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Abstract

This paper presents a study of the noise suppression technique proposed by Y. Ephraim and D. Malah.
This technique has been used recently for the restoration of degraded audio recordings because it is free
of the frequently encountered ‘musical noise’ artifact. It is demonstrated how this artifact is actually
eliminated without bringing distortion to the recorded signal even if the noise is only poorly stationary.

1 Introduction

At present, the noise reduction techniques used for the restoration of degraded audio recordings are based
on short-time spectral attenuation. In such techniques the attenuation that is to be applied to each one of
the short-time Fourier transform coefficients is estimated by the noise suppression rule [7] [8] [11].

One artifact that has been widely reported concerning the use of short-time spectral attenuation tech-
niques is that the noise remaining after the processing has a very unnatural disturbing quality [1] [9] [10] [12].
This comes from the fact that the magnitude of the short-time spectrum |X(p, ωk)| exhibits strong fluctua-
tions in noisy areas which is a well-known feature of the periodogram [2]. After application of the spectral
attenuation, the short-time magnitude spectrum in the frequency bands that originally contained noise now
consists in a succession of randomly spaced spectral peaks corresponding to the maxima of |X(p, ωk)|. In
between these peaks the short-time spectrum values are strongly attenuated because they are close to or
below the estimated average noise spectrum. As a result, the residual noise is composed of sinusoidal com-
ponents with random frequencies that come and go in each short-time frame [1] [9]. This artifact is known
as the ‘musical noise phenomenon’, the term ‘musical’ being a reference to the presence of pure tones in the
residual noise.

Some modifications of the basic suppression rules have been proposed in order to overcome this prob-
lem [1] [12], but these techniques only reduce the musical noise without completely eliminating it. The
complete elimination of the musical noise phenomenon is generally only obtained by a crude overestimation
of the noise average spectrum. An unwanted consequence is that the short-time spectrum is attenuated
much more than would be necessary, a fact which can generate audible distortions in the audio signal [3].

It has been reported that the noise suppression rule proposed by Ephraim and Malah [4] [5] (that will
be referred to as the EMSR in the following) makes it possible to obtain a significant noise reduction while
avoiding the musical noise phenomenon described above. This feature explains why this suppression rule is
an excellent choice for the restoration of musical recordings where the musical noise artifact is to be strictly
avoided [10].

In the original papers by Ephraim and Malah, this aspect of the suppression rule was only mentioned as
an experimental finding. In this correspondence, we investigate the mechanisms that counter the musical
noise phenomenon.

1



2 Description of the EMSR

The EMSR was proposed by Ephraim and Malah in [4] and developed in [5], two other suppression rules
along the same principle were introduced later by the authors in [5] and [6]. Here we will focus only on the
EMSR, the fundamental mechanism that counters the musical noise effect being basically the same in all
these suppression rules.

The EMSR can be expressed as a spectral gain G(p, ωk) to be applied to each short-time spectrum value
X(p, ωk), this gain is given by [4] [5]
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I0 and I1 being the modified Bessel functions of zero and first order, respectively [5].
In (1), the time and frequency indexes p and ωk have been omitted for reasons of compactness. The

spectral gain depends on two parameters, Rpost(p, ωk) and Rprio(p, ωk) evaluated in each short-time frame
and for all spectral bins. These two parameters are interpreted as follows:
The a posteriori Signal-to-Noise Ratio (or a posteriori SNR) Rpost(p, ωk) given by

Rpost(p, ωk) =
|X(p, ωk)|2

v(ωk)
− 1 (2)

Where v(ωk) denotes the noise power at frequency ωk. Eq. (2) indicates that Rpost(p, ωk) is a local estimate
of the SNR computed from the data in the current short-time frame. Note that in the original papers by
Ephraim and Malah, the definition of the a posteriori parameter is slightly different [5]. The definition of
Eq. (2) was preferred because it allows a simpler interpretation of Rpost(p, ωk).
The so-called a priori Signal-to-Noise Ratio (or a priori SNR) Rprio(p, ωk) represents the information on the
unknown spectrum magnitude gathered from previous frames, and is evaluated in the ”decision-directed”
approach [5] by

Rprio(p, ωk) = (1− α) P [Rpost(p, ωk)] +

α
|G(p − 1, ωk)X(p − 1, ωk)|2

v(ωk)
(3)

Where P [x] = x if x ≥ 0 and P [x] = 0 otherwise. As Rpost(p, ωk) defined by (2) is not necessarily positive,
the operator P guarantees that Rprio(p, ωk) is always non-negative or equivalently, that the expression of
the gain given by (1) is valid. On the second line of (3), G(p−1, ωk)X(p−1, ωk) corresponds to the noiseless
signal spectrum value as estimated in the previous frame. The term |G(p− 1, ωk)X(p − 1, ωk)|2 /v(ωk) thus
corresponds to an estimation of the SNR in the frame of index p − 1. Rprio(p, ωk) is therefore an estimate
of the SNR that takes into account the current short-time frame, with weight (1− α), and the result of the
processing in the previous frame, with weight α. On the basis of simulations, the parameter α was set by
the authors to about 0.98.

For standard suppression rules, the gain applied to each short-time spectral coefficient depends only
on the signal level |X(p, ωk)|2 measured in the current frame: The gain can be expressed as a function of
Rpost(p, ωk). Fig. 1 displays such suppression characteristics for the power subtraction and the so-called
Wiener suppression rules [8] [11]. The two curves of Fig. 1, although they correspond to different strategies,
illustrate the same intuitive principle that those points where the SNR is close to −∞ dB are the ones that
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Figure 1: Gain versus a posteriori signal-to-noise ratio; solid line: Power subtraction; dashed line: Wiener.

should be attenuated. These two curves are strongly related because the Wiener gain is the square of the
power subtraction gain [8].

The connection between the EMSR and more standard suppression rules is made clearer by plotting the
gain of the EMSR versus the a priori SNR (in their original papers [4] [5] the authors used a reverse repre-
sentation). The alternate representation of Fig. 2 highlights the respective influence of the two parameters
of the EMSR:

1. The a priori SNR is the dominant parameter: Strong attenuations are obtained only if Rprio(p, ωk) is
low (left half of Fig. 2), and low attenuations are obtained only if Rprio(p, ωk) is high (right half of
Fig. 2). Moreover, note that the overall shape of the gain is similar in Figs. 2 and 1 (although it must
be stressed that the abscissa corresponds to Rpost in Fig. 1 and to Rprio in Fig. 2).

2. The a posteriori SNR acts as a correction parameter whose influence is limited to the case where the
a priori SNR is low (left half of Fig. 2). The surprising point is that this correction effect acts to the
opposite of what is intuitively expected: The larger Rpost(p, ωk), the stronger the attenuation. This
over-attenuation is a consequence of the disagreement between the a priori and the a posteriori SNR’s.
Why this counter-intuitive behavior is actually useful will be explained later.
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Figure 2: EMSR gain versus a priori SNR, for different values of the a posteriori SNR; topmost curve:
Rpost(p, ωk) = -20 dB; middle curve: Rpost(p, ωk) = 0 dB; bottom curve: Rpost(p, ωk) = 20 dB.
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Comparison between Figs. 1 and 2 indicates that the EMSR is very close to the Wiener suppression rule,
evaluated as a function of Rprio(p, ωk), when Rpost(p, ωk) is 20 dB (bottom curves in the two figures). This
remains true for values of Rpost(p, ωk) above 20 dB. Conversely when Rpost(p, ωk) is -20 dB, the EMSR gets
very close to the power subtraction suppression rule evaluated as a function of Rprio(p, ωk) (top curves in
the two figures). This is actually true for values of Rpost(p, ωk) below -5 dB. In practice, it can be considered
that the EMSR corresponds to a smooth transition between the two suppression rules of Fig.1, the a priori
SNR Rprio(p, ωk) controls the x-coordinate along the suppression characteristics, while the a posteriori SNR
Rpost(p, ωk) controls the transition between the two asymptotic curves.

3 Elimination of the musical noise

3.1 The smoothing effect in the EMSR

The a priori SNR is evaluated by the non-linear recursive relation of (3). An experimental study of (3)
indicates two different behaviors for the a priori SNR:

1. When Rpost(p, ωk) stays below or is sufficient close to 0 dB, the a priori SNR corresponds to a highly
smoothed version of the a posteriori SNR over successive short-time frames. As a consequence the
variance of Rprio(p, ωk) is much smaller than that of Rpost(p, ωk).

2. On the contrary when Rpost(p, ωk) is much larger than 0 dB, the a priori SNR follows the a posteriori
SNR with a simple delay of one short-time frame. To see that, note that when the a priori SNR is
high, the attenuation brought to the spectrum is negligible (right part of Fig. 2). Then, (3) reduces to

Rprio(p, ωk) ≈ (1− α)Rpost(p, ωk) + α
|X(p − 1, ωk)|2

v(ωk)

As Rpost(p, ωk) ≫ 1, this can be written as

Rprio(p, ωk) ≈ (1− α)Rpost(p, ωk) + αRpost(p− 1, ωk)

Finally, the parameter α being generally chosen very close to 1, we can make the following approxi-
mation

Rprio(p, ωk) ≈ αRpost(p− 1, ωk) (4)

These two different behaviors of Rprio(p, ωk) are visible on the example of Fig. 3. Notice how in the left-hand
part of the figure, the variance of Rprio(p, ωk) is much lower than that of Rpost(p, ωk), while on the right
hand part, Rprio(p, ωk) follows Rpost(p, ωk) with a one frame delay.

The smoothness of the a priori SNR helps reducing the musical noise effect. In the parts of the short-
time spectrum corresponding to noise only, the a posteriori SNR is −∞ dB in average, which corresponds
to the case 1 above: Due to the smoothing behavior, the a priori SNR has a significantly reduced variance.
Because the attenuation of the EMSR depends mainly on the value of the a priori SNR, the attenuation itself
does not exhibit large variations over successive frames. As a consequence, the musical noise (sinusoidal
components appearing and disappearing rapidly over successive frames) is reduced.

The idea of calculating the attenuation from the short-time spectrum averaged over successive frames
was also exploited in [1]. However the superiority of the EMSR lies in the non-linearity of the averaging
procedure. When the signal level is well above the noise level, (3) becomes equivalent to a mere one-frame
delay andRprio(p, ωk) no longer is a smoothed SNR estimate which is important in the case of non-stationary
signals.
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Figure 3: Signal-to-noise ratios in successive short-time frames; dashed curve: A posteriori SNR; solid curve:
A priori SNR. For the first 25 short-time frames, the analyzed signal contains only noise at the displayed
frequency, for the next 25 frames, a component with 15 dB SNR emerges at the displayed frequency.
Parameter α is set to 0.98.

3.2 Protection from local overtaking

The preceding results remain true if the EMSR gain function G in (3) is replaced by the Wiener suppression
rule, evaluated as a function of Rprio(p, ωk) [5]. However, simulations show that this is not the case when
the power subtraction rule is used. Because the power subtraction attenuation is too small for values of the
SNR around 0 dB (about -3 dB), the a priori SNR undergoes less smoothing and still exhibits important
fluctuations.

In the EMSR, another effect helps eliminating the musical noise. In the frequency bands containing only
noise, we have seen that the a priori SNR is about -15 dB in average (see Fig. 3). In that case, improbable
high values of the a posteriori SNR are assigned an increased attenuation: In the left half of Fig. 2, the
attenuation increases for high values of the a posteriori SNR (values above 0 dB). This over-attenuation is
all the more important as Rprio(p, ωk) is small. Thus, values of the spectrum higher than the average noise
level are ‘pulled down’.

This feature of the EMSR is particularly important for the recordings where the background noise is
non stationary (e.g. recordings of old analog disks). The use of the EMSR avoids the appearance of local
bursts of musical noise whenever the noise exceeds its average characteristics.

4 Influence of the parameters

4.1 Influence of α

The choice of the value of parameter α is guided by a trade-off between the degree of smoothing of parameter
Rprio(p, ωk) in noisy areas, and the acceptable level of transient distortion brought to the signal.

Simulations show that when the analyzed signal contains only noise at a given frequency, both the average
value and the standard deviation of the a priori SNR are proportional to (1−α) when α is sufficiently close
to one (above 0.9). As a result, in order to counter the musical noise effect one will choose values of α as
close to one as possible.

On the other hand, when a signal component appears abruptly, the EMSR reacts immediately by raising
the gain from a low value to a value close to 1, only if the SNR of the signal component is larger than
1/(1 − α). For signal components with lower SNR, simulations show that Rprio(p, ωk) takes a longer time
to reach its final value. This results in an unwanted attenuation of low amplitude signal components during
transient parts. The approximate limit of 1/(1 − α) is found by considering the study case where the a
posteriori SNR is a deterministic quantity which equals zero before frame index p0 and has a fixed value of
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R for short-time frames with index p ≥ p0. As the gain of the EMSR is null before p0, we have from (3)

Rprio(p0, ωk) = (1− α)R

if this first value satisfies Rprio(p0, ωk) ≫ 1, the gain of the EMSR evaluated at frame index p0 is already
close to 1 (see Fig. 2). The condition that guarantees that there is no signal attenuation during the transient
is thus (1− α)R ≫ 1.
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Figure 4: Signal-to-noise ratios in successive short-time frames; dashed curve: A posteriori SNR; solid curve:
A priori SNR. The analyzed signal is the same as in Fig. 3. Parameter α is set to 0.998.

The influence of parameter α appears clearly when comparing Figs. 3 and 4. In Fig. 4, the factor (1−α)
is divided by 10 compared to the case of Fig. 3. The average value of Rprio(p, ωk) when noise is present
drops from approximately -15 dB for the case of Fig. 3 to -25 dB for Fig. 4. The variance of Rprio(p, ωk)
is also strongly reduced in Fig. 4. But there is now an important delay between the appearance of the
transient component and the time when Rprio(p, ωk) raises significantly above 0 dB. As a consequence, the
signal component is incorrectly attenuated in the first short-time frames following the transient. In practice,
the use of such a value of parameter α results in audible modifications of the signal transients.

It should be noted that a more important overlap between successive windows reduces the transient
distortion as the same number of short-time frame results in a shorter time delay. As a consequence, an
overlap of 2/3 or more is sometimes preferred to the standard 50 % setting [10]. However, the variation of
the overlap factor gives only slight perceptual differences because only the low level transient components
are distorted when reasonable values of α are used; for example with α = 0.98, the limit of 1/(1−α) results
in a SNR value of 15 dB.

4.2 Residual noise level

In the original paper by Ephraim and Malah, the gain function of (1) is tabulated for values of both signal-
to-noise ratios between -15 dB and 15 dB [5]. The lower bound of this table is in fact a key parameter
for the a priori SNR. Despite the smoothing performed by the procedure of (3), Rprio(p, ωk) still has some
irregularities that can generate a perceptible low level musical noise. A simple solution to this problem
consists in constraining the a priori SNR to be larger to a threshold R(min). In practice, the value of R(min)

is chosen to be larger than the average a priori SNR in the frequency bands containing noise only. As a
consequence, in the frequency bands containing noise only, the average value of the constrained a priori
SNR is close to R(min). Furthermore, in the same frequency bands, most values of the a posteriori SNR are
below 0 dB, and the gain function of the EMSR is close to the power subtraction whose squared gain can
be shown to be equal to the SNR for low SNR values [8]. As a result, in the frequency bands containing
noise only, the average squared gain is close to R(min). 1/R(min) can therefore be interpreted as the average
noise power reduction.
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When α equals 0.98, the average value of Rprio(p, ωk) is of -15 dB, and a value of R(min) around -15 dB
is sufficient to eliminate the musical noise phenomenon. But R(min) could as well be set to a larger value
with the effect of raising the level of the residual noise. The possibility to control the level of the residual
noise is important for old recordings where the preservation of a certain amount of background noise is often
judged as a positive aspect.

5 Conclusion

We have presented an analysis of the different mechanisms that counter the musical noise effect in the sup-
pression rule proposed by Ephraim and Malah. The major factor was found to be the non-linear smoothing
procedure used to obtain a more consistent estimate of the SNR. With an appropriate choice of parameter
α, the use of the smoothing procedure doesn’t generate audible distortion in the signal. However, low level
signal components actually undergo a measurable over-attenuation during abrupt transients. This transient
distortion is hardly perceptible and more precise listening tests would be necessary to decide wether it is
useful or not to use an overlap factor larger than 50%. Finally it was shown that the attenuation function
proposed by Ephraim and Malah avoids the appearance of the musical noise phenomenon even when the
background noise is poorly stationary.
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[3] O. Cappé and J. Laroche. Evaluation of short-time spectral attenuation techniques for the restoration
of musical recordings. Submitted for publication in IEEE Trans. Speech and Audio Processing, 1993.

[4] Y. Ephraim and D. Malah. Speech enhancement using optimal non-linear spectral amplitude estimation.
In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pages 1118–1121, Boston, 1983.

[5] Y. Ephraim and D. Malah. Speech enhancement using a minimummean-square error short-time spectral
amplitude estimator. IEEE Trans. Acoust., Speech, Signal Processing, 32(6):1109–1121, 1984.

[6] Y. Ephraim and D. Malah. Speech enhancement using a minimum mean-square error log-spectral
amplitude estimator. IEEE Trans. Acoust., Speech, Signal Processing, 33(2):443–445, 1985.

[7] J. S. Lim and A. V. Oppenheim. Enhancement and bandwidth compression of noisy speech. Proc.
IEEE, 67(12):1586–1604, December 1979.

[8] R. J. Mc Aulay and M. L. Malpass. Speech enhancement using a soft-decision noise suppression filter.
IEEE Trans. Acoust., Speech, Signal Processing, 28(2):137–145, April 1980.

[9] J. A. Moorer and M. Berger. Linear-phase bandsplitting: Theory and applications. J. Audio Eng. Soc.,
34(3):143–152, 1986.

[10] J. C. Valière. Restoration of old recordings by means of digital processing – Contribution to the study
of some recent tecniques (text in French). PhD thesis, Université du Maine, Le Mans, 1991.
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