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Estimation of the Spe
tral Envelope of Voi
ed

Sounds Using a Penalized Likelihood Approa
h

Marine Campedel-Oudot, Olivier Capp�e and Eri
 Moulines

Abstra
t

Estimation of the spe
tral envelope (magnitude of the transfer fun
tion) of a �lter driven

by a periodi
 signal is a long-standing problem in spee
h and audio pro
essing. Re
ently,

there has been a renewed interest in this issue in 
onne
tion with the rapid developments

of pro
essing te
hniques based on sinusoidal modeling. In this paper, we introdu
e a new

performan
e 
riterion for spe
tral envelope �tting whi
h is based on the statisti
al analysis

of the behavior of the empiri
al sinusoidal magnitude estimates. We further show that

penalization is an eÆ
ient approa
h to 
ontrol the smoothness of the estimation envelope.

In low noise situations, the proposed method 
an be approximated by a two steps weighted

least-squares pro
edure whi
h also provides an interesting insight into the limitations of the

previously proposed \dis
rete 
epstrum" approa
h. A systemati
 simulation study 
on�rms

that the proposed methods perform signi�
antly better than existing ones for high pit
hed

and noisy signals.

Index Terms

Spe
tral estimation, sinusoidal modeling, spee
h analysis, non-parametri
 smoothing

EDICS number: 1-ANLS

I. Introdu
tion

Current spee
h analysis/synthesis methods 
apitalize on the sour
e-�lter representation

of spee
h signals whi
h is motivated by the a
ousti
 theory of spee
h produ
tion. The ba-

si
 spee
h produ
tion model whi
h has been proposed more than forty years ago 
onsists

of a sour
e signal (glottal ex
itation) passing through a linear �lter (vo
al tra
t) [9℄, [10℄.

Depending on the type of spee
h sound, the ex
itation signal is either noise-like (unvoi
ed

sounds) or periodi
 and impulsive (voi
ed sounds). The �lter models several distin
t phe-

nomenons (glottal pulse shape, vo
al tra
t transfer fun
tion, lips radiation response) and

thus does not have a simple and 
onvenient parametri
 form although the main 
ontribu-

tion is that of the vo
al tra
t whose transfer fun
tion 
an be 
losely approximated by an

all-pole �lter for most spee
h sounds. Both be
ause of the properties of the human hearing

system and of the signal distortion due to the sound propagating from the speaker to the

re
ording apparatus, only the spe
tral magnitude of the �lter in the sour
e-�lter representa-

tion is generally thought to be 
hara
teristi
 of the uttered spee
h sound. In this paper, we
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spe
i�
ally 
onsider the estimation of the spe
tral envelope (spe
tral magnitude of the �lter

in the sour
e-�lter representation) for voi
ed spee
h sounds. The reason for fo
using on the

voi
ed parts of spee
h is that for unvoi
ed sounds, the estimation of the spe
tral envelope is

a 
lassi
al times-series problem whi
h has been mu
h studied in the parametri
 
ase (when

assuming for instan
e that the �lter 
an be modeled by an all-pole transfer fun
tion) as well

as in the non-parametri
 one [31℄, [25℄. This is mu
h less true for periodi
 sour
e signals

despite the fa
t that a

urate estimation of the spe
tral envelope of voi
ed sounds is a key

ingredient in any spee
h (or audio) analysis/synthesis system whi
h makes uses of voi
ing

de
ision. These systems are now 
ommonly used for spee
h 
oding [20℄ or spee
h synthesis

and modi�
ation [32℄. Note that spe
tral envelope estimation is also of prime importan
e for

spee
h re
ognition [28℄ and although most 
urrent spee
h re
ognition systems ignore voi
ing

information, pit
h and voi
ing information 
an be useful even for estimating the spe
tral

envelope, parti
ularly for high-pit
hed voi
es.

Early attempts towards identifying the spe
tral envelope in
lude applying the LPC (Lin-

ear Predi
tive Coding) s
heme (whi
h is usually referred to as Auto Regressive, or AR, mod-

eling in the time series literature) in the voi
ed parts of the signals as well as in the unvoi
ed

ones. This approa
h performs poorly for high-pit
hed voi
ed spee
h sounds be
ause it is

based on the in
orre
t assumption that the sour
e signal is a se
ond order white noise. Sev-

eral methods have been designed to over
ome this problem in the 
ontext of LPC either by

further analyzing the LPC residual or by modifying the obje
tive fun
tion used for assessing

the �t of the AR model [21℄ [19℄ [16℄.

The SEEVOC (Spe
tral Envelope Estimation VOCoder) te
hnique of [24℄ is based on the

remark that if the sour
e signal is a periodi
 impulse train, then the observed signal is a sum

of sinusoids and thus only provides information 
on
erning the value of the spe
tral envelope

at the frequen
ies of the harmoni
s. The solution proposed in [24℄ 
onsists of interpolating

the estimated spe
tral envelope between these frequen
y points using a standard smoothing

te
hnique. While the SEEVOC approa
h does not rely on a parametri
 des
ription of the

spe
tral envelope, authors su
h as El-Jaroudi and Makhoul [8℄ and Galas and Rodet [12℄

have proposed te
hniques based on the same prin
iple for (respe
tively) the all-pole and the


epstral representation of the spe
tral envelope. While the 
epstral parameterization may

appear to be less justi�ed than the all-pole representation for spee
h signals, it leads to


omputationally simpler te
hniques when the squared log-spe
tral distan
e is used to assess

the envelop �t [12℄, [7℄.

A key point is that we are indeed dealing with an ill-posed inverse problem [22℄ in trying

to re
over a whole fun
tion (the spe
tral envelope) from a noisy measurement of its values in

a few frequen
ies (
orresponding to the harmoni
s). A

ordingly, in [6℄, a roughness penalty

is added to the envelope �t measure proposed by [12℄ so as to enfor
e the smoothness of the

estimated envelope, following the so-
alled \regularization" or \penalization" framework (the

latter denomination being more standard in the applied statisti
s literature). This approa
h

was shown in [6℄ and [5℄ to be very eÆ
ient in preventing the appearan
e of unnatural
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envelopes observed by Galas and Rodet (usually for high pit
hed sounds) [12℄.

The short
oming of the method des
ribed in [6℄ however is that the use of the squared

log-domain distan
e as a measure of how well the envelope �ts the measured harmoni
 mag-

nitudes is arbitrary and 
ounter-intuitive: Both be
ause the harmoni
s of high magnitude

are more important from a per
eptual point of view and be
ause they are more reliably

estimated, it would be preferable to give di�erent weights to the �tting errors depending on

the magnitude of the harmoni
s. Although we will not address the �rst (per
eptual) aspe
t,

the point of the present paper 
onsists of showing that the se
ond e�e
t (reliability of the

magnitude estimation whi
h depends on the magnitude of the harmoni
) 
an be a

ounted

for using a more elaborate �t 
riterion. This 
riterion will be obtained as an approximate

likelihood 
riterion assuming that the ideal voi
ed spee
h sound is observed in additive noise.

Additive noise is the simplest model whi
h 
an to some extent a

ount for both: (1) the

modeling errors (i.e. the fa
t that the \sum of harmoni
s" model does not exa
tly �t a spee
h

signal even on short durations be
ause of the non-stationarity of spee
h); (2) the fa
t that

some voi
ed sounds also features a signi�
ant amount of fri
tion noise; (3) the ambient noise

whi
h may be of signi�
ant level (in mobile 
ommuni
ations for instan
e, Signal-to-Noise

Ratios, or in short SNRs, of 5dB or less are not that un
ommon).

The rest of the paper is organized as follows: In se
tion II, the approximate likelihood

of the envelope parameters is obtained; Se
tion III is devoted to the study of numeri
al

optimization methods suited for maximizing the proposed penalized likelihood 
riterion;

Finally, we dis
uss in se
tion IV the performan
e of the method for typi
al spee
h analysis

purposes.

II. Penalized likelihood 
riterion

A. Asymptoti
 integrated likelihood

In voi
ed parts of the signal, appli
ation of the Poisson formula shows that the sour
e-

�lter representation is equivalent to an harmoni
 de
omposition. We thus assume that the

observed signal 
onsists of

r

t

=

K

X

k=1

[a

k


os!

k

t+ b

k

sin!

k

t℄

| {z }

m

t

+�

t

(1 � t � T ) (1)

where !

1

; : : : ; !

K

are the (radian) frequen
ies of the harmoni
s, and �

t

is modeled as a

(se
ond order) stationary random pro
ess with psd. (power spe
tral density) �

�

(!). Note

that the fa
t that the sinusoidal 
omponents are harmoni
s (i.e. that !

k

= k!

1

) will play no

role and that the frequen
ies !

k

; k = 1; : : : ; K need not be harmoni
ally related as long as

they are well separated in the sense that min

i;j2f1;::: ;Kg

j!

i

� !

j

j � 2�=T .

Our treatment of the model given by (1) will be based on the assumption that the noise

p.s.d. �

�

(!) and the 
omponent frequen
ies !

k

; k = 1; : : : ; K are known. The pertinen
e
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of this assumption for spee
h pro
essing appli
ations will be dis
ussed in more details in

se
tion IV-D. The spe
tral envelope S(!) is parametrized in the power domain su
h that

a

k

=

p

S(!

k

) 
os �

k

b

k

=

p

S(!

k

) sin �

k

where the phases of the harmoni
s �

k

; k = 1; : : : ; K are 
onsidered as nuisan
e parameters.

Let â

k

and

^

b

k

denote the amplitude of the phase and quadrature 
omponents of the k-th

sinusoid estimated from the tapered Fourier transform of the signal:

â

k

=

2

N

w

T

X

t=1

w

t

r

t


os!

k

t (2)

^

b

k

=

2

N

w

T

X

t=1

w

t

r

t

sin!

k

t (3)

where w denotes the data taper (or window), and the normalizing 
onstant N

w

is de�ned as

N

w

=

T

X

t=1

w

t

To make the expressions simpler, we will assume that the data taper w is obtained by

regular sampling of a 
ontinuous-time positive window fun
tion �w(�) de�ned on [0; 1℄, that

is: w

t

= �w(t=T ) for t = 1; : : : ; T .

It is shown in appendix A that in the simpler 
ase where �

t

is a Gaussian white noise,

the Fourier estimates (â

k

;

^

b

k

); 1 � k � K asymptoti
ally (when T is large) form a set

of suÆ
ient statisti
s for the estimation of the envelope. Moreover, when the nuisan
e

parameters �

k

; 1 � k � K are eliminated by marginalization (by integration over the range

[0; 2�)), the resulting asymptoti
 
riterion is a fun
tion of the estimated squared magnitudes

x

k

= (â

k

)

2

+ (

^

b

k

)

2

only. Marginalization is the method of 
hoi
e for handling nuisan
e

parameters in the Bayesian framework and is generally thought to be more robust than

the pro�le likelihood approa
h whi
h 
onsists of optimizing with respe
t to (abbreviated to

wrt. in the following) the nuisan
e parameters [2℄. In the 
ase under 
onsideration, using

a pro�le likelihood would imply �tting a 
omplex envelope model to the data. For spee
h

signals however, 
omplex envelope modeling is only a sensible 
hoi
e if the frame lo
ations


an be syn
hronized with the glottal 
losures. Su
h an approa
h would thus require pit
h

syn
hronous pro
essing and robust estimation of the glottal 
losures, whi
h is a diÆ
ult task

[11℄, [3℄.

The result obtained in appendix A, although restri
ted in s
ope, is very intuitive, as

it suggests that for large values of the frame size T , estimators of the spe
tral envelope
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should be based on the Fourier power measurements x

k

; 1 � k � K at the frequen
ies of the

harmoni
s. We will use this prin
iple in a broader 
ontext noting that the amplitude values

estimated through (2)-(3) are known to be asymptoti
ally normal for a very large 
lass

of noise pro
esses (not ne
essarily white nor Gaussian) and that under suitable te
hni
al


onditions [14℄, [27℄,

E(â

k

) = a

k

+ o(1) E(

^

b

k

) = b

k

+ o(1) (4)

Cov(â

k

;

^

b

k

; â

j

;

^

b

j

) =

n

k

2

I

4

(1 + o(1)) for k 6= j (5)

where I

4

denotes the four dimensional identity matrix, the o(1) notation stands for remainder

terms that tend to zero for in
reasing values of T and n

k

is the apparent noise power de�ned

as

n

k

=

4G

�w

T

�

�

(!

k

) (6)

where G

�w

is a normalizing 
onstant whi
h only depends on the type of the analysis window

through

G

�w

=

Z

1

0

�w

2

(u)du

�

Z

1

0

�w(u)du

�

2

n

k

=2 
orresponds to the power of the noise a�e
ting the measurement of the phase or quadra-

ture amplitude for one sinusoid, and thus de
reases in inverse proportion of the sample

size [31℄, [27℄. Eqs. (4)-(5) also hold for the maximum likelihood (weighted least-squares)

estimator of the sinusoidal amplitudes sin
e both pro
edures are equivalent for large sample

size T [31℄. When pro
essing voi
ed spee
h with standard analysis settings (frame duration

of about 30ms with a smooth data taper), these asymptoti
 results are indeed a

urate be-


ause the periodi
ity of the signal implies that the frequen
ies of the sinusoidal 
omponents

are separated by the fundamental frequen
y whi
h is larger than the spe
tral resolution,

ex
ept for the lowest (less than 80Hz) pit
h values [31℄ (note that the results of se
tion IV

show that for su
h very low pit
h values, envelope estimation 
an be reliably a
hieved by

standard methods su
h as dire
t AR estimation).

Considering the asymptoti
 approximation given by (4)-(5), the empiri
 squared magni-

tude of the kth harmoni
 x

k

= (â

k

)

2

+ (

^

b

k

)

2

is obtained as the sum of two squared Gaussian

variables with non zero means. Up to a s
ale fa
tor, the resulting variate is distributed

a

ording to a non-
entral �

2

distribution with two degrees of freedom, or Ri
e distribution,

whose probability density is given by [17℄

p(x

k

) =

1

n

k

exp[�

s

k

+ x

k

n

k

℄ I

0

�

2

r

s

k

x

k

n

2

k

�

(7)
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where s

k

= a

2

k

+ b

2

k

is the a
tual value of squared magnitude of the kth harmoni
 and I

0

(�)

stands for the modi�ed Bessel fun
tion of the �rst kind and order � = 0 [1℄:

I

�

(y) =

1

�

Z

�

0

e

y 
os �


os(��)d� (8)

Note that (7) 
ould also be expressed in terms of the series expansion of I

0

(�) as [1℄, [17℄:

I

�

(y) = (

1

2

y)

�

+1

X

p=0

y

2p

2

2p

p!(p+ �)!

(9)

Eq. (7) 
orresponds to a positively skewed distribution (espe
ially for low values of s

k

sin
e

x

k

is by 
onstru
tion positive) with mean and varian
e [17℄:

�

E(x

k

) = s

k

+ n

k

Var(x

k

) = n

k

(2s

k

+ n

k

)

(10)

With the independen
e approximation, the negative log-likelihood of the K squared

amplitude estimates L(x

1

; : : : ; x

K

jS) may be written as

L(x

1

; : : : ; x

K

jS) =

K

X

k=1

�

logn

k

+

s

k

+ x

k

n

k

� log I

0

�

2

r

s

k

x

k

n

2

k

��

(11)

In appendix A, the pre
eding expression is obtained dire
tly using simple 
al
ulations for

the 
ase of Gaussian white noise.

In pra
ti
e, dire
t evaluation of (11) using (9) 
an be awkward be
ause the Bessel fun
-

tions have an exponential behavior in +1. The 
omputation of log(I

0

) (as well as I

1

=I

0

,

introdu
ed in appendix B) 
an however be 
arried out using standard 
ombinations of series

trun
ation and approximations detailed in [1℄, [17℄ or [26℄.

B. Roughness Penalty

In many 
ases of interest, dire
t minimization of (11) yields envelopes that have a non-

smooth behavior and are una

eptably sensitive to small variations in the observed data

[6℄, [25℄. This phenomenon has been previously observed with other envelope estimation

methods [8℄, [12℄. Intuitively, the ill-posed 
hara
ter of the envelope estimation problem is

a 
onsequen
e of the fa
t that there are many 
ontinuous envelopes that 
an be plausibly

�tted to just one snapshot of a redu
ed set of frequen
y measurements.

The standard solution to this problem 
onsists of 
onstraining the behavior of the esti-

mated envelope by use of a so-
alled roughness penalty R(S) (also known as a \regularization"

or \smoothing" fun
tional) [22℄. The likelihood 
riterion is repla
ed by a penalized 
riterion

of the form:

L(x

1

; : : : ; x

K

jS) + �R(S) (12)
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where R(S) is the roughness penalty whi
h takes large values for envelopes S that have

a non-smooth behavior and � is a s
alar parameter whi
h 
ontrols the smoothness of the

estimated envelope. This penalized approa
h 
an also be viewed as a Bayesian maximum a

posteriori estimation pro
edure where exp(��R(S)) plays the role of a prior for the envelope

parameters [22℄.

In the following, we use

R(S) =

1

2�

Z

�

��

�

d

r

logS(!)

d!

r

�

2

d! (13)

whi
h has been used for envelope estimation in [6℄ (with r = 1) and in [25℄ (with r = 2). Note

that (13) features the derivative of logS(!) rather than that of S(!). This 
hoi
e is motivated

by two reasons: The log-s
ale is generally 
onsidered to be per
eptually more meaningful

for spee
h spe
tra than the linear s
ale and this 
hoi
e makes the e�e
tive 
omputation of

R(S) mu
h simpler (see se
tion III). It is usually found, and this is also true for the problem

under 
onsideration, that the 
hoi
e of the roughness penalty has less in
uen
e than the

value of the smoothing parameter � [22℄, [15℄. In the following, we use (13) with r = 1 and

we postpone the dis
ussion of the in
uen
e of � to se
tion IV-B.

III. Cepstral envelope estimation algorithms

The penalized likelihood 
riterion given by (12) may be used in various ways. Be
ause

it derives from a likelihood approximation, it is robust to the envelope parameterization

and we have su

essfully applied the method to both the 
epstral and the all pole envelope

representations. Another interesting feature of (12) is that it is naturally 
ompatible with

other forms of likelihood approximation, su
h as the \Whittle likelihood" used for stationary

pro
esses with smooth psd. [25℄. In [4℄, [23℄ this property is used to estimate a single spe
tral

envelope in a two-band model where the lower part of the spe
trum is modeled as an harmoni


signal (for voi
ed sounds) and the upper part of the spe
trum is modeled as a stationary

pro
ess.

After a bit of experimentation with the method, the approa
h we re
ommend 
onsists of

optimizing (12) using the 
epstral parameterization. Indeed, the penalized 
riterion of (12)

does not in general 
orrespond to a 
onvex fun
tion and its minimization has to be 
arried

out using an iterative numeri
al optimization pro
edure. The optimization turns out to be

mu
h faster and reliable (i.e. free of lo
al extrema) when using the 
epstral parameterization.

One �rst reason for this good behavior is that the penalty R(S) is then a (
onvex) quadrati


form [6℄, [25℄ (see also se
tion III-A below); As a se
ond element to support this �nding, we

show in appendix B that the likelihood 
riterion given by (11) is 
onvex with high probability

in a neighborhood of the true envelope for low noise levels.

Finally, be
ause there are spee
h pro
essing appli
ations for whi
h numeri
al optimiza-

tion would be too demanding, we dis
uss in se
tion III-B a low implementation 
ost approx-
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imation of (12) under the form of an equivalent (for low noise levels) weighted least-squares


riterion.

A. Exa
t algorithm

In this se
tion, we 
onsider the form taken by the proposed pro
edure when using the


epstral parameterization of the envelope S:

S(!

k

) = s

k

= exp[


0

+ 2

p

X

n=1




n


os!

k

n℄ (14)

With this parameterization, appli
ation of the Parseval relation to (13) shows that R(S)

redu
es to a quadrati
 form:

R(S) = 


0

R
 (15)

where 
 = (


0

; : : : ; 


p

)

0

is the ve
tor of 
epstrum 
oeÆ
ients (the prime denoting transpo-

sition), and R is a diagonal matrix whose diagonal entries are 2(0; 1

2r

; 2

2r

; : : : ; p

2r

) [6℄, [5℄.

Thus, for the 
epstral parameterization, exp(��R(S)) exa
tly 
orresponds to a multivariate

normal prior, with zero mean and varian
e de
reasing with the 
epstrum index n propor-

tionally to 1=n

2

(when r = 1), whi
h resembles the observed statisti
al behavior of spee
h


epstrums

1

[18℄.

With the 
epstral parameterization, exa
t 
omputation of the gradient of the 
omposite


riterion given in (12) is feasible: Eq (15) shows that the gradient of the penalty R(S) is

given by 2R
 and the gradient of the integrated likelihood 
riterion may be 
omputed as

(see appendix B)

r




L(
) =

K

X

k=1

0

B

B

�

1

2 
os!

k

1

.

.

.

2 
os!

k

p

1

C

C

A

s

k

n

k

�

1�

r

x

k

s

k

I

1

I

0

�

2

r

s

k

x

k

n

2

k

��

(16)

It is thus possible to use eÆ
ient iterative optimization approa
hes for minimizing (12). In

the following, we use a BFGS quasi-Newton method with embedded 
ubi
 polynomial line

sear
hes [26℄ to estimate the envelope parameters. This is not ne
essarily the best available

method for un
onstrained numeri
al optimization but it is implemented by most numeri
al

analysis pa
kages so that our results will be easily reprodu
ed.

Experimenting with di�erent initializations suggests that the optimization pro
edure is

not very sensitive to its initialization (or in other words that lo
al minima are not a real

problem), ex
ept when the value of � is too low (see se
tion IV-B). Appendix B provides

an element of the answer by showing that when the 
epstral parameterization is used, the

1

This is a
tually true only for the sub-ve
tor 


1

; : : : ; 


n

sin
e R(S) does not depend on 


0

. For 


0

the prior

equivalent to R(S) is thus an improper 
onstant prior, independent of 


1

; : : : ; 


n

.
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integrated likelihood 
riterion L(�) is 
onvex with high probability in a large neighborhood

of the a
tual envelope. Note that the in
lusion of the roughness penalty further ampli�es

this e�e
t by adding a 
onstant positive de�nite matrix (R) to the Hessian of the 
riterion

to be minimized.

B. Weighted least-squares approximation

Depending on the 
onstraints of the appli
ation under 
onsideration (
omputing re-

sour
es and 
oating point pre
ision) the iterative optimization approa
h des
ribed in the

previous se
tion may be too demanding. For this purpose, we now derive an approximation

of (7) based on the delta or approximate linearization method whi
h is suitable for low noise


onditions. Starting from the joint asymptoti
 normality of the phase and quadrature esti-

mates â

k

and

^

b

k

, we obtain the asymptoti
 normality of the transformation v

k

= log(â

2

k

+

^

b

2

k

)

using standard arguments [34℄, where the limitingmean and 
ovarian
e are respe
tively given

by

E(v

k

) = log(a

2

k

+ b

2

k

) + o(1)

= log s

k

+ o(1)

Var(v

k

) =

�

�v

k

�a

k

;

�v

k

�b

k

�

Cov(â

k

;

^

b

k

)

�

�v

k

�a

k

;

�v

k

�b

k

�

0

(1 + o(1))

= 2

n

k

s

k

(1 + o(1)) (17)

and in addition, one 
an also show by the same te
hnique that (5) implies that v

k

and v

j

jointly are asymptoti
ally normal and that

Cov(v

k

; v

j

)=

p

n

k

n

j

! 0 when k 6= j

If we assume s

k

; 1 � k � K to be the a
tual values of the envelope at the harmoni


frequen
ies, the optimally weighted least squares 
riterion is thus given by

K

X

k=1

s

k

n

k

(log x

k

� log s

k

)

2

(18)

Eq. (18) is 
lose to the dis
rete 
epstrum 
riterion proposed by Galas and Rodet in [12℄

with the important di�eren
e that instead of giving equal weights to all the frequen
y mea-

surements when doing the least-squares �t, one should weight them a

ording to the lo
al

SNRs s

k

=n

k

. The pertinen
e of this weighting s
heme is dramati
ally illustrated by �g. 1

whi
h shows how the reliability of the estimated amplitudes de
reases in noisy area of the

spe
trum.

Eq. (18) shows that the optimal 
hoi
e for the least-squares weights depends on the lo
al

SNRs and thus on the unknown spe
tral envelope S. To approa
h this optimal behavior with
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a data driven approa
h (that is without requiring prior information on the envelope to be

estimated), we adopt a 
lassi
 approa
h in non-parametri
 smoothing based on a preliminary

estimate of S (sometimes referred to as a \plug-in" approa
h):

Algorithm: Cepstral estimation based on the Gaussian approximation

1. Compute the penalized least-squares solution

^

 = (C

0

C+ �R)

�1

C

0

v (19)

where C is the 
epstrum regression matrix

C =

0

�

1 2 
os(!

1

) : : : 2 
os(!

1

p)

.

.

.

.

.

.

.

.

.

1 2 
os(!

L

) : : : 2 
os(!

L

p)

1

A

(20)

R is the regularization matrix de�ned in (15) and v = (log x

1

; : : : ; logx

K

)

0

is the

ve
tor of log-power measurements.

2. Compute the weights 


k

= ŝ

k

=n

k

for k = 1; : : : ; K where ŝ

k

is 
omputed using (14)

from the ve
tor of 
epstral 
oeÆ
ients
^

 estimated using (19).

3. Solve the penalized weighted least-squares problem by

^

 = (C

0

�C+ �R)

�1

C

0

�v

where � = diag(


1

; : : : ; 


K

) is the diagonal matrix of weights.

The numeri
al 
omplexity of the above algorithm is twi
e that of the dis
rete 
epstrum

method (step 1 only, with � = 0), whose numeri
al 
omplexity is of order p

3

(solution of a

linear system with p+1 unknowns). In the following, we will use the phrase \least-squares" to

refer to the method of Galas and Rodet rather than \dis
rete 
epstrum" whi
h is potentially

misleading in a 
ontext where several 
epstral estimation algorithms are 
ompared.

IV. Evaluation

In this se
tion, we dis
uss the performan
es of the various estimation methods introdu
ed

in se
tion III whi
h are referred to as: OLC for \Optimization of the Likelihood Criterion"

(
f. se
tion III-A), LS for \Least-Squares" approximation and WLS for \Weighted Least-

Squares" approximation (
f. se
tion III-B). For 
omparison purposes, the performan
es of

the standard Auto-Regressive (or AR) approa
h on the same data are also reported.

The experimental setup is �rst des
ribed in se
tion IV-A. After investigating the in
u-

en
e of the smoothing parameter � (se
tion IV-B), we then 
ompare the performan
e of the

four methods (se
tion IV-C). Finally, se
tion IV-D is devoted to robustness issues and to

the appli
ation of the method in a 
omplete harmoni
 analysis/synthesis system.
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A. Experimental setup

For real spee
h signals, there is no way of 
ontrolling what the a
tual envelope is and

furthermore, the degree of adequa
y of the sinusoidal model itself is diÆ
ult to assess. To

base our analysis on obje
tive distan
e measures, we thus 
onsider syntheti
 signals generated

from the model given in (1) for three typi
al spee
h envelopes and various pit
h and SNR


ombinations summarized in table I (see se
tion IV-D for an example of results obtained on

real spee
h).

Parameter Values

Envelope /a/ (E1), /u/ (E2), /i/ (E3)

Pit
h (4000� !

1

=�) 100, 140, 180, 220, 260Hz

Signal-To-Noise-Ratio (SNR) 50, 40, 30, 20dB

TABLE I

Summary of the simulation parameters.
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d
B

−60

−40

−20

0 E2

d
B

0 500 1000 1500 2000 2500 3000 3500 4000

−60

−40

−20

0 E3

Hz

d
B

Fig. 1. S
atterplot of the estimated harmoni
 magnitudes for 50 independent noise realizations for ea
h

of the three test envelopes; The solid 
urve is the a
tual envelope and the dotted line 
orresponds to the

apparent noise level n (SNR = 20dB, pit
h 180Hz).

The envelopes have been obtained by 
onvolving four 
as
aded se
ond order 
ells de-

signed from formant data with a stylized glottal pulse shape and lip radiation model, follow-

ing [29℄. To avoid aliasing e�e
ts due to the high frequen
y formants, the 
omputation of

the envelope was done using 16kHz as sampling frequen
y, retaining only the �rst half of the

spe
trum. The three resulting envelopes are shown on �gure 1 (solid line). The envelopes are

used to generate 8kHz sampled syntheti
 signals a

ording to (1), whi
h sound reasonably

natural and are 
learly re
ognizable as vowel sounds [a℄, [u℄ and [i℄. The duration of the

frame is set to T = 256 samples (32ms). In all experiments, �w is 
hosen to be a hanning

window. To assess the robustness to noise of the various estimation s
hemes, 50 independent
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noise realizations where generated for ea
h of the 60 parameter 
ombinations arising from

table I. For simpli
ity we use Gaussian white noise so that the apparent noise power de�ned

in (6) is 
onstant through the frequen
y domain.

Figure 1 shows the variability of the Fourier magnitude estimates x

k

for the middle pit
h

(180Hz) and high noise (20dB SNR) 
ondition. As a �rst remark, we note that the se
ond

envelope has a mu
h important spe
tral dynami
 so that it is indeed mu
h more sensitive

to noise than the other two. The se
ond important remark is that �gure 1 
learly highlights

the weakness of the LS 
riterion whi
h treats all the measured Fourier magnitudes as being

equally 
redible whereas it is patent that the measurements in regions where the envelope

level is 
lose (or below) the apparent noise level are not at all reliable.

As a referen
e, an AR(12) model was �tted to all signals using Yule-Walker method with

windowing by the hanning window. The 
orresponding AR envelope estimate was obtained

as

E =

�̂

2

j

^

A(e

�j!

)j

2

�

8

3

�

2

K

(21)

where 8=3 
orresponds to the inverse of

R

1

0

�w

2

(u)du for the hanning window, whi
h is the

power 
orre
tion due to windowing, and 2=K is a s
aling fa
tor whi
h takes into a

ount that

a value of 1 for the spe
tral envelope 
orresponds to a sum of K sinusoids whi
h is a signal

of power K=2 while we assume when deriving the AR estimate that the input is a white

noise of power 1. Note that be
ause we are 
onsidering di�erent pit
h frequen
ies !

1

, the

number of harmoni
s K = b�=!

1


 varies signi�
antly. This s
aling pro
edure is an ad ho


approa
h to 
ompensate for the fa
t that we are 
onsidering an in
orre
t model of the data

when �tting an AR model. It nonetheless gives satisfying results in regions of the spe
trum

that are free from noise (as in �gure 6-A1). This method was sele
ted so as to minimize the

average envelope estimation error on the simulated data for the 50dB SNR 
ondition among

a number of alternatives whi
h in
luded: use of a �xed s
aling fa
tor determined from the

data or s
aling a

ording to (21); hanning windowing or no windowing; AR orders between

8 and 16. Note that all options had a limited in
uen
e ex
ept for the model order.

The distan
e between the a
tual envelope S and an estimated envelope

^

S is 
omputed

as a dis
rete approximation to

s

1

�

max

� �

min

Z

�

max

�

min

�

10 log

10

S(�)� 10 log

10

^

S(�)

�

2

d� (22)

where the �s 
orrespond to the frequen
ies between 80Hz (�

min

) and 4kHz (�

max

) expressed

on the Bark (
riti
al band rate) s
ale using the non-linear frequen
y warping fun
tion given

by [35℄. This distan
e measure (expressed in dB) is thus exa
tly the one used for spee
h

re
ognition appli
ations [28℄ and is generally thought to be per
eptually more signi�
ant

than the log-spe
tral RMS error 
omputed on the original frequen
y s
ale. In the present
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experiment, the Bark transformation mostly has the e�e
t of slightly 
ompressing the error

values, and thus redu
es the measured di�eren
es between the estimation methods. Note that

warping the harmoni
 frequen
ies on the Bark frequen
y s
ale 
an improve the performan
es

of the methods of se
tion III wrt. the 
riterion given in (22) as demonstrated in [5℄ (this

possibility is not 
onsidered here for reasons of spa
e).

100 140 180 220 260
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e
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o
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(d
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)
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Fig. 2. Median AR estimation error as a fun
tion of pit
h for the three envelopes (50dB SNR).
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Fig. 3. Median AR estimation error with 5 and 95% quantiles, as a fun
tion of the SNR for the three

envelopes (140Hz pit
h).

Figures 2 and 3 show the two main fa
tors whi
h in
uen
e the AR estimation method:

The �rst one is the pit
h frequen
y with results worsening steadily as the pit
h raises (�g. 2).

This well known e�e
t illustrated by �gure 6 (
ompare the A1 and A2 plots), o

urs when

the harmoni
 frequen
ies are suÆ
iently spa
ed apart and manifests itself by a bias of the

envelope resonan
es whi
h are attra
ted by the nearest harmoni
 frequen
y.

The se
ond fa
tor of in
uen
e is the noise whi
h signi�
antly degrades the performan
es
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of the method. Figure 7 shows that in noisy areas of the spe
trum, the estimated envelope

grossly overestimates the a
tual envelope by �tting the noise spe
trum rather than the signal

spe
tral envelope. Be
ause of the normalization given by (21), the envelope estimate in noisy

areas of the spe
trum is lo
ated above the apparent noise level (dotted line in �gure 7) and

the AR behavior in these regions is 
lose to that of the methods based on \peak pi
king"

from the periodogram.

In both �gures 2 and 3, the error values pertaining to the E2 envelope are mu
h larger than

those 
orresponding to the other two envelopes be
ause of its important spe
tral dynami
.

B. In
uen
e of the smoothing parameter

A potential problem with the methods dis
ussed in se
tion III is that they involve a

smoothing parameter � whi
h 
ould be diÆ
ult to tune properly. To investigate this problem,

all the signals from the simulation database where analyzed using 50 di�erent values of

the smoothing parameter � logarithmi
ally spa
ed between 10

�3

and 10. There are two

di�erent ways of 
onstraining the estimated 
epstral envelopes to be smooth (this is valid

for the three { LS, WLS and OLC { methods): one 
onsists of redu
ing the order p of

the 
epstral de
omposition in (14), and the other 
onsists of in
reasing the value of the

smoothing parameter �. It turns out that the se
ond one is the most e�e
tive sin
e sele
ting

a 
epstral order p whi
h is too small 
an generate for some envelopes a large unre
overable

approximation bias. In the following, we thus use p = 40, that is more parameters than

the number of harmoni
s (for all pit
h values) so that the smoothness of the envelope is

fully determined by �. Of 
ourse the methods 
an be used with su

ess for redu
ed order


epstral parameterization (typi
ally, of the order of twenty 
oeÆ
ients are needed to obtain

a reasonable approximation to envelopes su
h as the ones shown on �gure 1) but then, the

value 
hosen for � should also depend on the 
hoi
e of p.
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−0.2

0

0.2

0.4

0.6

0.8

d
B

log
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Fig. 4. Median redu
tion in estimation error wrt. the AR method as a fun
tion of � for LS, WLS and OLC.

Figure 4 shows the median redu
tion in estimation error wrt. the AR method, ie.



ESTIMATION OF THE SPECTRAL ENVELOPE OF VOICED SOUNDS 15

−3 −2 −1  0  1
−10

−5

0

5

10

d
B

LS

−3 −2 −1  0  1
−10

−5

0

5

10
d
B

WLS

−3 −2 −1  0  1
−10

−5

0

5

10

d
B

log
10

(λ)

OLC

Fig. 5. Box and whisker plots of the redu
tion in estimation error wrt. AR estimation, for 12 values of �.

SNR (dB) 50 40 30 20

Median loss (dB) 0 0 0 0.3

Upper 90% quantile (dB) 0 0.5 1.7 3.9

TABLE II

Median redu
tion in estimation error of OLC wrt. WLS as a fun
tion of the SNR

(�

WLS

= 0:6, �

OLC

= 0:15).

E

AR

�E

other method


onsidering all the signals in the database (60 
onditions times 50 noise re-

alizations), for the three methods. Comparing to the performan
es of the AR method on the

same signals redu
es the variability and ensures that we are fo
using on the improvements

and not on the absolute values of the error whi
h vary to a great extent with the envelope,

the noise 
ondition, et
 (see �gures 2 and 3). A �rst important remark is that there are

large ranges for � (allowing for variations of several orders of magnitude) where the median

redu
tion in error is positive, that is where the three methods perform better than AR. As

suggested by �gure 1, the LS method is less eÆ
ient than both WLS and OLC, and more

sensitive to the 
hoi
e of �, with performan
es degrading qui
kly in the rightmost part of

the plot.

To give an idea of the implementation 
osts of OLC, the median number of iterations

de�ned as the number of evaluations of the 
riterion (11) and its gradient (16) is 67, and

in 50% of the 
ases the required number of iterations is between 55 and 80. Note that

be
ause we are using a quasi Newton approa
h, the optimization 
onverges quite qui
kly

on
e it has rea
hed the domain of attra
tion of a mode [26℄, so that these numbers are

rather independent of the sele
ted stopping 
riterion.

Figure 5 shows a more detailed pi
ture by plotting the distributions of the redu
tion
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in estimation error for several values of � under the form of box and whisker plots (with

the box showing the median and the 25 and 75% quantiles, the whiskers giving an idea of

the extent of the distribution and the points indi
ating \outliers"). For WLS and OLC, the

distributions of the error redu
tion are almost entirely lo
ated above 0 whi
h indi
ate that

the improvement wrt. AR is quasi-systemati
 (and not only true on average). The OLC

plot (bottom plot in �gure 5) shows two interesting fa
ts:

First, for low values of �, the OLC performs very badly for some rare envelopes (outliers

falling below -5dB for the values of � smaller than 0.1). These 
ases indeed 
orrespond to

situations of mis
onvergen
e of the method where the upper limit of 250 iterations is rea
hed

without stabilization of the envelope estimate. The fa
t that these 
ases of mis
onvergen
e

only o

ur when � is too small is 
oherent with the dis
ussion of se
tion III 
on
erning the

role of the roughness penalty.

Although WLS performs ni
ely and is most robust to the 
hoi
e of �, there are 
ases where

the OLC error is mu
h lower (upper outliers in the bottom plot of �gure 5). Indeed, the

OLC method is more robust to noise than WLS as illustrated by table II: Whereas the

two methods are absolutely equivalent when the noise is as low as 50dB SNR, OLC does

signi�
antly better for the 20dB SNR 
ondition with an improvement that is greater than

3.9dB in 10% of the 
ases. An example of the di�eren
e of performan
es between WLS and

OLC in noisy situations will be given below in �gure 7.

Based on �gure 4, the optimal 
hoi
e for a �xed value of � is 3:510

�2

for LS, 0.6 for WLS

and 0.15 for OLC. The potential gain of tuning � for ea
h signal separately is rather weak as

the previous 
hoi
es ensure median performan
es that are less than 0.05dB from optimal for

the three methods (the optimal 
hoi
e of � being in this 
ase 
omputed independently for

ea
h signal). It is only for OLC that data dependent tuning of � 
ould be of some interest,

sin
e there is a few 
ases where the loss wrt. the optimal 
hoi
e of � is signi�
ant: 12%

of 
ases where it is greater than 0.5dB and 5% where it is greater 1.5dB. Unfortunately

data driven tuning of the smoothing parameter for the 
riterion given by (12) is an open

problem be
ause the envelope depends non-linearly on the parameters and furthermore has

an in
uen
e on the hypothesized noise level (as illustrated by �gure 1). In the following,

we thus only 
onsider the performan
es of the method obtained when setting � to the �xed

values given above, whi
h seems the most reasonable option for spee
h and audio pro
essing.

C. Detailed analysis of the performan
es

The �rst type of situation where OLC or WLS are superior to AR is when the pit
h

frequen
y is high. Table III shows that both methods perform equally well for the lower pit
h


onditions (100 and 140Hz), but OLC is preferable when the pit
h is high, with a di�eren
e

whi
h 
an be as high as 2.3dB on average for the 260Hz pit
h. Figure 6 shows a typi
al

example of this situation where both methods are equivalent for the 100Hz pit
h (A1 and

B1 plots) and the AR method is severely biased towards the frequen
ies of the harmoni
s

lo
ated at 660Hz and 1.1kHz when the pit
h equals 220Hz (A2 and B2 plots). The results
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Pit
h (Hz) 100 140 180 220 260

Lower 10% quantile (dB) 0.1 -0.2 0.1 -0.1 0.3

Median redu
tion (dB) 0.3 0.1 0.5 0.4 2.3

Upper 90% quantile (dB) 0.4 0.3 0.7 0.7 3

TABLE III

Influen
e of pit
h: Median redu
tion in estimation error of OLC wrt. AR as a fun
tion

of the pit
h (50dB SNR).
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Fig. 6. In
uen
e of the pit
h frequen
y (50dB SNR) : Estimated envelope (light 
urve) and a
tual E1

envelope (bold 
urve) in the 200Hz-1.5kHz band. A1 AR method with 100Hz pit
h; B1 OLC method with

100Hz pit
h; A2 AR method with 220Hz pit
h; B2 OLC method with 220Hz pit
h. The triangles represent

the frequen
ies of the harmoni
s.

of WLS are not represented on table III and �gure 6 as these pertain to the 50dB SNR


ondition for whi
h the WLS and OLC estimates are indistinguishable (
f. table II).

The presen
e of noise is the other situation where OLC and WLS are more a

urate than

AR. Table IV shows the di�eren
e between AR an OLC be
oming qui
kly signi�
ant as the

SNR de
reases. Figure 7, whi
h shows three superimposed envelope estimates in ea
h plot

to give an idea of the variability, illustrates the origin of the measured di�eren
es: While

regions where the envelope lies well below the noise level 
annot be estimated pre
isely by

any of the methods, OLC and WLS largely redu
e the envelope over-estimation e�e
t as well

as the variability 
aused by the noise. In su
h a situation, OLC performs better than WLS,

whi
h is not surprising sin
e the Gaussian approximation used to derive the WLS 
riterion

(in se
tion III-B) is very poor in noisy regions of the spe
trum.
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SNR (dB) 50 40 30 20

Lower 10% quantile (dB) 0.1 0 0.1 1.2

Median redu
tion (dB) 0.3 0.3 0.4 2.4

Upper 90% quantile (dB) 0.4 2.6 5.2 8.7

TABLE IV

Influen
e of noise: Median redu
tion in estimation error of OLC wrt. AR as a fun
tion

of the SNR (100Hz pit
h).
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Fig. 7. Envelopes estimated by AR, WLS and OLC (from left to right). Ea
h plot 
onsists of the a
tual

envelope (bold 
urve), envelope estimates for three noise realizations (light 
urves) and the apparent noise

level (dotted line). E2 envelope, 140Hz pit
h, 40dB SNR.

D. Robustness issues

Until now, the simulation parameters (pit
h and noise level) have been 
onsidered as

known, whi
h favors the methods whi
h make use of this information { LS, WLS and OLC

for the pit
h, WLS and OLC for the noise level.

The methods proposed in this paper are 
ertainly sensitive to pit
h estimation errors,

but sinusoidal (or harmoni
) modeling is by de�nition very vulnerable to pit
h errors: Lo
al

pit
h estimation is indeed very reliable (see [27℄ for details) so that when errors a
tually

o

urs, they are usually quite \large" (jump to a sub-multiple, in
orre
t voi
ing de
ision).

Su
h an error is mu
h more audible than isolated envelope estimation errors. A reliable pit
h

dete
tor is thus an absolute requirement for sinusoidal modeling. From our experien
e, the

most troublesome points are in
orre
t estimation of the noise level and/or in
orre
t voi
ing

de
isions. It is indeed well known that the fa
t that the stationary model (1) does not exa
tly

�t the signal, even in voi
ed se
tions, makes estimation of the noise psd. and assessment

of the �t of the harmoni
 model a diÆ
ult issue. Re
all that the \noise" 
orresponds to

anything that is not �tted by the harmoni
 model. In pra
ti
e, the \noise" thus 
orresponds

both to spee
h related sounds (fri
tion noise for instan
e) and/or to environmental sounds.

Note that in
orre
t voi
ing de
isions are also a problem for systems that use AR envelope

estimation: Figure 7 
learly shows that an AR method, modi�ed so as to produ
e an estimate

of the envelope in voi
ed parts of the spe
trum, is a biased estimate of the psd. in noisy
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area of the spe
trum and vi
e-versa. It is nonetheless patent that as AR estimation does not

require estimating the noise psd. it is more robust than WLS and OLC in this respe
t.

Pit
h (Hz) 100 140 180 220 260

10dB underestimation of the noise level

Median redu
tion (dB) 0.2 0 0.5 0.3 2.2

10dB overestimation of the noise level

Median redu
tion (dB) 0.3 0.1 0.5 0.2 2.2

TABLE V

Influen
e of pit
h when the noise level is under/over estimated: Median redu
tion in

estimation error of OLC wrt. AR as a fun
tion of the pit
h (50dB SNR).

SNR (dB) 50 40 30 20

10dB underestimation of the noise level

Median redu
tion (dB) 0.1 0.2 0.2 1.4

Upper 90% quantile (dB) 0.3 1.8 3 3.5

10dB overestimation of the noise level

Median redu
tion (dB) 0.3 0.2 0.4 2.2

Upper 90% quantile (dB) 0.5 0.3 5.9 7.3

TABLE VI

Influen
e of noise when the noise level is under/over estimated: Median redu
tion in

estimation error of OLC wrt. AR as a fun
tion of the SNR (100Hz pit
h).

In order to provide some quantitative elements to the above dis
ussion, we evaluated the

analogous of tables III and IV with a systemati
 mis-estimation of �10dB of the noise level.

Table V shows that, as expe
ted, the e�e
t of noise under/over-estimation is not signi�
ant

when the noise level is small. In noisy situations, 
omparison of table VI with table IV shows

that the situation is more 
ontrasted with a limited impa
t of noise overestimation and a more

signi�
ant degradation in 
ase of underestimation. Overestimation indeed means treating

as dubious some measurements that are already a�e
ted by noise whereas underestimation


an 
onstrain the envelope to take into a

ount measurements that are mostly dominated

by noise (
f. �g. 1). In both 
ases, the median redu
tion in error stays positive whi
h means

that OLC is still preferable to AR despite a severe error in the estimation of the a
tual noise

level.

To illustrate the robustness of the proposed approa
h, we now 
onsider the more realisti



ase where all model parameters are unknown and need to be estimated. The analyzed signal

now is a 0.87s voi
ed se
tion of good quality real spee
h

2

uttered by a young 
hildren. The

2

IPA trans
ription:

[am�AZele℄
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pit
h is quite high and varies signi�
antly over the sele
ted ex
erpt (from 265Hz in the

middle se
tion to 480Hz at the end of the ex
erpt). The signal is analyzed with 30ms

frames shifted by 5ms. The pit
h is determined using the method of [13℄ without frame-

to-frame pit
h tra
king. To estimate the noise psd, we follow the suggestion of [30℄ and

dis
ard the periodogram values 
orresponding to frequen
y indexes lo
ated near the harmoni


frequen
ies. A smooth psd. model is then �tted to the remaining periodogram ordinates

using the approa
h of [25℄. The time-domain syntheti
 signal is obtained by overlap-add using

the estimated phase of the harmoni
s together with the harmoni
 amplitudes 
omputed from

the estimated spe
tral envelope.

0 1000 2000 3000 4000
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20

30

40

50

60

70

Hz

d
B

0 1000 2000 3000 4000
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20

30

40

50
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70
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OLCAR

Fig. 8. Estimation results for the frame lo
ated 1.35s from the beginning. Left: AR (bold 
urve) and

smoothed AR envelope (dashed bold 
urve); Right: OLC envelope (bold 
urve). On both plots: squared

magnitude spe
trum s
aled by 4=N

2

w

(light 
urve) and estimated noise psd. s
aled by 4G

�w

=T (dotted 
urve).

Comparing the bold 
urves on the two plots of �gure 8 
learly illustrates two short
om-

ings of the AR approa
h in this 
ontext: Ringing (be
ause the pit
h is very high, some of

the poles are lo
ated exa
tly at the harmoni
 frequen
ies) and overestimation in noisy areas

of the spe
trum. By 
ontrast, the envelope estimated by OLC is both smoother and more

pre
ise and, in the upper region of the spe
trum (above 3kHz) where the harmoni
s are

dominated by noise, it is less in
uen
ed by noise than the AR envelope. Several modi�
a-

tions of AR modeling have been suggested in order to 
ir
umvent the ringing problem. As

an illustration of this type of approa
hes, the dashed bold 
urve in the left plot of �gure 8


orresponds to the result obtained with the spe
tral smoothing te
hnique of [33℄ (whi
h 
on-

sists in weighting the estimated auto
ovarian
e 
oeÆ
ients). The smoothed AR estimation

is not a very attra
tive te
hnique 
ompared to OLC in this situation be
ause the elimina-

tion of the ringing phenomenon is obtained at the 
ost of a signi�
ant overestimation of the

envelope in the valleys (in addition, the use of AR smoothing for low pit
hes where ringing

does not o

ur is not re
ommended sin
e it severely degrades the a

ura
y of AR envelope

estimation).

The spe
trograms shown in �gure 9 
onvey the same idea with AR envelope estimation

resulting in patent overestimation of the magnitude of the �rst two harmoni
s together with

some visible distortions in the upper part of the spe
trum (the area lo
ated above 3kHz

around time 0.45s 
orresponds to fri
tion noise and should not be modeled by the harmoni
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Fig. 9. Narrow band spe
trograms of the original signal (top plot) and the harmoni
 syntheti
 signals

obtained from AR (middle plot) and OLC (bottom plot) envelopes (pre-emphasis by 1=(1+ 0:97z

�1

), 60dB

depth).

envelope). The latter problem is usually 
ir
umvented by applying the harmoni
 model

only in the lower part of the spe
trum (with a 
uto� referred to as \maximum voi
ing

frequen
y" in [32℄), but �gure 9 nonetheless shows that OLC estimation would still be useful

in robustifying the harmoni
 envelope wrt. to errors in the determination of the maximum

voi
ing frequen
y. On the example of �gure 9, the distortion brought by AR envelope

modeling is distin
tively audible, while the syntheti
 time-varying harmoni
 signals obtained

either by dire
t resynthesis (with the estimated harmoni
 magnitudes) or from the spe
tral

envelopes estimated by the OLC or WLS methods are indistinguishable. A longer se
tion

of the signal shown in �gure 9 together with the asso
iated results and MATLAB fun
tions

needed to implement the methods dis
ussed in se
tion IV are available through the Internet

at address http://www.tsi.enst.fr/~
appe/env.

V. Dis
ussion

As already mentioned, the stationary sinusoidal model is at most an approximation of

the signal behavior on a short time frame and the very 
on
ept of \a
tual envelope" is

questionable. Among the ex
iting possibilities for future work, tra
king of a non-stationary

(or evolutive) version of the stationary sinusoidal model is 
ertainly a key issue. Another

important aspe
t is without doubt per
eption. We however feel that per
eptual issues are

beyond the s
ope of the present paper, in parti
ular be
ause they are appli
ation dependent:

An estimation error su
h as the one in �gure 6-A2 is largely above the per
eption threshold

but it 
ould be the 
ase that in very low bit rate 
oding appli
ations, this error still is


on
ealed by the envelope distortion due to quantization or by some other sour
e or signal
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distortion. Likewise, the envelope overestimation visible on the left plot of �gure 7 
ertainly

is a problem for denoising appli
ations where signal overestimation means in
reasing the

residual noise level but it 
ould be of less importan
e in 
oding appli
ations be
ause of

masking phenomenons.

We would like however to 
on
lude the paper by stressing that the likelihood 
riterion

given by (11) has a strong theoreti
al basis (see also appendix A), provides an interesting

insight into the limitation of the previously proposed method of \dis
rete 
epstrum" (se
-

tion III-B) and performs signi�
antly better than both the AR and the dis
rete 
epstrum

methods, parti
ularly for high pit
hed and noisy signals. The weighted least-squares ap-

proximation provides a redu
ed implementation 
ost alternative whi
h is equivalent to the

optimization based approa
h in low noise situations. On most hardware platforms, the es-

timator based on optimization will be suitable only for o�-line appli
ations (analysis and


oding of units for spee
h synthesis, high quality analysis/synthesis) but the least-squares

approximation 
an easily meet the requirement of real time spee
h and audio pro
essing.

Appendix

I. Derivation of the likelihood 
riterion for Gaussian white noise

In this appendix, we 
onsider the noisy harmoni
 model given by (1) assuming that the

noise pro
ess is a Gaussian white noise with power �

2

. Under this simplifying assumption,

it is shown that the likelihood asso
iated to (1) is equivalent for large sample sizes to an

expression whi
h only depends on the observations through the Fourier estimates at the

frequen
ies of the harmoni
s and an estimate of the noise power. We next show that, the

likelihood integrated with respe
t to the phase response of the spe
tral envelope yields the


riterion de�ned in (11).

The likelihood 
orresponding to (1) in the Gaussian 
ase is

p(r) =

1

(2��

2

)

T=2

exp

�

�

1

2�

2

(r�m)

0

(r�m)

�

(23)

where r = (r

1

; : : : ; r

T

)

0

, m = (m

1

; : : : ; m

T

)

0

and the prime denote transposition. For any

T � T invertible matrix M, (23) may be rewritten as

p(r) =

1

(2��

2

)

T=2

exp

�

�

1

2�

2

(M

0

(r�m))

0

(M

0

M)

�1

(M

0

(r�m))

�

Let M denote the matrix de�ned by blo
ks as

M =

h

P(T �K)

.

.

. Q(T �K)

.

.

. U(T � (T � 2K))

i

where P

tk

= 
os!

k

t, Q

tk

= sin!

k

t for 1 � k � K, 1 � t � T and U is 
hosen among the

matri
es whi
h satisfy U

0

U = I

T�2K

, U

0

P = 0 and U

0

Q = 0. P;Q and U thus de�ne a

subspa
e de
omposition of R

0

for whi
h U is orthogonal to both P and Q. For �nite sample
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sizes, P and Q are not orthogonal but it is a standard result that they are quasi-orthogonal

for large sample sizes in the sense that [27℄, [31℄

P

0

P =

T

2

I

K

+O(1)

Q

0

Q =

T

2

I

K

+O(1)

P

0

Q = O(1) (24)

where the O(1) notation stands for terms that 
an be bounded from above. Hen
e, for large

sample sizes,

p(r) =

1

(2��

2

)

T=2

exp

�

�

T

4�

2

��

2

T

P

0

(r�m)

�

0

�

2

T

P

0

(r�m)

�

+

�

2

T

Q

0

(r�m)

�

0

�

2

T

Q

0

(r�m)

��

(1 +O(1=T ))

�

1

2�

2

[U

0

(r�m)℄

0

[U

0

(r�m)℄

�

(25)

The third term in (25) normalized by the sample size T is a biased but 
onsistent estimate of

the noise power whi
h is denoted �̂

2

. Note that this term does not depend on the parameters

of the envelope sin
e the orthogonality of U with both P and Q implies that U

0

m = 0 so

that �̂

2

= r

0

UU

0

r=T . Eq. (25) may thus be rewritten as

p(r) = exp

�

�

T

4�

2

h�

[
^
a� a℄

0

[
^
a� a℄ + [

^

b� b℄

0

[

^

b� b℄

�

(1 +O(1=T )) + 2�̂

2

i

�

(26)

where
^
a =

2

T

P

0

r and

^

b =

2

T

Q

0

r respe
tively denote the estimated in phase and in quadrature

amplitudes of the harmoni
s (when no data tapper is used) and a = (a

1

; : : : ; a

k

)

0

, b =

(b

1

; : : : ; b

k

)

0

are the a
tual harmoni
 magnitudes as de�ned by the envelope. In obtaining

(26) we have used (24) to show that

2

T

P

0

m! a and

2

T

Q

0

m! b. Noting that n =

4�

2

T

is the

apparent noise level for the re
tangular window, and introdu
ing the notations of se
tion II

(x

k

= â

2

k

+

^

b

2

k

, s

k

= a

2

k

+ b

2

k

), (26) may be rewritten as

p(r) = exp

�

�

T �̂

2

2�

2

�

K

Y

k=1

exp

��

�

s

k

+ x

k

n

+ 2

r

x

k

s

k

n

2


os(�

k

�

^

�

k

)

�

(1 +O(1=T ))

�

(27)

where �

k

, Angle(a

k

; b

k

) denotes the phase of the kth harmoni
 as given by the envelope

model whereas

^

�

k

, Angle(â

k

;

^

b

k

) is the phase measured from the observed signal.

Note that in (27), the O(1=T ) terms do not depend upon any of the quantities ex
ept

T itself. Assuming, that the parameters �

k

, for 1 � k � K, have a prior distribution whi
h
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is uniform on [0; 2�℄, it is thus possible to integrate out these nuisan
e parameters to obtain

�p(r) ,

1

(2�)

K

Z

[0;2�℄

K

p(r)d�

1

: : : d�

K

= exp

�

�

T �̂

2

2�

2

�

K

Y

k=1

exp

�

�

s

k

+ x

k

n

�

I

0

�

2

r

x

k

s

k

n

2

�

(1 +O(1=T )) (28)

where I

0

is the Bessel fun
tion of order 0 de�ned in (8).

II. Derivatives of the likelihood 
riterion

In this se
tion, we 
onsider the �rst and se
ond order derivatives of the likelihood 
ri-

terion given by (11). Closed-form expressions of the gradient and Hessian are obtained that

are valid for any envelope parameterization. In the 
ase of the 
epstral parameterization

some arguments are provided to ba
k up the experimental observation that the 
riterion is

generally 
onvex if the algorithm is started from a point suÆ
iently 
lose to the true envelope

parameters.

We will denote the envelope parameters by '

0

; : : : ; '

p

where p denotes the order of the

parameterization. Di�erentiating (11) is made easy by the use of the following relations [1℄

dI

0

(y)

dy

= I

1

(y)

d (yI

1

(y))

dy

= yI

0

(y) (29)

The gradient of L(x

1

; : : : ; x

K

jS) is obtained as
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=
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(30)

where the notation �s

k

=�'

i

is used as a short-hand for �S(!

k

)=�'

i

. The expression of the

Hessian follows:
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(31)

The implementation of (30) and (31) is made easy by the fa
t that the only spe
ial fun
tion

that needs to be evaluated is the ratio I

1

=I

0

(y). This ratio is parti
ularly well behaved sin
e

it is positive and for large values of y the following approximation holds [1℄

I

1

I

0

(y) = 1�

1

2y

+ o(

1

y

) (32)
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In general, the Hessian given by (31) is not positive de�nite. For the 
epstral param-

eterization de�ned in (14) however, the matrix (�

2

s

k

=�


j

�


i

) is a positive rank one matrix

and (31) simpli�es to

�

2

L

�


j

�


i
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K

X

k=0

C

ki
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s

k

n
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x

k

n

2

k

���

(33)

where the 
epstral regression matrix C was de�ned in (20). Ea
h of the terms in the above

summation has an interesting behavior when s

k

(the squared amplitude of the sinusoidal


omponent) be
omes large with respe
t to the apparent noise level n

k

: If we omit the fa
tors

that involve x

k

=s

k

, (32) shows that the term 
orresponding to the index k in (33) 
an be

approximated as

s

k

n

k

[

1

2

+o(1)℄. The fa
tor x

k

=s

k

does not modify this result sin
e (10) indi
ates

that E[x

k

=s

k

℄! 1 and Var[x

k

=s

k

℄! 0 as s

k

! +1. Appli
ation of the 
ontinuous mapping

theorem shows that the latter result is indeed valid if we use the symbol o

p

() whi
h denotes


onvergen
e in probability to zero in pla
e of o() [34℄. Computer simulations of this term

show that it is positive with high probability even for moderate values of s

k

. For instan
e,

when the apparent signal to noise ratio s

k

=n

k

equals 6 dB, the estimated probability of

negativeness is 0.3%.

As a 
onsequen
e, if all the sinusoids are well above the apparent noise level (s

k

� n

k

),

ea
h of the term in (33) is non-negative with high probability, and thus the Hessian of

the likelihood 
riterion L(x

1

; : : : ; x

K

jS) is positive de�nite. Note that for the Hessian to

be positive de�nite, it takes K > p (more measurements than the number of envelope

parameters) be
ause the matrix M de�ned by M

ij

= C

ki

C

kj

is a rank one matrix. In

pra
ti
e however, the Hessian is positive de�nite even when this 
onstraint isn't met, and

furthermore, negative eigenvalues appear less often than suggested by the above derivations

be
ause of the 
onstant matrix �R (see se
tion III-A) added by the roughness penalty whi
h

enfor
es the positiveness.

Be
ause the Hessian is a 
ontinuous fun
tion of the parameters, the previous observation

is true for a whole neighborhood of the a
tual envelope S. Thus, if the envelope is well

above the noise level and if the algorithm is started from an envelope suÆ
iently 
lose to the

unknown true envelope, the maximization of L(x

1

; : : : ; x

K

jS) redu
es (with high probability)

to a 
onvex problem.
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