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ABSTRACT

Finding a smooth spectral envelope that connects estimated

sinusoids is a topic of major importance in audio signal pro-

cessing. In this paper, a penalized likelihood criterion is in-

troduced for the estimation of the spectral envelope in the

presence of measurement noise. Various simulation results

are presented that highlight the e�ciency of the proposed

performance criterion.

1. Introduction
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The model above (�lter excited by sinusoidal source) is

perhaps the most widespread representation in audio. If

the modulus of the C

k

can be considered as constant in

the frequency range of H(!), the magnitude frequency

response jH(!)j is identi�able up to a gain factor. In

the following, we should refer to S(!) = jH(!)j

2

as the

spectral envelope.

From a signal processing point of view, estimating the

parameters of such a model from the measured signal

s(t) is a di�cult inverse problem because the informa-

tion is reduced to the values of the spectral envelope at

frequencies !

k

. Moreover, it is more realistic to consider

that in practical situations the signal s(t) itself is non-

observable, and that only a noise corrupted version of the

signal is available. This notion of noise is particularly

important since it accounts both for the limitations of

the measurement device and for the fact that the model

above is not 100% correct! While the �rst factor can

often be neglected, the second one always plays a role to

some extent.

Several methods have been proposed to estimate the

spectral envelope: [1] relies on a non parametric enve-

lope model, while the techniques developed in [2] and [3]

are based on the most usual speech envelope parameteri-

zations (as an all-pole �lter or with cepstral coe�cients).

In practice however, these techniques are often plagued
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with poor conditioning or instability problems due to the

ill-posed nature of the model. This stems from the fact

that it is not possible to estimate the spectral envelope

from a discrete set of values only without imposing some

constraints on the envelope. Usually, these constraints

are entirely �xed by the parameterization, for instance

by using a low order all pole model. In [4], we proposed

a more explicit solution to this problem based on the

use of a function of the envelope (the so-called penalty)

which formalizes our a priori knowledge of the envelope

behavior. We however missed an opportunity to point

out that problems similar to that considered here do re-

ceive extensive coverage in the statistical literature on

smoothing (splines, kernels, etc) [5], [6].

In this paper, we develop a performance criterion for

assessing the goodness of �t of the envelope which is

motivated by the statistical analysis of the model un-

der consideration. This criterion is obtained as a large

sample approximation of the likelihood for the estimated

values of jH(!

k

)j

2

. The envelope itself is estimated by

numerical optimization of a penalized version of the cri-

terion. Simulations shows that this new method largely

outperforms the one proposed in [4] when considering

the average log spectral distortion to the true (unknown)

spectral envelope.

2. Likelihood criterion

Switching to a phase/quadrature representation, we con-

sider that the observed data consists of

x(t) =

K

X

k=1

[a

k

cos !

k

t+ b

k

sin!

k

t] + n(t) (1 � t � T )

(1)

where !

k

; : : : ; !

K

are the frequencies of the sinusoids.

The noise n(t) is modeled as a stationary random process

with power spectral density �

n

(!). We assume that the

frequencies of the sinusoids have been measured before-

hand and can be considered as \exact" (this is usually

the case, at least for harmonic models).

The amplitude of the phase and quadrature compo-

nents of the sinusoids (a

k

and b

k

) can be estimated ei-



ther via the Fourier transform or with a time-domain

least squares criterion. Under standard mixing assump-

tions on n(t), it is well known that when the size T of

the analysis window is su�ciently large: (i) Both ap-

proaches become equivalent; (2) The estimated values

â

k

et

^

b

k

are asymptotically independent and normally

distributed with mean a

k

and b

k

, respectively, and vari-

ance n

k

=2, where n

k

= 4�

n

(!

k

)=T is the apparent noise

level at frequency !

k

. We use the term apparent to dis-

tinguish between the noise level n

k

as can measured on

the Fourier transform of x(1); : : : ; x(T )

1

and the PSD

�

n

(!

k

) which is independent of T .

The estimated squared magnitude of the kth sinusoid
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is distributed as a scaled non-central
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distribution with two degrees of freedom, whose prob-

ability density is given by

p(x
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where s

k

= a

2

k

+ b

2

k

is the true value of squared magni-

tude of the kth sinusoid and I

0

() stands for the modi�ed

Bessel functions of the �rst kind and order 0. The name

\non-central �

2

" corresponds to the fact that we are con-

sidering the distribution of the sum of squarred Gaussian

random variables with non-zero means. Surprisingly, the

obtained distribution only depends on the sum of the

squared means (non-centrality parameter) and the num-

ber of Gaussian variables (degrees of freedom: 2 in the

present case). The compact expression with the modi�ed

Bessel function only holds when the number of degrees of

freedom is 2 [7] (for a much more down-to-hearth deriva-

tion of (2) see [8]).

With the independence assumption, the negative log-

likelihood of the K amplitude estimates L(x

1;:::;K

jS) can

be written as
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where the notation S refers to the spectral envelope and

s

k

= S(!

k

).

In order to guarantee the smoothness of the estimated

envelope, we use the same type of penalty as in [4], [6]:

R(S) =

Z

�

��

�

d logS(!)

d!

�

2

d! (4)

The envelope S is estimated by minimizing the penalized

likelihood criterion

L

�

(Sjx

1;:::;K

) = L(x

1;:::;K

jS) + �R(S)

1

In practice, the asymptotic behavior is reached more rapidly

when using a tapering window w(t). In this case, n

k

should be

scaled by (1=T

P

w

2

(t))=(1=T

P

w(t))

2

.

where � is a smoothing parameter which controls the

balance between �tting the observed data x

1

; : : : ; x

K

and satisfying the regularity conditions corresponding to

R(S).

The above notation suggests an interpretation in terms

of Bayesian maximum a posteriori estimation where

R(S) plays the role of the prior. When the envelope

S is parameterized with cepstral coe�cients, the paral-

lel goes one step further since R(S) becomes a quadratic

form [4], [6], which means that we are assuming a Gaus-

sian prior on the cepstral coe�cients (with zero mean

and variance decreasing as 1=n

2

where n is the index of

the cepstral coe�cient).

3. Optimization of the penalized

likelihood criterion

A full discussion of the numerical techniques suitable for

minimizing L

�

(Sjx

1;:::;K

) would be beyond the scope of

the present paper. We thus just state the most important

points (omitting their justi�cation):

� Whatever parameterization is used for S, both the

gradient and the Hessian of L(x

1;:::;K

jS) can be de-

rived analytically. Computing the gradient and the

Hessian only requires the evaluation of the special

functions I

0

(u) and I

1

(u)=I

0

(u). in practice, these

functions are evaluated using the approximations

given in [9] for large u and are tabulated for low

values of u.

� In general, L(x

1;:::;K

jS) does not correspond to a

convex criterion so that L

�

(Sjx

1;:::;K

) must be opti-

mized using a quasi-Newton algorithm with embed-

ded one-dimensional line searches.

� When S is parameterized with cepstral coe�cients,

the Hessian of L(x

1;:::;K

jS) is positive de�nitive in

the neighborhood of the true value S

0

(with prob-

ability tending to 1 as the noise level decreases).

Thus, there are no signi�cant local minima when

minimizing L

�

(Sjx

1;:::;K

) as long as the algorithm

is started from a plausible value of S (ie. one su�-

ciently close to S

0

).

� For the all-pole parameterization of S, the above

argument does not hold anymore and in practice,

the criterion L(x

1;:::;K

jS) seems to be less regular.

Moreover, the exact calculation of the penalty R(S)

is not feasible. We did however obtain satisfying re-

sults with an approximate version of R(S) based

on the discretization of the integral in (4). The

obtained envelopes can be made free of the \over-

shooting" problems traditionally observed with the

all-pole parameterization [2].
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Figure 1: (a) Unknown spectral envelope S

0

(!) (solid

line) with the values at the harmonic frequencies !

k

(cir-

cles). (b) Scatterplot of the measured envelope values

x

k

for an apparent noise level n of 20 dB (100 draws of

the additive noise).

4. Simulation results

In this section, we consider the results of the proposed

procedure (referred to as PLE, for Penalized Likelihood

Estimation) when using the cepstral parameterization of

the envelope S:

S(!

k

) = s

k

= exp[c

0

+ 2

p

X

n=1

c

n

cos!

k

n]

with p = K � 1 (which means that without smoothing

the estimated envelope exactly �ts the measured values).

The Regularized Discrete Cepstrum (RDC) method of

[4] is based on the minimizationof the following criterion:

K

X

k=1

(logx

k

� log s

k

)

2

+ �R(S) (5)

which corresponds to a (penalized) least-squares regres-

sion in the log-spectral domain. The RDC method is

computationally attractive because (5) reduces to a lin-

ear regression problem with respect to the cepstral pa-

rameters c

n

.

For the simulations, we use a synthetic harmonic signal

obtained from the spectral envelope shown on �gure 1-

(a). For the sake of simplicity,we consider the case where

the additive noise is white and we denote the apparent

noise level by n since it does not depend any more on

the frequency !

k

. Fig. 1-(b) shows the values of x

k

estimated for 100 successive realizations of the noise (a

small random jitter of � 5 Hz and �0:2 dB has been

added to each measured value to give an idea of the

distribution of the points). This �gures clearly shows

that the RDC least-squares criterion misses the point

because precisely �tting the measured envelope values is

not necessarily a good idea: Values that are well above

the apparent noise level are indeed reliable whereas the

lowest ones exhibit erratic variations of high amplitude

[8].
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^

S) as a function of the smoothing pa-

rameters for n = 20 dB. Solid line: PLE (abscissa is

�). Dashed line: RDC (abscissa is �). Both curves are

averaged over 50 simulations.

Comparing the two procedures is a bit tricky since both

of them include tuning parameters (� and �) which mod-

ify to some extent the estimated envelope. The automat-

ing determination of this type of smoothing parameters

is a question of much interest which has yet received no

simple and de�nitive answer [5], [6]. In the present case,

we can circumvent the problem since we know what the

estimated envelope should look like: � and � can be �xed

by minimizing a suitable distance criterion between the

original envelope S

0

and the estimated envelope

^

S. We

selected a criterion of the form:

D

2
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^

S) =

1

2�
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log jS(!)j � log j

^
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2
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which can be computed through its cepstral domain

equivalent (squared distance between the cepstral pa-

rameters of both envelopes). Note that from a statistical

point of view, this criterion is not sensible since it gives

the same importance to all the spectral errors regardless

of the local signal to noise ratio S

0

(!)=n. For a poten-

tial user of the method however, this is perhaps the most

natural criterion.

Fig. 2 shows the average distortion values attained by



the two methods: For values of � between 2e � 5 and

2e� 3 the proposed method yields an average error that

is uniformly lower than that obtained with the RDC for

all values of �. In theory, one would expect the opti-

mal value of � to increase with the noise level (more

noise necessitates more smoothing) [5] whereas the opti-

mal value of � should remain constant (considering the

Bayesian interpretation).

Noise level n (dB) 10 20 30 40

RDC, � opt. 1.6 3.4 6.6 10.9

PLE, � = 5e � 4 1.5 2.3 5.3 9.1

Table 1: Average values of the distortion to the true

envelope (in dB) for di�erent levels of the apparent noise.
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Figure 3: Actual envelope (strong line) and 4 estimated

envelopes for n = 10 dB. (a) RDC, (b) PLE.

In practice, the behavior of both curves when varying the

noise level was not so clear, but the situation was com-

parable to that of �gure 2 in the sense that the results

shown on table 1 indicate that the PLE with a �xed

value of � = 5e � 4 outperforms the RDC with opti-

mized �. The di�erence between both methods tends to

decrease with the noise level. Perhaps more signi�cant

are the shapes of the estimated envelopes shown on �gs.

3 and 4 for two di�erent noise levels. Compared to the

RDC, the PLE produces envelopes that are at the same

time closer to the true envelope (look in particular at the

peaks located at 1 and 3.25 kHz), and less inuenced by

the erratic uctuations due to the noise component.

5. Conclusion

The PLE procedure raises a number of important ques-

tions which should be considered for future work: The
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Figure 4: Actual envelope (strong line) and 4 estimated

envelopes for n = 30 dB. (a) RDC, (b) PLE.

estimation of the noise characteristics and the tuning of

the smoothing parameter are challenging topics; Reduc-

ing the computation associated with the PLE is also a

concern of great practical interest.
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