatile.

The other parameters of the model are distributed as in Hodgson (1999), using 
onjugate

priors,

�

0

; �

1

� N (�

0

; ��

2

)

�

�2

� G(�; �)

�

0

; �

1

� G(�; �)

Figure 4 illustrates the dependen
es indu
ed by this modelling on a DAG.

1

y

0
µ

µ
1

τ

2σ

ζ η

α β

S

S

S

λ λ

x

0 1

0

Fig. 4. DAG representation of the probabilistic dependences in the Bayesian ion channel model.

This formalised ion 
hannel model is thus a spe
ial 
ase of dis
rete time hidden semi-

Markov model for whi
h there exists no expli
it polynomial time formula for the posterior

distribution of the hidden pro
ess (x

t

)

1�t�T

, as opposed to the hidden Markov model

with the forward{ba
kward formula of Baum and Petrie (1966). From a 
omputational

(MCMC) point of view, there is therefore no way of integrating this hidden pro
ess out

to simulate dire
tly the parameters 
onditional on the observables (y

t

)

1�t�T

, as was done
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in the hidden Markov model by, e.g., Capp�e et al. (2003). Note also that, as opposed to

Hodgson (1999), we use the saturated missing data representation of the model via x to

avoid the 
ompli
ation of using reversible jump te
hniques for whi
h PMC algorithms are

more diÆ
ult to implement.

4.2. Population Monte Carlo for ion channel models

Our 
hoi
e of proposal fun
tion is based on the availability of 
losed form formulas for

the hidden Markov model. We thus 
reate a pseudo hidden Markov model based on the


urrent values of the parameters for the ion 
hannel model, simply by building the Markov

transition matrix from the average durations in ea
h state,

P =

 

1�

�

0

s

0

�

0

s

0

�

1

s

1

1�

�

1

s

1

!

;

sin
e, for a hidden Markov model, the average sojourn within one state is exa
tly the inverse

of the transition probability to the other state. We denote by �

H

(xjy; !) the full 
onditional

distribution of the hidden Markov 
hain x given the observables y and the parameters

! = (�

0

; �

1

; �; �

0

; �

1

; s

0

; s

1

)


onstru
ted via the forward{ba
kward formula: see, e.g., Capp�e et al. (2003) for details.

The simulation of the parameters ! pro
eeds in a natural way by using the full 
onditional

distribution �(!jy;x) sin
e it is available. In order not to 
onfuse the issues, we do not


onsider the possible adaptation of the approximation matrix P over the iterations, that is,

a modi�
ation of the swit
h probabilities from �

i

=s

i

(i = 1; 2).

Note that Carpenter et al. (1999) also 
onsider the ion 
hannel model in their par-

ti
le �lter paper, with the di�eren
es that they repla
e the semi-Markov stru
ture with

an approximative hidden Markov model with more than 2 states, and that they work in

a dynami
 setting based on this approximation. The observables y are also di�erent in

that they 
ome from an ARMA(1,1) model with only the lo
ation parameter depending on

the unknown state. Hodgson and Green (1998) similarly 
ompared several hidden Markov

model with dupli
ated \open" and \
losed" states. Ball et al. (1999) also rely on a hidden

Markov modelling with missing observations.

The subsequent use of importan
e sampling bypasses the exa
t simulation of the hidden

pro
ess (x

t

)

1�t�T

and thus avoids the re
ourse to variable dimension models and to more

sophisti
ated tools like reversible jump MCMC. This saturation of the parameter spa
e by

the addition of the whole indi
ator pro
ess (x

t

)

1�t�T

is obviously more 
ostly in terms of

storage, but it provides unrestri
ted moves between 
on�gurations of the pro
ess (x

t

)

1�t�T

.

Sin
e we do not need to de�ne the 
orresponding jump moves, we are thus less likely to

en
ounter the slow 
onvergen
e problems of Hodgson (1999).

We therefore run PMC as in the following pseudo-
ode rendering, where I denotes the

number of iterations, T being used for the number of observations:
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Ion 
hannel PMC

Step 0: Initialisation

For j = 1; : : : ; n,

(i) generate (!

(j)

;x

(j)

�

) � �(!)� �

H

(xjy; !

(j)

)

(ii) compute the weight %
j

/ �(!

(j)

;x

(j)

�

jy)=�(!

(j)

)�

H

(x

(j)

�

jy; !

(j)

)

Resample the (!

(j)

;x

(j)

�

)

j

using the weights %

j

Step i: Update (i = 1; : : : ; I)

For j = 1; : : : ; n,

(i) generate (!

(j)

;x

(j)

+

) � �(!jy;x

(j)

�

)� �

H

(xjy; !

(j)

)

(ii) compute the weight %
j

/ �(!

(j)

;x

(j)

+

jy)

Æ

�(!

(j)

jy;x

(j)

�

)�

H

(x

(j)

+

jy; !

(j)

)

Resample the (!

(j)

;x

(j)

+

)

j

using the weights %

j

, and take x

(j)

�

= x

(j)

+

(j =

1; : : : ; n).

The justi�
ation for the weights %

j

used in the above algorithm is that 
onditional on

the x

(j)

�

's, !

(j)

is simulated from �(!jy;x

(j)

�

) and, 
onditional on !

(j)

, x

(j)

+

is simulated

from �

H

(xjy; !

(j)

). The normalising fa
tor of the %

j

's 
onverges to the 
orre
t 
onstant by

the law of large numbers.

4.3. Normalising constants

Let us stress the spe
i�
ity of the PMC method in terms of normalising 
onstants: �(!jy;x)

is available in 
losed form (see below in Se
tion 4.4), in
luding its normalising 
onstant, due

to the 
onjuga
y of the distributions on �

0

; �

1

; �; �

0

; �

1

and the �niteness of the support

of s

0

; s

1

. The 
onditional distribution �

H

(xjy; !) is also available with its normalising


onstant, by virtue of the forward{ba
kward formula. The only diÆ
ulty in the ratio

�(!;xjy)

�(!jy;x)�

H

(xjy; !)

lies within the numerator �(!;xjy) whose normalised version is unknown. We therefore use

instead the proportional term

�(!;xjy) / �(!) f(yjx; !) f(xj!) : (4)

and normalise the %

j

's by their sum. The foremost feature of this reweighting is that the

normalising 
onstant missing in (4) only depends on the observables y and is therefore truly

a 
onstant, that is, does not depend on the previous value of the point x

(j)

�

. This s
heme


ru
ially relies on (i) the points en
ompassing both the parameters ! and the latent data

x, and (ii) the distribution �(!;xjy) being available in 
losed form.
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4.4. Simulation details

Figure 5 illustrates the performan
es of PMC by representing the graph of the dataset

against the �tted average

J

X

j=1

%

j

�

x

(j)

t

for ea
h observation y

t

. As obvious from the pi
ture, the �t is quite good.
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Fig. 5. (top) Histograms of residuals after fit by averaged �

x

t

; (middle) Simulated sample of size

4000 against fitted averaged �

x

t

; (bottom) Probability of allocation to first state for each observation

The unobserved Gamma pro
ess is distributed as

M

Y

m=1

(t

m+1

� t

m

)

s

m

�1

�

s

m

m

e

��

m

(t

m+1

�t

m

)

�(s

m

)

=

�

n

0

s

0

0

e

��

0

v

0

�

s

0

�1

0

�(s

0

)

n

0

�

n

1

s

1

1

e

��

1

v

1

�

s

1

�1

1

�(s

1

)

n

1

;

with obvious notations: M is the number of 
hanges, the t

m

's are the su

essive times when

the gamma pro
ess 
hanges state, the s

m

's, �

m

's are the 
orresponding sequen
es of s

0

; s

1

and �

0

; �

1

, n

i

is the number of visits to state i, �

i

is the produ
t of the sojourn durations

in state i [
orresponding to the geometri
 mean℄, v

i

the total sojourn duration in state i

[
orresponding to the arithmeti
 mean℄. (This is based on the assumption of no 
ensoring,

made in Se
tion 4, namely that t

1

= 1 and t

M+1

= T + 1.)

The posterior distributions on the �

i

's and �

�2

[
onditional on the hidden pro
ess℄ are

thus the standard Normal-Gamma 
onjugate priors while

�

i

js

i

;x � Ga(�+ n

i

s

i

; � + v

i

)

s

i

jx � �(s

i

jx) /

�

�

i

(� + v

i

)

n

i

�

s

i

�(n

i

s

i

+ �)

�(s

i

)

n

i

I

f1;2;:::;Sg

(s

i

)

Therefore, ex
ept for the s

i

's, the posterior distributions on the parameters of the model

are the same as in Hodgson (1999).
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The distribution on the s

i

's is highly variable, in that the produ
t

�

�

i

(� + v

i

)

n

i

�

s

i

�(n

i

s

i

+ �)

�(s

i

)

n

i

(5)

often leads to a highly asymmetri
 distribution, whi
h puts most of the weight on the

minimum value of s. Indeed, when the geometri
 and arithmeti
 means, �

1=n

i

and v

i

=n,

are similar, a simple Stirling approximation to the Gamma fun
tion leads to (5) being

equivalent to

p

n=

p

s

n

.

Figure 6 gives the histograms of the posterior distributions of the various parameters of

! without reweighting by the importan
e sampling weights %

j

. As seen from this graph,

the histograms in �

i

and � are well 
on
entrated, while the histogram in �

1

exhibits two

modes whi
h 
orrespond to the two modes of the histogram of s

1

and indi
ate that the

parameter (�

i

; s

i

) is not well identi�ed. This is to be expe
ted, given that we only observe a

few realisations of the underlying gamma distribution, and this with added noise sin
e the

durations are not dire
tly observed. However, the histograms of the average durations s

i

=�

i

do not exhibit su
h multimodality and are well-
on
entrated around the values of interest.
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Fig. 6. Histograms of the samples produced by PMC, before resampling

4.5. Degeneracy

As noted above, PMC is simply an importan
e sampling algorithm when implemented on
e,

that is, for a single 
olle
tion of n points (!

(j)

;x

(j)

). As su
h, it provides an approxima-

tion devi
e for the target distribution but it is also well-known that a poor 
hoi
e of the

importan
e sampling distribution 
an jeopardise the interest of the approximation, as for

instan
e when the weights %

j

have in�nite varian
e.

An in
entive of using PMC in a stati
 setting is thus to over
ome a poor 
hoi
e of the

importan
e fun
tion by re
y
ling the best points and dis
arding the worst ones. This point

of view makes PMC appear as a primitive kind of adaptive algorithm, in that the support of

the importan
e fun
tion is adapted to the performan
e of the previous importan
e sampler.

The diÆ
ulty with this approa
h is in determining the long-term behaviour of the al-

gorithm and, 
orrelatively, the stopping rule that de
ides that nothing is gained in running
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the algorithm any longer. For instan
e, it often happens that only a few points are kept

after the resampling step of the algorithm, be
ause only a few weights %

j

are di�erent from

0. Figure 7 gives for instan
e the sequen
e of the number of points that matter at ea
h

iteration, out of n = 1000 original points: the per
entage of relevant points is thus less than

10% on average and in fa
t mu
h 
loser to 5%. In addition, there is no 
lear
ut stabilisation

in either the number of relevant points or the varian
e of the 
orresponding weights, the

later being far from exhibiting a stabilisation as the number of iterations in
reases. Some

more rudimentary signals 
an be 
onsidered though, like the stabilisation of the �t in Figure

8. While the averages for 1 and 2 iterations are quite unstable for most observations, the

two states are mu
h more 
learly identi�ed for 5 and 10 iterations, and hardly 
hange over

subsequent iterations.

2e−
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03
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Fig. 7. (left) Variance of the weights %

j

along 100 iterations, and (right) Number of points with

descendants along 100 iterations, for a sample of 4000 observations and 1000 points.

A related phenomenon pertains to the degenera
y of an
estors observed in the iterations

of our algorithm: as the number of steps in
reases, the number of points from the �rst

generation used to generate points from the last generation diminishes and, after a few

dozen iterations, redu
es to a single an
estor. This is for instan
e what o

urs in Figure 9

where, after only two iterations, there is a single an
estor to the whole sample. (Note also

the iterations where the whole sample originates from a single point.) This phenomenon

appears in every setting and, while it 
annot be avoided, sin
e some points are bound to

vanish at ea
h iteration even when using the systemati
 sampling of Carpenter et al. (1999)

the surprising fa
tor is the speed with whi
h the number of an
estors de
reases.

4.6. A comparison with Hastings–Metropolis algorithms

As mentioned above, the proposal distribution asso
iated with the pseudo hidden Markov

model 
ould alternatively be used as a proposal distribution in a Metropolis{Hastings al-

gorithm of the following form:

MCMC Algorithm

Step i (i = 1; : : : ; I)

(a) Generate !

(i)

� �(!jy;x

(i�1)

)
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Fig. 8. Successive fits of PMC iterated by the weight-resample algorithm for 2000 observations and

n = 2000 points, for (clockwise starting from top left) 1, 2, 5 and 10 iterations. (See the caption of

Fig. 5 for a description of the displayed quantities.)

(b) Generate x

?

� �

H

(xjy; !

(i)

), u � U([0; 1℄)

and take

x

(i)

=

8

<

:

x

? if u �
�(x

?

j!

(i)

y)

�

H

(x

?

jy;!

(i)

)

�

�(x

(i�1)

j!

(i)

y)

�

H

(x

(i�1)

jy;!

(i)

)

;

x

(i�1) otherwise

The performan
es of this alternative algorithm are, however, quite poor. Even with

a well-separated dataset like the simulated dataset represented in Figure 3, the algorithm

requires a very 
areful preliminary tuning not to degenerate into a single state output.

More pre
isely, the following o

urs: when started at random, the algorithm 
onverges

very qui
kly to a 
on�guration where both means �

0

and �

1

of the ion 
hannel model are

very 
lose to one another (and to the overall mean of the sample), with, 
orrelatively, a

large varian
e �

2

and very short durations within ea
h state. To over
ome this degenera
y

of the sample, we had paradoxi
ally to resort to a sequential implementation as follows:

noti
ing that the degenera
y is only o

urring with large sample sizes, we start the MCMC

algorithm on the �rst 100 observations y

1:100

and, on
e a stable 
on�guration has been

a
hieved, we gradually in
rease the number of observations taken into a

ount [by a fa
tor

of min(s

0

=�

0

; s

1

=�

1

)℄ till the whole sample is in
luded. The results provided in Figures

10{12 were obtained following this s
heme.

For 
on
iseness' sake, we did not reprodu
e the history of the allo
ations x over the

iterations. The 
orresponding graph shows a very stable history with hardly any 
hange,

ex
ept on a few boundaries. Note the 
onne
ted strong stability in the number of swit
hes

in Figure 11 (right). [The 
umulated means on the rhs of Figure 11 indi
ate that more
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Fig. 9. Representation of the sequence of descendants (lighter grey) and ancestors (darker grey)

along iterations through bars linking a given ancestor and all its descendants (light grey) or a given

point and its ancestor (darker grey). In the simulation corresponding to this graph, there were 4000

observations and 1000 points.

iterations of the MCMC sampler would have been ne
essary but our purpose is to illustrate

the proper behaviour of this sampler, provided the initialisation is adequate.℄

Attempts with very mixed datasets as the one used in Figure 8 were mu
h less su

essful

sin
e, even with a 
areful tuning of the starting values (we even tried starting with the

known values of the parameters), we 
ould not avoid the degenera
y to a single state. The

problem with the Metropolis{Hastings algorithm in this 
ase is 
learly a strong dependen
e

on the starting value, i.e., a poor mixing ability. This is further demonstrated by the

following experiment: when starting the above sampler from n = 1000 points obtained

by running PMC 20 times, the sampler always produ
ed a satisfa
tory solution with two


lear
ut states and no degenera
y. Figure 12 
ompares the distributions of the PMC points

and the MCMC samples via a qq-plot and shows there is very little di�eren
e between

both. The same behaviour is shown by a 
omparison of the allo
ations (not represented

here). This indi
ates that the MCMC algorithm does not lead to a better exploration of

the parameter spa
e.

For a fairly mixed dataset of 2000 observations 
orresponding to Figure 8, while the

MCMC algorithm initialised at random 
ould not avoid degenera
y, a preliminary run of

PMC produ
ed stable allo
ations to two states, as shown in Figure 13 by the �t for both

PMC and MCMC samples: they are indistinguishable, even though the qq-plots in Figure

14 indi
ate di�erent tail behaviours.

This is not to say that an MCMC algorithm 
annot work in this setting, sin
e Hodgson

(1999) demonstrated the 
ontrary, but this shows that global updating s
hemes, that is,

proposals that update the whole missing data x at on
e, are diÆ
ult to 
ome with, and

that one has to instead rely on more lo
al moves as those proposed by Hodgson (1999).

A similar 
on
lusion was drawn by Billio et al. (1999) in the setup of swit
hing ARMA

models. (See also Kim, Shephard and Chib, 1998.)



20 Cappé et al.

0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1000 2000 3000

−2
0

2
4

Fig. 10. Representation of a dataset of 3610 simulated values, along with the average fit (bottom),

and average probabilities of allocation to the upper state (top). This fit was obtained using a sequen-

tial tuning scheme and 5000 MCMC iterations in the final run.

5. Conclusion

The above developments have 
on�rmed Chopin's (2002) realisation that PMC is a useful

tool in stati
|as opposed to sequential, rather than dynami
|setups. Quite obviously, the

spe
i�
 Monte Carlo s
heme we built 
an be used in a sequential setting in a very similar

way. The 
omparison with the equivalent MCMC algorithm in Se
tion 4.6 is also very

instru
tive in that it shows the superior robustness of PMC to a possibly poor 
hoi
e of the

proposal distribution.

There still are issues to explore about PMC s
heme. In parti
ular, a more detailed

assessment of the iterative and adaptive features is in order, to de
ide to whi
h extent this

is a real asset. When the proposal distribution is not modi�ed over iterations, as in Se
tion

4, it is possible that there is an equivalent to the \
uto� phenomenon": after a given t

0

,

the distribution of x

(t)

may be very similar for all t � t

0

. Further 
omparisons with full

Metropolis{Hastings moves based on similar proposals would also be of interest, to study

whi
h s
heme brings the most information about the distribution of interest. The most

promising avenue seems however the development of adaptive proposals as in Se
tion 3,

where one 
an borrow from earlier work on MCMC algorithms to build assessments of the

improvement brought by modifying the proposals. Our feeling at this point is that a limited

number of iterations is ne
essary to a
hieve stability of the proposals.

An extension not studied in this paper is that the PMC algorithm 
an be started with

a few points that explore the parameter spa
e and, on
e the mixing is well-established, the

sample size 
an be in
reased to improve the pre
ision of the approximation to the integrals

of interest. This is a straightforward extension in terms of programming, but the sele
tion

of the dupli
ation rate and in
rease s
hedule is more deli
ate.
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Fig. 11. Details of the MCMC sample for the dataset of Figure 10: (left) histograms of the components

of the MCMC sample and (right) cumulative averages for the parameters of the models and evolution

of the number of switches (lower right graph).
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