Population Monte Carlo

Olivier Cappé

CNRS / ENST Département TSI, Paris

Arnaud Guillin

Jean—Michel Marin

CEREMADE, Université Paris Dauphine, Paris

Christian P. Robertt}

CEREMADE, Université Paris Dauphine, and CREST, INSEE, Paris

Summary. Importance sampling methods can be iterated like MCMC algorithms, while being
more robust against dependence and starting values, as shown in this paper. The population
Monte Carlo principle we describe here consists of iterated generations of importance samples,
with importance functions depending on the previously generated importance samples. The
advantage over MCMC algorithms is that the scheme is unbiased at any iteration and can thus
be stopped at any time, while iterations improve the performances of the importance function,
thus leading to an adaptive importance sampling. We first illustrate this method on a toy mixture
example with multiscale importance functions. A second example reanalyses the ion channel
model of Hodgson (1999), using an importance sampling scheme based on a hidden Markov
representation, and compares population Monte Carlo with a corresponding MCMC algorithm.
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Introduction

When reviewing the literature on MCMC methodology, a striking feature is that it has
predominantly focussed on producing single outputs from a given target distribution, 7.
This may sound a paradoxical statement when considering that one of the major applications
of MCMC algorithms is the approximation of integrals
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where ((®)) is a Markov chain with stationary distribution . But the main issue is that 7 is
considered as the limiting distribution of x; per se and that the Markov correlation between

tAddress for correspondence: CEREMADE, Université Paris Dauphine, 16 place du Maréchal
de Lattre de Tassigny, 75775 Paris cedex 16
E-mail: xian@ceremade.dauphine.fr



2 Cappé et al.

the z;’s is evacuated through the ergodic theorem (Meyn and Tweedie, 1993). There only
exist a few references to the use of MCMC algorithms for the production of samples of
size n from 7, including Warnes (2001) and Mengersen and Robert (2003), although the
concept of simulation from a product distribution 7&®" is not fundamentally different from
the production of a single output from the target distribution.

Another striking feature in the MCMC literature is the early attempt to dissociate itself
from pre-existing techniques such as importance sampling, although the latter shared with
MCMC algorithms the property of simulating from the wrong distribution to produce ap-
proximate generation from the correct distribution (see Robert and Casella, 1999, Chap. 3).
It is only lately that the realisation that both approaches can be successfully coupled came
upon the MCMC community, as shown for instance by MacEachern and Peruggia (2000),
Liu (2001), or Liu et al. (2001). One clear example of this fruitful symbiosis is given by
iterated particle systems (Doucet et al., 2001). Originally, iterated particle systems were in-
troduced to deal with dynamic target distributions, as for instance in radar tracking, where
the imperatives of on-line processing of rapidly changing target distributions prohibited to
resort to repeated MCMC sampling. Fundamentally, the basic idea, from a Monte Carlo
point of view, consists in recycling previous weighted samples primarily through a modifi-
cation of the weights (Gordon et al., 1993), possibly enhanced by additional sampling steps
(Berzuini et al., 1997; Pitt and Shephard, 1999; Gilks and Berzuini, 2001). As pointed out
in Chopin (2002), a particle system simplifies into a particular type of importance sampling
scheme in a static—as opposed to dynamic—setup, where the target distribution = is fixed,
which is the setting we consider here.

We thus study in this paper a method, called population Monte Carlo, that aims at
simulating from the target distribution 7®" and that tries to link these different “loose
ends” into a coherent simulation principle: Population Monte Carlo borrows from MCMC
algorithms for the construction of the proposal, from importance sampling for the construc-
tion of appropriate estimators, from SIR (Rubin, 1987) for sample equalisation, and from
iterated particle systems for sample improvement. The population Monte Carlo (PMC)
algorithm is in essence an iterated importance sampling scheme that simultaneously pro-
duces, at each iteration, a sample approximately simulated from a target distribution and
(approximately) unbiased estimates J of integrals J under that distribution. The sample
is constructed using sample dependent proposals for generation and importance sampling
weights for pruning the proposed sample.

We describe in Section 2 the population Monte Carlo technique, and apply these devel-
opment, first to a simple mixture example in Section 3, and second to the more ambitious
ion channel model that we assess in Section 4. While reasonable in complexity, the mixture
example still offers an interesting media to assess the adaptivity of the population Monte
Carlo sampler and the resistance to degeneracy. The ion channel model is more challenging
in that there is no closed form representation of the observed likelihood, while the comple-
tion step is more delicate than in mixture settings. In particular, Section 4.6 explains why
a Metropolis—Hastings algorithm based on the same proposal as population Monte Carlo
does not work. Section 5 contains the overall conclusions of the paper.
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2. The population Monte Carlo approach

As noted in Mengersen and Robert (2003), it is possible to construct an MCMC algorithm
associated with the target distribution

n
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on the space X", rather than with the distribution 7(z1), on the space X. All standard
results and schemes for MCMC algorithms apply in this particular case, and irreducible
Markov chains associated with such MCMC algorithms converge to the target #®™ in dis-
tribution, that is, get approximately distributed as an iid sample from 7 after a “sufficient”
number of iterations. Mengersen and Robert (2003) point out that additional sampling
devices can be used to construct the proposal distributions, like Gibbs-type component-
wise repulsive proposals that exclude immediate neighbourhoods of the other points in the
sample.

When considering, at MCMC iteration t, a sample x(*) = x(t), e ,ng) , we can think
g 1

of producing the next iteration of the sample x(t*1) such that the components xﬁt“) are

t+1)

generated from a proposal q(a:|a:£t)). However, rather than accepting each proposed a:E
individually (which would be a standard form of parallel MCMC sampling) or the whole
sample x(*+1) globally (which would suffer from the curse of dimensionality), we can al-
together remove the issue of assessing the convergence to the stationary distribution by
correcting at each iteration for the use of the wrong distribution by importance weighting.

Thus, instead of using an asymptotic justification to an MCMC iterated simulation
scheme, we can instead resort to importance sampling arguments: if the sample x® is
Z('t),
(®)

i

produced by simulating the x;”’s from distributions ¢;;, independently of one another, and

if we associate to each point z;” of this sample the importance weight

estimators of the form

are unbiased for every integrable function h and at every iteration t.

This is the starting point for population Monte Carlo methods, namely that extending
regular importance sampling techniques to cases where the importance distribution for
acz(»t) may depend on both the sample index ¢ and the iteration index ¢ does not modify
their validity. As already indicated in Robert and Casella (1999, Lemma 8.3.1) in a more
restrictive setting, importance sampling estimators have the interesting property that the

terms ggt)h(asgt)) are uncorrelated, even when the proposal ¢;; depends on the whole past
(t)h(a:(t))) exist for every 1 < i < mn,

of the experiment: assuming that the variances var (gi i

which means that the proposals g;; should have heavier tails than w, we have

1 n
var (3) = — 3 var (o{"h(al")) | (2)
i=1
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due to the canceling effect of the weights ggt).
Obviously, in most settings, the distribution of interest 7 is unscaled and we have to use
instead
t
(t) m(z E ))
(t)) ’

qit (1'@

scaled so that the weights ggt) sum up to 1. In this case, the above unbiasedness property

and the variance decomposition are lost, although they approximately hold. In fact, the
estimation of the normalising constant of m improves with each iteration ¢, since the overall
average
1 t n 71' T)
= Z Z (3)
=1 =1 qlT

is a convergent estimator of the inverse of the normalising constant. Therefore, as ¢ increases,
wy is contributing less and less to the variability of J; and the above properties can be
considered as holding for ¢ large enough. In addition, if the sum (3) is only based on the
(t — 1) first iterations, that is, if

the variance decomposition (2) can be recovered, via the same conditioning argument.

A related point is that attention must be paid to the selection of the proposals g¢;; so
that the normalising constants in these densities (or at least the part that depend on i)
must be available in closed form.

As pointed out by Rubin (1987) for regular importance sampling, it is preferable, rather

(t)

than to update the weights o, at each iteration ¢, to resample (with replacement) n values
(t) (t) (t)
Yi (z17,

from , Ty ) using the weights g( ) (and possibly the variance reduction device
of systematic samphng, as in Carpenter et al., 1998). This partially avoids the degeneracy
phenomenon, that is, the preservation of negligible weights and corresponding irrelevant
points in the sample. The sample (ygt), . ,y,(f)) resulting from this sampling importance
resampling (SIR) step is thus akin to an iid sample extracted from the weighted empirical
distribution associated with 7®(z, ..., z,).

A pseudo-code rendering of the PMC algorithm is as follows

PMCA: Population Monte Carlo Algorithm

Fort=1,...,T
Fori=1,...,n,

(i) Select the generating distribution g;:(-)
(i) Generate z\" ~ gy ()
(iii) Compute g() 7(x Et))/qit(xﬁ”)

Normalise the o\’s to sum up to 1
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Resample n values from the z{")’s with replacement, using the weights o."), to create
the sample (2\", ..., 2\")

Step (i) in this representation is stressed because this is an essential feature of the PMC
algorithm: the proposal distributions can be individualized at each step of the algorithm
without jeopardising the validity of the method. The proposals g;; can therefore be picked
according to the performances of the previous g;;_1)’s and, in particular, they can depend
on the previous sample (a:(t_l), R asgf _1)) or even on all the previously simulated samples,
if storage allows. For instance, in the mixture setting of Section 3, the g;;’s are random
walk proposals centered at the asgtfl)’s, with various possible scales chosen from earlier
performances, and they could also include large tails proposals as in the defensive sampling
strategy of Hesterberg (1998), to ensure finite variance. Similarly, Warnes (2001) uses the
previous sample to build a kernel non-parametric approximation to .

The fact that the proposal distribution g;;—1) can depend on the past iteration in any
possible way without modifying the weight g(t)

, is due to the feature that the unbiasedness
equation

Blof 6] = [ [ I8 hw s gdc

/ / h(z)m(z)de g(()d¢ = BT [h(X)],

where ¢ denotes the vector of past random variates that contribute to ¢;;, does not depend
on the distribution g(¢) of this random constituent.

There are similarities between PMC and earlier proposals in the particle system litera-
ture, in particular with Berzuini et al.’s (1997) and Gilks and Berzuini (2001), since these
authors also consider iterated samples with (SIR) resampling steps based on importance
weights. A major difference though (besides their dynamic setting of moving target distri-
butions) is that they remain within the MCMC realm by using the resample step before
the proposal move. These authors are thus forced to use Markov transition kernels with
given stationary distributions. There is also a similarity with Chopin (2002) who considers
iterated importance sampling with changing proposals. His setting is a special case of PMC
in a Bayesian framework, where the proposals ¢;; are the posterior distributions associated
with a portion k; of the observed dataset (and are thus independent of i and of the previous
samples).

As noted earlier, a most noticeable property of the PMC method is that the generality
in the choice of the proposal distributions ¢;; is due to the relinquishment of the MCMC
framework. Indeed, without the importance resampling correction, a regular Metropolis—
Hastings acceptance step for each point of the n-dimensional sample produces a parallel
MCMC sampler which simply converges to the target 7®™ in distribution. Similarly, a
regular Metropolis—Hastings acceptance step for the whole vector x(¥) converges to 7®™;
the advantage in producing an asymptotic approximation to an iid sample is balanced by the
drawback that the acceptance probability decreases approximately as a power of n. Since,
in PMC, we pick at each iteration the points in the sample according to their importance
weight ggt), we both remove the convergence issue and construct a selection mechanism over
both the points of the previous sample and the proposal distributions. This is not solely a
theoretical advantage: In the example of the ion channel in Section 4.6, it actually occurs
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that a Metropolis—Hastings scheme based on the same proposal does not work well, while
a PMC algorithm produces correct answers.

The PMC framework thus allows for a much easier construction of adaptive schemes,
i.e. of proposals that correct themselves against past performances, than in MCMC setups.
Indeed, while adaptive importance sampling strategies have already been considered in the
pre-MCMC area, as in, e.g., Oh and Berger (1992,1993), the MCMC environment is much
harsher for adaptive algorithms, because the adaptivity cancels the Markovian nature of
the sequence and thus calls for more elaborate convergence studies to establish ergodicity.
See, e.g., Andrieu and Robert (2001) and Haario et al. (1999,2001) for recent developments
in this area. For PMC methods, ergodicity is not an issue since the validity is obtained via
importance sampling justifications.

The samples produced by the PMC method can be exploited as regular importance
sampling outputs at any iteration T', and thus do not require the construction of stopping
rules as for MCMC samples (Robert and Casella, 1999, Chap. 8). Quite interestingly
though, the whole sequence of samples can be exploited, both for adaptation of the proposals
and for estimation purposes, as illustrated with the constant approximation (2). This does
not require a static storage of all samples produced though, since approximations like (2) can
be updated dynamically. In addition, this possibility to exploit the whole set of simulations
implies that the sample size n is not necessarily very large, since the effective simulation
size is n x T'. A last remark is that the number of points in the sample is not necessarily
constant over iterations. As in Chopin (2002), one may increase the number of points in
the sample once the algorithm seems to stabilise in a stationary regime.

3. Mixture model

Our first example is a Bayesian modelling of a mixture model, which is a problem simple
enough to introduce but complex enough to lead to poor performances for badly designed
algorithms (Robert and Casella, 1999, Chap. 9; Cappé et al., 2003). The mixture problem
we consider is based on an iid sample x = (1, ..., ;) from the distribution

PN (p1,0%) + (1 = PN (p2, 0°),

where both p # 1/2 and o > 0 are known. The prior associated with this model, 7, is a
normal N'(#, % /) prior on both p; and ps. We thus aim at simulating from the posterior
distribution

(1, pa|x) o f(x|pr, po) w(p, o) -

Although the “standard” MCMC resolution of the mixture problem is to use a Gibbs sampler
based on a data augmentation step via indicator variables, recent developments (Celeux et
al., 2000; Chopin, 2002; Cappé et al., 2003) have shown that the data augmentation step
is not necessary to run an MCMC sampler. We will now demonstrate that a PMC sampler
can be efficiently implemented without this augmentation step either.

Our PMC algorithm is adaptive in the following sense: The initialization step consists
first in choosing a set of initial values for pu; and ps (e.g., a grid of points around the
empirical mean of the z;’s). The proposals are then random walks, that is, random isotropic
perturbations of the points of the current sample. As noted above, a very appealing feature
of the PMC method is that the proposal may vary from one point of the sample to another
without jeopardizing the validity of the method. At a first level, the proposals are all
different, since they are normal distributions centered in every sample point. At a second
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level, we can also choose different variances for these normal distributions, for instance
within a predetermined set of p scales v; (1 < i < p) ranging from 10 down to 1073, and
select these variances at each step of the PMC algorithm according to the performances
of the scales on the previous iterations. In our implementation, we decided to select a
scale proportionally to its non-degeneracy rate on the previous iterations. (Note the formal
similarity of this scheme with Stavropoulos and Titterington’s (1999) smooth bootstrap, or
adaptive importance sampling, and Warnes’ (2001) kernel coupler, when the kernel used in
their mixture approximation of 7 is normal. The main difference is that we do not aim at a
good approximation of 7 using standard kernel results like bandwidth selection, but rather
keep the different scales v; over the iterations.) Our PMC algorithm thus looks as follows:

Mixture PMC

Step 0: Initialisation

Forj=1,...,n = pm, choose (u1)\"”, (i2)'"
Fork=1,...,p,setr, =m

Step i: Update (i =1,...,1)
Fork=1,...,p,

(a) generate a sample of size r, as
(1) ~ N () 0e) and () ~ N ()0 0n)
(b) compute the weights
£ (e[ ) ) 7 () (1))
o ((m)f) ‘(ul)ﬁi”) on ) @ ((2)) ‘(uz)ﬁi”) o)

05 X
Resample the ((ul)g.i) ,(u2)§i)>j using the weights o;,

Fork=1,...,p,

update r;, as the number of elements generated with variance v, which have
been resampled.

where ¢(q|s,v) is the density of the normal distribution with mean s and variance v at the
point q.

As mentioned above, the weight associated with each variance vy, is thus proportional to
the regeneration (or survival) rate of the corresponding sample. If most p;’s associated with
a given vy are not resampled, the next step will see less generations using this variance vy.
However, to avoid the complete removal of a given variance vy, we modified the algorithm
to ensure that a minimum number of points is simulated from each variance level, namely
1% of the whole sample.
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The performances of the above algorithm are illustrated on a simulated dataset of 1000
observations from the distribution 0.2A°(0,1) 4+ 0.8N(2,1). We also took § = 1 and A = 0.1
as hyperparameters of the prior. Applying the above PMC algorithm to this sample, we
see that it produces a non-degenerate sample, that is, not restricted to n replications of
the same point. In addition, the adaptive feature for choosing among the v;’s is definitely
helpful to explore the state space of the unknown means. In this case, p = 5 and the five
variances are equal to 5,2,.1,.05 and .01. Moreover, at each step i of the PMC algorithm,
we generated n = 1050 sample points.

The two upper graphs of Figure 1 illustrate the degeneracy phenomenon associated with
the PMC algorithm: they represent the sizes of the samples issued from the different pro-
posals, that is, the number of different points resulting from the resampling step: the upper
left graph exhibits a nearly cyclic behavior for the largest variances vy, alternating from
no point issued from these proposals to a large number of points. This behaviour agrees
with intuition: proposals that have too large a variance mostly produce points that are ir-
relevant for the distribution of interest, but once in a while they happen to generate points
that are close to one of the modes of the distribution of interest. In the later situation,
the corresponding points are associated with large weights p; and are thus heavily resam-
pled. The upper right graph shows that the other proposals are rather evenly considered
along iterations. This is not surprising for the smaller variances, since they modify very
little the current sample, but the cyclic predominance of the three possible variances is
quite reassuring about the mixing abilities of the algorithm and thus about its exploration
performances.

We can also study the influence of the variation in the proposals on the estimation of
the means p; and ps, as illustrated by the middle and lower panels of Figure 1. First,
when considering the cumulative means of these estimations over iterations, the quantities
quickly stabilise. The corresponding variances are not so stable over iterations, but this is
to be expected, given the regular reappearance of subsamples with large variances.

Figure 2 provides an additional insight into the performances of the PMC algorithm, by
representing a weighted sample of means with dots proportional to the weights. As should
be obvious from this graph, there is no overwhelming point that concentrates most of the
weight. On the opposite, the 1050 points are rather evenly weighted, especially for those
close to the posterior modes of the means.

Note that a better PMC scheme could be chosen. The approach selected for this section
does not take advantage of the latent structure of the model, as in Chopin (2002), and
contrary to the following section. Indeed, after an initialization step, one could first simulate
the latent indicator variable conditionally on the previous sample of (pui,pu2) and then
simulate a new sample of means conditionally on the latent indicator variables. Iterating
this PMC scheme seems to constitute a sort of parallel Gibbs sampling, but this scheme is
valid at any iteration and can thus be stopped at any time. That we have not used this
approach is to emphasize that the PMC method has no real need of the latent structure of
the model to work satisfactorily.

4. lon channels

4.1. The stylised model
As a realistic example of implementation of the PMC scheme, we consider here a formalised
version of the ion channel model of Hodgson (1999). We refer the reader to this paper, as
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Fig. 1. Performances of the mixture PMC algorithm: (upper left) Number of resampled points for
the variances v1 = 5 (darker) and v. = 2; (upper right) Number of resampled points for the other
variances, vz = 0.1 is the darkest one; (middle left) Variance of the simulated p:’s along iterations;
(middle right) Complete average of the simulated u1’s over iterations; (lower left) Variance of the
simulated p»’s along iterations; (lower right) Complete average of the simulated p»’s over iterations.

well as to Ball et al. (1999) and Carpenter et al. (1999), for a biological motivation of this
model, alternative formulations, and additional references. Let us insist at this point on the
formalised aspect on our model, which predominantly serves as a realistic support for the
comparison of a PMC approach with a more standard MCMC approach in a semi-Markov
setting. The finer points of model choice and model comparison for the modelling of ion
channel kinetics, while of importance as shown by Ball et al. (1999) and Hodgson and
Green (1998), are not addressed by the present paper. Note also that, while a Bayesian
analysis of this model provides a complete inferential perspective, the focus of attention is
generally set on the restoration of the true channel current, rather than on the estimation
of the parameters of the model.

Consider, thus, observables y = (y:)i<¢<7 directed by a hidden Gamma (indicator)
process X = (z¢)1<¢<7 in the following way:

yt|$t ~ N(:uﬂvuo-Q) )

while z;, € {0,1}, with durations d; ~ Ga(s;, A;) (i = 0,1). More exactly, the hidden process
(@), is a (continuous time) Gamma jump process with jump times ¢; (j = 1,2,...) such
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Fig. 2. Representation of the log-posterior distribution via grey levels (darker stands for lower and
lighter for higher) and of a weighted sample of means. (The weights are proportional to the surface
of the circles.)
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that
dj+1 = tj+1 — tj ~ ga(si, )\Z)

if & =i for ¢t; <t < tjyq, that is, E[dj41] = si/A;. Figure 3 provides a simulated sample
of size 4000 from this model.

| |
Bl YT

o 1000 2000 3000 4000

2
|

0
|

Fig. 3. Simulated sample of size 4000 from the ion channel model

A first modification of Hodgson’s (1999) ion channel model is introduced at this level:
we assume that the durations dj, that is, the time intervals in which the process (z+)1<:<T
remains in a given state, are integer valued, rather than real valued. The reasons for this
change are that

(a) the true durations of the Gamma process are not identifiable;

(b) this model is a straightforward generalisation of the hidden Markov model where the
jumps do occur at integer times (see Ball et al., 1999, or Carpenter et al., 1999).
A natural generalisation of the geometric duration of the hidden Markov model is
a negative binomial distribution, Aeg(s,w), which is very close to a Gamma den-
sity Ga(s + 1, —log(1 — w)) (up to a constant) for s small. Indeed, the former is
approximately

while the later is &

— (1= w){~log(1 —w)}"*!

s!

(The simulations detailed below were also implemented using a negative binomial
modelling, leading to very similar results in the restoration process.)

(c) inference on the d;’s given (z:)i<:<7 involves an extra level of simulations, even
if it can be easily implemented via a slice sampler, as long as we do not consider
the possibility of several jumps between two integer observational times. (This later
possibility is actually negligible for the datasets we consider.); and

(d) the replacement of d; by its integral part does not strongly modify the likelihood.

In a similar vein, we omit the censoring effect of both the first and the last intervals, given
that the influence of this censoring on a long series is bound to be small.

A second modification of Hodgson’s (1999) model is that we choose a uniform prior for
the shape parameters sy and sy on the finite set {1,...,S}, rather than an exponential
Exp(€) prior on RT. The reasons for this modification are that
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(a) the hidden Markov process has geometric switching times, which correspond to expo-
nential durations. A natural extension is to consider that the durations of the stays
within each state (or régime) can be represented as the cumulated duration of s; ex-
ponential stays, with s; an unknown integer, which exactly corresponds to gamma
durations. This representation thus removes the need to call for a level of variable
dimension modelling. Carpenter et al. (1999) and Hodgson and Green (1999) use
a different approach, based on the replication of the “open” and ”closed” sets into
several states, to approximate the semi-Markov model.

(b) the following simulations show that the parameters so and s; are strongly identified
by the observables (y:)i<¢<T;

(c) the prior information on the parameters sy and s; is most likely to be sparse and thus
a uniform prior is less informative than a Gamma prior when S is large; and

(d) the use of a finite support prior allows for the computation of the normalising constant
in the posterior conditional distribution of the parameters sg and s, a feature that is
paramount for the implementation of PMC.

A third modification, when compared with both Hodgson (1999) and Carpenter et al.
(1999), is that the observables are assumed to be independent, given the x;’s, rather than
distributed from either an AR(15) (Hodgson, 1999) or an ARMA(1,1) (Carpenter et al.,
1999) model. This modification somehow weakens the identifiability of both régimes as the
data becomes potentially more volatile.

The other parameters of the model are distributed as in Hodgson (1999), using conjugate
priors,

o, ~ N(6p,707)
o ~ G(¢m)
Aos A1~ g(aaﬂ)

Figure 4 illustrates the dependences induced by this modelling on a DAG.

Fig. 4. DAG representation of the probabilistic dependences in the Bayesian ion channel model.

This formalised ion channel model is thus a special case of discrete time hidden semi-
Markov model for which there exists no explicit polynomial time formula for the posterior
distribution of the hidden process (z:)i<¢<t, as opposed to the hidden Markov model
with the forward-backward formula of Baum and Petrie (1966). From a computational
(MCMC) point of view, there is therefore no way of integrating this hidden process out
to simulate directly the parameters conditional on the observables (y:)i1<¢<7, as was done
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in the hidden Markov model by, e.g., Cappé et al. (2003). Note also that, as opposed to
Hodgson (1999), we use the saturated missing data representation of the model via x to
avoid the complication of using reversible jump techniques for which PMC algorithms are
more difficult to implement.

4.2.  Population Monte Carlo for ion channel models

Our choice of proposal function is based on the availability of closed form formulas for
the hidden Markov model. We thus create a pseudo hidden Markov model based on the
current values of the parameters for the ion channel model, simply by building the Markov
transition matrix from the average durations in each state,

1— 2o Ao
P=1 0" 20
81 S1

since, for a hidden Markov model, the average sojourn within one state is exactly the inverse
of the transition probability to the other state. We denote by 7 (x|y,w) the full conditional
distribution of the hidden Markov chain x given the observables y and the parameters

W = (/1/07“170-7 /\07A1780781)

constructed via the forward—backward formula: see, e.g., Cappé et al. (2003) for details.
The simulation of the parameters w proceeds in a natural way by using the full conditional
distribution m(w|y,x) since it is available. In order not to confuse the issues, we do not
consider the possible adaptation of the approximation matrix P over the iterations, that is,
a modification of the switch probabilities from A;/s; (i = 1,2).

Note that Carpenter et al. (1999) also consider the ion channel model in their par-
ticle filter paper, with the differences that they replace the semi-Markov structure with
an approximative hidden Markov model with more than 2 states, and that they work in
a dynamic setting based on this approximation. The observables y are also different in
that they come from an ARMA(1,1) model with only the location parameter depending on
the unknown state. Hodgson and Green (1998) similarly compared several hidden Markov
model with duplicated “open” and “closed” states. Ball et al. (1999) also rely on a hidden
Markov modelling with missing observations.

The subsequent use of importance sampling bypasses the exact simulation of the hidden
process (z;)1<¢<7 and thus avoids the recourse to variable dimension models and to more
sophisticated tools like reversible jump MCMC. This saturation of the parameter space by
the addition of the whole indicator process (z:)i<¢<7 is obviously more costly in terms of
storage, but it provides unrestricted moves between configurations of the process (x;)i<t<7.
Since we do not need to define the corresponding jump moves, we are thus less likely to
encounter the slow convergence problems of Hodgson (1999).

We therefore run PMC as in the following pseudo-code rendering, where I denotes the
number of iterations, T being used for the number of observations:
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Ion channel PMC

Step 0: Initialisation
Forj=1,...,n,
(i) generate (w(j),xg)) ~ m(w) x mpr(x|y, w )
(i) compute the weight o; o m(w@, x9|y) /m(wD)rg (xV]y, w@)
Resample the (w@,x")); using the weights o;
Step i: Update (i =1,...,1)
Forj=1,...,n,

(i) generate (w(j),x(f)) ~ 7r(w|y,x@) x T (x|y,w?)
(iiy compute the weight o; o 7 (w@, x 7 |y) /7(w@ |y, xV)7p (x]y, w@)

Resample the (w@,x{)); using the weights ;, and take xV) = x{ (j =
1,...,n).

The justification for the weights p; used in the above algorithm is that conditional on
(J)) and, conditional on w@), x(ﬁ) is simulated
from 7 (x|y,w?)). The normalising factor of the 0;’s converges to the correct constant by

the law of large numbers.

the x¥%s, W) is simulated from m(wly,x

4.3. Normalising constants

Let us stress the specificity of the PMC method in terms of normalising constants: 7(w|y, x)
is available in closed form (see below in Section 4.4), including its normalising constant, due
to the conjugacy of the distributions on pg, pt1, 0, Ag, A1 and the finiteness of the support
of so,s1. The conditional distribution g (x|y,w) is also available with its normalising
constant, by virtue of the forward—backward formula. The only difficulty in the ratio

m(w, X|y)
W(W|Y7 X)WH (X|Y7 w)

lies within the numerator 7(w, x|y) whose normalised version is unknown. We therefore use
instead the proportional term

m(w,x]y) oc w(w) f(y|x,w) f(x|w). (4)

and normalise the g;’s by their sum. The foremost feature of this reweighting is that the
normalising constant missing in (4) only depends on the observables y and is therefore truly
a constant, that is, does not depend on the previous value of the point x(j). This scheme
crucially relies on (i) the points encompassing both the parameters w and the latent data

x, and (ii) the distribution 7(w,x|y) being available in closed form.
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4.4. Simulation details
Figure 5 illustrates the performances of PMC by representing the graph of the dataset
against the fitted average
J
Z Qjhy @
i=1

for each observation y;. As obvious from the picture, the fit is quite good.
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Fig. 5. (top) Histograms of residuals after fit by averaged pu.,; (middle) Simulated sample of size
4000 against fitted averaged u., ; (bottom) Probability of allocation to first state for each observation

The unobserved Gamma, process is distributed as

)sm—l Asm g=Am (tmt1—tm)
m

M
(tm—i-l - tm
H L(sm)

m=1
1080 ,—Aovo ASo—1 ynis1 _—Ajv; AS1—1
A AT A e A7
[(so)™ L(s)™ ’

with obvious notations: M is the number of changes, the t,,’s are the successive times when
the gamma process changes state, the s,,’s, Ap’s are the corresponding sequences of sg, s1
and A, A1, n; is the number of visits to state i, A; is the product of the sojourn durations
in state i [corresponding to the geometric mean], v; the total sojourn duration in state i
[corresponding to the arithmetic mean]. (This is based on the assumption of no censoring,
made in Section 4, namely that ¢; = 1 and tyr0q =T + 1.)

The posterior distributions on the yu;’s and 0=2 [conditional on the hidden process] are
thus the standard Normal-Gamma conjugate priors while

Ailsi,x ~  Gala+n;s;, B+ v;)

A; ] " T(ngs; + a)
B+ vy)mi INEDKE

silx  ~ 7r(s,»|x)oc{( Tii2,..,51(84)

Therefore, except for the s;’s, the posterior distributions on the parameters of the model
are the same as in Hodgson (1999).
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The distribution on the s;’s is highly variable, in that the product
{ A; } ¥ T(nis; + a)
Goy] TG

often leads to a highly asymmetric distribution, which puts most of the weight on the

(5)

minimum value of s. Indeed, when the geometric and arithmetic means, A}/ " and v;/n,
are similar, a simple Stirling approximation to the Gamma function leads to (5) being
equivalent to \/n/\/s".

Figure 6 gives the histograms of the posterior distributions of the various parameters of
w without reweighting by the importance sampling weights ¢;. As seen from this graph,
the histograms in p; and o are well concentrated, while the histogram in \; exhibits two
modes which correspond to the two modes of the histogram of s; and indicate that the
parameter (\;, s;) is not well identified. This is to be expected, given that we only observe a
few realisations of the underlying gamma distribution, and this with added noise since the
durations are not directly observed. However, the histograms of the average durations s;/\;
do not exhibit such multimodality and are well-concentrated around the values of interest.
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Fig. 6. Histograms of the samples produced by PMC, before resampling

4.5. Degeneracy

As noted above, PMC is simply an importance sampling algorithm when implemented once,
that is, for a single collection of n points (w(j),x(j)). As such, it provides an approxima-
tion device for the target distribution but it is also well-known that a poor choice of the
importance sampling distribution can jeopardise the interest of the approximation, as for
instance when the weights p; have infinite variance.

An incentive of using PMC in a static setting is thus to overcome a poor choice of the
importance function by recycling the best points and discarding the worst ones. This point
of view makes PMC appear as a primitive kind of adaptive algorithm, in that the support of
the importance function is adapted to the performance of the previous importance sampler.

The difficulty with this approach is in determining the long-term behaviour of the al-
gorithm and, correlatively, the stopping rule that decides that nothing is gained in running
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the algorithm any longer. For instance, it often happens that only a few points are kept
after the resampling step of the algorithm, because only a few weights g; are different from
0. Figure 7 gives for instance the sequence of the number of points that matter at each
iteration, out of n = 1000 original points: the percentage of relevant points is thus less than
10% on average and in fact much closer to 5%. In addition, there is no clearcut stabilisation
in either the number of relevant points or the variance of the corresponding weights, the
later being far from exhibiting a stabilisation as the number of iterations increases. Some
more rudimentary signals can be considered though, like the stabilisation of the fit in Figure
8. While the averages for 1 and 2 iterations are quite unstable for most observations, the
two states are much more clearly identified for 5 and 10 iterations, and hardly change over
subsequent iterations.

1608
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Fig. 7. (left) Variance of the weights g; along 100 iterations, and (right) Number of points with
descendants along 100 iterations, for a sample of 4000 observations and 1000 points.

A related phenomenon pertains to the degeneracy of ancestors observed in the iterations
of our algorithm: as the number of steps increases, the number of points from the first
generation used to generate points from the last generation diminishes and, after a few
dozen iterations, reduces to a single ancestor. This is for instance what occurs in Figure 9
where, after only two iterations, there is a single ancestor to the whole sample. (Note also
the iterations where the whole sample originates from a single point.) This phenomenon
appears in every setting and, while it cannot be avoided, since some points are bound to
vanish at each iteration even when using the systematic sampling of Carpenter et al. (1999)
the surprising factor is the speed with which the number of ancestors decreases.

4.6. A comparison with Hastings—Metropolis algorithms

As mentioned above, the proposal distribution associated with the pseudo hidden Markov
model could alternatively be used as a proposal distribution in a Metropolis—Hastings al-
gorithm of the following form:

MCMC Algorithm

Stepi (i =1,...,1)

(a) Generate w®) ~ 7(wly,x(=1)
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Fig. 8. Successive fits of PMC iterated by the weight-resample algorithm for 2000 observations and
n = 2000 points, for (clockwise starting from top left) 1, 2, 5 and 10 iterations. (See the caption of
Fig. 5 for a description of the displayed quantities.)

(b) Generate x* ~ mr(x|y,w®), u ~ U([0,1])

and take
r(x* |w@y) / 2(xD w0y

*

if u <

X = T (xyw@)

<) — T (D [y ()

x(i=1)  otherwise

The performances of this alternative algorithm are, however, quite poor. Even with
a well-separated dataset like the simulated dataset represented in Figure 3, the algorithm
requires a very careful preliminary tuning not to degenerate into a single state output.
More precisely, the following occurs: when started at random, the algorithm converges
very quickly to a configuration where both means po and p; of the ion channel model are
very close to one another (and to the overall mean of the sample), with, correlatively, a
large variance o and very short durations within each state. To overcome this degeneracy
of the sample, we had paradoxically to resort to a sequential implementation as follows:
noticing that the degeneracy is only occurring with large sample sizes, we start the MCMC
algorithm on the first 100 observations yi.190 and, once a stable configuration has been
achieved, we gradually increase the number of observations taken into account [by a factor
of min(sg/Ao,s1/A1)] till the whole sample is included. The results provided in Figures
10-12 were obtained following this scheme.

For conciseness’ sake, we did not reproduce the history of the allocations x over the
iterations. The corresponding graph shows a very stable history with hardly any change,
except on a few boundaries. Note the connected strong stability in the number of switches
in Figure 11 (right). [The cumulated means on the rhs of Figure 11 indicate that more
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Fig. 9. Representation of the sequence of descendants (lighter grey) and ancestors (darker grey)
along iterations through bars linking a given ancestor and all its descendants (light grey) or a given
point and its ancestor (darker grey). In the simulation corresponding to this graph, there were 4000
observations and 1000 points.

iterations of the MCMC sampler would have been necessary but our purpose is to illustrate
the proper behaviour of this sampler, provided the initialisation is adequate.]

Attempts with very mixed datasets as the one used in Figure 8 were much less successful
since, even with a careful tuning of the starting values (we even tried starting with the
known values of the parameters), we could not avoid the degeneracy to a single state. The
problem with the Metropolis—Hastings algorithm in this case is clearly a strong dependence
on the starting value, i.e., a poor mixing ability. This is further demonstrated by the
following experiment: when starting the above sampler from n = 1000 points obtained
by running PMC 20 times, the sampler always produced a satisfactory solution with two
clearcut states and no degeneracy. Figure 12 compares the distributions of the PMC points
and the MCMC samples via a qqg-plot and shows there is very little difference between
both. The same behaviour is shown by a comparison of the allocations (not represented
here). This indicates that the MCMC algorithm does not lead to a better exploration of
the parameter space.

For a fairly mixed dataset of 2000 observations corresponding to Figure 8, while the
MCMC algorithm initialised at random could not avoid degeneracy, a preliminary run of
PMC produced stable allocations to two states, as shown in Figure 13 by the fit for both
PMC and MCMC samples: they are indistinguishable, even though the qg-plots in Figure
14 indicate different tail behaviours.

This is not to say that an MCMC algorithm cannot work in this setting, since Hodgson
(1999) demonstrated the contrary, but this shows that global updating schemes, that is,
proposals that update the whole missing data x at once, are difficult to come with, and
that one has to instead rely on more local moves as those proposed by Hodgson (1999).
A similar conclusion was drawn by Billio et al. (1999) in the setup of switching ARMA
models. (See also Kim, Shephard and Chib, 1998.)
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Fig. 10. Representation of a dataset of 3610 simulated values, along with the average fit (botfom),
and average probabilities of allocation to the upper state (fop). This fit was obtained using a sequen-
tial tuning scheme and 5000 MCMC iterations in the final run.

5. Conclusion

The above developments have confirmed Chopin’s (2002) realisation that PMC is a useful
tool in static—as opposed to sequential, rather than dynamic—setups. Quite obviously, the
specific Monte Carlo scheme we built can be used in a sequential setting in a very similar
way. The comparison with the equivalent MCMC algorithm in Section 4.6 is also very
instructive in that it shows the superior robustness of PMC to a possibly poor choice of the
proposal distribution.

There still are issues to explore about PMC scheme. In particular, a more detailed
assessment of the iterative and adaptive features is in order, to decide to which extent this
is a real asset. When the proposal distribution is not modified over iterations, as in Section
4, it is possible that there is an equivalent to the “cutoff phenomenon”: after a given to,
the distribution of x®) may be very similar for all ¢ > . Further comparisons with full
Metropolis—Hastings moves based on similar proposals would also be of interest, to study
which scheme brings the most information about the distribution of interest. The most
promising avenue seems however the development of adaptive proposals as in Section 3,
where one can borrow from earlier work on MCMC algorithms to build assessments of the
improvement brought by modifying the proposals. Our feeling at this point is that a limited
number of iterations is necessary to achieve stability of the proposals.

An extension not studied in this paper is that the PMC algorithm can be started with
a few points that explore the parameter space and, once the mixing is well-established, the
sample size can be increased to improve the precision of the approximation to the integrals
of interest. This is a straightforward extension in terms of programming, but the selection
of the duplication rate and increase schedule is more delicate.
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Fig. 11. Details of the MCMC sample for the dataset of Figure 10: (left) histograms of the components
of the MCMC sample and (right) cumulative averages for the parameters of the models and evolution
of the number of switches (lower right graph).
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