
QUASI-NEWTON METHOD FOR MAXIMUM LIKELIHOOD ESTIMATION OF HIDDEN

MARKOV MODELS
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ABSTRACT

Hidden Markov models (HMMs) are used in many signal

processing applications including speech recognition, blind

equalization of digital communications channels, etc. The

most widely used method for maximum likelihood estima-

tion of HMM parameters is the forward-backward (or Baum-

Welch) algorithm which is an early example of application

of the Expectation-Maximization (EM) principle. In this con-

tribution, an alternative fast-converging approach for maxi-

mum likelihoodestimationof HMM parameters is described.

This new techniques is based on the use of general purpose

quasi-Newton optimization methods as well as on an effi-

cient purely recursive algorithmfor computing the log-likeli-

hood and its derivative.

1. INTRODUCTION

Hidden Markov models (HMMs) are used in many applica-

tions, including (among many others) speech processing [9],

digital communications [3] or biological signal processing [1].

As of today, the most efficient, and by far the most popular,

approach for estimating the parameters of HMMs is based

on the Expectation-Maximization (EM) principle[9], [6]. The

EM algorithm, as formulated by Dempster et al. (1977) [2],

is an iterative optimization method for maximum likelihood

estimation of statistical models that involve unobserved (or

latent) data. The application of EM to Hidden Markov Mod-

els is not straightforward and requires an additional induc-

tive algorithm known as the forward-backward, introduced

by Baum et al. (1970) [9], [6].

The main advantages of EM are its immediate applica-

bility to a large class of statistical models as well as its ease

of implementation. On the other hand, there is no reason

why EM should be systematically preferred to other alterna-

tive optimization approaches (as was already pointed out by

several discutants the original paper by Dempster et al. [2]).

In particular, EM is known to converge very slowly in some

models [4], [10], [6]. Many of the solutionsproposed to speed

up the convergence of EM are based on the observation that

EM provides an indirect way of computing the gradient of

the log-likelihood according to the Fisher relation
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where x denotes the observed data, y the unobserved data

and � the parameters of the model [4], [6].

For HMMs however, the use of (1) implies a complete

iteration of the forward backward procedure introduced by

Baum et al. In the present work, we describe an alternative

recursive procedure for computing the log-likelihood,which

is attractive from a computational point of view. The paper

is organized as follows: in sections 1 and 2, the computa-

tion of the log-likelihood and its derivatives is detailed; sec-

tions 3 and 4 are devoted to the comparison of the proposed

method with the standard EM-based approach.
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Let us consider an HMM with vector valued observationsx
t

and associated unobservable state s

t

2 f1; : : : ; Ng, where

N denotes the number of states. � : �

ij

, P (s

t+1

=

jjs

t

= i) is the transition matrix associated with the Markov

process and f

i

(x

t

) denotes the state conditional distribution

p(x

t

js

t

= i). The notationXs

r

will be used as a shorthand

for the subsequence (x
r

;x

r+1

; : : :x

s

). In the following, the

dependence upon the HMM parameters is implicit in all ex-

pressions and omitted for notational simplicity. For a sequence

of observations of lengthT , Bayes rules can be used to rewrite

the log-likelihood as
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) is by convention equivalent to the uncondi-

tional distribution p(�). The HMM structure makes it possi-
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where �
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) denotes the state prediction

filter. �
t

(i) can be updated recursively using (see [11])
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The normalization factors c
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Except for the fact that it is normalized, (4) bear close re-

semblance with the formulas used for updating the forward

variable �

t

(i) , p(X

t

1

; s

t

= i) in the Baum-Welch recur-

sions [9], [6].

3. COMPUTING THE GRADIENT

Formulas for computing the derivatives of the log-likelihood

can be obtained by simply differentiating (3) and (4). The

form of the log-likelihoodgiven by (3) has been used before

as a technique for proving the consistence and asymptotic

normalityof the maximum likelihoodestimate in HMMs (see

the references in [7]), however the idea of using (3) to effec-

tively compute the gradient of the likelihood is due to Mevel

and LeGland [7], [5].

Usually the HMM parameter vector can be splitted in two

distinct parts: Parameters � of state-conditional distributions

f

i

(�) and transition parameters that define�. For simplicity

we omit here the question of the initial state distributionand

assume that it is known a priori.

For the distributional parameters �, the gradient of the

log-likelihood is given by
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For the transition parameters �, the gradient of the log-li-

kelihood is given by
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(7) and (9) both involve the state predictor filter �
t

(i) at time

index t�1 and t as well as its gradient at time index t�1. The

recursions should be started withr
�

�

1

(i) = r
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(i) = 0

in the case where the initial state distribution is known.

The above recursions, when used for computing the gra-

dient of the log-likelihoodhave a numerical complexity pro-

portional to T � N

2, which is comparable with that of the

forward-backward [6]. Whatever the length of the sequence,

the storage space needed to compute the gradient of the log-

likelihood is constant and proportional to N � p where p is

the total number of parameters, whereas the storage space

needed for the forward-backward is proportional to N � T .

This feature is most useful in situations where dealing with

long observation sequences is unavoidable as for the analy-

sis of DNA sequences [1] or blind equalization for commu-

nication channels [3].

The proposed method for estimating the HMM parame-

ters simply consist in using a general purpose quasi-Newton

optimization algorithm [8], where the log-likelihood and its

gradient are evaluated recursively using the equations given

above. Such algorithms are based on the Newton approx-

imation formula, and the “quasi” prefix corresponds to the

fact that one has to use embedded line searches to adjust the

step size at each iteration [8].

4. COMPARISON WITH THE EM BASED

APPROACH

We first briefly review the main convergence properties of

the EM algorithm in a general context: Under suitable reg-

ularity conditions, the main numerical characteristics of the

EM algorithm are:

1. Global convergence (in Zangwill’s sense) in the set of

stationary points of the likelihood [12].

2. When the algorithm converges (pointwise) to�
�

, a first

order approximation yields the following update for-

mula [4]
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where I
c

(�
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) is the so-called complete data informa-

tion matrix (see [2] for its precise definition).

Eq. (10) indicates that at convergence, each iteration of the

EM algorithm closely resembles a step of the Newton algo-

rithm for maximizing the log-likelihood, except for the fact

that I
c

(�

�

) is the “complete data information matrix” and

not the observed data information matrix I(��), defined as

the inverse of the Hessian of the log-likelihood. Because of

this mismatch in the descent direction, in practice the EM

performs like a gradient descent algorithm (linear conver-

gence) with a low speed of convergence [4], [10].

In sharp contrast, the proposed method reaches superlin-

ear convergence when it falls in the attraction domain of one

of the local maxima of the likelihood [8] (see next section).

One drawback of the proposed quasi-Newtonapproach is that

it makes it necessary to deal with possible constraint on the

HMM parameters. The most obvious constraint is that �

must be a stochastic matrix, where each line contains posi-

tive elements which sum to one. Usual solutions to this prob-

lem include the reparameterization of each line of the tran-

sition matrix as a point on theRN hypersphere represented

by N � 1 angles [11]. In the following section, we use the

computationally simpler solution which consists in using the

natural transition matrix parameterization and (i) projecting

the gradient on the subspace orthogonal to the linear con-

straints
P

N

j=1

�

ij

= 1 (1 � i � N ), (ii) take into account

the parameters bounds (0 � �

ij

� 1) when determining

the step size. This second method has the disadvantage that

it may exhibit poor convergence if the true parameter value

lies close to the inequality constraints boundaries (if one of

the transition probabilities is very small for instance). For

the distribution parameters, it is possible in most cases to

get rid of the constraints by a mere reparameterization of the

model as is demonstrated in next section.

5. RESULTS

We illustrate the behavior of the proposed method in the case

where the state-conditional distributions are Gaussian. For

reason of simplicity, the observationare assumed to be scalar,

but the same computation scheme could be used straightfor-

wardly if the state-conditional distributions were multivari-

ate normal with diagonal covariance matrices. The distribu-

tion parameters are � = (�
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To evaluate the proposed method, we use data simulated

from a 3 states HMM with known parameters:
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The stationary probabilitydistribution (marginal probability

distribution of the observations for large value of the time

index t) corresponding to the actual parameters is plotted as

the solid curve on fig. 1 together with those corresponding

to the initial value of the parameters (dotted line) and to the

MLE (dashed line). Note that the initial guess of the HMM

parameters was chosen so that both iterative procedures con-

verge to the MLE (and not to a local maxima).
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Figure 1: Stationary probability distributions correspond-

ing to true parameters (solid line), initial parameters (dotted

line), MLE (dashed line).

Fig. 2 displays the relative distance (measured using L

2

norm) between the estimated parameters and the MLE as a

function of the iteration index. The curve corresponding to

EM (star signs) is approximately linear for large iterations

indexes, which denotes linear convergence of the algorithm.

The slope of this curve (in the rightmost part of the plot) is

0.94 which confirms that EM does converge very slowly even

for small-size HMMs. As expected, the quasi-Newton opti-

mization scheme (circles) converges much faster. Of course,

each iteration of the proposed algorithm is more complex

than a single step of EM because it requires the computa-

tion of the gradient through (6)-(9) as well as several eval-

uations (usually 3 when quadratic interpolation line-search

algorithms are used [8]) of the log-likelihood. On the other-

hand, fig. 2 shows that it is virtually impossible to approach
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Figure 2: Relative distance to the MLE for EM (stars) and

quasi-Newton optimization (circles).

the MLE with a reasonable precision when using EM (25 it-

erations for a 10% error and approximately 65 for a 1% er-

ror).
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Figure 3: Relative distance to the MLE for EM (stars) and

quasi-Newton optimization (circles), for an observation se-

quence of length 2000.

Fig. 3 correspond to the same model with an observation

sequence 10 times longer (2000 observations). With this data

length, the speed of convergence of EM is slightly better but

still stays close to 1 (measured value of 0.91). Looking at

both figs. 2 and 3, it is clear that even for large sample sizes,

the proposed quasi-Newton optimizationscheme largely out-

performs EM in terms of convergence speed and accuracy.

6. CONCLUSION

The HMM training method proposed in this paper is based

on a standard well-documented class of algorithmswhich are

readily available in most numerical optimization packages.

For HMMs, the use of such fast-converging algorithm ap-

pears to be a promising alternative to standard EM training.

The proposed approach also makes it possible to carry out all

computations using a single forward scan through the data

at each iteration which is preferable in cases where the train-

ing sequence is long. Finally, this approach can be extended,

more naturally than EM, to adaptive estimation tasks (see

[5]).

7. REFERENCES

[1] G. Churchill. Hidden markov chains and the anal-

ysis of genome structure. Computers & chemistry,

16(2):107–1115, 1992.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-

imum likelihood from incomplete data via the EM al-

gorithm. J. Royal Statist. Soc. Ser. B, 39(1):1–38 (with

discussion), 1977.

[3] G. K. Kaleh and R. Vallet. Joint parameter estimation

and symbol detection for linear or non-linear unknown

channels. IEEE Trans. Communications, 42(7), 1994.

[4] K. Lange. A gradient algorithm locally equivalent

to the EM algorithm. J. Royal Statist. Soc. Ser. B,

57(2):425–437, 1995.

[5] F. LeGland and L. Mevel. Recursive estimation in

HMMs. In 36th IEEE Conf. on decision and control,

San Diego, 1997.

[6] I. L. MacDonald and W. Zucchini. Hidden Markov

models and other models for discrete-valued time se-

ries. Chapman & Hall, 1997.

[7] L. Mevel. Statistique asymptotique pour les modèles
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1997.

[8] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery.

Numerical recipes in C : the art of scientific computing.

Cambridge University Press, second edition, 1992.

[9] L. R. Rabiner. A tutorial on hidden Markov models

and selected applications in speech recognition. Proc.

IEEE, 77(2):257–285, February 1989.

[10] R. A. Redner and H. F. Walker. Mixture densities, max-

imum likelihood and the EM algorithm. SIAM Review,

26(2):195–239, April 1984.

[11] J.B. Moore R.J. Elliot, L. Aggoun. Hidden Markov

models: Estimation and control. Springer-Verlag,

New York, 1994.

[12] C. F. J. Wu. On the convergence properties of the EM

algorithm. Annals of Statistics, 11(1):95–103, 1983.


