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Estimation of the Spetral Envelope of Voied

Sounds Using a Penalized Likelihood Approah

Marine Campedel-Oudot, Olivier Capp�e and Eri Moulines

Abstrat

Estimation of the spetral envelope (magnitude of the transfer funtion) of a �lter driven

by a periodi signal is a long-standing problem in speeh and audio proessing. Reently,

there has been a renewed interest in this issue in onnetion with the rapid developments

of proessing tehniques based on sinusoidal modeling. In this paper, we introdue a new

performane riterion for spetral envelope �tting whih is based on the statistial analysis

of the behavior of the empirial sinusoidal magnitude estimates. We further show that

penalization is an eÆient approah to ontrol the smoothness of the estimation envelope.

In low noise situations, the proposed method an be approximated by a two steps weighted

least-squares proedure whih also provides an interesting insight into the limitations of the

previously proposed \disrete epstrum" approah. A systemati simulation study on�rms

that the proposed methods perform signi�antly better than existing ones for high pithed

and noisy signals.

Index Terms

Spetral estimation, sinusoidal modeling, speeh analysis, non-parametri smoothing

EDICS number: 1-ANLS

I. Introdution

Current speeh analysis/synthesis methods apitalize on the soure-�lter representation

of speeh signals whih is motivated by the aousti theory of speeh prodution. The ba-

si speeh prodution model whih has been proposed more than forty years ago onsists

of a soure signal (glottal exitation) passing through a linear �lter (voal trat) [9℄, [10℄.

Depending on the type of speeh sound, the exitation signal is either noise-like (unvoied

sounds) or periodi and impulsive (voied sounds). The �lter models several distint phe-

nomenons (glottal pulse shape, voal trat transfer funtion, lips radiation response) and

thus does not have a simple and onvenient parametri form although the main ontribu-

tion is that of the voal trat whose transfer funtion an be losely approximated by an

all-pole �lter for most speeh sounds. Both beause of the properties of the human hearing

system and of the signal distortion due to the sound propagating from the speaker to the

reording apparatus, only the spetral magnitude of the �lter in the soure-�lter representa-

tion is generally thought to be harateristi of the uttered speeh sound. In this paper, we
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spei�ally onsider the estimation of the spetral envelope (spetral magnitude of the �lter

in the soure-�lter representation) for voied speeh sounds. The reason for fousing on the

voied parts of speeh is that for unvoied sounds, the estimation of the spetral envelope is

a lassial times-series problem whih has been muh studied in the parametri ase (when

assuming for instane that the �lter an be modeled by an all-pole transfer funtion) as well

as in the non-parametri one [31℄, [25℄. This is muh less true for periodi soure signals

despite the fat that aurate estimation of the spetral envelope of voied sounds is a key

ingredient in any speeh (or audio) analysis/synthesis system whih makes uses of voiing

deision. These systems are now ommonly used for speeh oding [20℄ or speeh synthesis

and modi�ation [32℄. Note that spetral envelope estimation is also of prime importane for

speeh reognition [28℄ and although most urrent speeh reognition systems ignore voiing

information, pith and voiing information an be useful even for estimating the spetral

envelope, partiularly for high-pithed voies.

Early attempts towards identifying the spetral envelope inlude applying the LPC (Lin-

ear Preditive Coding) sheme (whih is usually referred to as Auto Regressive, or AR, mod-

eling in the time series literature) in the voied parts of the signals as well as in the unvoied

ones. This approah performs poorly for high-pithed voied speeh sounds beause it is

based on the inorret assumption that the soure signal is a seond order white noise. Sev-

eral methods have been designed to overome this problem in the ontext of LPC either by

further analyzing the LPC residual or by modifying the objetive funtion used for assessing

the �t of the AR model [21℄ [19℄ [16℄.

The SEEVOC (Spetral Envelope Estimation VOCoder) tehnique of [24℄ is based on the

remark that if the soure signal is a periodi impulse train, then the observed signal is a sum

of sinusoids and thus only provides information onerning the value of the spetral envelope

at the frequenies of the harmonis. The solution proposed in [24℄ onsists of interpolating

the estimated spetral envelope between these frequeny points using a standard smoothing

tehnique. While the SEEVOC approah does not rely on a parametri desription of the

spetral envelope, authors suh as El-Jaroudi and Makhoul [8℄ and Galas and Rodet [12℄

have proposed tehniques based on the same priniple for (respetively) the all-pole and the

epstral representation of the spetral envelope. While the epstral parameterization may

appear to be less justi�ed than the all-pole representation for speeh signals, it leads to

omputationally simpler tehniques when the squared log-spetral distane is used to assess

the envelop �t [12℄, [7℄.

A key point is that we are indeed dealing with an ill-posed inverse problem [22℄ in trying

to reover a whole funtion (the spetral envelope) from a noisy measurement of its values in

a few frequenies (orresponding to the harmonis). Aordingly, in [6℄, a roughness penalty

is added to the envelope �t measure proposed by [12℄ so as to enfore the smoothness of the

estimated envelope, following the so-alled \regularization" or \penalization" framework (the

latter denomination being more standard in the applied statistis literature). This approah

was shown in [6℄ and [5℄ to be very eÆient in preventing the appearane of unnatural
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envelopes observed by Galas and Rodet (usually for high pithed sounds) [12℄.

The shortoming of the method desribed in [6℄ however is that the use of the squared

log-domain distane as a measure of how well the envelope �ts the measured harmoni mag-

nitudes is arbitrary and ounter-intuitive: Both beause the harmonis of high magnitude

are more important from a pereptual point of view and beause they are more reliably

estimated, it would be preferable to give di�erent weights to the �tting errors depending on

the magnitude of the harmonis. Although we will not address the �rst (pereptual) aspet,

the point of the present paper onsists of showing that the seond e�et (reliability of the

magnitude estimation whih depends on the magnitude of the harmoni) an be aounted

for using a more elaborate �t riterion. This riterion will be obtained as an approximate

likelihood riterion assuming that the ideal voied speeh sound is observed in additive noise.

Additive noise is the simplest model whih an to some extent aount for both: (1) the

modeling errors (i.e. the fat that the \sum of harmonis" model does not exatly �t a speeh

signal even on short durations beause of the non-stationarity of speeh); (2) the fat that

some voied sounds also features a signi�ant amount of frition noise; (3) the ambient noise

whih may be of signi�ant level (in mobile ommuniations for instane, Signal-to-Noise

Ratios, or in short SNRs, of 5dB or less are not that unommon).

The rest of the paper is organized as follows: In setion II, the approximate likelihood

of the envelope parameters is obtained; Setion III is devoted to the study of numerial

optimization methods suited for maximizing the proposed penalized likelihood riterion;

Finally, we disuss in setion IV the performane of the method for typial speeh analysis

purposes.

II. Penalized likelihood riterion

A. Asymptoti integrated likelihood

In voied parts of the signal, appliation of the Poisson formula shows that the soure-

�lter representation is equivalent to an harmoni deomposition. We thus assume that the

observed signal onsists of
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of this assumption for speeh proessing appliations will be disussed in more details in

setion IV-D. The spetral envelope S(!) is parametrized in the power domain suh that
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Let â
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sinusoid estimated from the tapered Fourier transform of the signal:
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where w denotes the data taper (or window), and the normalizing onstant N

w

is de�ned as
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To make the expressions simpler, we will assume that the data taper w is obtained by

regular sampling of a ontinuous-time positive window funtion �w(�) de�ned on [0; 1℄, that

is: w

t

= �w(t=T ) for t = 1; : : : ; T .

It is shown in appendix A that in the simpler ase where �

t

is a Gaussian white noise,

the Fourier estimates (â
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;

^
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); 1 � k � K asymptotially (when T is large) form a set

of suÆient statistis for the estimation of the envelope. Moreover, when the nuisane

parameters �

k

; 1 � k � K are eliminated by marginalization (by integration over the range

[0; 2�)), the resulting asymptoti riterion is a funtion of the estimated squared magnitudes

x
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only. Marginalization is the method of hoie for handling nuisane

parameters in the Bayesian framework and is generally thought to be more robust than

the pro�le likelihood approah whih onsists of optimizing with respet to (abbreviated to

wrt. in the following) the nuisane parameters [2℄. In the ase under onsideration, using

a pro�le likelihood would imply �tting a omplex envelope model to the data. For speeh

signals however, omplex envelope modeling is only a sensible hoie if the frame loations

an be synhronized with the glottal losures. Suh an approah would thus require pith

synhronous proessing and robust estimation of the glottal losures, whih is a diÆult task

[11℄, [3℄.

The result obtained in appendix A, although restrited in sope, is very intuitive, as

it suggests that for large values of the frame size T , estimators of the spetral envelope
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should be based on the Fourier power measurements x

k

; 1 � k � K at the frequenies of the

harmonis. We will use this priniple in a broader ontext noting that the amplitude values

estimated through (2)-(3) are known to be asymptotially normal for a very large lass

of noise proesses (not neessarily white nor Gaussian) and that under suitable tehnial

onditions [14℄, [27℄,
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=2 orresponds to the power of the noise a�eting the measurement of the phase or quadra-

ture amplitude for one sinusoid, and thus dereases in inverse proportion of the sample

size [31℄, [27℄. Eqs. (4)-(5) also hold for the maximum likelihood (weighted least-squares)

estimator of the sinusoidal amplitudes sine both proedures are equivalent for large sample

size T [31℄. When proessing voied speeh with standard analysis settings (frame duration

of about 30ms with a smooth data taper), these asymptoti results are indeed aurate be-

ause the periodiity of the signal implies that the frequenies of the sinusoidal omponents

are separated by the fundamental frequeny whih is larger than the spetral resolution,

exept for the lowest (less than 80Hz) pith values [31℄ (note that the results of setion IV

show that for suh very low pith values, envelope estimation an be reliably ahieved by

standard methods suh as diret AR estimation).
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whose probability density is given by [17℄
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where s
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= a
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is the atual value of squared magnitude of the kth harmoni and I
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Eq. (7) orresponds to a positively skewed distribution (espeially for low values of s
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With the independene approximation, the negative log-likelihood of the K squared
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In appendix A, the preeding expression is obtained diretly using simple alulations for

the ase of Gaussian white noise.

In pratie, diret evaluation of (11) using (9) an be awkward beause the Bessel fun-

tions have an exponential behavior in +1. The omputation of log(I

0

) (as well as I

1

=I

0

,

introdued in appendix B) an however be arried out using standard ombinations of series

trunation and approximations detailed in [1℄, [17℄ or [26℄.

B. Roughness Penalty

In many ases of interest, diret minimization of (11) yields envelopes that have a non-

smooth behavior and are unaeptably sensitive to small variations in the observed data

[6℄, [25℄. This phenomenon has been previously observed with other envelope estimation

methods [8℄, [12℄. Intuitively, the ill-posed harater of the envelope estimation problem is

a onsequene of the fat that there are many ontinuous envelopes that an be plausibly

�tted to just one snapshot of a redued set of frequeny measurements.

The standard solution to this problem onsists of onstraining the behavior of the esti-

mated envelope by use of a so-alled roughness penalty R(S) (also known as a \regularization"

or \smoothing" funtional) [22℄. The likelihood riterion is replaed by a penalized riterion

of the form:

L(x
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; : : : ; x

K
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where R(S) is the roughness penalty whih takes large values for envelopes S that have

a non-smooth behavior and � is a salar parameter whih ontrols the smoothness of the

estimated envelope. This penalized approah an also be viewed as a Bayesian maximum a

posteriori estimation proedure where exp(��R(S)) plays the role of a prior for the envelope

parameters [22℄.

In the following, we use

R(S) =

1

2�
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�

d

r

logS(!)

d!

r

�

2
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whih has been used for envelope estimation in [6℄ (with r = 1) and in [25℄ (with r = 2). Note

that (13) features the derivative of logS(!) rather than that of S(!). This hoie is motivated

by two reasons: The log-sale is generally onsidered to be pereptually more meaningful

for speeh spetra than the linear sale and this hoie makes the e�etive omputation of

R(S) muh simpler (see setion III). It is usually found, and this is also true for the problem

under onsideration, that the hoie of the roughness penalty has less inuene than the

value of the smoothing parameter � [22℄, [15℄. In the following, we use (13) with r = 1 and

we postpone the disussion of the inuene of � to setion IV-B.

III. Cepstral envelope estimation algorithms

The penalized likelihood riterion given by (12) may be used in various ways. Beause

it derives from a likelihood approximation, it is robust to the envelope parameterization

and we have suessfully applied the method to both the epstral and the all pole envelope

representations. Another interesting feature of (12) is that it is naturally ompatible with

other forms of likelihood approximation, suh as the \Whittle likelihood" used for stationary

proesses with smooth psd. [25℄. In [4℄, [23℄ this property is used to estimate a single spetral

envelope in a two-band model where the lower part of the spetrum is modeled as an harmoni

signal (for voied sounds) and the upper part of the spetrum is modeled as a stationary

proess.

After a bit of experimentation with the method, the approah we reommend onsists of

optimizing (12) using the epstral parameterization. Indeed, the penalized riterion of (12)

does not in general orrespond to a onvex funtion and its minimization has to be arried

out using an iterative numerial optimization proedure. The optimization turns out to be

muh faster and reliable (i.e. free of loal extrema) when using the epstral parameterization.

One �rst reason for this good behavior is that the penalty R(S) is then a (onvex) quadrati

form [6℄, [25℄ (see also setion III-A below); As a seond element to support this �nding, we

show in appendix B that the likelihood riterion given by (11) is onvex with high probability

in a neighborhood of the true envelope for low noise levels.

Finally, beause there are speeh proessing appliations for whih numerial optimiza-

tion would be too demanding, we disuss in setion III-B a low implementation ost approx-
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imation of (12) under the form of an equivalent (for low noise levels) weighted least-squares

riterion.

A. Exat algorithm

In this setion, we onsider the form taken by the proposed proedure when using the

epstral parameterization of the envelope S:
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normal prior, with zero mean and variane dereasing with the epstrum index n propor-

tionally to 1=n

2

(when r = 1), whih resembles the observed statistial behavior of speeh

epstrums

1

[18℄.

With the epstral parameterization, exat omputation of the gradient of the omposite

riterion given in (12) is feasible: Eq (15) shows that the gradient of the penalty R(S) is

given by 2R and the gradient of the integrated likelihood riterion may be omputed as

(see appendix B)
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It is thus possible to use eÆient iterative optimization approahes for minimizing (12). In

the following, we use a BFGS quasi-Newton method with embedded ubi polynomial line

searhes [26℄ to estimate the envelope parameters. This is not neessarily the best available

method for unonstrained numerial optimization but it is implemented by most numerial

analysis pakages so that our results will be easily reprodued.

Experimenting with di�erent initializations suggests that the optimization proedure is

not very sensitive to its initialization (or in other words that loal minima are not a real

problem), exept when the value of � is too low (see setion IV-B). Appendix B provides

an element of the answer by showing that when the epstral parameterization is used, the

1

This is atually true only for the sub-vetor 
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sine R(S) does not depend on 
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integrated likelihood riterion L(�) is onvex with high probability in a large neighborhood

of the atual envelope. Note that the inlusion of the roughness penalty further ampli�es

this e�et by adding a onstant positive de�nite matrix (R) to the Hessian of the riterion

to be minimized.

B. Weighted least-squares approximation

Depending on the onstraints of the appliation under onsideration (omputing re-

soures and oating point preision) the iterative optimization approah desribed in the

previous setion may be too demanding. For this purpose, we now derive an approximation

of (7) based on the delta or approximate linearization method whih is suitable for low noise

onditions. Starting from the joint asymptoti normality of the phase and quadrature esti-
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and in addition, one an also show by the same tehnique that (5) implies that v
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jointly are asymptotially normal and that
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If we assume s
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; 1 � k � K to be the atual values of the envelope at the harmoni

frequenies, the optimally weighted least squares riterion is thus given by
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Eq. (18) is lose to the disrete epstrum riterion proposed by Galas and Rodet in [12℄

with the important di�erene that instead of giving equal weights to all the frequeny mea-

surements when doing the least-squares �t, one should weight them aording to the loal

SNRs s

k

=n

k

. The pertinene of this weighting sheme is dramatially illustrated by �g. 1

whih shows how the reliability of the estimated amplitudes dereases in noisy area of the

spetrum.

Eq. (18) shows that the optimal hoie for the least-squares weights depends on the loal

SNRs and thus on the unknown spetral envelope S. To approah this optimal behavior with
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a data driven approah (that is without requiring prior information on the envelope to be

estimated), we adopt a lassi approah in non-parametri smoothing based on a preliminary

estimate of S (sometimes referred to as a \plug-in" approah):

Algorithm: Cepstral estimation based on the Gaussian approximation

1. Compute the penalized least-squares solution

^
 = (C

0

C+ �R)

�1

C

0

v (19)

where C is the epstrum regression matrix

C =

0

�

1 2 os(!

1

) : : : 2 os(!

1

p)

.

.

.

.

.

.

.

.

.

1 2 os(!

L

) : : : 2 os(!

L

p)

1

A

(20)

R is the regularization matrix de�ned in (15) and v = (log x

1

; : : : ; logx

K

)

0

is the

vetor of log-power measurements.

2. Compute the weights 

k

= ŝ

k

=n

k

for k = 1; : : : ; K where ŝ

k

is omputed using (14)

from the vetor of epstral oeÆients
^
 estimated using (19).

3. Solve the penalized weighted least-squares problem by

^
 = (C

0

�C+ �R)

�1

C

0

�v

where � = diag(

1

; : : : ; 

K

) is the diagonal matrix of weights.

The numerial omplexity of the above algorithm is twie that of the disrete epstrum

method (step 1 only, with � = 0), whose numerial omplexity is of order p

3

(solution of a

linear system with p+1 unknowns). In the following, we will use the phrase \least-squares" to

refer to the method of Galas and Rodet rather than \disrete epstrum" whih is potentially

misleading in a ontext where several epstral estimation algorithms are ompared.

IV. Evaluation

In this setion, we disuss the performanes of the various estimation methods introdued

in setion III whih are referred to as: OLC for \Optimization of the Likelihood Criterion"

(f. setion III-A), LS for \Least-Squares" approximation and WLS for \Weighted Least-

Squares" approximation (f. setion III-B). For omparison purposes, the performanes of

the standard Auto-Regressive (or AR) approah on the same data are also reported.

The experimental setup is �rst desribed in setion IV-A. After investigating the inu-

ene of the smoothing parameter � (setion IV-B), we then ompare the performane of the

four methods (setion IV-C). Finally, setion IV-D is devoted to robustness issues and to

the appliation of the method in a omplete harmoni analysis/synthesis system.
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A. Experimental setup

For real speeh signals, there is no way of ontrolling what the atual envelope is and

furthermore, the degree of adequay of the sinusoidal model itself is diÆult to assess. To

base our analysis on objetive distane measures, we thus onsider syntheti signals generated

from the model given in (1) for three typial speeh envelopes and various pith and SNR

ombinations summarized in table I (see setion IV-D for an example of results obtained on

real speeh).

Parameter Values

Envelope /a/ (E1), /u/ (E2), /i/ (E3)

Pith (4000� !

1

=�) 100, 140, 180, 220, 260Hz

Signal-To-Noise-Ratio (SNR) 50, 40, 30, 20dB

TABLE I

Summary of the simulation parameters.
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Fig. 1. Satterplot of the estimated harmoni magnitudes for 50 independent noise realizations for eah

of the three test envelopes; The solid urve is the atual envelope and the dotted line orresponds to the

apparent noise level n (SNR = 20dB, pith 180Hz).

The envelopes have been obtained by onvolving four asaded seond order ells de-

signed from formant data with a stylized glottal pulse shape and lip radiation model, follow-

ing [29℄. To avoid aliasing e�ets due to the high frequeny formants, the omputation of

the envelope was done using 16kHz as sampling frequeny, retaining only the �rst half of the

spetrum. The three resulting envelopes are shown on �gure 1 (solid line). The envelopes are

used to generate 8kHz sampled syntheti signals aording to (1), whih sound reasonably

natural and are learly reognizable as vowel sounds [a℄, [u℄ and [i℄. The duration of the

frame is set to T = 256 samples (32ms). In all experiments, �w is hosen to be a hanning

window. To assess the robustness to noise of the various estimation shemes, 50 independent
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noise realizations where generated for eah of the 60 parameter ombinations arising from

table I. For simpliity we use Gaussian white noise so that the apparent noise power de�ned

in (6) is onstant through the frequeny domain.

Figure 1 shows the variability of the Fourier magnitude estimates x

k

for the middle pith

(180Hz) and high noise (20dB SNR) ondition. As a �rst remark, we note that the seond

envelope has a muh important spetral dynami so that it is indeed muh more sensitive

to noise than the other two. The seond important remark is that �gure 1 learly highlights

the weakness of the LS riterion whih treats all the measured Fourier magnitudes as being

equally redible whereas it is patent that the measurements in regions where the envelope

level is lose (or below) the apparent noise level are not at all reliable.

As a referene, an AR(12) model was �tted to all signals using Yule-Walker method with

windowing by the hanning window. The orresponding AR envelope estimate was obtained

as

E =

�̂

2

j

^

A(e

�j!

)j

2

�

8

3

�

2

K

(21)

where 8=3 orresponds to the inverse of

R

1

0

�w

2

(u)du for the hanning window, whih is the

power orretion due to windowing, and 2=K is a saling fator whih takes into aount that

a value of 1 for the spetral envelope orresponds to a sum of K sinusoids whih is a signal

of power K=2 while we assume when deriving the AR estimate that the input is a white

noise of power 1. Note that beause we are onsidering di�erent pith frequenies !

1

, the

number of harmonis K = b�=!

1

 varies signi�antly. This saling proedure is an ad ho

approah to ompensate for the fat that we are onsidering an inorret model of the data

when �tting an AR model. It nonetheless gives satisfying results in regions of the spetrum

that are free from noise (as in �gure 6-A1). This method was seleted so as to minimize the

average envelope estimation error on the simulated data for the 50dB SNR ondition among

a number of alternatives whih inluded: use of a �xed saling fator determined from the

data or saling aording to (21); hanning windowing or no windowing; AR orders between

8 and 16. Note that all options had a limited inuene exept for the model order.

The distane between the atual envelope S and an estimated envelope

^

S is omputed

as a disrete approximation to

s

1

�

max

� �

min

Z

�

max

�

min

�

10 log

10

S(�)� 10 log

10

^

S(�)

�

2

d� (22)

where the �s orrespond to the frequenies between 80Hz (�

min

) and 4kHz (�

max

) expressed

on the Bark (ritial band rate) sale using the non-linear frequeny warping funtion given

by [35℄. This distane measure (expressed in dB) is thus exatly the one used for speeh

reognition appliations [28℄ and is generally thought to be pereptually more signi�ant

than the log-spetral RMS error omputed on the original frequeny sale. In the present
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experiment, the Bark transformation mostly has the e�et of slightly ompressing the error

values, and thus redues the measured di�erenes between the estimation methods. Note that

warping the harmoni frequenies on the Bark frequeny sale an improve the performanes

of the methods of setion III wrt. the riterion given in (22) as demonstrated in [5℄ (this

possibility is not onsidered here for reasons of spae).
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Fig. 2. Median AR estimation error as a funtion of pith for the three envelopes (50dB SNR).
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Fig. 3. Median AR estimation error with 5 and 95% quantiles, as a funtion of the SNR for the three

envelopes (140Hz pith).

Figures 2 and 3 show the two main fators whih inuene the AR estimation method:

The �rst one is the pith frequeny with results worsening steadily as the pith raises (�g. 2).

This well known e�et illustrated by �gure 6 (ompare the A1 and A2 plots), ours when

the harmoni frequenies are suÆiently spaed apart and manifests itself by a bias of the

envelope resonanes whih are attrated by the nearest harmoni frequeny.

The seond fator of inuene is the noise whih signi�antly degrades the performanes
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of the method. Figure 7 shows that in noisy areas of the spetrum, the estimated envelope

grossly overestimates the atual envelope by �tting the noise spetrum rather than the signal

spetral envelope. Beause of the normalization given by (21), the envelope estimate in noisy

areas of the spetrum is loated above the apparent noise level (dotted line in �gure 7) and

the AR behavior in these regions is lose to that of the methods based on \peak piking"

from the periodogram.

In both �gures 2 and 3, the error values pertaining to the E2 envelope are muh larger than

those orresponding to the other two envelopes beause of its important spetral dynami.

B. Inuene of the smoothing parameter

A potential problem with the methods disussed in setion III is that they involve a

smoothing parameter � whih ould be diÆult to tune properly. To investigate this problem,

all the signals from the simulation database where analyzed using 50 di�erent values of

the smoothing parameter � logarithmially spaed between 10

�3

and 10. There are two

di�erent ways of onstraining the estimated epstral envelopes to be smooth (this is valid

for the three { LS, WLS and OLC { methods): one onsists of reduing the order p of

the epstral deomposition in (14), and the other onsists of inreasing the value of the

smoothing parameter �. It turns out that the seond one is the most e�etive sine seleting

a epstral order p whih is too small an generate for some envelopes a large unreoverable

approximation bias. In the following, we thus use p = 40, that is more parameters than

the number of harmonis (for all pith values) so that the smoothness of the envelope is

fully determined by �. Of ourse the methods an be used with suess for redued order

epstral parameterization (typially, of the order of twenty oeÆients are needed to obtain

a reasonable approximation to envelopes suh as the ones shown on �gure 1) but then, the

value hosen for � should also depend on the hoie of p.
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Fig. 4. Median redution in estimation error wrt. the AR method as a funtion of � for LS, WLS and OLC.

Figure 4 shows the median redution in estimation error wrt. the AR method, ie.
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Fig. 5. Box and whisker plots of the redution in estimation error wrt. AR estimation, for 12 values of �.

SNR (dB) 50 40 30 20

Median loss (dB) 0 0 0 0.3

Upper 90% quantile (dB) 0 0.5 1.7 3.9

TABLE II

Median redution in estimation error of OLC wrt. WLS as a funtion of the SNR

(�

WLS

= 0:6, �

OLC

= 0:15).

E

AR

�E

other method

onsidering all the signals in the database (60 onditions times 50 noise re-

alizations), for the three methods. Comparing to the performanes of the AR method on the

same signals redues the variability and ensures that we are fousing on the improvements

and not on the absolute values of the error whih vary to a great extent with the envelope,

the noise ondition, et (see �gures 2 and 3). A �rst important remark is that there are

large ranges for � (allowing for variations of several orders of magnitude) where the median

redution in error is positive, that is where the three methods perform better than AR. As

suggested by �gure 1, the LS method is less eÆient than both WLS and OLC, and more

sensitive to the hoie of �, with performanes degrading quikly in the rightmost part of

the plot.

To give an idea of the implementation osts of OLC, the median number of iterations

de�ned as the number of evaluations of the riterion (11) and its gradient (16) is 67, and

in 50% of the ases the required number of iterations is between 55 and 80. Note that

beause we are using a quasi Newton approah, the optimization onverges quite quikly

one it has reahed the domain of attration of a mode [26℄, so that these numbers are

rather independent of the seleted stopping riterion.

Figure 5 shows a more detailed piture by plotting the distributions of the redution
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in estimation error for several values of � under the form of box and whisker plots (with

the box showing the median and the 25 and 75% quantiles, the whiskers giving an idea of

the extent of the distribution and the points indiating \outliers"). For WLS and OLC, the

distributions of the error redution are almost entirely loated above 0 whih indiate that

the improvement wrt. AR is quasi-systemati (and not only true on average). The OLC

plot (bottom plot in �gure 5) shows two interesting fats:

First, for low values of �, the OLC performs very badly for some rare envelopes (outliers

falling below -5dB for the values of � smaller than 0.1). These ases indeed orrespond to

situations of misonvergene of the method where the upper limit of 250 iterations is reahed

without stabilization of the envelope estimate. The fat that these ases of misonvergene

only our when � is too small is oherent with the disussion of setion III onerning the

role of the roughness penalty.

Although WLS performs niely and is most robust to the hoie of �, there are ases where

the OLC error is muh lower (upper outliers in the bottom plot of �gure 5). Indeed, the

OLC method is more robust to noise than WLS as illustrated by table II: Whereas the

two methods are absolutely equivalent when the noise is as low as 50dB SNR, OLC does

signi�antly better for the 20dB SNR ondition with an improvement that is greater than

3.9dB in 10% of the ases. An example of the di�erene of performanes between WLS and

OLC in noisy situations will be given below in �gure 7.

Based on �gure 4, the optimal hoie for a �xed value of � is 3:510

�2

for LS, 0.6 for WLS

and 0.15 for OLC. The potential gain of tuning � for eah signal separately is rather weak as

the previous hoies ensure median performanes that are less than 0.05dB from optimal for

the three methods (the optimal hoie of � being in this ase omputed independently for

eah signal). It is only for OLC that data dependent tuning of � ould be of some interest,

sine there is a few ases where the loss wrt. the optimal hoie of � is signi�ant: 12%

of ases where it is greater than 0.5dB and 5% where it is greater 1.5dB. Unfortunately

data driven tuning of the smoothing parameter for the riterion given by (12) is an open

problem beause the envelope depends non-linearly on the parameters and furthermore has

an inuene on the hypothesized noise level (as illustrated by �gure 1). In the following,

we thus only onsider the performanes of the method obtained when setting � to the �xed

values given above, whih seems the most reasonable option for speeh and audio proessing.

C. Detailed analysis of the performanes

The �rst type of situation where OLC or WLS are superior to AR is when the pith

frequeny is high. Table III shows that both methods perform equally well for the lower pith

onditions (100 and 140Hz), but OLC is preferable when the pith is high, with a di�erene

whih an be as high as 2.3dB on average for the 260Hz pith. Figure 6 shows a typial

example of this situation where both methods are equivalent for the 100Hz pith (A1 and

B1 plots) and the AR method is severely biased towards the frequenies of the harmonis

loated at 660Hz and 1.1kHz when the pith equals 220Hz (A2 and B2 plots). The results
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Pith (Hz) 100 140 180 220 260

Lower 10% quantile (dB) 0.1 -0.2 0.1 -0.1 0.3

Median redution (dB) 0.3 0.1 0.5 0.4 2.3

Upper 90% quantile (dB) 0.4 0.3 0.7 0.7 3

TABLE III

Influene of pith: Median redution in estimation error of OLC wrt. AR as a funtion

of the pith (50dB SNR).
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Fig. 6. Inuene of the pith frequeny (50dB SNR) : Estimated envelope (light urve) and atual E1

envelope (bold urve) in the 200Hz-1.5kHz band. A1 AR method with 100Hz pith; B1 OLC method with

100Hz pith; A2 AR method with 220Hz pith; B2 OLC method with 220Hz pith. The triangles represent

the frequenies of the harmonis.

of WLS are not represented on table III and �gure 6 as these pertain to the 50dB SNR

ondition for whih the WLS and OLC estimates are indistinguishable (f. table II).

The presene of noise is the other situation where OLC and WLS are more aurate than

AR. Table IV shows the di�erene between AR an OLC beoming quikly signi�ant as the

SNR dereases. Figure 7, whih shows three superimposed envelope estimates in eah plot

to give an idea of the variability, illustrates the origin of the measured di�erenes: While

regions where the envelope lies well below the noise level annot be estimated preisely by

any of the methods, OLC and WLS largely redue the envelope over-estimation e�et as well

as the variability aused by the noise. In suh a situation, OLC performs better than WLS,

whih is not surprising sine the Gaussian approximation used to derive the WLS riterion

(in setion III-B) is very poor in noisy regions of the spetrum.
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SNR (dB) 50 40 30 20

Lower 10% quantile (dB) 0.1 0 0.1 1.2

Median redution (dB) 0.3 0.3 0.4 2.4

Upper 90% quantile (dB) 0.4 2.6 5.2 8.7

TABLE IV

Influene of noise: Median redution in estimation error of OLC wrt. AR as a funtion

of the SNR (100Hz pith).
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Fig. 7. Envelopes estimated by AR, WLS and OLC (from left to right). Eah plot onsists of the atual

envelope (bold urve), envelope estimates for three noise realizations (light urves) and the apparent noise

level (dotted line). E2 envelope, 140Hz pith, 40dB SNR.

D. Robustness issues

Until now, the simulation parameters (pith and noise level) have been onsidered as

known, whih favors the methods whih make use of this information { LS, WLS and OLC

for the pith, WLS and OLC for the noise level.

The methods proposed in this paper are ertainly sensitive to pith estimation errors,

but sinusoidal (or harmoni) modeling is by de�nition very vulnerable to pith errors: Loal

pith estimation is indeed very reliable (see [27℄ for details) so that when errors atually

ours, they are usually quite \large" (jump to a sub-multiple, inorret voiing deision).

Suh an error is muh more audible than isolated envelope estimation errors. A reliable pith

detetor is thus an absolute requirement for sinusoidal modeling. From our experiene, the

most troublesome points are inorret estimation of the noise level and/or inorret voiing

deisions. It is indeed well known that the fat that the stationary model (1) does not exatly

�t the signal, even in voied setions, makes estimation of the noise psd. and assessment

of the �t of the harmoni model a diÆult issue. Reall that the \noise" orresponds to

anything that is not �tted by the harmoni model. In pratie, the \noise" thus orresponds

both to speeh related sounds (frition noise for instane) and/or to environmental sounds.

Note that inorret voiing deisions are also a problem for systems that use AR envelope

estimation: Figure 7 learly shows that an AR method, modi�ed so as to produe an estimate

of the envelope in voied parts of the spetrum, is a biased estimate of the psd. in noisy
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area of the spetrum and vie-versa. It is nonetheless patent that as AR estimation does not

require estimating the noise psd. it is more robust than WLS and OLC in this respet.

Pith (Hz) 100 140 180 220 260

10dB underestimation of the noise level

Median redution (dB) 0.2 0 0.5 0.3 2.2

10dB overestimation of the noise level

Median redution (dB) 0.3 0.1 0.5 0.2 2.2

TABLE V

Influene of pith when the noise level is under/over estimated: Median redution in

estimation error of OLC wrt. AR as a funtion of the pith (50dB SNR).

SNR (dB) 50 40 30 20

10dB underestimation of the noise level

Median redution (dB) 0.1 0.2 0.2 1.4

Upper 90% quantile (dB) 0.3 1.8 3 3.5

10dB overestimation of the noise level

Median redution (dB) 0.3 0.2 0.4 2.2

Upper 90% quantile (dB) 0.5 0.3 5.9 7.3

TABLE VI

Influene of noise when the noise level is under/over estimated: Median redution in

estimation error of OLC wrt. AR as a funtion of the SNR (100Hz pith).

In order to provide some quantitative elements to the above disussion, we evaluated the

analogous of tables III and IV with a systemati mis-estimation of �10dB of the noise level.

Table V shows that, as expeted, the e�et of noise under/over-estimation is not signi�ant

when the noise level is small. In noisy situations, omparison of table VI with table IV shows

that the situation is more ontrasted with a limited impat of noise overestimation and a more

signi�ant degradation in ase of underestimation. Overestimation indeed means treating

as dubious some measurements that are already a�eted by noise whereas underestimation

an onstrain the envelope to take into aount measurements that are mostly dominated

by noise (f. �g. 1). In both ases, the median redution in error stays positive whih means

that OLC is still preferable to AR despite a severe error in the estimation of the atual noise

level.

To illustrate the robustness of the proposed approah, we now onsider the more realisti

ase where all model parameters are unknown and need to be estimated. The analyzed signal

now is a 0.87s voied setion of good quality real speeh

2

uttered by a young hildren. The

2

IPA transription:

[am�AZele℄
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pith is quite high and varies signi�antly over the seleted exerpt (from 265Hz in the

middle setion to 480Hz at the end of the exerpt). The signal is analyzed with 30ms

frames shifted by 5ms. The pith is determined using the method of [13℄ without frame-

to-frame pith traking. To estimate the noise psd, we follow the suggestion of [30℄ and

disard the periodogram values orresponding to frequeny indexes loated near the harmoni

frequenies. A smooth psd. model is then �tted to the remaining periodogram ordinates

using the approah of [25℄. The time-domain syntheti signal is obtained by overlap-add using

the estimated phase of the harmonis together with the harmoni amplitudes omputed from

the estimated spetral envelope.
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Fig. 8. Estimation results for the frame loated 1.35s from the beginning. Left: AR (bold urve) and

smoothed AR envelope (dashed bold urve); Right: OLC envelope (bold urve). On both plots: squared

magnitude spetrum saled by 4=N

2

w

(light urve) and estimated noise psd. saled by 4G

�w

=T (dotted urve).

Comparing the bold urves on the two plots of �gure 8 learly illustrates two shortom-

ings of the AR approah in this ontext: Ringing (beause the pith is very high, some of

the poles are loated exatly at the harmoni frequenies) and overestimation in noisy areas

of the spetrum. By ontrast, the envelope estimated by OLC is both smoother and more

preise and, in the upper region of the spetrum (above 3kHz) where the harmonis are

dominated by noise, it is less inuened by noise than the AR envelope. Several modi�a-

tions of AR modeling have been suggested in order to irumvent the ringing problem. As

an illustration of this type of approahes, the dashed bold urve in the left plot of �gure 8

orresponds to the result obtained with the spetral smoothing tehnique of [33℄ (whih on-

sists in weighting the estimated autoovariane oeÆients). The smoothed AR estimation

is not a very attrative tehnique ompared to OLC in this situation beause the elimina-

tion of the ringing phenomenon is obtained at the ost of a signi�ant overestimation of the

envelope in the valleys (in addition, the use of AR smoothing for low pithes where ringing

does not our is not reommended sine it severely degrades the auray of AR envelope

estimation).

The spetrograms shown in �gure 9 onvey the same idea with AR envelope estimation

resulting in patent overestimation of the magnitude of the �rst two harmonis together with

some visible distortions in the upper part of the spetrum (the area loated above 3kHz

around time 0.45s orresponds to frition noise and should not be modeled by the harmoni
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Fig. 9. Narrow band spetrograms of the original signal (top plot) and the harmoni syntheti signals

obtained from AR (middle plot) and OLC (bottom plot) envelopes (pre-emphasis by 1=(1+ 0:97z

�1

), 60dB

depth).

envelope). The latter problem is usually irumvented by applying the harmoni model

only in the lower part of the spetrum (with a uto� referred to as \maximum voiing

frequeny" in [32℄), but �gure 9 nonetheless shows that OLC estimation would still be useful

in robustifying the harmoni envelope wrt. to errors in the determination of the maximum

voiing frequeny. On the example of �gure 9, the distortion brought by AR envelope

modeling is distintively audible, while the syntheti time-varying harmoni signals obtained

either by diret resynthesis (with the estimated harmoni magnitudes) or from the spetral

envelopes estimated by the OLC or WLS methods are indistinguishable. A longer setion

of the signal shown in �gure 9 together with the assoiated results and MATLAB funtions

needed to implement the methods disussed in setion IV are available through the Internet

at address http://www.tsi.enst.fr/~appe/env.

V. Disussion

As already mentioned, the stationary sinusoidal model is at most an approximation of

the signal behavior on a short time frame and the very onept of \atual envelope" is

questionable. Among the exiting possibilities for future work, traking of a non-stationary

(or evolutive) version of the stationary sinusoidal model is ertainly a key issue. Another

important aspet is without doubt pereption. We however feel that pereptual issues are

beyond the sope of the present paper, in partiular beause they are appliation dependent:

An estimation error suh as the one in �gure 6-A2 is largely above the pereption threshold

but it ould be the ase that in very low bit rate oding appliations, this error still is

onealed by the envelope distortion due to quantization or by some other soure or signal
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distortion. Likewise, the envelope overestimation visible on the left plot of �gure 7 ertainly

is a problem for denoising appliations where signal overestimation means inreasing the

residual noise level but it ould be of less importane in oding appliations beause of

masking phenomenons.

We would like however to onlude the paper by stressing that the likelihood riterion

given by (11) has a strong theoretial basis (see also appendix A), provides an interesting

insight into the limitation of the previously proposed method of \disrete epstrum" (se-

tion III-B) and performs signi�antly better than both the AR and the disrete epstrum

methods, partiularly for high pithed and noisy signals. The weighted least-squares ap-

proximation provides a redued implementation ost alternative whih is equivalent to the

optimization based approah in low noise situations. On most hardware platforms, the es-

timator based on optimization will be suitable only for o�-line appliations (analysis and

oding of units for speeh synthesis, high quality analysis/synthesis) but the least-squares

approximation an easily meet the requirement of real time speeh and audio proessing.

Appendix

I. Derivation of the likelihood riterion for Gaussian white noise

In this appendix, we onsider the noisy harmoni model given by (1) assuming that the

noise proess is a Gaussian white noise with power �

2

. Under this simplifying assumption,

it is shown that the likelihood assoiated to (1) is equivalent for large sample sizes to an

expression whih only depends on the observations through the Fourier estimates at the

frequenies of the harmonis and an estimate of the noise power. We next show that, the

likelihood integrated with respet to the phase response of the spetral envelope yields the

riterion de�ned in (11).

The likelihood orresponding to (1) in the Gaussian ase is

p(r) =

1

(2��

2

)

T=2

exp

�

�

1

2�

2

(r�m)

0

(r�m)

�

(23)

where r = (r

1

; : : : ; r

T

)

0

, m = (m

1

; : : : ; m

T

)

0

and the prime denote transposition. For any

T � T invertible matrix M, (23) may be rewritten as

p(r) =

1

(2��

2

)

T=2

exp

�

�

1

2�

2

(M

0

(r�m))

0

(M

0

M)

�1

(M

0

(r�m))

�

Let M denote the matrix de�ned by bloks as

M =

h

P(T �K)

.

.

. Q(T �K)

.

.

. U(T � (T � 2K))

i

where P

tk

= os!

k

t, Q

tk

= sin!

k

t for 1 � k � K, 1 � t � T and U is hosen among the

matries whih satisfy U

0

U = I

T�2K

, U

0

P = 0 and U

0

Q = 0. P;Q and U thus de�ne a

subspae deomposition of R

0

for whih U is orthogonal to both P and Q. For �nite sample
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sizes, P and Q are not orthogonal but it is a standard result that they are quasi-orthogonal

for large sample sizes in the sense that [27℄, [31℄

P

0

P =

T

2

I

K

+O(1)

Q

0

Q =

T

2

I

K

+O(1)

P

0

Q = O(1) (24)

where the O(1) notation stands for terms that an be bounded from above. Hene, for large

sample sizes,

p(r) =

1

(2��
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(r�m)℄
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(25)

The third term in (25) normalized by the sample size T is a biased but onsistent estimate of

the noise power whih is denoted �̂

2

. Note that this term does not depend on the parameters

of the envelope sine the orthogonality of U with both P and Q implies that U

0

m = 0 so

that �̂

2

= r

0

UU

0

r=T . Eq. (25) may thus be rewritten as

p(r) = exp

�

�

T

4�

2

h�

[
^
a� a℄

0

[
^
a� a℄ + [

^

b� b℄
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[

^

b� b℄

�

(1 +O(1=T )) + 2�̂

2

i
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(26)

where
^
a =

2

T

P

0

r and

^

b =

2

T

Q

0

r respetively denote the estimated in phase and in quadrature

amplitudes of the harmonis (when no data tapper is used) and a = (a

1

; : : : ; a

k

)

0

, b =

(b

1

; : : : ; b

k

)

0

are the atual harmoni magnitudes as de�ned by the envelope. In obtaining

(26) we have used (24) to show that

2

T

P

0

m! a and

2

T

Q

0

m! b. Noting that n =

4�

2

T

is the

apparent noise level for the retangular window, and introduing the notations of setion II

(x

k

= â
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+

^

b

2

k

, s

k
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2

k

+ b

2

k

), (26) may be rewritten as
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(27)

where �

k

, Angle(a

k

; b

k

) denotes the phase of the kth harmoni as given by the envelope

model whereas

^

�

k

, Angle(â

k

;

^

b

k

) is the phase measured from the observed signal.

Note that in (27), the O(1=T ) terms do not depend upon any of the quantities exept

T itself. Assuming, that the parameters �

k

, for 1 � k � K, have a prior distribution whih
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is uniform on [0; 2�℄, it is thus possible to integrate out these nuisane parameters to obtain

�p(r) ,

1

(2�)

K

Z

[0;2�℄

K

p(r)d�

1

: : : d�
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= exp
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(1 +O(1=T )) (28)

where I

0

is the Bessel funtion of order 0 de�ned in (8).

II. Derivatives of the likelihood riterion

In this setion, we onsider the �rst and seond order derivatives of the likelihood ri-

terion given by (11). Closed-form expressions of the gradient and Hessian are obtained that

are valid for any envelope parameterization. In the ase of the epstral parameterization

some arguments are provided to bak up the experimental observation that the riterion is

generally onvex if the algorithm is started from a point suÆiently lose to the true envelope

parameters.

We will denote the envelope parameters by '

0

; : : : ; '

p

where p denotes the order of the

parameterization. Di�erentiating (11) is made easy by the use of the following relations [1℄
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jS) is obtained as

�L

�'

i

=

K

X

k=0

�

�s

k

�'

i

�

1

n

k

�

1�

r

x

k

s

k

I

1

I

0

�

2

r

s

k

x

k

n

2

k

��

(30)

where the notation �s

k
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i

is used as a short-hand for �S(!
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. The expression of the

Hessian follows:
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The implementation of (30) and (31) is made easy by the fat that the only speial funtion

that needs to be evaluated is the ratio I

1

=I

0

(y). This ratio is partiularly well behaved sine

it is positive and for large values of y the following approximation holds [1℄

I

1

I

0

(y) = 1�

1

2y

+ o(

1

y

) (32)
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In general, the Hessian given by (31) is not positive de�nite. For the epstral param-

eterization de�ned in (14) however, the matrix (�

2

s

k

=�

j

�

i

) is a positive rank one matrix

and (31) simpli�es to
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(33)

where the epstral regression matrix C was de�ned in (20). Eah of the terms in the above

summation has an interesting behavior when s

k

(the squared amplitude of the sinusoidal

omponent) beomes large with respet to the apparent noise level n

k

: If we omit the fators

that involve x

k

=s

k

, (32) shows that the term orresponding to the index k in (33) an be

approximated as

s

k

n

k

[

1

2

+o(1)℄. The fator x

k

=s

k

does not modify this result sine (10) indiates

that E[x

k

=s

k

℄! 1 and Var[x

k

=s

k

℄! 0 as s

k

! +1. Appliation of the ontinuous mapping

theorem shows that the latter result is indeed valid if we use the symbol o

p

() whih denotes

onvergene in probability to zero in plae of o() [34℄. Computer simulations of this term

show that it is positive with high probability even for moderate values of s

k

. For instane,

when the apparent signal to noise ratio s

k

=n

k

equals 6 dB, the estimated probability of

negativeness is 0.3%.

As a onsequene, if all the sinusoids are well above the apparent noise level (s

k

� n

k

),

eah of the term in (33) is non-negative with high probability, and thus the Hessian of

the likelihood riterion L(x

1

; : : : ; x

K

jS) is positive de�nite. Note that for the Hessian to

be positive de�nite, it takes K > p (more measurements than the number of envelope

parameters) beause the matrix M de�ned by M

ij

= C

ki

C

kj

is a rank one matrix. In

pratie however, the Hessian is positive de�nite even when this onstraint isn't met, and

furthermore, negative eigenvalues appear less often than suggested by the above derivations

beause of the onstant matrix �R (see setion III-A) added by the roughness penalty whih

enfores the positiveness.

Beause the Hessian is a ontinuous funtion of the parameters, the previous observation

is true for a whole neighborhood of the atual envelope S. Thus, if the envelope is well

above the noise level and if the algorithm is started from an envelope suÆiently lose to the

unknown true envelope, the maximization of L(x

1

; : : : ; x

K

jS) redues (with high probability)

to a onvex problem.
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