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Estimation of the Spectral Envelope of Voiced
Sounds Using a Penalized Likelihood Approach

Marine Campedel-Oudot, Olivier Cappé and Eric Moulines

Abstract

Estimation of the spectral envelope (magnitude of the transfer function) of a filter driven
by a periodic signal is a long-standing problem in speech and audio processing. Recently,
there has been a renewed interest in this issue in connection with the rapid developments
of processing techniques based on sinusoidal modeling. In this paper, we introduce a new
performance criterion for spectral envelope fitting which is based on the statistical analysis
of the behavior of the empirical sinusoidal magnitude estimates. We further show that
penalization is an efficient approach to control the smoothness of the estimation envelope.
In low noise situations, the proposed method can be approximated by a two steps weighted
least-squares procedure which also provides an interesting insight into the limitations of the
previously proposed “discrete cepstrum” approach. A systematic simulation study confirms
that the proposed methods perform significantly better than existing ones for high pitched
and noisy signals.
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I. INTRODUCTION

Current speech analysis/synthesis methods capitalize on the source-filter representation
of speech signals which is motivated by the acoustic theory of speech production. The ba-
sic speech production model which has been proposed more than forty years ago consists
of a source signal (glottal excitation) passing through a linear filter (vocal tract) [9], [10].
Depending on the type of speech sound, the excitation signal is either noise-like (unvoiced
sounds) or periodic and impulsive (voiced sounds). The filter models several distinct phe-
nomenons (glottal pulse shape, vocal tract transfer function, lips radiation response) and
thus does not have a simple and convenient parametric form although the main contribu-
tion is that of the vocal tract whose transfer function can be closely approximated by an
all-pole filter for most speech sounds. Both because of the properties of the human hearing
system and of the signal distortion due to the sound propagating from the speaker to the
recording apparatus, only the spectral magnitude of the filter in the source-filter representa-
tion is generally thought to be characteristic of the uttered speech sound. In this paper, we
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specifically consider the estimation of the spectral envelope (spectral magnitude of the filter
in the source-filter representation) for voiced speech sounds. The reason for focusing on the
voiced parts of speech is that for unvoiced sounds, the estimation of the spectral envelope is
a classical times-series problem which has been much studied in the parametric case (when
assuming for instance that the filter can be modeled by an all-pole transfer function) as well
as in the non-parametric one [31], [25]. This is much less true for periodic source signals
despite the fact that accurate estimation of the spectral envelope of voiced sounds is a key
ingredient in any speech (or audio) analysis/synthesis system which makes uses of voicing
decision. These systems are now commonly used for speech coding [20] or speech synthesis
and modification [32]. Note that spectral envelope estimation is also of prime importance for
speech recognition [28] and although most current speech recognition systems ignore voicing
information, pitch and voicing information can be useful even for estimating the spectral
envelope, particularly for high-pitched voices.

Early attempts towards identifying the spectral envelope include applying the LPC (Lin-
ear Predictive Coding) scheme (which is usually referred to as Auto Regressive, or AR, mod-
eling in the time series literature) in the voiced parts of the signals as well as in the unvoiced
ones. This approach performs poorly for high-pitched voiced speech sounds because it is
based on the incorrect assumption that the source signal is a second order white noise. Sev-
eral methods have been designed to overcome this problem in the context of LPC either by
further analyzing the LPC residual or by modifying the objective function used for assessing
the fit of the AR model [21] [19] [16].

The SEEVOC (Spectral Envelope Estimation VOCoder) technique of [24] is based on the
remark that if the source signal is a periodic impulse train, then the observed signal is a sum
of sinusoids and thus only provides information concerning the value of the spectral envelope
at the frequencies of the harmonics. The solution proposed in [24] consists of interpolating
the estimated spectral envelope between these frequency points using a standard smoothing
technique. While the SEEVOC approach does not rely on a parametric description of the
spectral envelope, authors such as El-Jaroudi and Makhoul [8] and Galas and Rodet [12]
have proposed techniques based on the same principle for (respectively) the all-pole and the
cepstral representation of the spectral envelope. While the cepstral parameterization may
appear to be less justified than the all-pole representation for speech signals, it leads to
computationally simpler techniques when the squared log-spectral distance is used to assess
the envelop fit [12], [7].

A key point is that we are indeed dealing with an ill-posed inverse problem [22] in trying
to recover a whole function (the spectral envelope) from a noisy measurement of its values in
a few frequencies (corresponding to the harmonics). Accordingly, in [6], a roughness penalty
is added to the envelope fit measure proposed by [12] so as to enforce the smoothness of the
estimated envelope, following the so-called “regularization” or “penalization” framework (the
latter denomination being more standard in the applied statistics literature). This approach
was shown in [6] and [5] to be very efficient in preventing the appearance of unnatural
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envelopes observed by Galas and Rodet (usually for high pitched sounds) [12].

The shortcoming of the method described in [6] however is that the use of the squared
log-domain distance as a measure of how well the envelope fits the measured harmonic mag-
nitudes is arbitrary and counter-intuitive: Both because the harmonics of high magnitude
are more important from a perceptual point of view and because they are more reliably
estimated, it would be preferable to give different weights to the fitting errors depending on
the magnitude of the harmonics. Although we will not address the first (perceptual) aspect,
the point of the present paper consists of showing that the second effect (reliability of the
magnitude estimation which depends on the magnitude of the harmonic) can be accounted
for using a more elaborate fit criterion. This criterion will be obtained as an approximate
likelihood criterion assuming that the ideal voiced speech sound is observed in additive noise.
Additive noise is the simplest model which can to some extent account for both: (1) the
modeling errors (i.e. the fact that the “sum of harmonics” model does not exactly fit a speech
signal even on short durations because of the non-stationarity of speech); (2) the fact that
some voiced sounds also features a significant amount of friction noise; (3) the ambient noise
which may be of significant level (in mobile communications for instance, Signal-to-Noise
Ratios, or in short SNRs, of 5dB or less are not that uncommon).

The rest of the paper is organized as follows: In section II, the approximate likelihood
of the envelope parameters is obtained; Section III is devoted to the study of numerical
optimization methods suited for maximizing the proposed penalized likelihood criterion;
Finally, we discuss in section IV the performance of the method for typical speech analysis
purposes.

II. PENALIZED LIKELIHOOD CRITERION

A. Asymptotic integrated likelithood

In voiced parts of the signal, application of the Poisson formula shows that the source-
filter representation is equivalent to an harmonic decomposition. We thus assume that the
observed signal consists of

K
ry = Z [ag coswit + b sinwit] +6, (1<t <T) (1)
= )
me
where wy,... ,wx are the (radian) frequencies of the harmonics, and ¢ is modeled as a

(second order) stationary random process with psd. (power spectral density) IT.(w). Note
that the fact that the sinusoidal components are harmonics (i.e. that w, = kw) will play no
role and that the frequencies wy, k = 1,... , K need not be harmonically related as long as
they are well separated in the sense that min, jep,.. k) [wi — w;| > 27/T.

Our treatment of the model given by (1) will be based on the assumption that the noise
p.s.d. Il (w) and the component frequencies wg,k = 1,..., K are known. The pertinence
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of this assumption for speech processing applications will be discussed in more details in
section IV-D. The spectral envelope S(w) is parametrized in the power domain such that

ar = S(wk) COS Hk
bk = v/ S(wk) sin 919
where the phases of the harmonics 0,k = 1,... , K are considered as nuisance parameters.

Let a5 and by denote the amplitude of the phase and quadrature components of the k-th
sinusoid estimated from the tapered Fourier transform of the signal:

T
2
ap = — Z Wy COS Wit (2)
Nu t=1
T
N 2
by = N Zwtrt sin wyt (3)
wo=1

where w denotes the data taper (or window), and the normalizing constant N, is defined as

T
NwZE Wy
t=1

To make the expressions simpler, we will assume that the data taper w is obtained by
regular sampling of a continuous-time positive window function w(7) defined on [0, 1], that
is: wy =w(t/T) fort=1,...,T.

It is shown in appendix A that in the simpler case where ¢; is a Gaussian white noise,
the Fourier estimates (i, bp),1 < k < K asymptotically (when T is large) form a set
of sufficient statistics for the estimation of the envelope. Moreover, when the nuisance
parameters 0,1 < k < K are eliminated by marginalization (by integration over the range
[0, 27)), the resulting asymptotic criterion is a function of the estimated squared magnitudes
2 = (ag)® + (by)? only. Marginalization is the method of choice for handling nuisance
parameters in the Bayesian framework and is generally thought to be more robust than
the profile likelihood approach which consists of optimizing with respect to (abbreviated to
wrt. in the following) the nuisance parameters [2]. In the case under consideration, using
a profile likelihood would imply fitting a complex envelope model to the data. For speech
signals however, complex envelope modeling is only a sensible choice if the frame locations
can be synchronized with the glottal closures. Such an approach would thus require pitch
synchronous processing and robust estimation of the glottal closures, which is a difficult task
[11], [3].

The result obtained in appendix A, although restricted in scope, is very intuitive, as
it suggests that for large values of the frame size T', estimators of the spectral envelope
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should be based on the Fourier power measurements z;, 1 < k < K at the frequencies of the
harmonics. We will use this principle in a broader context noting that the amplitude values
estimated through (2)-(3) are known to be asymptotically normal for a very large class
of noise processes (not necessarily white nor Gaussian) and that under suitable technical
conditions [14], [27],

E(ag) = ax +o0(1) E(by) = by + o(1) (4)

COV(dk, [A)k, dj, [A)J) = %14(1 + 0(1)) for k 7é] (5)

where I, denotes the four dimensional identity matrix, the o(1) notation stands for remainder
terms that tend to zero for increasing values of T" and ny, is the apparent noise power defined
as

4G

N = THE(wk) (6)

where G is a normalizing constant which only depends on the type of the analysis window
through
1
/ w?(u)du
0

[/01 w(u)du] 2

ny /2 corresponds to the power of the noise affecting the measurement of the phase or quadra-
ture amplitude for one sinusoid, and thus decreases in inverse proportion of the sample
size [31], [27]. Eqgs. (4)-(5) also hold for the maximum likelihood (weighted least-squares)
estimator of the sinusoidal amplitudes since both procedures are equivalent for large sample
size T [31]. When processing voiced speech with standard analysis settings (frame duration
of about 30ms with a smooth data taper), these asymptotic results are indeed accurate be-
cause the periodicity of the signal implies that the frequencies of the sinusoidal components

w

are separated by the fundamental frequency which is larger than the spectral resolution,
except for the lowest (less than 80Hz) pitch values [31] (note that the results of section IV
show that for such very low pitch values, envelope estimation can be reliably achieved by
standard methods such as direct AR estimation).

Considering the asymptotic approximation given by (4)-(5), the empiric squared magni-
tude of the kth harmonic z, = (dg)? + (by)? is obtained as the sum of two squared Gaussian
variables with non zero means. Up to a scale factor, the resulting variate is distributed
according to a non-central y? distribution with two degrees of freedom, or Rice distribution,
whose probability density is given by [17]

1 Sk + Tk SETk
= — Iyl 2 7
P(Tk) Nk exp] Nk ) 0( ng ) (™)
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where s, = ai + b} is the actual value of squared magnitude of the kth harmonic and Iy(-)
stands for the modified Bessel function of the first kind and order v = 0 [1]:

L) = /0 " s cos(uh)d (8)

™

Note that (7) could also be expressed in terms of the series expansion of Iy(-) as [1], [17]:

L = G0 Y gt o )

Eq. (7) corresponds to a positively skewed distribution (especially for low values of s since
x, is by construction positive) with mean and variance [17]:

E Tk = Sk N
{Vf(il‘(fl)?k) = nk(—gsk+nk) (10)

With the independence approximation, the negative log-likelihood of the K squared

amplitude estimates L(z1,...,2x|S) may be written as
s S+ SET
L(zy,...,zk]5) :Z {lognk—i- kn b log I (2 Zf)] (11)
k=1 k k

In appendix A, the preceding expression is obtained directly using simple calculations for
the case of Gaussian white noise.

In practice, direct evaluation of (11) using (9) can be awkward because the Bessel func-
tions have an exponential behavior in +o0o. The computation of log(Iy) (as well as I, /I,
introduced in appendix B) can however be carried out using standard combinations of series
truncation and approximations detailed in [1], [17] or [26].

B. Roughness Penalty

In many cases of interest, direct minimization of (11) yields envelopes that have a non-
smooth behavior and are unacceptably sensitive to small variations in the observed data
[6], [25]. This phenomenon has been previously observed with other envelope estimation
methods [8], [12]. Intuitively, the ill-posed character of the envelope estimation problem is
a consequence of the fact that there are many continuous envelopes that can be plausibly
fitted to just one snapshot of a reduced set of frequency measurements.

The standard solution to this problem consists of constraining the behavior of the esti-
mated envelope by use of a so-called roughness penalty R(S) (also known as a “regularization”
or “smoothing” functional) [22]. The likelihood criterion is replaced by a penalized criterion
of the form:

L(zy,...,7x|S) + AR(S) (12)



ESTIMATION OF THE SPECTRAL ENVELOPE OF VOICED SOUNDS 7

where R(S) is the roughness penalty which takes large values for envelopes S that have
a non-smooth behavior and A is a scalar parameter which controls the smoothness of the
estimated envelope. This penalized approach can also be viewed as a Bayesian maximum a
posteriori estimation procedure where exp(—AR(S)) plays the role of a prior for the envelope
parameters [22].

In the following, we use

- o dw”

R(S) = — / ' [Mrdw (13)

—T

which has been used for envelope estimation in [6] (with 7 = 1) and in [25] (with r = 2). Note
that (13) features the derivative of log S(w) rather than that of S(w). This choice is motivated
by two reasons: The log-scale is generally considered to be perceptually more meaningful
for speech spectra than the linear scale and this choice makes the effective computation of
R(S) much simpler (see section III). It is usually found, and this is also true for the problem
under consideration, that the choice of the roughness penalty has less influence than the
value of the smoothing parameter A [22], [15]. In the following, we use (13) with r = 1 and
we postpone the discussion of the influence of A to section IV-B.

III. CEPSTRAL ENVELOPE ESTIMATION ALGORITHMS

The penalized likelihood criterion given by (12) may be used in various ways. Because
it derives from a likelihood approximation, it is robust to the envelope parameterization
and we have successfully applied the method to both the cepstral and the all pole envelope
representations. Another interesting feature of (12) is that it is naturally compatible with
other forms of likelihood approximation, such as the “Whittle likelihood” used for stationary
processes with smooth psd. [25]. In [4], [23] this property is used to estimate a single spectral
envelope in a two-band model where the lower part of the spectrum is modeled as an harmonic
signal (for voiced sounds) and the upper part of the spectrum is modeled as a stationary
process.

After a bit of experimentation with the method, the approach we recommend consists of
optimizing (12) using the cepstral parameterization. Indeed, the penalized criterion of (12)
does not in general correspond to a convex function and its minimization has to be carried
out using an iterative numerical optimization procedure. The optimization turns out to be
much faster and reliable (i.e. free of local extrema) when using the cepstral parameterization.
One first reason for this good behavior is that the penalty R(S) is then a (convex) quadratic
form [6], [25] (see also section ITI-A below); As a second element to support this finding, we
show in appendix B that the likelihood criterion given by (11) is convex with high probability
in a neighborhood of the true envelope for low noise levels.

Finally, because there are speech processing applications for which numerical optimiza-
tion would be too demanding, we discuss in section IT1I-B a low implementation cost approx-
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imation of (12) under the form of an equivalent (for low noise levels) weighted least-squares
criterion.

A. Ezxact algorithm

In this section, we consider the form taken by the proposed procedure when using the
cepstral parameterization of the envelope S:

P
S(wk) = sk = explcy + 2 Z Cp, COS Wi (14)

n=1

With this parameterization, application of the Parseval relation to (13) shows that R(S)
reduces to a quadratic form:

R(S) =cRe (15)
where ¢ = (¢, ... ,¢,)" is the vector of cepstrum coefficients (the prime denoting transpo-
sition), and R is a diagonal matrix whose diagonal entries are 2(0,12",2%" ...  p*") [6], [5].

Thus, for the cepstral parameterization, exp(—AR(S)) exactly corresponds to a multivariate
normal prior, with zero mean and variance decreasing with the cepstrum index n propor-
tionally to 1/n® (when 7 = 1), which resembles the observed statistical behavior of speech
cepstrums' [18].

With the cepstral parameterization, exact computation of the gradient of the composite
criterion given in (12) is feasible: Eq (15) shows that the gradient of the penalty R(S) is
given by 2Rc and the gradient of the integrated likelihood criterion may be computed as
(see appendix B)

1
K
2cos w1 Sk ze Ih SLTL
V.L(c)= ) — 1=/ —=12 16
(c) ; : n, [ V sk I < n: )] (16)
 \2coswp

It is thus possible to use efficient iterative optimization approaches for minimizing (12). In
the following, we use a BFGS quasi-Newton method with embedded cubic polynomial line
searches [26] to estimate the envelope parameters. This is not necessarily the best available
method for unconstrained numerical optimization but it is implemented by most numerical
analysis packages so that our results will be easily reproduced.

Experimenting with different initializations suggests that the optimization procedure is
not very sensitive to its initialization (or in other words that local minima are not a real
problem), except when the value of A is too low (see section IV-B). Appendix B provides
an element of the answer by showing that when the cepstral parameterization is used, the

! This is actually true only for the sub-vector ci,...,c, since R(S) does not depend on cy. For ¢y the prior
equivalent to R(S) is thus an improper constant prior, independent of ci,... ,cn.
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integrated likelihood criterion L(-) is convex with high probability in a large neighborhood
of the actual envelope. Note that the inclusion of the roughness penalty further amplifies
this effect by adding a constant positive definite matrix (R) to the Hessian of the criterion
to be minimized.

B. Weighted least-squares approximation

Depending on the constraints of the application under consideration (computing re-
sources and floating point precision) the iterative optimization approach described in the
previous section may be too demanding. For this purpose, we now derive an approximation
of (7) based on the delta or approximate linearization method which is suitable for low noise
conditions. Starting from the joint asymptotic normality of the phase and quadrature esti-
mates dy and by, we obtain the asymptotic normality of the transformation vy = log(a? +Bz)
using standard arguments [34], where the limiting mean and covariance are respectively given

by

E(vy) = log(ai + b))+ o(1)
= log sk +o(1)

. ka (%k .7 6vk 6vk '
Var(v,) = <6ak’ (%k) Cov/(ag, by) (6ak’ 8bk> (14 o(1))
= 27514 0(1)) (17)

Sk

and in addition, one can also show by the same technique that (5) implies that v, and v;
jointly are asymptotically normal and that

Cov(vg, vj)//rn; — 0 when k # j

If we assume s;,1 < k < K to be the actual values of the envelope at the harmonic
frequencies, the optimally weighted least squares criterion is thus given by

K
Z ok (log zj, — log s3,)° (18)
k=1 F

Eq. (18) is close to the discrete cepstrum criterion proposed by Galas and Rodet in [12]
with the important difference that instead of giving equal weights to all the frequency mea-
surements when doing the least-squares fit, one should weight them according to the local
SNRs si/nk. The pertinence of this weighting scheme is dramatically illustrated by fig. 1
which shows how the reliability of the estimated amplitudes decreases in noisy area of the
spectrum.

Eq. (18) shows that the optimal choice for the least-squares weights depends on the local
SNRs and thus on the unknown spectral envelope S. To approach this optimal behavior with



ESTIMATION OF THE SPECTRAL ENVELOPE OF VOICED SOUNDS 10

a data driven approach (that is without requiring prior information on the envelope to be
estimated), we adopt a classic approach in non-parametric smoothing based on a preliminary
estimate of S (sometimes referred to as a “plug-in” approach):

Algorithm: Cepstral estimation based on the Gaussian approximation

1. Compute the penalized least-squares solution

¢=(C'C+)IR) 'Cv (19)

where C is the cepstrum regression matrix

1 2cos(w) ... 2cos(wip)
c=| : : E (20)
1 2cos(wr) ... 2cos(wrp)
R is the regularization matrix defined in (15) and v = (logzy,...,logzk)" is the

vector of log-power measurements.

2. Compute the weights v, = §x/ny for k£ = 1,..., K where §; is computed using (14)
from the vector of cepstral coefficients ¢ estimated using (19).

3. Solve the penalized weighted least-squares problem by

¢=(CTC+AR) 'CTv

where I' = diag(y, ... ,7k) is the diagonal matrix of weights.
The numerical complexity of the above algorithm is twice that of the discrete cepstrum
method (step 1 only, with A = 0), whose numerical complexity is of order p* (solution of a
linear system with p+1 unknowns). In the following, we will use the phrase “least-squares” to
refer to the method of Galas and Rodet rather than “discrete cepstrum” which is potentially
misleading in a context where several cepstral estimation algorithms are compared.

IV. EVALUATION

In this section, we discuss the performances of the various estimation methods introduced
in section III which are referred to as: OLC for “Optimization of the Likelihood Criterion”
(cf. section ITI-A), LS for “Least-Squares” approximation and WLS for “Weighted Least-
Squares” approximation (cf. section ITI-B). For comparison purposes, the performances of
the standard Auto-Regressive (or AR) approach on the same data are also reported.

The experimental setup is first described in section IV-A. After investigating the influ-
ence of the smoothing parameter A (section IV-B), we then compare the performance of the
four methods (section IV-C). Finally, section IV-D is devoted to robustness issues and to
the application of the method in a complete harmonic analysis/synthesis system.
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A. Experimental setup

For real speech signals, there is no way of controlling what the actual envelope is and
furthermore, the degree of adequacy of the sinusoidal model itself is difficult to assess. To
base our analysis on objective distance measures, we thus consider synthetic signals generated
from the model given in (1) for three typical speech envelopes and various pitch and SNR
combinations summarized in table I (see section IV-D for an example of results obtained on
real speech).

Parameter Values

Envelope /a/ (E1), /u/ (E2), /i/ (E3)

Pitch (4000 x w; /7) 100, 140, 180, 220, 260Hz,

Signal-To-Noise-Ratio (SNR) 50, 40, 30, 20dB
TABLE I

SUMMARY OF THE SIMULATION PARAMETERS.

. . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000
Hz

Fig. 1. Scatterplot of the estimated harmonic magnitudes for 50 independent noise realizations for each
of the three test envelopes; The solid curve is the actual envelope and the dotted line corresponds to the
apparent noise level n (SNR = 20dB, pitch 180Hz).

The envelopes have been obtained by convolving four cascaded second order cells de-
signed from formant data with a stylized glottal pulse shape and lip radiation model, follow-
ing [29]. To avoid aliasing effects due to the high frequency formants, the computation of
the envelope was done using 16kHz as sampling frequency, retaining only the first half of the
spectrum. The three resulting envelopes are shown on figure 1 (solid line). The envelopes are
used to generate 8kHz sampled synthetic signals according to (1), which sound reasonably
natural and are clearly recognizable as vowel sounds [a], [u] and [i]. The duration of the
frame is set to T' = 256 samples (32ms). In all experiments, w is chosen to be a hanning
window. To assess the robustness to noise of the various estimation schemes, 50 independent,
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noise realizations where generated for each of the 60 parameter combinations arising from
table I. For simplicity we use Gaussian white noise so that the apparent noise power defined
in (6) is constant through the frequency domain.

Figure 1 shows the variability of the Fourier magnitude estimates x;, for the middle pitch
(180Hz) and high noise (20dB SNR) condition. As a first remark, we note that the second
envelope has a much important spectral dynamic so that it is indeed much more sensitive
to noise than the other two. The second important remark is that figure 1 clearly highlights
the weakness of the LS criterion which treats all the measured Fourier magnitudes as being
equally credible whereas it is patent that the measurements in regions where the envelope
level is close (or below) the apparent noise level are not at all reliable.

As a reference, an AR(12) model was fitted to all signals using Yule-Walker method with
windowing by the hanning window. The corresponding AR envelope estimate was obtained
as

o2 2

8

where 8/3 corresponds to the inverse of fol w?(u)du for the hanning window, which is the
power correction due to windowing, and 2/ K is a scaling factor which takes into account that
a value of 1 for the spectral envelope corresponds to a sum of K sinusoids which is a signal
of power K/2 while we assume when deriving the AR estimate that the input is a white
noise of power 1. Note that because we are considering different pitch frequencies wy, the
number of harmonics K = |7/w; | varies significantly. This scaling procedure is an ad hoc
approach to compensate for the fact that we are considering an incorrect model of the data
when fitting an AR model. It nonetheless gives satisfying results in regions of the spectrum
that are free from noise (as in figure 6-A1). This method was selected so as to minimize the
average envelope estimation error on the simulated data for the 50dB SNR condition among
a number of alternatives which included: use of a fixed scaling factor determined from the
data or scaling according to (21); hanning windowing or no windowing; AR orders between
8 and 16. Note that all options had a limited influence except for the model order.

The distance between the actual envelope S and an estimated envelope S is computed
as a discrete approximation to

Vmax — Vmin

1 Vmax N 2
\/7/ (IOIOng(I/)—1010g105(1/)) dv (22)

Vmin

where the vs correspond to the frequencies between 80H 2z (Vmin) and 4k Hz (Vmax) expressed
on the Bark (critical band rate) scale using the non-linear frequency warping function given
by [35]. This distance measure (expressed in dB) is thus exactly the one used for speech
recognition applications [28] and is generally thought to be perceptually more significant
than the log-spectral RMS error computed on the original frequency scale. In the present
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experiment, the Bark transformation mostly has the effect of slightly compressing the error
values, and thus reduces the measured differences between the estimation methods. Note that
warping the harmonic frequencies on the Bark frequency scale can improve the performances
of the methods of section IIT wrt. the criterion given in (22) as demonstrated in [5] (this
possibility is not considered here for reasons of space).

6

0 . . .
100 140 180 220 260
pitch (Hz)

Fig. 2. Median AR estimation error as a function of pitch for the three envelopes (50dB SNR).
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Fig. 3. Median AR estimation error with 5 and 95% quantiles, as a function of the SNR for the three
envelopes (140Hz pitch).

Figures 2 and 3 show the two main factors which influence the AR estimation method:
The first one is the pitch frequency with results worsening steadily as the pitch raises (fig. 2).
This well known effect illustrated by figure 6 (compare the A1 and A2 plots), occurs when
the harmonic frequencies are sufficiently spaced apart and manifests itself by a bias of the
envelope resonances which are attracted by the nearest harmonic frequency.

The second factor of influence is the noise which significantly degrades the performances
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of the method. Figure 7 shows that in noisy areas of the spectrum, the estimated envelope
grossly overestimates the actual envelope by fitting the noise spectrum rather than the signal
spectral envelope. Because of the normalization given by (21), the envelope estimate in noisy
areas of the spectrum is located above the apparent noise level (dotted line in figure 7) and
the AR behavior in these regions is close to that of the methods based on “peak picking”
from the periodogram.

In both figures 2 and 3, the error values pertaining to the E2 envelope are much larger than
those corresponding to the other two envelopes because of its important spectral dynamic.

B. Influence of the smoothing parameter

A potential problem with the methods discussed in section IIT is that they involve a
smoothing parameter A which could be difficult to tune properly. To investigate this problem,
all the signals from the simulation database where analyzed using 50 different values of
the smoothing parameter A\ logarithmically spaced between 1072 and 10. There are two
different ways of constraining the estimated cepstral envelopes to be smooth (this is valid
for the three — LS, WLS and OLC — methods): one consists of reducing the order p of
the cepstral decomposition in (14), and the other consists of increasing the value of the
smoothing parameter A. It turns out that the second one is the most effective since selecting
a cepstral order p which is too small can generate for some envelopes a large unrecoverable
approximation bias. In the following, we thus use p = 40, that is more parameters than
the number of harmonics (for all pitch values) so that the smoothness of the envelope is
fully determined by A. Of course the methods can be used with success for reduced order
cepstral parameterization (typically, of the order of twenty coefficients are needed to obtain
a reasonable approximation to envelopes such as the ones shown on figure 1) but then, the
value chosen for A should also depend on the choice of p.

0.8

0.6

0.4

0.2r

dB

-1
log(\)

Fig. 4. Median reduction in estimation error wrt. the AR method as a function of A for LS, WLS and OLC.

Figure 4 shows the median reduction in estimation error wrt. the AR method, ie.
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Fig. 5. Box and whisker plots of the reduction in estimation error wrt. AR estimation, for 12 values of \.

SNR (dB) 50 ] 40 [ 30 | 20
Median loss (dB) 0] 00703
Upper 90% quantile (dB) | 0 [ 0.5 1.7 | 3.9

TABLE II
MEDIAN REDUCTION IN ESTIMATION ERROR OF OLC wRT. WLS AS A FUNCTION OF THE SNR
(/\WLS = 0.6, /\OLC = 0.15).

EAR — Eother method considering all the signals in the database (60 conditions times 50 noise re-
alizations), for the three methods. Comparing to the performances of the AR method on the
same signals reduces the variability and ensures that we are focusing on the improvements
and not on the absolute values of the error which vary to a great extent with the envelope,
the noise condition, etc (see figures 2 and 3). A first important remark is that there are
large ranges for A (allowing for variations of several orders of magnitude) where the median
reduction in error is positive, that is where the three methods perform better than AR. As
suggested by figure 1, the LS method is less efficient than both WLS and OLC, and more
sensitive to the choice of A\, with performances degrading quickly in the rightmost part of
the plot.

To give an idea of the implementation costs of OLC, the median number of iterations
defined as the number of evaluations of the criterion (11) and its gradient (16) is 67, and
in 50% of the cases the required number of iterations is between 55 and 80. Note that
because we are using a quasi Newton approach, the optimization converges quite quickly
once it has reached the domain of attraction of a mode [26], so that these numbers are
rather independent of the selected stopping criterion.

Figure 5 shows a more detailed picture by plotting the distributions of the reduction
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in estimation error for several values of A under the form of box and whisker plots (with
the box showing the median and the 25 and 75% quantiles, the whiskers giving an idea of
the extent of the distribution and the points indicating “outliers”). For WLS and OLC, the
distributions of the error reduction are almost entirely located above 0 which indicate that
the improvement wrt. AR is quasi-systematic (and not only true on average). The OLC
plot (bottom plot in figure 5) shows two interesting facts:

First, for low values of A\, the OLC performs very badly for some rare envelopes (outliers
falling below -5dB for the values of A smaller than 0.1). These cases indeed correspond to
situations of misconvergence of the method where the upper limit of 250 iterations is reached
without stabilization of the envelope estimate. The fact that these cases of misconvergence
only occur when \ is too small is coherent with the discussion of section III concerning the
role of the roughness penalty.

Although WLS performs nicely and is most robust to the choice of A, there are cases where
the OLC error is much lower (upper outliers in the bottom plot of figure 5). Indeed, the
OLC method is more robust to noise than WLS as illustrated by table II: Whereas the
two methods are absolutely equivalent when the noise is as low as 50dB SNR, OLC does
significantly better for the 20dB SNR condition with an improvement that is greater than
3.9dB in 10% of the cases. An example of the difference of performances between WLS and
OLC in noisy situations will be given below in figure 7.

Based on figure 4, the optimal choice for a fixed value of X is 3.510 2 for LS, 0.6 for WLS
and 0.15 for OLC. The potential gain of tuning A for each signal separately is rather weak as
the previous choices ensure median performances that are less than 0.05dB from optimal for
the three methods (the optimal choice of A being in this case computed independently for
each signal). Tt is only for OLC that data dependent tuning of A could be of some interest,
since there is a few cases where the loss wrt. the optimal choice of \ is significant: 12%
of cases where it is greater than 0.5dB and 5% where it is greater 1.5dB. Unfortunately
data driven tuning of the smoothing parameter for the criterion given by (12) is an open
problem because the envelope depends non-linearly on the parameters and furthermore has
an influence on the hypothesized noise level (as illustrated by figure 1). In the following,
we thus only consider the performances of the method obtained when setting A to the fixed
values given above, which seems the most reasonable option for speech and audio processing.

C. Detailed analysis of the performances

The first type of situation where OLC or WLS are superior to AR is when the pitch
frequency is high. Table IIT shows that both methods perform equally well for the lower pitch
conditions (100 and 140Hz), but OLC is preferable when the pitch is high, with a difference
which can be as high as 2.3dB on average for the 260Hz pitch. Figure 6 shows a typical
example of this situation where both methods are equivalent for the 100Hz pitch (A1 and
B1 plots) and the AR method is severely biased towards the frequencies of the harmonics
located at 660Hz and 1.1kHz when the pitch equals 220Hz (A2 and B2 plots). The results
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Pitch (IT7) 100 [ 140 [ 180 | 220 | 260
Lower 10% quantile (dB) | 0.1 [-0.2] 0.1 [-0.1] 0.3
Median reduction (dB) 03[01]05]04]23
Upper 90% quantile (dB) | 0.4 | 0.3 | 0.7 | 0.7 | 3

TABLE III
INFLUENCE OF PITCH: MEDIAN REDUCTION IN ESTIMATION ERROR OF OLC WRT. AR AS A FUNCTION
OF THE PITCH (50DB SNR).

A1 B1
0
38 -10
-20
sV YYYVVVVYVYIIN YVVVVVVVYVVVYNY
10
A2 B2
0
B -10
-20
307 v v v v v 4 v v v v v
500 1000 1500 500 1000 1500
Hz Hz

Fig. 6. Influence of the pitch frequency (50dB SNR) : Estimated envelope (light curve) and actual E1
envelope (bold curve) in the 200Hz-1.5kHz band. A1 AR method with 100Hz pitch; B1 OLC method with
100Hz pitch; A2 AR method with 220Hz pitch; B2 OLC method with 220Hz pitch. The triangles represent
the frequencies of the harmonics.

of WLS are not represented on table III and figure 6 as these pertain to the 50dB SNR
condition for which the WLS and OLC estimates are indistinguishable (cf. table II).

The presence of noise is the other situation where OLC and WLS are more accurate than
AR. Table IV shows the difference between AR an OLC becoming quickly significant as the
SNR decreases. Figure 7, which shows three superimposed envelope estimates in each plot
to give an idea of the variability, illustrates the origin of the measured differences: While
regions where the envelope lies well below the noise level cannot be estimated precisely by
any of the methods, OLC and WLS largely reduce the envelope over-estimation effect as well
as the variability caused by the noise. In such a situation, OLC performs better than WLS,
which is not surprising since the Gaussian approximation used to derive the WLS criterion
(in section ITI-B) is very poor in noisy regions of the spectrum.
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SNR (dB) 50 | 40 | 30 | 20
Lower 10% quantile (dB) [0.1] 0 [ 0.1 | 1.2
Median reduction (dB) 03]03]04]24
Upper 90% quantile (dB) [ 0.4 [ 2.6 | 5.2 | 8.7

TABLE IV
INFLUENCE OF NOISE: MEDIAN REDUCTION IN ESTIMATION ERROR OF OLC WRT. AR AS A FUNCTION
OF THE SNR (100HZ PITCH).

0 2000 4000 0 2000 4000 0 2000 4000
Hz Hz Hz

Fig. 7. Envelopes estimated by AR, WLS and OLC (from left to right). Each plot consists of the actual
envelope (bold curve), envelope estimates for three noise realizations (light curves) and the apparent noise
level (dotted line). E2 envelope, 140Hz pitch, 40dB SNR.

D. Robustness issues

Until now, the simulation parameters (pitch and noise level) have been considered as
known, which favors the methods which make use of this information — LS, WLS and OLC
for the pitch, WLS and OLC for the noise level.

The methods proposed in this paper are certainly sensitive to pitch estimation errors,
but sinusoidal (or harmonic) modeling is by definition very vulnerable to pitch errors: Local
pitch estimation is indeed very reliable (see [27] for details) so that when errors actually
occurs, they are usually quite “large” (jump to a sub-multiple, incorrect voicing decision).
Such an error is much more audible than isolated envelope estimation errors. A reliable pitch
detector is thus an absolute requirement for sinusoidal modeling. From our experience, the
most troublesome points are incorrect estimation of the noise level and/or incorrect voicing
decisions. It is indeed well known that the fact that the stationary model (1) does not exactly
fit the signal, even in voiced sections, makes estimation of the noise psd. and assessment
of the fit of the harmonic model a difficult issue. Recall that the “noise” corresponds to
anything that is not fitted by the harmonic model. In practice, the “noise” thus corresponds
both to speech related sounds (friction noise for instance) and/or to environmental sounds.
Note that incorrect voicing decisions are also a problem for systems that use AR envelope
estimation: Figure 7 clearly shows that an AR method, modified so as to produce an estimate
of the envelope in voiced parts of the spectrum, is a biased estimate of the psd. in noisy
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area of the spectrum and vice-versa. It is nonetheless patent that as AR estimation does not
require estimating the noise psd. it is more robust than WLS and OLC in this respect.

| Pitch (Hz) | 100 | 140 | 180 | 220 | 260 ]
| 10dB underestimation of the noise level |
| Median reduction (dB) [ 0.2 ] 0 [ 0.5]0.3] 2.2 ]
| 10dB overestimation of the noise level |
| Median reduction (dB) [ 0.3 [ 0.1 [ 0.5] 0.2 ] 2.2 ]

TABLE V
INFLUENCE OF PITCH WHEN THE NOISE LEVEL IS UNDER/OVER ESTIMATED: MEDIAN REDUCTION IN
ESTIMATION ERROR OF OLC WRT. AR AS A FUNCTION OF THE PITCH (50DB SNR).

| SNR (dB) | 50 [ 40 | 30 | 20 |
| 10dB underestimation of the noise level |
Median reduction (dB) 01]02]02]14
Upper 90% quantile (dB) [ 0.3 [ 1.8 ] 3 [ 3.5
| 10dB overestimation of the noise Ievel |
Median reduction (dB) 03]02[04]22
Upper 90% quantile (dB) | 0.5 0.3]5.9 7.3

TABLE VI
INFLUENCE OF NOISE WHEN THE NOISE LEVEL IS UNDER/OVER ESTIMATED: MEDIAN REDUCTION IN
ESTIMATION ERROR OF OLC WRT. AR AS A FUNCTION OF THE SNR (100Hz PITCH).

In order to provide some quantitative elements to the above discussion, we evaluated the
analogous of tables IIT and IV with a systematic mis-estimation of +£10dB of the noise level.
Table V shows that, as expected, the effect of noise under/over-estimation is not significant
when the noise level is small. In noisy situations, comparison of table VI with table IV shows
that the situation is more contrasted with a limited impact of noise overestimation and a more
significant degradation in case of underestimation. Overestimation indeed means treating
as dubious some measurements that are already affected by noise whereas underestimation
can constrain the envelope to take into account measurements that are mostly dominated
by noise (cf. fig. 1). In both cases, the median reduction in error stays positive which means
that OLC is still preferable to AR despite a severe error in the estimation of the actual noise
level.

To illustrate the robustness of the proposed approach, we now consider the more realistic
case where all model parameters are unknown and need to be estimated. The analyzed signal
now is a 0.87s voiced section of good quality real speech? uttered by a young children. The

2 IPA transcription: [amdsele]
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pitch is quite high and varies significantly over the selected excerpt (from 265Hz in the
middle section to 480Hz at the end of the excerpt). The signal is analyzed with 30ms
frames shifted by 5ms. The pitch is determined using the method of [13] without frame-
to-frame pitch tracking. To estimate the noise psd, we follow the suggestion of [30] and
discard the periodogram values corresponding to frequency indexes located near the harmonic
frequencies. A smooth psd. model is then fitted to the remaining periodogram ordinates
using the approach of [25]. The time-domain synthetic signal is obtained by overlap-add using
the estimated phase of the harmonics together with the harmonic amplitudes computed from
the estimated spectral envelope.

m 40}
©

0 1000 2000 3000 4000 0 1000 2000 3000 4000
Hz Hz

Fig. 8. Estimation results for the frame located 1.35s from the beginning. Left: AR (bold curve) and
smoothed AR envelope (dashed bold curve); Right: OLC envelope (bold curve). On both plots: squared
magnitude spectrum scaled by 4/N2 (light curve) and estimated noise psd. scaled by 4G /T (dotted curve).

Comparing the bold curves on the two plots of figure 8 clearly illustrates two shortcom-
ings of the AR approach in this context: Ringing (because the pitch is very high, some of
the poles are located exactly at the harmonic frequencies) and overestimation in noisy areas
of the spectrum. By contrast, the envelope estimated by OLC is both smoother and more
precise and, in the upper region of the spectrum (above 3kHz) where the harmonics are
dominated by noise, it is less influenced by noise than the AR envelope. Several modifica-
tions of AR modeling have been suggested in order to circumvent the ringing problem. As
an illustration of this type of approaches, the dashed bold curve in the left plot of figure 8
corresponds to the result obtained with the spectral smoothing technique of [33] (which con-
sists in weighting the estimated autocovariance coefficients). The smoothed AR estimation
is not a very attractive technique compared to OLC in this situation because the elimina-
tion of the ringing phenomenon is obtained at the cost of a significant overestimation of the
envelope in the valleys (in addition, the use of AR smoothing for low pitches where ringing
does not occur is not recommended since it severely degrades the accuracy of AR envelope
estimation).

The spectrograms shown in figure 9 convey the same idea with AR envelope estimation
resulting in patent overestimation of the magnitude of the first two harmonics together with
some visible distortions in the upper part of the spectrum (the area located above 3kHz
around time 0.45s corresponds to friction noise and should not be modeled by the harmonic
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Fig. 9. Narrow band spectrograms of the original signal (top plot) and the harmonic synthetic signals
obtained from AR (middle plot) and OLC (bottom plot) envelopes (pre-emphasis by 1/(1+ 0.97271), 60dB
depth).

envelope). The latter problem is usually circumvented by applying the harmonic model
only in the lower part of the spectrum (with a cutoff referred to as “maximum voicing
frequency” in [32]), but figure 9 nonetheless shows that OLC estimation would still be useful
in robustifying the harmonic envelope wrt. to errors in the determination of the maximum
voicing frequency. On the example of figure 9, the distortion brought by AR envelope
modeling is distinctively audible, while the synthetic time-varying harmonic signals obtained
either by direct resynthesis (with the estimated harmonic magnitudes) or from the spectral
envelopes estimated by the OLC or WLS methods are indistinguishable. A longer section
of the signal shown in figure 9 together with the associated results and MATLAB functions
needed to implement the methods discussed in section IV are available through the Internet
at address http://www.tsi.enst.fr/"cappe/env.

V. DISCUSSION

As already mentioned, the stationary sinusoidal model is at most an approximation of
the signal behavior on a short time frame and the very concept of “actual envelope” is
questionable. Among the exciting possibilities for future work, tracking of a non-stationary
(or evolutive) version of the stationary sinusoidal model is certainly a key issue. Another
important aspect is without doubt perception. We however feel that perceptual issues are
beyond the scope of the present paper, in particular because they are application dependent:
An estimation error such as the one in figure 6-A2 is largely above the perception threshold
but it could be the case that in very low bit rate coding applications, this error still is
concealed by the envelope distortion due to quantization or by some other source or signal
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distortion. Likewise, the envelope overestimation visible on the left plot of figure 7 certainly
is a problem for denoising applications where signal overestimation means increasing the
residual noise level but it could be of less importance in coding applications because of
masking phenomenons.

We would like however to conclude the paper by stressing that the likelihood criterion
given by (11) has a strong theoretical basis (see also appendix A), provides an interesting
insight into the limitation of the previously proposed method of “discrete cepstrum” (sec-
tion ITI-B) and performs significantly better than both the AR and the discrete cepstrum
methods, particularly for high pitched and noisy signals. The weighted least-squares ap-
proximation provides a reduced implementation cost alternative which is equivalent to the
optimization based approach in low noise situations. On most hardware platforms, the es-
timator based on optimization will be suitable only for off-line applications (analysis and
coding of units for speech synthesis, high quality analysis/synthesis) but the least-squares
approximation can easily meet the requirement of real time speech and audio processing.

APPENDIX
I. DERIVATION OF THE LIKELIHOOD CRITERION FOR (GAUSSIAN WHITE NOISE

In this appendix, we consider the noisy harmonic model given by (1) assuming that the
noise process is a Gaussian white noise with power ¢2. Under this simplifying assumption,
it is shown that the likelihood associated to (1) is equivalent for large sample sizes to an
expression which only depends on the observations through the Fourier estimates at the
frequencies of the harmonics and an estimate of the noise power. We next show that, the
likelihood integrated with respect to the phase response of the spectral envelope yields the
criterion defined in (11).

The likelihood corresponding to (1) in the Gaussian case is

1 1 ,
p(r) = W exp [—@(r —m)(r - m)] (23)
where r = (rq,...,r7)’, m = (my,... ,my)" and the prime denote transposition. For any

T x T invertible matrix M, (23) may be rewritten as

PIE) = Gyt X0 | 5y (M = ) (M) (M (r = )

Let M denote the matrix defined by blocks as

M = [P(T x K): Q(T x K) : U(T x (T — 2K))]

where Py, = coswyt, Qi = sinwit for 1 < k < K, 1 <t < T and U is chosen among the
matrices which satisfy U'U = Iy_ox, UP = 0 and U'Q = 0. P,Q and U thus define a
subspace decomposition of R' for which U is orthogonal to both P and Q. For finite sample
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sizes, P and Q are not orthogonal but it is a standard result that they are quasi-orthogonal
for large sample sizes in the sense that [27], [31]

T
PP = _Ix+0(1)

QQ - g1K+0(1)
P'Q = 0(1) (24)

where the O(1) notation stands for terms that can be bounded from above. Hence, for large
sample sizes,

p(r) = @TE)T/? exp{
- L ([Fre-m] [2pe-m) + [2ae-m] [2ee-m])aonm)
o U (U= ) | (25)

The third term in (25) normalized by the sample size T is a biased but consistent estimate of
the noise power which is denoted 62. Note that this term does not depend on the parameters
of the envelope since the orthogonality of U with both P and Q implies that U'm = 0 so
that 62 = r'UU'r/T. Eq. (25) may thus be rewritten as

p(r) = exp {—l [([a —ala—a]+[b—b]b— b]) (1+0(1/T)) + 2&2] } (26)

402

where a = %P’ rand b = %Q’ r respectively denote the estimated in phase and in quadrature
amplitudes of the harmonics (when no data tapper is used) and a = (aq,...,a;), b =
(by,...,b) are the actual harmonic magnitudes as defined by the envelope. In obtaining
(26) we have used (24) to show that 2P'm — a and 2Q'm — b. Noting that n = % is the
apparent noise level for the rectangular window, and introducing the notations of section II
(zp = a2 + b2, sp = a2 4+ b?), (26) may be rewritten as

n n?

p(r) = exp [—%"j] If[lexp [(—3’“ Tk Lo [T s — ék)> (1+ 0(1/T))] (27)

where 6, = Angle(ag, by) denotes the phase of the kth harmonic as given by the envelope
model whereas 0, = Angle(ay, by) is the phase measured from the observed signal.
Note that in (27), the O(1/T) terms do not depend upon any of the quantities except

T itself. Assuming, that the parameters 0, for 1 < k < K, have a prior distribution which
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is uniform on [0, 27], it is thus possible to integrate out these nuisance parameters to obtain

p(r) = (2;)1( /[0 ’%]Kp(r)dﬁl...dGK
— exp [_%"j] If[lexp [—8’“ ;‘”’“] Iy (2 "J’Zj’“> (1+0(1/T)) (28)

where Ij is the Bessel function of order 0 defined in (8).

II. DERIVATIVES OF THE LIKELIHOOD CRITERION

In this section, we consider the first and second order derivatives of the likelihood cri-
terion given by (11). Closed-form expressions of the gradient and Hessian are obtained that
are valid for any envelope parameterization. In the case of the cepstral parameterization
some arguments are provided to back up the experimental observation that the criterion is
generally convex if the algorithm is started from a point sufficiently close to the true envelope

parameters.
We will denote the envelope parameters by ¢y, ... , ¢, where p denotes the order of the
parameterization. Differentiating (11) is made easy by the use of the following relations [1]
dlo(y)
=1
dy 1(y)

d(yli(y))
— == =yl 29
T — () (29)

The gradient of L(z,...,2k|S) is obtained as

OL K Osp\ 1 xp It SkTk
- — 1= 2R (2
O ; (3%’) Mk [ sk o ( i )] (30)

where the notation dsy/d¢; is used as a short-hand for 0S(wy)/d¢;. The expression of the
Hessian follows:

) b )
dp;0p; — L\ 9g;0pi) ny sk Io n;

aSk &sk Tk Nk [1 SpTh 112 Siln
_ 1 Oy [seme I .
<850j> <6901> Skn% |: Sexr Lo ( n% ) [3 nz (3 )

The implementation of (30) and (31) is made easy by the fact that the only special function
that needs to be evaluated is the ratio I;/Iy(y). This ratio is particularly well behaved since
it is positive and for large values of y the following approximation holds [1]

I, 1 1

I_o(y) =1- 2 + 0(;) (32)
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In general, the Hessian given by (31) is not positive definite. For the cepstral param-
eterization defined in (14) however, the matrix (9%s;/0c;0c;) is a positive rank one matrix
and (31) simplifies to

02L K Sk Ty, I} SkTk
=Y CuCri— 31— 12 (2 33
809'802' o0 ki kg ng { Nk |: Ig ( nz >:|} ( )

where the cepstral regression matrix C was defined in (20). Each of the terms in the above
summation has an interesting behavior when s, (the squared amplitude of the sinusoidal

component) becomes large with respect to the apparent noise level ny: If we omit the factors
that involve xy/sk, (32) shows that the term corresponding to the index £ in (33) can be
approximated as 7t [5+0(1)]. The factor z/s;, does not modify this result since (10) indicates
that E[xy/sg] — 1 and Var[zy/si] — 0 as s, — +00. Application of the continuous mapping
theorem shows that the latter result is indeed valid if we use the symbol o,() which denotes
convergence in probability to zero in place of o() [34]. Computer simulations of this term
show that it is positive with high probability even for moderate values of s;. For instance,
when the apparent signal to noise ratio sz/ny equals 6 dB, the estimated probability of
negativeness is 0.3%.

As a consequence, if all the sinusoids are well above the apparent noise level (s, > ny),
each of the term in (33) is non-negative with high probability, and thus the Hessian of
the likelihood criterion L(xq,...,zk|S) is positive definite. Note that for the Hessian to
be positive definite, it takes K > p (more measurements than the number of envelope
parameters) because the matrix M defined by M;; = Cj;Cy; is a rank one matrix. In
practice however, the Hessian is positive definite even when this constraint isn’t met, and
furthermore, negative eigenvalues appear less often than suggested by the above derivations
because of the constant matrix AR (see section I1I-A) added by the roughness penalty which
enforces the positiveness.

Because the Hessian is a continuous function of the parameters, the previous observation
is true for a whole neighborhood of the actual envelope S. Thus, if the envelope is well
above the noise level and if the algorithm is started from an envelope sufficiently close to the
unknown true envelope, the maximization of L(z1,... ,zx|S) reduces (with high probability)
to a convex problem.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of mathematical functions with
formulas, graphs, and mathematical tables. Applied Mathematics Series, 55. National
Bureau of Standards, 1964.

[2] J. O. Berger, B. Liseo, and R. L. Wolpert. Integrated likelihood methods for eliminating
nuisance parameters. Statistical Science, 14(1):1-28, 1999.

[3] D. M. Brookes and H. P. Loke. Modelling energy flow in the vocal tract with applications



ESTIMATION OF THE SPECTRAL ENVELOPE OF VOICED SOUNDS 26

to glottal closure and opening detection. In Proc. IEEFE Int. Conf. Acoust., Speech, Signal
Processing (ICASSP), volume 1, pages 213-216, 1999.

[4] M. Campedel-Oudot. FEtude du modéle ”sinusoides et bruit” pour le traitement des sig-
nauxr de parole. Estimation robuste de [’enveloppe spectrale. PhD thesis, ENST, 1998.

[5] O. Cappé, J. Laroche, and E. Moulines. Regularized estimation of cepstrum envelope
from discrete frequency points. In IEEE Workshop on App. of Sig. Proc. to Audio and
Acoust., October 1995. Paper 9a-1.

[6] O. Cappé and E. Moulines. Regularization techniques for discrete cepstrum estimation.
IEEE Signal Processing Letters, 3(4):100-102, April 1996.

[7] J. H. Derby. Comments on “on the design of pole-zero approximations using a logarithmic
error measure”. IEEE Trans. Signal Processing, 44(7):1811-1813, July 1996.

[8] A.El-Jaroudi and J. Makhoul. Discrete all pole modeling. IEEE Trans. Signal Processing,
39(2):411-423, February 1991.

[9] G. Fant. Acoustic Theory of Speech Production. Mouton, The Hague, 1960.

[10] J. L. Flanagan. Spech analysis, synthesis and perception. Springer-Verlag, 2nd edition,
1972.

[11] R. Di Francesco and E. Moulines. Detection of glottal closure by jumps in the statistical
properties of the speech signal. In Proc. EUROSPEECH, pages 39-42, 19809.

[12] T. Galas and X. Rodet. An improved cepstral method for deconvolution of source-
filter systems with discrete spectra: Application to musical sound signals. In Proc. of
International Computer Music Conference, pages 82—84, Glasgow, 1990.

[13] D.W. Griffin and J.S. Lim. Multiband-excitation vocoder. IEEE Trans. Acoust., Speech,
Signal Processing, ASSP-36(2):236-243, February 1988.

[14] E. J. Hannan. The estimation of frequency. J. Appl. Prob., 10:510-519, 1973.

[15] T. J. Hastie and R. J. Tibshirani. Generalized additive models. Chapman and Hall,
1990.

[16] H. Hermansky, H. Fujisaki, and Y. Sato. Analysis and synthesis of speech based on
spectral transform linear predictive method. In Proc. IEEFE Int. Conf. Acoust., Speech,
Signal Processing (ICASSP), volume 2, pages 777-780, 1983.

[17] N. L. Johnson and S. Kotz. Continuous Univariate Distributions, volume 2. Wiley-
Interscience, 1970.

[18] B-H. Juang, L. R. Rabiner, and J. G. Wilpon. On the use of bandpass liftering in speech
recognition. IEEE Trans. Acoust., Speech, Signal Processing, 35(7):947-954, 1987.

[19] C. H. Lee. Robust linear prediction for speech analysis. In Proc. IEEE Int. Conf.
Acoust., Speech, Signal Processing (ICASSP), volume 1, pages 289-292, 1987.

[20] R. J. McAulay and T. F. Quatieri. Sinusoidal coding. In W.B. Kleijn and K.K. Paliwal,
editors, Speech Coding and Synthesis, pages 123-176. Elsevier, 1995.

[21] R. Mizoguchi, M. Yanagida, and O. Kakusho. Speech analysis by selective linear pre-
diction in the time domain. In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing
(ICASSP), volume 3, pages 1573-1576, 1982.



ESTIMATION OF THE SPECTRAL ENVELOPE OF VOICED SOUNDS 27

[22] F. O’Sullivan. A statistical perspective on ill-posed inverse problems. Statistical Science,
1(4):502-518, 1986.

[23] M. Oudot, O. Cappé, and E. Moulines. Robust estimation of the spectral envelope
for “harmonics + noise ” models. In IEEE Workshop on speech coding, Pocono Manor,
September 1997.

[24] D.B. Paul. The spectral envelope estimation vocoder. IEEE Trans. Acoust., Speech,
Signal Processing, 29(4):786-7941, august 1981.

[25] Y. Pawitan and F. O’Sullivan. Non parametric spectral density estimation using penal-
ized whittle likelihood. Journal of the American Statistical Association, 89(426):600-610,
june 1994.

[26] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical recipes in C : the
art of scientific computing. Cambridge University Press, second edition, 1992.

[27] B. G. Quinn and P. J. Thomson. Estimating the frequency of a periodic function.
Biometrika, 78(1):65-74, 1991.

[28] L. R. Rabiner and B-H. Juang. Fundamentals of speech recognition. Prentice-Hall, 1993.

[29] L. R. Rabiner and R. W. Schafer. Digital processing of speech signals. Prentice-Hall,
1978.

[30] X. Serra. A system for sound analysis/transformation/synthesis based on a deterministic
plus stochastic decomposition. PhD thesis, CCRMA Department of Music, Stanford
University, Stanford, California, 1989. Report No. STAN-M-58.

[31] P. Stoica and R. Moses. Introduction to spectral analysis. Prentice Hall, 1997.

[32] Y. Stylianou, J. Laroche, and E. Moulines. High-quality speech modification based on a
harmonic + noise model. In Proc. EUROSPEECH, pages 451-454, Madrid, September
1995.

[33] Y. Tohkura, F. Ikatura, and S. Hashimoto. Spectral smoothing techniques in PARCOR
speech analysis-synthesis. IEEE Trans. Acoust., Speech, Signal Processing, 26(6):587—
596, 1978.

[34] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 1988.

[35] E. Zwicker and E. Terhardt. Analytical expressions for critical-band rate and critical
bandwidth as a function of frequency. J. Acoust. Soc. Am., 68(5):1523-1525, 1980.



