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Summary. Importance sampling methods can be iterated like MCMC algorithms, while being

more robust against dependence and starting values, as shown in this paper. The population

Monte Carlo principle we describe here consists of iterated generations of importance samples,

with importance functions depending on the previously generated importance samples. The

advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus

be stopped at any time, while iterations improve the performances of the importance function,

thus leading to an adaptive importance sampling. We first illustrate this method on a toy mixture

example with multiscale importance functions. A second example reanalyses the ion channel

model of Hodgson (1999), using an importance sampling scheme based on a hidden Markov

representation, and compares population Monte Carlo with a corresponding MCMC algorithm.

Keywords: Adaptive algorithm, degeneracy, hidden semi-Markov model, importance sampling,

ion channel model, MCMC algorithms, mixture model, multiple scales, particle system, random

walk, unbiasedness.

1. Introduction

When reviewing the literature on MCMC methodology, a striking feature is that it has

predominantly foussed on produing single outputs from a given target distribution, �.

This may sound a paradoxial statement when onsidering that one of the major appliations

of MCMC algorithms is the approximation of integrals

I =

Z

h(x)�(x)dx

with empirial sums

^

I =

1

T

T

X

t=1

h(x

(t)

) ;

where (x

(t)

) is a Markov hain with stationary distribution �. But the main issue is that � is

onsidered as the limiting distribution of x

t

per se and that the Markov orrelation between
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the x

t

's is evauated through the ergodi theorem (Meyn and Tweedie, 1993). There only

exist a few referenes to the use of MCMC algorithms for the prodution of samples of

size n from �, inluding Warnes (2001) and Mengersen and Robert (2003), although the

onept of simulation from a produt distribution �

N

n

is not fundamentally di�erent from

the prodution of a single output from the target distribution.

Another striking feature in the MCMC literature is the early attempt to dissoiate itself

from pre-existing tehniques suh as importane sampling, although the latter shared with

MCMC algorithms the property of simulating from the wrong distribution to produe ap-

proximate generation from the orret distribution (see Robert and Casella, 1999, Chap. 3).

It is only lately that the realisation that both approahes an be suessfully oupled ame

upon the MCMC ommunity, as shown for instane by MaEahern and Peruggia (2000),

Liu (2001), or Liu et al. (2001). One lear example of this fruitful symbiosis is given by

iterated partile systems (Douet et al., 2001). Originally, iterated partile systems were in-

trodued to deal with dynami target distributions, as for instane in radar traking, where

the imperatives of on-line proessing of rapidly hanging target distributions prohibited to

resort to repeated MCMC sampling. Fundamentally, the basi idea, from a Monte Carlo

point of view, onsists in reyling previous weighted samples primarily through a modi�-

ation of the weights (Gordon et al., 1993), possibly enhaned by additional sampling steps

(Berzuini et al., 1997; Pitt and Shephard, 1999; Gilks and Berzuini, 2001). As pointed out

in Chopin (2002), a partile system simpli�es into a partiular type of importane sampling

sheme in a stati|as opposed to dynami|setup, where the target distribution � is �xed,

whih is the setting we onsider here.

We thus study in this paper a method, alled population Monte Carlo, that aims at

simulating from the target distribution �

N

n

and that tries to link these di�erent \loose

ends" into a oherent simulation priniple: Population Monte Carlo borrows from MCMC

algorithms for the onstrution of the proposal, from importane sampling for the onstru-

tion of appropriate estimators, from SIR (Rubin, 1987) for sample equalisation, and from

iterated partile systems for sample improvement. The population Monte Carlo (PMC)

algorithm is in essene an iterated importane sampling sheme that simultaneously pro-

dues, at eah iteration, a sample approximately simulated from a target distribution and

(approximately) unbiased estimates

^

I of integrals I under that distribution. The sample

is onstruted using sample dependent proposals for generation and importane sampling

weights for pruning the proposed sample.

We desribe in Setion 2 the population Monte Carlo tehnique, and apply these devel-

opment, �rst to a simple mixture example in Setion 3, and seond to the more ambitious

ion hannel model that we assess in Setion 4. While reasonable in omplexity, the mixture

example still o�ers an interesting media to assess the adaptivity of the population Monte

Carlo sampler and the resistane to degeneray. The ion hannel model is more hallenging

in that there is no losed form representation of the observed likelihood, while the omple-

tion step is more deliate than in mixture settings. In partiular, Setion 4.6 explains why

a Metropolis{Hastings algorithm based on the same proposal as population Monte Carlo

does not work. Setion 5 ontains the overall onlusions of the paper.
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2. The population Monte Carlo approach

As noted in Mengersen and Robert (2003), it is possible to onstrut an MCMC algorithm

assoiated with the target distribution

�

N

n

(x

1

; : : : ; x

n

) =

n

Y

i=1

�(x

i

) ; (1)

on the spae X

n

, rather than with the distribution �(x

1

), on the spae X . All standard

results and shemes for MCMC algorithms apply in this partiular ase, and irreduible

Markov hains assoiated with suh MCMC algorithms onverge to the target �

N

n

in dis-

tribution, that is, get approximately distributed as an iid sample from � after a \suÆient"

number of iterations. Mengersen and Robert (2003) point out that additional sampling

devies an be used to onstrut the proposal distributions, like Gibbs-type omponent-

wise repulsive proposals that exlude immediate neighbourhoods of the other points in the

sample.

When onsidering, at MCMC iteration t, a sample x

(t)

= (x

(t)

1

; : : : ; x

(t)

n

), we an think

of produing the next iteration of the sample x

(t+1)

suh that the omponents x

(t+1)

i

are

generated from a proposal q(xjx

(t)

i

). However, rather than aepting eah proposed x

(t+1)

i

individually (whih would be a standard form of parallel MCMC sampling) or the whole

sample x

(t+1)

globally (whih would su�er from the urse of dimensionality), we an al-

together remove the issue of assessing the onvergene to the stationary distribution by

orreting at eah iteration for the use of the wrong distribution by importane weighting.

Thus, instead of using an asymptoti justi�ation to an MCMC iterated simulation

sheme, we an instead resort to importane sampling arguments: if the sample x

(t)

is

produed by simulating the x

(t)

i

's from distributions q

it

, independently of one another, and

if we assoiate to eah point x

(t)

i

of this sample the importane weight

%

(t)

i

=

�(x

(t)

i

)

q

it

(x

(t)

i

)

; i = 1; : : : ; n ;

estimators of the form

I

t

=

1

n

n

X

i=1

%

(t)

i

h(x

(t)

i

)

are unbiased for every integrable funtion h and at every iteration t.

This is the starting point for population Monte Carlo methods, namely that extending

regular importane sampling tehniques to ases where the importane distribution for

x

(t)

i

may depend on both the sample index i and the iteration index t does not modify

their validity. As already indiated in Robert and Casella (1999, Lemma 8.3.1) in a more

restritive setting, importane sampling estimators have the interesting property that the

terms %

(t)

i

h(x

(t)

i

) are unorrelated, even when the proposal q

it

depends on the whole past

of the experiment: assuming that the varianes var

�

%

(t)

i

h(x

(t)

i

)

�

exist for every 1 � i � n,

whih means that the proposals q

it

should have heavier tails than �, we have

var (I

t

) =

1

n

2

n

X

i=1

var

�

%

(t)

i

h(x

(t)

i

)

�

; (2)
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due to the aneling e�et of the weights %

(t)

i

.

Obviously, in most settings, the distribution of interest � is unsaled and we have to use

instead

%

(t)

i

/

�(x

(t)

i

)

q

it

(x

(t)

i

)

; i = 1; : : : ; n ;

saled so that the weights %

(t)

i

sum up to 1. In this ase, the above unbiasedness property

and the variane deomposition are lost, although they approximately hold. In fat, the

estimation of the normalising onstant of � improves with eah iteration t, sine the overall

average

$

t

=

1

tn

t

X

�=1

n

X

i=1

�(x

(�)

i

)

q

i�

(x

(�)

i

)

(3)

is a onvergent estimator of the inverse of the normalising onstant. Therefore, as t inreases,

$

t

is ontributing less and less to the variability of I

t

and the above properties an be

onsidered as holding for t large enough. In addition, if the sum (3) is only based on the

(t� 1) �rst iterations, that is, if

%

(t)

i

=

�(x

(t)

i

)

$

t�1

q

it

(x

(t)

i

)

;

the variane deomposition (2) an be reovered, via the same onditioning argument.

A related point is that attention must be paid to the seletion of the proposals q

it

so

that the normalising onstants in these densities (or at least the part that depend on i)

must be available in losed form.

As pointed out by Rubin (1987) for regular importane sampling, it is preferable, rather

than to update the weights %

(t)

i

at eah iteration t, to resample (with replaement) n values

y

(t)

i

from (x

(t)

1

; : : : ; x

(t)

n

) using the weights %

(t)

i

(and possibly the variane redution devie

of systemati sampling, as in Carpenter et al., 1998). This partially avoids the degeneray

phenomenon, that is, the preservation of negligible weights and orresponding irrelevant

points in the sample. The sample (y

(t)

1

; : : : ; y

(t)

n

) resulting from this sampling importane

resampling (SIR) step is thus akin to an iid sample extrated from the weighted empirial

distribution assoiated with �

N

n

(x

1

; : : : ; x

n

).

A pseudo-ode rendering of the PMC algorithm is as follows

PMCA: Population Monte Carlo Algorithm

For t = 1; : : : ; T

For i = 1; : : : ; n,

(i) Select the generating distribution q

it

(�)

(ii) Generate x

(t)

i

� q

it

(x)

(iii) Compute %

(t)

i

= �(x

(t)

i

)=q

it

(x

(t)

i

)

Normalise the %

(t)

i

’s to sum up to 1
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Resample n values from the x

(t)

i

’s with replacement, using the weights %

(t)

i

, to create

the sample (x

(t)

1

; : : : ; x

(t)

n

)

Step (i) in this representation is stressed beause this is an essential feature of the PMC

algorithm: the proposal distributions an be individualized at eah step of the algorithm

without jeopardising the validity of the method. The proposals q

it

an therefore be piked

aording to the performanes of the previous q

i(t�1)

's and, in partiular, they an depend

on the previous sample (x

(t�1)

1

; : : : ; x

(t�1)

n

) or even on all the previously simulated samples,

if storage allows. For instane, in the mixture setting of Setion 3, the q

it

's are random

walk proposals entered at the x

(t�1)

1

's, with various possible sales hosen from earlier

performanes, and they ould also inlude large tails proposals as in the defensive sampling

strategy of Hesterberg (1998), to ensure �nite variane. Similarly, Warnes (2001) uses the

previous sample to build a kernel non-parametri approximation to �.

The fat that the proposal distribution q

i(t�1)

an depend on the past iteration in any

possible way without modifying the weight %

(t)

i

is due to the feature that the unbiasedness

equation

E

h

%

(t)

i

h(x

(t)

i

)

i

=

Z Z

�(x)

q

it

(x)

h(x)q

it

(x)dx g(�)d�

=

Z Z

h(x)�(x)dx g(�)d� = E

�

[h(X)℄ ;

where � denotes the vetor of past random variates that ontribute to q

it

, does not depend

on the distribution g(�) of this random onstituent.

There are similarities between PMC and earlier proposals in the partile system litera-

ture, in partiular with Berzuini et al.'s (1997) and Gilks and Berzuini (2001), sine these

authors also onsider iterated samples with (SIR) resampling steps based on importane

weights. A major di�erene though (besides their dynami setting of moving target distri-

butions) is that they remain within the MCMC realm by using the resample step before

the proposal move. These authors are thus fored to use Markov transition kernels with

given stationary distributions. There is also a similarity with Chopin (2002) who onsiders

iterated importane sampling with hanging proposals. His setting is a speial ase of PMC

in a Bayesian framework, where the proposals q

it

are the posterior distributions assoiated

with a portion k

t

of the observed dataset (and are thus independent of i and of the previous

samples).

As noted earlier, a most notieable property of the PMC method is that the generality

in the hoie of the proposal distributions q

it

is due to the relinquishment of the MCMC

framework. Indeed, without the importane resampling orretion, a regular Metropolis{

Hastings aeptane step for eah point of the n-dimensional sample produes a parallel

MCMC sampler whih simply onverges to the target �

N

n

in distribution. Similarly, a

regular Metropolis{Hastings aeptane step for the whole vetor x

(t)

onverges to �

N

n

;

the advantage in produing an asymptoti approximation to an iid sample is balaned by the

drawbak that the aeptane probability dereases approximately as a power of n. Sine,

in PMC, we pik at eah iteration the points in the sample aording to their importane

weight %

(t)

i

, we both remove the onvergene issue and onstrut a seletion mehanism over

both the points of the previous sample and the proposal distributions. This is not solely a

theoretial advantage: In the example of the ion hannel in Setion 4.6, it atually ours
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that a Metropolis{Hastings sheme based on the same proposal does not work well, while

a PMC algorithm produes orret answers.

The PMC framework thus allows for a muh easier onstrution of adaptive shemes,

i.e. of proposals that orret themselves against past performanes, than in MCMC setups.

Indeed, while adaptive importane sampling strategies have already been onsidered in the

pre-MCMC area, as in, e.g., Oh and Berger (1992,1993), the MCMC environment is muh

harsher for adaptive algorithms, beause the adaptivity anels the Markovian nature of

the sequene and thus alls for more elaborate onvergene studies to establish ergodiity.

See, e.g., Andrieu and Robert (2001) and Haario et al. (1999,2001) for reent developments

in this area. For PMC methods, ergodiity is not an issue sine the validity is obtained via

importane sampling justi�ations.

The samples produed by the PMC method an be exploited as regular importane

sampling outputs at any iteration T , and thus do not require the onstrution of stopping

rules as for MCMC samples (Robert and Casella, 1999, Chap. 8). Quite interestingly

though, the whole sequene of samples an be exploited, both for adaptation of the proposals

and for estimation purposes, as illustrated with the onstant approximation (2). This does

not require a stati storage of all samples produed though, sine approximations like (2) an

be updated dynamially. In addition, this possibility to exploit the whole set of simulations

implies that the sample size n is not neessarily very large, sine the e�etive simulation

size is n � T . A last remark is that the number of points in the sample is not neessarily

onstant over iterations. As in Chopin (2002), one may inrease the number of points in

the sample one the algorithm seems to stabilise in a stationary regime.

3. Mixture model

Our �rst example is a Bayesian modelling of a mixture model, whih is a problem simple

enough to introdue but omplex enough to lead to poor performanes for badly designed

algorithms (Robert and Casella, 1999, Chap. 9; Capp�e et al., 2003). The mixture problem

we onsider is based on an iid sample x = (x

1

; : : : ; x

n

) from the distribution

pN (�

1

; �

2

) + (1� p)N (�

2

; �

2

);

where both p 6= 1=2 and � > 0 are known. The prior assoiated with this model, �, is a

normal N (�; �

2

=�) prior on both �

1

and �

2

. We thus aim at simulating from the posterior

distribution

�(�

1

; �

2

jx) / f(xj�

1

; �

2

)�(�

1

; �

2

) :

Although the \standard"MCMC resolution of the mixture problem is to use a Gibbs sampler

based on a data augmentation step via indiator variables, reent developments (Celeux et

al., 2000; Chopin, 2002; Capp�e et al., 2003) have shown that the data augmentation step

is not neessary to run an MCMC sampler. We will now demonstrate that a PMC sampler

an be eÆiently implemented without this augmentation step either.

Our PMC algorithm is adaptive in the following sense: The initialization step onsists

�rst in hoosing a set of initial values for �

1

and �

2

(e.g., a grid of points around the

empirial mean of the x

i

's). The proposals are then random walks, that is, random isotropi

perturbations of the points of the urrent sample. As noted above, a very appealing feature

of the PMC method is that the proposal may vary from one point of the sample to another

without jeopardizing the validity of the method. At a �rst level, the proposals are all

di�erent, sine they are normal distributions entered in every sample point. At a seond
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level, we an also hoose di�erent varianes for these normal distributions, for instane

within a predetermined set of p sales v

i

(1 � i � p) ranging from 10

3

down to 10

�3

, and

selet these varianes at eah step of the PMC algorithm aording to the performanes

of the sales on the previous iterations. In our implementation, we deided to selet a

sale proportionally to its non-degeneray rate on the previous iterations. (Note the formal

similarity of this sheme with Stavropoulos and Titterington's (1999) smooth bootstrap, or

adaptive importane sampling, and Warnes' (2001) kernel oupler, when the kernel used in

their mixture approximation of � is normal. The main di�erene is that we do not aim at a

good approximation of � using standard kernel results like bandwidth seletion, but rather

keep the di�erent sales v

i

over the iterations.) Our PMC algorithm thus looks as follows:

Mixture PMC

Step 0: Initialisation

For j = 1; : : : ; n = pm, choose (�

1

)

(0)

j

; (�

2

)

(0)

j

For k = 1; : : : ; p, set r
k

= m

Step i: Update (i = 1; : : : ; I)

For k = 1; : : : ; p,

(a) generate a sample of size r

k

as

(�

1

)

(i)

j

� N

�

(�

1

)

(i�1)

j

; v

k

�

and (�

2

)

(i)

j

� N

�

(�

2

)

(i�1)

j

; v

k

�

(b) compute the weights

%

j

/

f

�

x

�

�

�

(�

1

)

(i)

j

; (�

2

)

(i)

j

�

�

�

(�

1

)

(i)

j

; (�

2

)

(i)

j

�

'

�

(�

1

)

(i)

j

�

�

�

(�

1

)

(i�1)

j

; v

k

�

'

�

(�

2

)

(i)

j

�

�

�

(�

2

)

(i�1)

j

; v

k

�

Resample the
�

(�

1

)

(i)

j

; (�

2

)

(i)

j

�

j

using the weights %

j

,

For k = 1; : : : ; p,

update r

k

as the number of elements generated with variance v

k

which have
been resampled.

where '(qjs; v) is the density of the normal distribution with mean s and variane v at the

point q.

As mentioned above, the weight assoiated with eah variane v

k

is thus proportional to

the regeneration (or survival) rate of the orresponding sample. If most �

j

's assoiated with

a given v

k

are not resampled, the next step will see less generations using this variane v

k

.

However, to avoid the omplete removal of a given variane v

k

, we modi�ed the algorithm

to ensure that a minimum number of points is simulated from eah variane level, namely

1% of the whole sample.
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The performanes of the above algorithm are illustrated on a simulated dataset of 1000

observations from the distribution 0:2N (0; 1)+ 0:8N (2; 1). We also took � = 1 and � = 0:1

as hyperparameters of the prior. Applying the above PMC algorithm to this sample, we

see that it produes a non-degenerate sample, that is, not restrited to n repliations of

the same point. In addition, the adaptive feature for hoosing among the v

k

's is de�nitely

helpful to explore the state spae of the unknown means. In this ase, p = 5 and the �ve

varianes are equal to 5; 2; :1; :05 and :01. Moreover, at eah step i of the PMC algorithm,

we generated n = 1050 sample points.

The two upper graphs of Figure 1 illustrate the degeneray phenomenon assoiated with

the PMC algorithm: they represent the sizes of the samples issued from the di�erent pro-

posals, that is, the number of di�erent points resulting from the resampling step: the upper

left graph exhibits a nearly yli behavior for the largest varianes v

k

, alternating from

no point issued from these proposals to a large number of points. This behaviour agrees

with intuition: proposals that have too large a variane mostly produe points that are ir-

relevant for the distribution of interest, but one in a while they happen to generate points

that are lose to one of the modes of the distribution of interest. In the later situation,

the orresponding points are assoiated with large weights %

j

and are thus heavily resam-

pled. The upper right graph shows that the other proposals are rather evenly onsidered

along iterations. This is not surprising for the smaller varianes, sine they modify very

little the urrent sample, but the yli predominane of the three possible varianes is

quite reassuring about the mixing abilities of the algorithm and thus about its exploration

performanes.

We an also study the inuene of the variation in the proposals on the estimation of

the means �

1

and �

2

, as illustrated by the middle and lower panels of Figure 1. First,

when onsidering the umulative means of these estimations over iterations, the quantities

quikly stabilise. The orresponding varianes are not so stable over iterations, but this is

to be expeted, given the regular reappearane of subsamples with large varianes.

Figure 2 provides an additional insight into the performanes of the PMC algorithm, by

representing a weighted sample of means with dots proportional to the weights. As should

be obvious from this graph, there is no overwhelming point that onentrates most of the

weight. On the opposite, the 1050 points are rather evenly weighted, espeially for those

lose to the posterior modes of the means.

Note that a better PMC sheme ould be hosen. The approah seleted for this setion

does not take advantage of the latent struture of the model, as in Chopin (2002), and

ontrary to the following setion. Indeed, after an initialization step, one ould �rst simulate

the latent indiator variable onditionally on the previous sample of (�

1

; �

2

) and then

simulate a new sample of means onditionally on the latent indiator variables. Iterating

this PMC sheme seems to onstitute a sort of parallel Gibbs sampling, but this sheme is

valid at any iteration and an thus be stopped at any time. That we have not used this

approah is to emphasize that the PMC method has no real need of the latent struture of

the model to work satisfatorily.

4. Ion channels

4.1. The stylised model

As a realisti example of implementation of the PMC sheme, we onsider here a formalised

version of the ion hannel model of Hodgson (1999). We refer the reader to this paper, as
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Fig. 1. Performances of the mixture PMC algorithm: (upper left) Number of resampled points for

the variances v

1

= 5 (darker) and v

2

= 2; (upper right) Number of resampled points for the other

variances, v
3

= 0:1 is the darkest one; (middle left) Variance of the simulated �

1

’s along iterations;

(middle right) Complete average of the simulated �

1

’s over iterations; (lower left) Variance of the

simulated �

2

’s along iterations; (lower right) Complete average of the simulated �

2

’s over iterations.

well as to Ball et al. (1999) and Carpenter et al. (1999), for a biologial motivation of this

model, alternative formulations, and additional referenes. Let us insist at this point on the

formalised aspet on our model, whih predominantly serves as a realisti support for the

omparison of a PMC approah with a more standard MCMC approah in a semi-Markov

setting. The �ner points of model hoie and model omparison for the modelling of ion

hannel kinetis, while of importane as shown by Ball et al. (1999) and Hodgson and

Green (1998), are not addressed by the present paper. Note also that, while a Bayesian

analysis of this model provides a omplete inferential perspetive, the fous of attention is

generally set on the restoration of the true hannel urrent, rather than on the estimation

of the parameters of the model.

Consider, thus, observables y = (y

t

)

1�t�T

direted by a hidden Gamma (indiator)

proess x = (x

t

)

1�t�T

in the following way:

y

t

jx

t

� N (�

x

t

; �

2

) ;

while x

t

2 f0; 1g, with durations d

j

� Ga(s

i

; �

i

) (i = 0; 1). More exatly, the hidden proess

(x

t

)

t

is a (ontinuous time) Gamma jump proess with jump times t

j

(j = 1; 2; : : :) suh
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Fig. 2. Representation of the log-posterior distribution via grey levels (darker stands for lower and

lighter for higher) and of a weighted sample of means. (The weights are proportional to the surface

of the circles.)
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that

d

j+1

= t

j+1

� t

j

� Ga(s

i

; �

i

)

if x

t

= i for t

j

� t < t

j+1

, that is, E [d

j+1

℄ = s

i

=�

i

. Figure 3 provides a simulated sample

of size 4000 from this model.

0 1000 2000 3000 4000

−2
0

2
4

t

y

Fig. 3. Simulated sample of size 4000 from the ion channel model

A �rst modi�ation of Hodgson's (1999) ion hannel model is introdued at this level:

we assume that the durations d

j

, that is, the time intervals in whih the proess (x

t

)

1�t�T

remains in a given state, are integer valued, rather than real valued. The reasons for this

hange are that

(a) the true durations of the Gamma proess are not identi�able;

(b) this model is a straightforward generalisation of the hidden Markov model where the

jumps do our at integer times (see Ball et al., 1999, or Carpenter et al., 1999).

A natural generalisation of the geometri duration of the hidden Markov model is

a negative binomial distribution, N eg(s; !), whih is very lose to a Gamma den-

sity Ga(s + 1;� log(1 � !)) (up to a onstant) for s small. Indeed, the former is

approximately

d

s

s!

(1� !)

d

�

!

1� !

�

s

while the later is

d

s

s!

(1� !)

d

f� log(1� !)g

s+1

(The simulations detailed below were also implemented using a negative binomial

modelling, leading to very similar results in the restoration proess.)

() inferene on the d

j

's given (x

t

)

1�t�T

involves an extra level of simulations, even

if it an be easily implemented via a slie sampler, as long as we do not onsider

the possibility of several jumps between two integer observational times. (This later

possibility is atually negligible for the datasets we onsider.); and

(d) the replaement of d

j

by its integral part does not strongly modify the likelihood.

In a similar vein, we omit the ensoring e�et of both the �rst and the last intervals, given

that the inuene of this ensoring on a long series is bound to be small.

A seond modi�ation of Hodgson's (1999) model is that we hoose a uniform prior for

the shape parameters s

0

and s

1

on the �nite set f1; : : : ; Sg, rather than an exponential

Exp(�) prior on R

+

. The reasons for this modi�ation are that
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(a) the hidden Markov proess has geometri swithing times, whih orrespond to expo-

nential durations. A natural extension is to onsider that the durations of the stays

within eah state (or r�egime) an be represented as the umulated duration of s

i

ex-

ponential stays, with s

i

an unknown integer, whih exatly orresponds to gamma

durations. This representation thus removes the need to all for a level of variable

dimension modelling. Carpenter et al. (1999) and Hodgson and Green (1999) use

a di�erent approah, based on the repliation of the \open" and "losed" sets into

several states, to approximate the semi-Markov model.

(b) the following simulations show that the parameters s

0

and s

1

are strongly identi�ed

by the observables (y

t

)

1�t�T

;

() the prior information on the parameters s

0

and s

1

is most likely to be sparse and thus

a uniform prior is less informative than a Gamma prior when S is large; and

(d) the use of a �nite support prior allows for the omputation of the normalising onstant

in the posterior onditional distribution of the parameters s

0

and s

1

, a feature that is

paramount for the implementation of PMC.

A third modi�ation, when ompared with both Hodgson (1999) and Carpenter et al.

(1999), is that the observables are assumed to be independent, given the x

t

's, rather than

distributed from either an AR(15) (Hodgson, 1999) or an ARMA(1,1) (Carpenter et al.,

1999) model. This modi�ation somehow weakens the identi�ability of both r�egimes as the

data beomes potentially more volatile.

The other parameters of the model are distributed as in Hodgson (1999), using onjugate

priors,

�

0

; �

1

� N (�

0

; ��

2

)

�

�2

� G(�; �)

�

0

; �

1

� G(�; �)

Figure 4 illustrates the dependenes indued by this modelling on a DAG.

1

y

0
µ

µ
1

τ

2σ

ζ η

α β

S

S

S

λ λ

x

0 1

0

Fig. 4. DAG representation of the probabilistic dependences in the Bayesian ion channel model.

This formalised ion hannel model is thus a speial ase of disrete time hidden semi-

Markov model for whih there exists no expliit polynomial time formula for the posterior

distribution of the hidden proess (x

t

)

1�t�T

, as opposed to the hidden Markov model

with the forward{bakward formula of Baum and Petrie (1966). From a omputational

(MCMC) point of view, there is therefore no way of integrating this hidden proess out

to simulate diretly the parameters onditional on the observables (y

t

)

1�t�T

, as was done
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in the hidden Markov model by, e.g., Capp�e et al. (2003). Note also that, as opposed to

Hodgson (1999), we use the saturated missing data representation of the model via x to

avoid the ompliation of using reversible jump tehniques for whih PMC algorithms are

more diÆult to implement.

4.2. Population Monte Carlo for ion channel models

Our hoie of proposal funtion is based on the availability of losed form formulas for

the hidden Markov model. We thus reate a pseudo hidden Markov model based on the

urrent values of the parameters for the ion hannel model, simply by building the Markov

transition matrix from the average durations in eah state,

P =

 

1�

�

0

s

0

�

0

s

0

�

1

s

1

1�

�

1

s

1

!

;

sine, for a hidden Markov model, the average sojourn within one state is exatly the inverse

of the transition probability to the other state. We denote by �

H

(xjy; !) the full onditional

distribution of the hidden Markov hain x given the observables y and the parameters

! = (�

0

; �

1

; �; �

0

; �

1

; s

0

; s

1

)

onstruted via the forward{bakward formula: see, e.g., Capp�e et al. (2003) for details.

The simulation of the parameters ! proeeds in a natural way by using the full onditional

distribution �(!jy;x) sine it is available. In order not to onfuse the issues, we do not

onsider the possible adaptation of the approximation matrix P over the iterations, that is,

a modi�ation of the swith probabilities from �

i

=s

i

(i = 1; 2).

Note that Carpenter et al. (1999) also onsider the ion hannel model in their par-

tile �lter paper, with the di�erenes that they replae the semi-Markov struture with

an approximative hidden Markov model with more than 2 states, and that they work in

a dynami setting based on this approximation. The observables y are also di�erent in

that they ome from an ARMA(1,1) model with only the loation parameter depending on

the unknown state. Hodgson and Green (1998) similarly ompared several hidden Markov

model with dupliated \open" and \losed" states. Ball et al. (1999) also rely on a hidden

Markov modelling with missing observations.

The subsequent use of importane sampling bypasses the exat simulation of the hidden

proess (x

t

)

1�t�T

and thus avoids the reourse to variable dimension models and to more

sophistiated tools like reversible jump MCMC. This saturation of the parameter spae by

the addition of the whole indiator proess (x

t

)

1�t�T

is obviously more ostly in terms of

storage, but it provides unrestrited moves between on�gurations of the proess (x

t

)

1�t�T

.

Sine we do not need to de�ne the orresponding jump moves, we are thus less likely to

enounter the slow onvergene problems of Hodgson (1999).

We therefore run PMC as in the following pseudo-ode rendering, where I denotes the

number of iterations, T being used for the number of observations:
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Ion hannel PMC

Step 0: Initialisation

For j = 1; : : : ; n,

(i) generate (!

(j)

;x

(j)

�

) � �(!)� �

H

(xjy; !

(j)

)

(ii) compute the weight %
j

/ �(!

(j)

;x

(j)

�

jy)=�(!

(j)

)�

H

(x

(j)

�

jy; !

(j)

)

Resample the (!

(j)

;x

(j)

�

)

j

using the weights %

j

Step i: Update (i = 1; : : : ; I)

For j = 1; : : : ; n,

(i) generate (!

(j)

;x

(j)

+

) � �(!jy;x

(j)

�

)� �

H

(xjy; !

(j)

)

(ii) compute the weight %
j

/ �(!

(j)

;x

(j)

+

jy)

Æ

�(!

(j)

jy;x

(j)

�

)�

H

(x

(j)

+

jy; !

(j)

)

Resample the (!

(j)

;x

(j)

+

)

j

using the weights %

j

, and take x

(j)

�

= x

(j)

+

(j =

1; : : : ; n).

The justi�ation for the weights %

j

used in the above algorithm is that onditional on

the x

(j)

�

's, !

(j)

is simulated from �(!jy;x

(j)

�

) and, onditional on !

(j)

, x

(j)

+

is simulated

from �

H

(xjy; !

(j)

). The normalising fator of the %

j

's onverges to the orret onstant by

the law of large numbers.

4.3. Normalising constants

Let us stress the spei�ity of the PMC method in terms of normalising onstants: �(!jy;x)

is available in losed form (see below in Setion 4.4), inluding its normalising onstant, due

to the onjugay of the distributions on �

0

; �

1

; �; �

0

; �

1

and the �niteness of the support

of s

0

; s

1

. The onditional distribution �

H

(xjy; !) is also available with its normalising

onstant, by virtue of the forward{bakward formula. The only diÆulty in the ratio

�(!;xjy)

�(!jy;x)�

H

(xjy; !)

lies within the numerator �(!;xjy) whose normalised version is unknown. We therefore use

instead the proportional term

�(!;xjy) / �(!) f(yjx; !) f(xj!) : (4)

and normalise the %

j

's by their sum. The foremost feature of this reweighting is that the

normalising onstant missing in (4) only depends on the observables y and is therefore truly

a onstant, that is, does not depend on the previous value of the point x

(j)

�

. This sheme

ruially relies on (i) the points enompassing both the parameters ! and the latent data

x, and (ii) the distribution �(!;xjy) being available in losed form.
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4.4. Simulation details

Figure 5 illustrates the performanes of PMC by representing the graph of the dataset

against the �tted average

J

X

j=1

%

j

�

x

(j)

t

for eah observation y

t

. As obvious from the piture, the �t is quite good.

0 1000 2000 3000 4000

−2
0

2
4

−3 −2 −1 0 1 2

0.
0

0.
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0 1000 2000 3000 4000

0.
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0.
6

Fig. 5. (top) Histograms of residuals after fit by averaged �

x

t

; (middle) Simulated sample of size

4000 against fitted averaged �

x

t

; (bottom) Probability of allocation to first state for each observation

The unobserved Gamma proess is distributed as

M

Y

m=1

(t

m+1

� t

m

)

s

m

�1

�

s

m

m

e

��

m

(t

m+1

�t

m

)

�(s

m

)

=

�

n

0

s

0

0

e

��

0

v

0

�

s

0

�1

0

�(s

0

)

n

0

�

n

1

s

1

1

e

��

1

v

1

�

s

1

�1

1

�(s

1

)

n

1

;

with obvious notations: M is the number of hanges, the t

m

's are the suessive times when

the gamma proess hanges state, the s

m

's, �

m

's are the orresponding sequenes of s

0

; s

1

and �

0

; �

1

, n

i

is the number of visits to state i, �

i

is the produt of the sojourn durations

in state i [orresponding to the geometri mean℄, v

i

the total sojourn duration in state i

[orresponding to the arithmeti mean℄. (This is based on the assumption of no ensoring,

made in Setion 4, namely that t

1

= 1 and t

M+1

= T + 1.)

The posterior distributions on the �

i

's and �

�2

[onditional on the hidden proess℄ are

thus the standard Normal-Gamma onjugate priors while

�

i

js

i

;x � Ga(�+ n

i

s

i

; � + v

i

)

s

i

jx � �(s

i

jx) /

�

�

i

(� + v

i

)

n

i

�

s

i

�(n

i

s

i

+ �)

�(s

i

)

n

i

I

f1;2;:::;Sg

(s

i

)

Therefore, exept for the s

i

's, the posterior distributions on the parameters of the model

are the same as in Hodgson (1999).
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The distribution on the s

i

's is highly variable, in that the produt

�

�

i

(� + v

i

)

n

i

�

s

i

�(n

i

s

i

+ �)

�(s

i

)

n

i

(5)

often leads to a highly asymmetri distribution, whih puts most of the weight on the

minimum value of s. Indeed, when the geometri and arithmeti means, �

1=n

i

and v

i

=n,

are similar, a simple Stirling approximation to the Gamma funtion leads to (5) being

equivalent to

p

n=

p

s

n

.

Figure 6 gives the histograms of the posterior distributions of the various parameters of

! without reweighting by the importane sampling weights %

j

. As seen from this graph,

the histograms in �

i

and � are well onentrated, while the histogram in �

1

exhibits two

modes whih orrespond to the two modes of the histogram of s

1

and indiate that the

parameter (�

i

; s

i

) is not well identi�ed. This is to be expeted, given that we only observe a

few realisations of the underlying gamma distribution, and this with added noise sine the

durations are not diretly observed. However, the histograms of the average durations s

i

=�

i

do not exhibit suh multimodality and are well-onentrated around the values of interest.
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Fig. 6. Histograms of the samples produced by PMC, before resampling

4.5. Degeneracy

As noted above, PMC is simply an importane sampling algorithm when implemented one,

that is, for a single olletion of n points (!

(j)

;x

(j)

). As suh, it provides an approxima-

tion devie for the target distribution but it is also well-known that a poor hoie of the

importane sampling distribution an jeopardise the interest of the approximation, as for

instane when the weights %

j

have in�nite variane.

An inentive of using PMC in a stati setting is thus to overome a poor hoie of the

importane funtion by reyling the best points and disarding the worst ones. This point

of view makes PMC appear as a primitive kind of adaptive algorithm, in that the support of

the importane funtion is adapted to the performane of the previous importane sampler.

The diÆulty with this approah is in determining the long-term behaviour of the al-

gorithm and, orrelatively, the stopping rule that deides that nothing is gained in running
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the algorithm any longer. For instane, it often happens that only a few points are kept

after the resampling step of the algorithm, beause only a few weights %

j

are di�erent from

0. Figure 7 gives for instane the sequene of the number of points that matter at eah

iteration, out of n = 1000 original points: the perentage of relevant points is thus less than

10% on average and in fat muh loser to 5%. In addition, there is no learut stabilisation

in either the number of relevant points or the variane of the orresponding weights, the

later being far from exhibiting a stabilisation as the number of iterations inreases. Some

more rudimentary signals an be onsidered though, like the stabilisation of the �t in Figure

8. While the averages for 1 and 2 iterations are quite unstable for most observations, the

two states are muh more learly identi�ed for 5 and 10 iterations, and hardly hange over

subsequent iterations.

2e−
04

4e−
04

6e−
04

8e−
04

1e−
03

0
20

40
60

80
100

120

Fig. 7. (left) Variance of the weights %

j

along 100 iterations, and (right) Number of points with

descendants along 100 iterations, for a sample of 4000 observations and 1000 points.

A related phenomenon pertains to the degeneray of anestors observed in the iterations

of our algorithm: as the number of steps inreases, the number of points from the �rst

generation used to generate points from the last generation diminishes and, after a few

dozen iterations, redues to a single anestor. This is for instane what ours in Figure 9

where, after only two iterations, there is a single anestor to the whole sample. (Note also

the iterations where the whole sample originates from a single point.) This phenomenon

appears in every setting and, while it annot be avoided, sine some points are bound to

vanish at eah iteration even when using the systemati sampling of Carpenter et al. (1999)

the surprising fator is the speed with whih the number of anestors dereases.

4.6. A comparison with Hastings–Metropolis algorithms

As mentioned above, the proposal distribution assoiated with the pseudo hidden Markov

model ould alternatively be used as a proposal distribution in a Metropolis{Hastings al-

gorithm of the following form:

MCMC Algorithm

Step i (i = 1; : : : ; I)

(a) Generate !

(i)

� �(!jy;x

(i�1)

)
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Fig. 8. Successive fits of PMC iterated by the weight-resample algorithm for 2000 observations and

n = 2000 points, for (clockwise starting from top left) 1, 2, 5 and 10 iterations. (See the caption of

Fig. 5 for a description of the displayed quantities.)

(b) Generate x

?

� �

H

(xjy; !

(i)

), u � U([0; 1℄)

and take

x

(i)

=

8

<

:

x

? if u �
�(x

?

j!

(i)

y)

�

H

(x

?

jy;!

(i)

)

�

�(x

(i�1)

j!

(i)

y)

�

H

(x

(i�1)

jy;!

(i)

)

;

x

(i�1) otherwise

The performanes of this alternative algorithm are, however, quite poor. Even with

a well-separated dataset like the simulated dataset represented in Figure 3, the algorithm

requires a very areful preliminary tuning not to degenerate into a single state output.

More preisely, the following ours: when started at random, the algorithm onverges

very quikly to a on�guration where both means �

0

and �

1

of the ion hannel model are

very lose to one another (and to the overall mean of the sample), with, orrelatively, a

large variane �

2

and very short durations within eah state. To overome this degeneray

of the sample, we had paradoxially to resort to a sequential implementation as follows:

notiing that the degeneray is only ourring with large sample sizes, we start the MCMC

algorithm on the �rst 100 observations y

1:100

and, one a stable on�guration has been

ahieved, we gradually inrease the number of observations taken into aount [by a fator

of min(s

0

=�

0

; s

1

=�

1

)℄ till the whole sample is inluded. The results provided in Figures

10{12 were obtained following this sheme.

For oniseness' sake, we did not reprodue the history of the alloations x over the

iterations. The orresponding graph shows a very stable history with hardly any hange,

exept on a few boundaries. Note the onneted strong stability in the number of swithes

in Figure 11 (right). [The umulated means on the rhs of Figure 11 indiate that more
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Fig. 9. Representation of the sequence of descendants (lighter grey) and ancestors (darker grey)

along iterations through bars linking a given ancestor and all its descendants (light grey) or a given

point and its ancestor (darker grey). In the simulation corresponding to this graph, there were 4000

observations and 1000 points.

iterations of the MCMC sampler would have been neessary but our purpose is to illustrate

the proper behaviour of this sampler, provided the initialisation is adequate.℄

Attempts with very mixed datasets as the one used in Figure 8 were muh less suessful

sine, even with a areful tuning of the starting values (we even tried starting with the

known values of the parameters), we ould not avoid the degeneray to a single state. The

problem with the Metropolis{Hastings algorithm in this ase is learly a strong dependene

on the starting value, i.e., a poor mixing ability. This is further demonstrated by the

following experiment: when starting the above sampler from n = 1000 points obtained

by running PMC 20 times, the sampler always produed a satisfatory solution with two

learut states and no degeneray. Figure 12 ompares the distributions of the PMC points

and the MCMC samples via a qq-plot and shows there is very little di�erene between

both. The same behaviour is shown by a omparison of the alloations (not represented

here). This indiates that the MCMC algorithm does not lead to a better exploration of

the parameter spae.

For a fairly mixed dataset of 2000 observations orresponding to Figure 8, while the

MCMC algorithm initialised at random ould not avoid degeneray, a preliminary run of

PMC produed stable alloations to two states, as shown in Figure 13 by the �t for both

PMC and MCMC samples: they are indistinguishable, even though the qq-plots in Figure

14 indiate di�erent tail behaviours.

This is not to say that an MCMC algorithm annot work in this setting, sine Hodgson

(1999) demonstrated the ontrary, but this shows that global updating shemes, that is,

proposals that update the whole missing data x at one, are diÆult to ome with, and

that one has to instead rely on more loal moves as those proposed by Hodgson (1999).

A similar onlusion was drawn by Billio et al. (1999) in the setup of swithing ARMA

models. (See also Kim, Shephard and Chib, 1998.)
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Fig. 10. Representation of a dataset of 3610 simulated values, along with the average fit (bottom),

and average probabilities of allocation to the upper state (top). This fit was obtained using a sequen-

tial tuning scheme and 5000 MCMC iterations in the final run.

5. Conclusion

The above developments have on�rmed Chopin's (2002) realisation that PMC is a useful

tool in stati|as opposed to sequential, rather than dynami|setups. Quite obviously, the

spei� Monte Carlo sheme we built an be used in a sequential setting in a very similar

way. The omparison with the equivalent MCMC algorithm in Setion 4.6 is also very

instrutive in that it shows the superior robustness of PMC to a possibly poor hoie of the

proposal distribution.

There still are issues to explore about PMC sheme. In partiular, a more detailed

assessment of the iterative and adaptive features is in order, to deide to whih extent this

is a real asset. When the proposal distribution is not modi�ed over iterations, as in Setion

4, it is possible that there is an equivalent to the \uto� phenomenon": after a given t

0

,

the distribution of x

(t)

may be very similar for all t � t

0

. Further omparisons with full

Metropolis{Hastings moves based on similar proposals would also be of interest, to study

whih sheme brings the most information about the distribution of interest. The most

promising avenue seems however the development of adaptive proposals as in Setion 3,

where one an borrow from earlier work on MCMC algorithms to build assessments of the

improvement brought by modifying the proposals. Our feeling at this point is that a limited

number of iterations is neessary to ahieve stability of the proposals.

An extension not studied in this paper is that the PMC algorithm an be started with

a few points that explore the parameter spae and, one the mixing is well-established, the

sample size an be inreased to improve the preision of the approximation to the integrals

of interest. This is a straightforward extension in terms of programming, but the seletion

of the dupliation rate and inrease shedule is more deliate.
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Fig. 11. Details of the MCMC sample for the dataset of Figure 10: (left) histograms of the components

of the MCMC sample and (right) cumulative averages for the parameters of the models and evolution

of the number of switches (lower right graph).
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