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Summary. Reversible jump methods are the most commonly used Markov Chain Monte Carlo tool for

exploring variable dimension statistical models. Recently however, an alternative approach based on

birth-and-death processes has been proposed by Stephens (2000) in the case of mixtures of distribu-

tions. We show that the birth-and-death setting can be generalised to include other types of continuous

time jumps like split-and-combine moves in the spirit of Richardson and Green (1997). We illustrate

these extensions both for mixtures of distributions and for hidden Markov models. We demonstrate the

strong similarity of reversible jump and continuous time methodologies by showing that upon appropri-

ate rescaling of time, the reversible jump chain converges to a limiting continuous time birth-and-death

process. A numerical comparison in the setting of mixtures of distributions highlights this similarity.
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1. Introduction

Markov Chain Monte Carlo (MCMC) methods for statisti
al inferen
e, in parti
ular Bayesian in-

feren
e, have be
ome standard during the past ten years (Capp�e and Robert, 2000). For variable

dimension problems, often arising through model sele
tion, a popular approa
h is Green's (1995)

reversible jump MCMC (RJMCMC) methodology. Re
ently however, in the 
ontext of mixtures

of distributions, Stephens (2000) rekindled interest in use of 
ontinuous time birth-and-death pro-


esses for variable dimension problems, following earlier proposals by Ripley (1977), Geyer and

M�ller (1994), Grenander and Miller (1994) and Phillips and Smith (1996). We will 
all this

approa
h birth-and-death MCMC (BDMCMC) and its generalisations 
ontinuous time MCMC

(CTMCMC).

In this paper, we investigate the similarity between the reversible jump and birth-and-death

methodologies. In parti
ular, it is shown in Se
tion 4 that for any BDMCMC pro
ess satisfying

some weak regularity 
onditions, there exists a sequen
e of RJMCMC pro
esses that 
onverges, in

a sense spe
i�ed below, to the BDMCMC pro
ess.

In their appli
ation of RJMCMC to mixtures of distributions, Ri
hardson and Green (1997)

implemented two types of moves that 
ould 
hange the number of 
omponents of the mixture:

one was birth-and-death, in whi
h a new 
omponent is 
reated or an existing one is deleted, and

the other was split-and-
ombine, in whi
h one 
omponent is split in two, or two 
omponents are


ombined into one. In 
ontrast, Stephens (2000) only dealt with birth-and-death moves in order to

keep the algorithm within the theory of marked point pro
esses on general spa
es, while pointing

out that \one 
an envision a 
ontinuous time version of the general reversible jump formulation."

We show here that 
ontinuous time algorithms are not limited to the birth-and-death stru
ture

and that 
onvergen
e of reversible jump to birth-and-death MCMC is mu
h more general. For

ySupported by the Swedish Resear
h Coun
il.



2 Cappé et al.

example, split-and-
ombine moves 
ould be in
orporated, resulting in more general CTMCMC

algorithms, and the appropriate theoreti
al framework is that of Markov jump pro
esses. To


omplete our study of the 
onne
tions between RJMCMC and CTMCMC, we implemented a full-

s
ale numeri
al 
omparison with moves similar to those in Ri
hardson and Green (1997) used in

both algorithms: the out
ome is the same for both samplers, with a longer exe
ution time for

CTMCMC.

The paper is organised as follows: in Se
tion 2 we review the main features of the BDMCMC

methodology, in
luding moves more general than birth-and-death in Se
tion 2.4 and varian
e re-

du
tion te
hniques in Se
tion 2.5. This te
hnology is exempli�ed for hidden Markov models in

Se
tion 3. Se
tion 4 addresses the 
omparison of this approa
h with reversible jump MCMC

methodology, re
alling the basi
s of RJMCMC in Se
tion 4.1, establishing 
onvergen
e of RJM-

CMC to BDMCMC in Se
tion 4.2 and detailing the numeri
al 
omparison of both algorithms in

Se
tion 4.4. Se
tion 5 
on
ludes the paper with a dis
ussion.

2. Continuous time MCMC methodologies

In this se
tion we review BDMCMC in the mixture 
ase 
onsidered by Stephens (2000) and dis
uss

the extension of the birth-and-death moves to other 
ontinuous time moves. While Stephens

(2000) provides a full des
ription of the method in the spe
i�
 set-up of mixtures of distributions,


ontinuous time MCMC is limited neither to birth-and-death moves, nor to mixture models. For

example, CTMCMC may be applied to any of the examples in Green (1995). See also Ripley

(1977), Geyer and M�ller (1994), Grenander and Miller (1994) and Phillips and Smith (1996),

where broader des
riptions of 
ontinuous time approa
hes 
an be found. In parti
ular, Ripley

(1977) introdu
es the 
on
ept of simulating a birth-and-death pro
ess to approximate its limiting

distribution, even though he was interested in a problem of �xed dimension, while Geyer and

M�ller (1994) propose a Metropolis{Hastings algorithm for spatial point pro
esses and argue on

the superiority of this s
heme 
ompared with a 
ontinuous time approa
h, as do Cli�ord and

Ni
holls (1994).

2.1. A reference example: mixture models

Our ben
hmark is a mixture model, with probability density fun
tion of the form

p(yjk;w;�) =

k

X

i=1

w

i

f(yj�

i

);

where k is the unknown number of 
omponents, w = (w

1

; : : : ; w

k

) are the 
omponent weights,

� = (�

1

; : : : ; �

k

) are the 
omponent parameters and f(�j�) is some parametri
 
lass of densi-

ties indexed by a parameter �, like the Gaussian, the Gamma, the Beta, or the Poisson family.

The 
omponent weights are non-negative numbers summing to unity. Mixture models have been

extensively 
onsidered in the literature, but remain a 
hallenging setting for variable dimension

te
hniques.

The above densities are written as 
onditional on the parameter �, given the Bayesian perspe
-

tive of the paper. Hen
e we need to spe
ify a prior density for (k;w;�), denoted by r(k;w;�).

Here, r is a density with respe
t to a produ
t measure, made of the 
ounting measure in the k-

dimension and of the Lebesgue measure in the (w;�)-dimension. We make no further assumptions

about the prior, ex
ept that it is proper and ex
hangeable for ea
h k, that is, invariant under

permutations of the pairs (w

i

; �

i

). We do not impose any ordering of the �

i

, motivated by iden-

ti�ability reasons, as found in Ri
hardson and Green (1997). We also denote by L(k;w;�) the

likelihood

L(k;w;�) =

m

Y

i=1

p(y

i

jk;w;�);

where y = (y

1

; : : : ; y

m

) is the observed data. The posterior density, whi
h is our starting point

for inferen
e, is thus proportional to r(k;w;�)L(k;w;�). More realisti
 models typi
ally involve



Reversible jump and continuous time MCMC 3

hyperparameters, whi
h add no further diÆ
ulty. Below we set � = (w;�), with k being impli
it

in this notation, and �

(k)

denotes the spa
e of k 
omponent parameters.

A feature inherent to mixture models is that we may asso
iate with ea
h observation y

i

a label

or allo
ation z

i

2 f1; : : : ; kg with P (z

i

= j j k;w) = w

j

, that indi
ates from whi
h 
omponent y

i

was drawn. Given the data, these labels 
an be sampled independently a

ording to

P (z

i

= j j k;w;�; y

i

) = w

j

f(y

i

j�

j

)

�

k

X

`=1

w

`

f(y

`

j�

`

): (1)

This simulation is 
alled 
ompleting the sample as, following EM terminology, (z;y) is referred

to as the 
omplete data. As detailed in Se
tion 3 and as demonstrated in Celeux et al. (2000)

for mixtures, 
ompletion is not ne
essary from a simulation point of view. Ri
hardson and Green

(1997) devised an algorithm that 
arries along the 
omplete data through all moves of the sampler.

In 
ontrast, the algorithm of Stephens (2000) works with in
omplete data, that is, y alone, in the

dimension-
hanging moves, but 
ompletes the data at regular intervals to 
arry out a resampling

of all parameters and hyperparameters but k.

2.2. Birth-and-death MCMC

In Stephens' (2000) form of BDMCMC, new 
omponents are 
reated (born) in 
ontinuous time at

a rate �(�), where � refers to the 
urrent state of the sampler. Whenever a new 
omponent is

born, its weight w and parameter � are drawn from a joint density h(�; (w; �)). In order to in
lude

the new 
omponent, the old 
omponent weights are s
aled down proportionally to make all of the

weights, in
luding the new one, sum to unity; that is, w

i

:= w

i

=(1 + w). The new 
omponent

weight-parameter pair (w; �) is then added to �. We denote these operations by `[', so that the

new state is �[ (w; �). Conversely, in a (k+1) 
omponent 
on�guration �[ (w; �), the 
omponent

(w; �) is killed at rate

Æ(�; (w; �)) =

L(�)r(�)

L(� [ (w; �))r(� [ (w; �))

�

1

k + 1

�

�(�)h(�; (w; �))

(1� w)

k�1

: (2)

The fa
tor (1 � w)

k�1

in (2) results from a 
hange of variable when renormalising the weights.

Indeed, when the 
omponent (w; �) is removed, the remaining 
omponent weights are renormalised

to sum to unity. We denote these operations by `n', so that � = (� [ (w; �)) n (w; �).

An important feature of BDMCMC is that a 
ontinuous time jump pro
ess is asso
iated with

the birth-and-death rates: whenever a jump o

urs, the 
orresponding move is always a

epted.

The a

eptan
e probability of usual MCMC methods is repla
ed by the di�erential holding times.

In parti
ular, implausible 
on�gurations, i.e. 
on�gurations su
h that L(�)r(�) is small, die qui
kly.

2.3. The Markov jump process view and local balance

The birth-and-death pro
ess des
ribed in the previous subse
tion is a Markov jump pro
ess: when-

ever it rea
hes state �, it stays there for an exponentially distributed time with expe
tation depend-

ing on �, and, after expiration of this holding time, jumps to a new state a

ording to a Markov

transition kernel. To ensure that a Markov jump pro
ess has an invariant density proportional to

L(�)r(�), it is suÆ
ient, although not ne
essary, that the lo
al balan
e equations

L(�)r(�)q(�;�

0

) = L(�

0

)r(�

0

)q(�

0

;�) for all �;�

0

; (3)

are satis�ed (Preston, 1976; Ripley, 1977; Geyer and M�ller, 1994). Here q(�;�

0

) is the rate of

moving from state � to �

0

. Spe
ial 
are is required with su
h 
onsiderations, however, sin
e the

transition kernel of the jump 
hain typi
ally does not have a density with respe
t to a single

dominating measure. For example, after killing a 
omponent the new state is 
ompletely known

given the 
urrent one. This problem also o

urs for RJMCMC samplers, as exempli�ed by the

measure 
onstru
tion in Green (1995), and we do not detail it further here. Further reading on

Markov jump pro
esses is found in, for example, Preston (1976), Ripley (1977, Se
tions 2 and 4),

and Breiman (1992, Chap. 15, Se
tions 5 and 6).
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Let us now derive (2) from (3). In the parti
ular 
ase of birth-and-death moves and a k


omponent 
on�guration �, (3) takes the form

L(�)r(�)��(�)h(�; (w; �))

.

(k+1)!�(1� w)

k�1

= L(�[(w; �))r(�[(w; �))�Æ(�; (w; �))

.

k! ; (4)

whi
h indeed leads to (2). The justi�
ation for the various fa
tors in (4) is as follows: the fa
torials

k! and (k+1)! arise from the ex
hangeability assumption on the mixture 
omponents. Given that

we do not impose an ordering 
onstraint on �

1

; : : : ; �

k

, there are k! and (k + 1)! equivalent ways

of writing � and � [ (w; �), respe
tively. The equivalen
e is to be understood as giving the

same likelihood, prior and posterior densities. The 1=(k + 1)! and 1=k! terms thus appear as the

probabilities of sele
ting one of the (k + 1)! and k! possible ways of writing � [ (w; �) and � in

the birth and death moves. This sele
tion is immaterial, sin
e it has no relevan
e for the posterior

distribution. Furthermore, b(�)h(�; (w; �)) is the density of proposing a new 
omponent (w; �),

and (1�w)

k�1

is again a Ja
obian arising from renormalisation of the weights. This determinant

should be asso
iated with the density h, as the (k + 1) 
omponent parameter � [ (w; �) is not

drawn dire
tly from a density on �

(k+1)

, but rather indire
tly through �rst drawing (w; �) and

then renormalising. In order to 
ompute the resulting density on �

(k+1)

one must then 
al
ulate

a Ja
obian. Thus, q(�;� [ (w; �)) = �(�)h(�; (w; �))=(1� w)

k�1

.

2.4. Generalisations of birth-and-death MCMC

Stephens (2000) resampled 
omponent weights and parameters with �xed k, as well as hyperpa-

rameters, at deterministi
 times (as opposed to the random o

urren
es of the birth-and-death

moves). This makes the overall pro
ess inhomogeneous in time. We 
an in
orporate similar moves

into the 
ontinuous time sampler by adding a 
ontinuous time pro
ess in whi
h, in state �, su
h

moves o

ur at rate 
(�). Birth-and-death rates stay the same. The rates for resampling the


omponent weights, parameters, and hyperparameters, 
ould also be di�erent.

A further generalisation is to introdu
e other moves, like the split-and-
ombine moves of

Ri
hardson and Green (1997). We 
onsider here the spe
ial 
ase where, as in Green (1995), the


ombine move is deterministi
. For simpli
ity � denotes an element of the k 
omponent parameter

�. Thus, in a mixture 
ontext, typi
ally � = (w; �).

As for the RJMCMC proposal, the split move for a given 
omponent � of the k 
omponent

ve
tor � is to split this 
omponent as to give rise to a new parameter ve
tor with k+1 
omponents,

de�ned as ((� n �) [ T (�; ")) where T is a di�erentiable one-to-one mapping that outputs two new


omponents and " is a random variable with density fun
tion p. We also assume that the mapping

is symmetri
 in the sense that

P fT (�; ") 2 B

0

�B

00

g = P fT (�; ") 2 B

00

�B

0

g for all B

0

, B

00

. (5)

We denote the total rate of splitting by �(�) and assume that, in a split move, ea
h 
omponent is


hosen with equal probability 1=k. Conversely, the lo
al balan
e equation (3) provides for any of

the k(k � 1)=2 pairs of 
omponents of �, the rate of 
ombining them. In this parti
ular 
ase,

L(�)r(�)�

�(�)

k

� 2 p(")�

�

�

�

�

�T (�; ")

�(�; ")

�

�

�

�

.

(k + 1)!

= L f(� n �) [ T (�; ")g r f(� n �) [ T (�; ")g � q [f(� n �) [ T (�; ")g ;�℄

.

k!

As above, the fa
torials arise as probabilities of sele
ting parti
ular representations of � and (� n

�) [ T (�; "), and �(�)=k is the rate of splitting a parti
ular 
omponent as �(�) is the overall

split rate. The 
oeÆ
ient 2 is due to the fa
t that a 
omponent 
an be split in two pairs that

are identi
al apart from the ordering, and that o

ur with the same probability be
ause of the

symmetry assumption (5); otherwise we would have to repla
e p(") with the average of two terms.

Thus, the rate of 
ombining two 
omponents, q [f(� n �) [ T (�; ")g ;�℄, is

L(�)r(�)

L f(� n �) [ T (�; ")g r f(� n �) [ T (�; ")g

�

�(�)

(k + 1)k

� 2p(")

�

�

�

�

�T (�; ")

�(�; ")

�

�

�

�

: (6)

In Se
tion 4.3, we will dire
tly derive this rate from Ri
hardson and Green's (1997) sampler.
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2.5. Sampling in continuous time: a new Rao–Blackwellisation

For a dis
rete time RJMCMC sampler, its output is typi
ally monitored after ea
h step, or on

regular intervals in order to de
rease inter-sample 
orrelation as in Ripley (1977, Se
tion 5) and

Ri
hardson and Green (1997).

In 
ontinuous time, there are more options. For example, the pro
ess may be sampled at regular

times, as in Stephens (2000), or at instants given by an independent Poisson pro
ess. In either


ase posterior means E[g(�) j y℄ are estimated by sample means N

�1

P

N

1

g(�(�

i

)), where f�(t)g is

the CTMCMC pro
ess and the �

i

's are the sampling instants. Under the former sampling s
heme,

if the sampling interval tends to zero, we e�e
tively put a weight on ea
h state visited by f�(t)g

that is equal to the length of the holding time in that state, when 
omputing the sample mean.

Before elaborating further on this idea, we introdu
e some additional notation.

Let T

n

be the time of the n-th jump of f�(t)g with T

0

= 0. By the jump 
hain we mean

the Markov 
hain f�(T

n

)g of states visited by f�(t)g. We denote this 
hain by f

e

�

n

g, that is,

e

�

n

= �(T

n

). Let �(�) be the total rate of f�(t)g leaving state �, that is, the sum of the birth and

all death rates, plus the rates of all other kinds of moves there may be. Then the holding time

T

n

�T

n�1

of f�(t)g in its n-th state

e

�

n�1

has a 
onditional exponential Exp(�(

e

�

n�1

)) distribution.

Returning to the sampling s
heme, we 
an redu
e sampling variability by repla
ing the weight

T

n

� T

n�1

by its expe
tation 1=�(

e

�

n�1

). In this way the varian
es of estimators built from the

sampler output are de
reased: both numerator and denominator have redu
ed varian
e by virtue

of the Rao{Bla
kwell theorem, sin
e

N

X

n=1

g(

e

�

n�1

)

�(

e

�

n�1

)

=

N

X

n=1

E[T

n

� T

n�1

j

e

�

n�1

℄ g(

e

�

n�1

)

and likewise for the denominator. The asymptoti
 varian
e of the ratio

N

X

n=1

g(

e

�

n�1

)=�(

e

�

n�1

)

�

N

X

n=1

1=�(

e

�

n�1

)


an then be shown to be smaller than when using T

n

� T

n�1

in pla
e of 1=�(

e

�

n�1

), following

Geweke (1989).

When sampling f�(t)g this way, we only simulate the jump 
hain and store ea
h state it visits

and the 
orresponding expe
ted holding time. Alternatively, the expe
ted holding times may be

re
omputed when post-pro
essing the sampler output. The transition kernel of the jump 
hain

is as follows: the probability of an event happening is proportional to its rate. For example, the

probability of a birth is �(�)=�(�), and if a birth o

urs the new 
omponent weight and parameter

are drawn from h(�; (w; �)) as before. Thus we need to 
ompute all rates when simulating the

jump 
hain, just as we do when simulating f�(t)g. All possible moves are in
orporated into the

Rao{Bla
kwellised estimator, not only those that are sele
ted.

This reformulation of the 
ontinuous time algorithm has more than pra
ti
al appeal for the

approximation of integrals. Indeed it highlights a point that will be made 
learer in Se
tion 4,

namely that the 
ontinuous time stru
ture is paramount neither for the MCMC algorithm nor for

the approximation of integrals.

3. An illustration for hidden Markov models

Before moving to the 
omparison with reversible MCMC, we illustrate the potential of our 
ontin-

uous time extension in the set-up of hidden Markov models (Robert et al., 2000).

3.1. Setting

In this generalisation of the mixture model, the observations y

n

are su
h that, 
onditional on

a hidden Markov 
hain fz

n

g with �nite state spa
e f1; : : : ; kg, y

n

is distributed as a N (0; �

2

z

n

)

variate. Therefore, marginally, y

n

is distributed from a mixture of normal distributions.
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Unlike previous implementations, we 
hoose to parameterise the transition probability matrix

of the Markov 
hain fz

n

g by P = (!

ij

) as follows:

P (z

n+1

= j j z

n

= i) = !

ij

�

k

X

`=1

!

i`

:

The !

ij

's are therefore not identi�ed, but this parameterisation should fa
ilitate the MCMC moves,

provided a vague proper prior is sele
ted, sin
e it relaxes the 
onstraints on those moves. Further,

this reparameterisation allows for a point pro
ess representation of the problem (Preston, 1976;

Ripley, 1977; Geyer and M�ller, 1994). The prior model 
onsists in a uniform prior Uf1; : : : ;Mg

on k, an Exp(1) prior on the !

ij

's, a uniform U(0; �) prior on the �

i

's and a data dependent

Exp(5max jy

n

j) prior on the hyperparameter 1=�; Robert et al. (2000) noti
ed that the fa
tor 5 in

the exponential distribution was of little 
onsequen
e. We stress that we impose no identi�ability


onstraints by ordering the varian
es, in 
ontrast to Robert et al. (2000). Another major di�eren
e

is that, as in Stephens (2000), we do not use 
ompletion to run our algorithm. That is to say, the

latent Markov 
hain fz

n

g is not simulated by the algorithm. This 
an be avoided due to both the

forward re
ursive representation of the likelihood for a hidden Markov model (Baum et al., 1970),

already used in Robert et al. (1999), and the random walk proposals as in Hurn et al. (2003).

While not stri
tly ne
essary from an algorithmi
 point of view (Robert et al., 1999), this 
hoi
e

fa
ilitates the 
omparison with Stephens (2000).

3.2. The moves of the continuous time MCMC algorithm

Sin
e Robert et al. (2000) implemented reversible jump for this model, we fo
us on the CTMCMC


ounterpart, extending Stephens (2000) to this framework. In addition to birth-and-death moves,

whi
h were enough to provide good mixing in Stephens (2000), we are for
ed to introdu
e additional

proposals, similar to those in Ri
hardson and Green (1997), be
ause we observed that the birth-and-

death moves are not, by themselves, suÆ
ient to ensure fast 
onvergen
e of the MCMC algorithm.

The proposals we add are split-and-
ombine moves, as des
ribed earlier, and �xed-k moves, where

the parameters are modi�ed via a regular Metropolis{Hastings step. The latter proposals are

essential in ensuring irredu
ibility and good 
onvergen
e properties.

The birth-and-death and �xed-k moves are simple to implement, and are equivalent to those

given in Hurn et al. (2003) with �xed-k moves relying on random walk proposals over the transforms

log!

i

and log(�

i

=(�� �

i

)).

The split-and-
ombine move follows the general framework of Se
tion 2.4 with a 
ombine rate

given by (6). We used �

S

as an individual split rate whi
h is the same for all 
omponents. This

means that the overall rate of a split move for a k 
omponent ve
tor is �(�) = k�

S

. In the pra
ti
al

implementation of the algorithm, we 
hose �

S

= �

B

= 2 and �

F

= 5, where �

B

and �

F


orrespond

to the birth and �xed-k move rates, respe
tively.

In the 
ase of the above normal hidden Markov model, a split of state i

0

into states i

1

and i

2

involves four di�erent types of a
tions.

(a) A split move in row j 6= i

0

for !

j;i

0

as

!

j;i

1

= !

j;i

0

"

j

; !

j;i

2

= !

j;i

0

(1� "

j

); where "

j

� U(0; 1) :

This proposal is sensible when thinking that both new states i

1

and i

2

are issued from the

state i

0

and the probabilities to rea
h i

0

are thus distributed between the probabilities to

rea
h the new states i

1

and i

2

, respe
tively.

(b) A split move in 
olumn i 6= i

0

for !

i

0

;i

as

!

i

1

;i

= !

i

0

;i

�

i

; !

i

2

;i

= !

i

0

;i

=�

i

; where �

i

� LN (0; 1) :

The symmetry 
onstraint (5) is thus satis�ed, that is, �

i

and 1=�

i

have the same lognormal

distribution. Before this, we tried a half-Cau
hy C

+

(0; 1) proposal, whi
h also preserves the

distribution under inversion, but this led to very poor mixing properties of the algorithm.
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(
) A split move for !

i

0

;i

0

as

!

i

1

;i

1

= !

i

0

;i

0

"

i

0

�

i

1

; !

i

1

;i

2

= !

i

0

;i

0

(1� "

i

0

)�

i

2

;

!

i

2

;i

1

= !

i

0

;i

0

"

i

0

=�

i

1

; !

i

2

;i

2

= !

i

0

;i

0

(1� "

i

0

)=�

i

2

;

where "

i

0

is uniform on (0; 1) and �

i

1

; �

i

2

are LN (0; 1).

(d) A split move for �

2

i

0

as

�

2

i

1

= �

2

i

0

"

�

; �

2

i

2

= �

2

i

0

="

�

; where "

�

� LN (0; 1) :

The 
ombine move is 
hosen in a symmetri
 way, so that states i

1

and i

2

are 
ombined into

state i

0

by taking �rst the geometri
 average of rows i

1

and i

2

in the unnormalised transition

probability matrix and then adding 
olumns i

1

and i

2

. One 
an 
he
k that this sequen
e of moves

also applies to the parti
ular 
ase of !

i

0

;i

0

. The varian
e �

2

i

0

is the geometri
 average of �

2

i

1

and

�

2

i

2

. Appendix B details the 
omputation of the 
orresponding Ja
obian.

3.3. An illustration

For a 
omparison with Robert et al. (2000), we 
onsider a single dataset studied in that paper,

namely the wind intensity in Athens (Fran
q and Roussignol, 1997). Sin
e the prior distribution

on the �'s is a uniform U(0; �), � is an hyperparameter that is estimated from the dataset in a

hierar
hi
al way and updated through a sli
e sampler (see Robert et al. (2000) for details) via an

additional pro
ess with intensity �

�

, set equal to 1. The varian
es �

2

i

, being 
onstrained to be

smaller than �

2

, are updated via a Gaussian random walk proposal in the �-logit domain, that is

using the transform log(�=(� � �)) and its inverse.

Fig. 1 summarises the output for this dataset. As in Robert et al. (2000), we obtain a mode of

the posterior distribution of k at k = 3, although the posterior distribution slightly di�ers in our


ase sin
e the posterior probabilities for 1; 2; 3; 4 are 0:0064; 0:1848; 0:7584; 0:0488, to be 
ompared

with Table 1 of Robert et al. (2000). Fig. 1 also provides the distribution of the number of moves

per time unit (on the 
ontinuous time axis). The loglikelihoods 
over a wider range than those

found in Robert et al. (2000), although the highest values are the same. For instan
e, the largest

likelihood for k = 2 is �688, while it is �675 for k = 3 and �670 for k = 4. That we �nd lower

loglikelihoods than with RJMCMC te
hniques is to be expe
ted sin
e, although both RJMCMC

and CTMCMC explore the same target distribution, 
ontinuous time algorithms 
an explore more

unlikely regions in the parameter spa
e, like the tails of the target, by down-weighting states with

shorter lifetimes.

4. Comparisons of reversible jump MCMC with continuous time algorithms

In this se
tion we provide a 
omparison of reversible jump and 
ontinuous time methodologies,

starting with a review of reversible jump MCMC within the framework of mixtures.

4.1. Reversible jump MCMC

In a k 
omponent state �, at ea
h iteration, the simplest version of the reversible jump algorithm

proposes with probability b(�) to 
reate a new 
omponent and with probability d(�) to kill one.

Obviously, b(�) + d(�) = 1, if we do not a

ount for �xed-k moves at this level. If an attempt to


reate a new 
omponent is made, its weight and parameter are drawn from h(�; (w; �)) as above.

If an attempt to kill a 
omponent is made then, for instan
e, in a mixture model, ea
h 
omponent

is sele
ted with equal probability. A new 
omponent is a

epted with probability min(1; A), where

A = A(�;� [ (w; �)) =

L(� [ (w; �))r(� [ (w; �))

L(�)r(�)

�

(k + 1)!

k!

�

d(� [ (w; �))

(k + 1)b(�)

�

(1� w)

k�1

h(�; (w; �))

=

L(� [ (w; �))r(� [ (w; �))

L(�)r(�)

�

d(� [ (w; �))

b(�)

�

(1� w)

k�1

h(�; (w; �))

: (7)

Here the �rst ratio is the ratio of posterior densities, b(�)h(�; (w; �)) is the density 
orresponding

to proposing a new 
omponent (w; �), and d(� [ (w; �))=(k + 1) is the probability of proposing to
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Fig. 1. Continuous time MCMC algorithm output for a sequence of 500 wind intensities in Athens; (from

top to bottom) (a) plot of an equal time sample of k’s; (b) plot of the corresponding loglikelihood values; (c)

histogram of the number of moves per time unit; (d) MCMC sequence of the probabilities �
j

of the stationary

distribution of the three components when conditioning on k = 3; (e) same graph for the �
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’s.
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kill 
omponent (w; �) when in state �[(w; �). Finally (1�w)

k�1

is the same Ja
obian determinant

as above, and the fa
torial ratio arises from the ex
hangeability assumption. If a proposal to kill

a 
omponent (w; �) of a (k + 1) 
omponent state � [ (w; �) is made, the a

eptan
e probability is

min(1; 1=A), where A = A(�;� [ (w; �)) is as above.

RJMCMC typi
ally involves other kinds of moves like �xed-k moves resampling the 
omponent

weights, parameters �

i

and, possibly, hyperparameters|see, e.g., Ri
hardson and Green (1997).

A 
omplete sweep of the algorithm 
onsists in the 
omposition of a birth-and-death move with

these other �xed-k moves. Sampling for a �xed k 
an be 
arried out using a Gibbs move after


ompleting the sample a

ording to (1). As noted above, Ri
hardson and Green (1997) designed

additional moves for splitting and 
ombining 
omponents.

4.2. Convergence to BDMCMC

In this se
tion we 
onstru
t a sequen
e of RJMCMC samplers 
onverging to the BDMCMC sampler.

Before pro
eeding we introdu
e some additional notation. Let S

k�1

= f(w

1

; : : : ; w

k

) : w

i

>

0;

P

i

w

i

= 1g and let � denote the spa
e in whi
h ea
h �

i

lies. Hen
e �

(k)

, the spa
e of k-

dimensional parameters, is �

(k)

= S

k�1

� �

k

. Finally let � = [

k�1

�

(k)

denote the overall

parameter spa
e.

For N 2 N we de�ne an RJMCMC sampler by de�ning birth and death probabilities

b

N

(�) = 1� expf��(�)=Ng; d

N

(�) = 1� b

N

(�) = expf��(�)=Ng ;

where �(�) is the birth rate of the BDMCMC sampler. Then A also depends on N , and we write

A = A

N

. We remark that as N !1, b

N

(�) � �(�)=N , and if �(�) is bounded we 
an take instead

b

N

(�) = �(�)=N . The state at time n = 0; 1; : : : of the N -th RJMCMC sampler is denoted by �

N

n

,

and for ea
h N we 
onstru
t a 
ontinuous time pro
ess f�

N

(t)g

t�0

as �

N

(t) = �

N

bNt


, where b�


denotes the integer part. The state of the BDMCMC sampler at time t � 0 is denoted by �(t).

We now 
onsider what happens as N ! 1. The probability of proposing a birth in state �

tends to zero as �(�)=N . Hen
e the a

eptan
e ratio A

N

tends to in�nity, so that a birth proposal

is always a

epted. If time is speeded up at s
ale N , on the nominal time s
ale the limiting pro
ess

of a

epted births in state � is a Poisson pro
ess of rate �(�). Furthermore, the s
aled probability

of deleting 
omponent (w; �) in a state � [ (w; �) 2 �

(k+1)

is

Nd

N

(�)�min[1; 1=A

N

f�;� [ (w; �)g℄

Æ

k + 1

�!

L(�)r(�)

L(� [ (w; �))r(� [ (w; �))

�

1

k + 1

� �(�)�

h(�; (w; �))

(1� w)

k�1

as N !1;

and the right hand side is just Æ(�; (w; �)), given in (2). Considering the res
aled time axis and

the independent attempts to 
reate or delete 
omponents, in the limit the waiting time until

this 
omponent is killed has an exponential distribution with rate Æ(�; (w; �)), agreeing with the

BDMCMC sampler. Thus, as N !1 a birth is rarely proposed but always a

epted and a death

is almost always proposed but rarely a

epted. Both these s
hemes result in waiting times whi
h

are asymptoti
ally exponentially distributed with rates in a

ordan
e with the BDMCMC sampler.

Thus, one may expe
t that as N ! 1, the pro
esses f�

N

(t)g and f�(t)g will be
ome more and

more similar.

We will now make this reasoning stri
t, starting with the following assumptions:

(A0) � has a separable topology whi
h 
an be metrised by a 
omplete metri
.

(A1) �(�) is positive and 
ontinuous on �.

(A2) r(�) and L(�) are positive and 
ontinuous on �.

(A3) For ea
h (w; �) 2 (0; 1) � �, h(�; (w; �)) is 
ontinuous on � and for ea
h � 2 � there is a

neighbourhood G of � su
h that sup

�

0

2G

h(�

0

; �) is integrable.

We �rst note that, sin
e the standard topology on the open unit interval (0; 1) is separable and


an be metrised by a 
omplete metri
, for example d(x; y) = jlog(x=(1�x))� log(y=(1�y))j, S

k�1



10 Cappé et al.


an be viewed as a 
omplete separable metri
 spa
e. Then �, with the indu
ed natural topology,

is a spa
e of the same kind. The pro
ess f�(t)g is a Markov pro
ess on � whi
h we assume has

sample paths in D

�

[0;1), the spa
e of �-valued fun
tions on [0;1) whi
h are right-
ontinuous

and have left hand limits everywhere.

We then derive the following result (see Appendix A for a proof).

Theorem 1. Under assumptions (A0){(A3) and assuming that �(0) and �

0

are drawn from

the same initial distribution, f�

N

(t)g

t�0


onverges weakly to f�(t)g

t�0

in the Skorohod topology

on D

�

[0;1) as N !1.

4.3. Convergence to other continuous time processes

Re
all again that, in Ri
hardson and Green's (1997) version, the RJMCMC sampler also in
ludes

a split-and-
ombine move. More pre
isely, using the same notation as in Se
tion 2.4, they propose

to split a randomly 
hosen 
omponent of the k 
omponent ve
tor � with probability s

N

(�) so as to

give rise to a new parameter ve
tor with k+1 
omponents, de�ned as (� n �)[T (�; "). Conversely,

the probability of proposing to 
ombine a randomly 
hosen pair of 
omponents of � (there are

k(k � 1)=2 pairs) is denoted by 


N

(�) = 1� s

N

(�).

A split move 
hanging the k 
omponent ve
tor � to (� n �)[ T (�; ") has a

eptan
e probability

min

�

1;

L ((� n �) [ T (�; ")) r ((� n �) [ T (�; "))

L(�)r(�)

�

(k + 1)!

k!

�




N

((� n �) [ T (�; "))k

s

N

(�)k(k + 1)=2

�

1

2p(")

�

�

�

�

�T (�; ")

�(�; ")

�

�

�

�

�1

�

:

If, as above, we let s

N

(�) = 1 � expf��(�)=Ng for some �(�), so that Ns

N

(�) ! �(�), and

a

ordingly s
ale by N the traje
tory of the 
orresponding dis
rete time sampler, the limiting


ontinuous time pro
ess has a rate of moving from (� n �) [ T (�; ") to � by a 
ombine move whi
h

is given by (6). Convergen
e of reversible jump MCMC to 
ontinuous time pro
esses thus o

urs

in a broader 
ontext than within the birth-and-death framework of Stephens (2000).

4.4. A numerical comparison of both methodologies

While Theorem 1 establishes a strong 
onne
tion between RJMCMC and CTMCMC, by showing

that CTMCMC 
an be arbitrarily well approximated by an RJMCMC algorithm, it does not imply

that in pra
ti
e both approa
hes perform equivalently, for instan
e in terms of 
omputational 
ost.

We thus 
arried a numeri
al 
omparison of both approa
hes based on identi
al moves and identi
al

proposals on both sides. Further implementation details are provided in Appendix C. In this


omparison, we 
hose to remain within the framework of mixtures of distributions, partly be
ause

the setting is simpler than hidden Markov models and partly be
ause most of the earlier literature

on the topi
 relates to this area: for instan
e, we rely on the Galaxy dataset, heavily used in the

literature sin
e Roeder (1990).

4.4.1. Implementation issues

We �rst dis
uss 
omputational aspe
ts of both dis
rete and 
ontinuous time algorithms. In 
on-

tinuous time settings, on
e a state � is visited, it is ne
essary to 
ompute the rates of all possible

moves leading to an exit from that state, that is O(k) and O(k

2

) 
omputations for birth-and-death

and split-and-
ombine moves, respe
tively. Dis
rete time settings do not require this exhaustive


he
king, as the a

eptan
e ratio of a move is not 
omputed until the move is proposed. This

advantage of reversible jump MCMC is however mitigated by three fa
ts.

(i) For 
ontinuous time moves su
h as birth and split, rates are typi
ally very simple (e.g,


onstant) and it is only the death or 
ombine rates that are expensive to 
ompute.
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(ii) Ex
ept for small datasets, the 
ost of evaluating the a

eptan
e probability in RJMCMC

mainly lies in 
omputing the loglikelihood at the proposed parameters a

ording to

logL(k;w;�) =

m

X

i=1

log

k

X

j=1

w

j

f(y

i

j�

j

) ; (8)

whi
h involves O(k � m) 
omputations. For mixture models, the 
omputation asso
iated

with RJMCMC thus also in
reases proportionally to k.

(iii) At the expense of storing all values f(y

i

j�

j

) as in Stephens (2000), it is possible to redu
e

signi�
antly the 
ost of repeated evaluations of (8). For instan
e, in a death proposal the

only required new 
omputations are the summations in i and j, omitting the index of the

sele
ted 
omponent. Although this remark also applies to the RJMCMC sampler, it is most

pro�table when applied to the implementation of the 
ontinuous time sampler.

Thus, when only birth-and-death moves are used, the average 
omputation times for simu-

lating one jump of the 
ontinuous time sampler and one step of the reversible jump sampler are


omparable. In our implementation, the former is longer by a fa
tor whi
h varies between 1.5

and 2, depending on the dataset. On the other hand, the 
omputation time for 
ontinuous time

simulation with split-and-
ombine moves is a fa
tor 3 longer for the Galaxy dataset.

4.4.2. Birth-and-death samplers

We �rst 
ontrast the performan
e of the two types of samplers, RJMCMC and CTMCMC, when

only birth-and-death moves are used in addition to moves that do not modify the number of


omponents. Ex
ept for the �ne details of the proposals des
ribed in Appendix C and the absen
e

of 
ompletion in the �xed-k moves, we are thus in the setting 
onsidered by Stephens (2000). Note

however that for CTMCMC, we adopted the Rao{Bla
kwellisation devi
e dis
ussed in Se
tion 2.5

(weighting ea
h visited 
on�guration by the inverse of the overall rate of leaving rather than by the


orresponding exponentially distributed holding time). We proposed the �xed-k moves a

ording

to an independent Poisson pro
ess of rate �

F

, whi
h leaves the overall 
ontinuous time pro
ess

Markovian, whereas Stephens (2000) proposed these moves at �xed regular times. By setting the

probability P

F

of proposing a �xed-k move in RJMCMC equal to the rate �

F

= 0:5 at whi
h �xed-k

moves are proposed in CTMCMC, and likewise P

B

= �

B

= 0:25 for the birth moves, we guaranteed

that the moves were proposed in equal proportions by both samplers. The most important aspe
t

is that both the reversible jump and the 
ontinuous time sampler were implemented using exa
tly

the same move proposals to the point of sharing the same routines, whi
h allows for meaningful


omparisons. In the following, we 
ompare the performan
e of both samplers when the number

of jumps (number of visited 
on�gurations) in CTMCMC is equal to the number of iterations of

RJMCMC.

The main message here is 
onveyed by Fig. 2 whi
h shows that there is no signi�
ant di�eren
e

between the samplers: be it for a small (5,000) or a large (500,000) number of iterations, the

a

ura
y of the estimated posterior probabilities for all allowed values of k is equivalent for both

samplers. Other signals like posterior parameter estimates 
onditional on a �xed k tend to show

even less di�eren
e; this is not surprising granted that both samplers share the same �xed-k moves.

Another evaluation of the performan
e of MCMC samplers is provided by the auto
ovarian
e

fun
tion of simulated tra
es. To implement this idea for the 
ontinuous time sampler, the Rao-

Bla
kwellised 
ontinuous time path|that is, the path of the 
ontinuous time pro
ess where the

inverse rates are substituted for the 
orresponding holding times|was sampled regularly, with a

number of points equal to the number of jumps. Fig. 3 shows the resulting auto
ovarian
e for the

posterior simulations of k for both RJMCMC and CTMCMC, estimated on 2 million iterations

after dis
arding a burn-in period of 8 million iterations. On
e again, both samplers are seen to

perform equivalently: although all moves are a

epted in CTMCMC, the mixing is not signi�
antly

improved over RJMCMC be
ause of the weighting me
hanism. This is well 
aptured by Fig. 4

whi
h shows that only about 30% of the 
on�gurations visited by the 
ontinuous time sampler are

maximally weighted. Conversely, 15% of the 
on�gurations have a negligible weight, a situation

whi
h o

urs when there is at least one death move whi
h has a very large rate.
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Fig. 2. Galaxy dataset, box plots for the estimated posterior on k obtained from 200 independent runs:

RJMCMC (top) and CTMCMC (bottom). The number of iterations varies from 5,000 (left), to 50,000 (middle)

and 500,000 (right).
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Fig. 4. Empirical distribution function of the inverse rates in CTMCMC. The maximal value corresponds to

the addition of the fixed rates: 1=(�F + �

B

) = 1=(0:3 + 0:35) and thus occurs in configurations in which all

death rates are negligible.

4.4.3. Samplers with split-and-
ombine moves

Ri
hardson and Green (1997) suggested that for mixture models, it is pro�table to allow moves

that 
an 
ombine two 
omponents in a single one or 
onversely split a 
omponent. The in
lusion of

su
h moves in the CTMCMC framework is straightforward and has been dis
ussed in Se
tion 4.3.

Fig. 5 is the equivalent of Fig. 2 with all types of moves enabled; here, P

F

= �

F

= P

B

= �

B

=

P

S

= �

S

= 0:2 is used, where P

S

and �

S

are the probability of proposing a split move in RJMCMC

and the split rate in CTMCMC, respe
tively. Looking in greater detail at the 5,000 iterations plot,

it is possible to see a small advantage for the 
ontinuous time sampler: the reversible jump one

has a small downward bias for k = 3 and its variability is slightly larger at all bins. Part of the

explanation is that the weights (inverse rates) in the 
ontinuous time sampler have a very similar

distribution for the death and 
ombine moves whereas the a

eptan
e probabilities for these are

very di�erent in the reversible jump sampler, where deaths are a

epted about three times more

often. This is due to the fa
t that even when k is large, there are always at least one or two pairs

whi
h have a reasonable rate of being 
ombined and these are sele
ted by the 
ontinuous time

sampler. In 
ontrast, when k is large, the reversible jump sampler has a low probability of drawing

pre
isely these few pairs.

Another interesting 
on
lusion to be drawn from Fig. 2 and Fig. 5 is that the in
lusion of

the split-and-
ombine moves does not signi�
antly improve the a

ura
y of the results. This is

understandable for RJMCMC sin
e split proposals need to be very 
arefully tuned in order to

maintain reasonable a

eptan
e probabilities (see also Appendix C). For CTMCMC however, the

same 
on
lusion is also true despite the advantage mentioned above.

In 
on
lusion, were we to rank all te
hniques on the basis of their 
omputation time, as detailed

in Se
tion 4.4.1, the optimal 
hoi
e would be RJMCMC with birth-and-death only, very 
losely

followed by the equivalent CTMCMC sampler; then, at some distan
e, RJMCMC with both types

of dimension 
hanging moves enabled and �nally CTMCMC in the same 
onditions, whi
h is

unattra
tive be
ause of its high 
omputational 
ost.

5. Discussion

Our work suggests that there is no 
lear
ut improvement in using 
ontinuous time MCMC algo-

rithms: While dis
rete time moves 
an also be implemented in 
ontinuous time, this alternative

implementation does not bring a visible upgrade in the performan
es of the algorithms. If any-

thing, the 
ontinuous time samplers are slower, be
ause they involve 
onsideration of the whole
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Fig. 5. Galaxy dataset, box plot for the estimated posterior on k obtained from 500 independent runs: Top

RJMCMC and bottom, CTMCMC. The number of iterations varies from 5,000 (left plots) to 50,000 (right

plots).

range of possible moves and their respe
tive rates after ea
h move. Repeated 
alls to the likelihood

fun
tion are very 
ostly in 
omputing time and/or memory.

The advantage of 
ontinuous time samplers is rather their ability to move to unlikely pla
es:

given that the split and birth rates are independent of the data, the algorithm 
an impose moves to

low probability regions of the parameter spa
e. Su
h regions are of little interest for inferen
e but

they 
an 
onstitute a kind of springboard for the Markov 
hains, allowing these to move from one

mode of the posterior distribution to another one. But this potentially better mixing behaviour


an only be a
hieved when a wide variety of moves are proposed simultaneously, as illustrated in

Fig. 5.

A typi
al set-up of BDMCMC is to let �(�) be 
onstant, say �(�) = 1, sin
e a di�erent 
onstant

only res
ales time. Likewise, for RJMCMC b(�) = d(�) = 1=2 is typi
al, ex
ept for states � with

k = 1 for whi
h b(�) = 1. Under these assumptions, equations (2) and (7) relate as A = (k+1)Æ

�1

.

Sin
e both samplers have the same stationary distribution, we �nd that if one of the algorithms

performs poorly, so does the other one. For RJMCMC this is manifested as small A's|birth

proposals are rarely a

epted|while for BDMCMC it is manifested as large Æ's|new 
omponents

are indeed born but die again qui
kly.

The \attra
tive alternative" to Ri
hardson and Green (1997) in terms of mixing over the values

of k, as reported in Stephens (2000, Se
tion 5.3), is thus not to be sought in the 
ontinuous time

nature of his algorithm, but rather in the di�erent 
hoi
es made in the sampler: Stephens (2000)

used birth-and-death moves only for modifying the dimension of the model, and these moves did

not involve the 
omplete data, that is, the 
omponent labels, while Ri
hardson and Green (1997)

used split-and-merge moves as well and 
arried along the 
omponent labels through all moves,

in
luding the dimension-
hanging ones. The issue of 
ompletion is not dire
tly related to the


entral theme of this paper, but it may be that the absen
e of 
ompletion explains the di�erent

behaviour of the sampler. This was not the 
ase however in the �xed-k mixture setting studied by

Celeux et al. (2000).

Finally we per
eive Rao{Bla
kwellisation as an advantage of 
ontinuous time algorithms; this

feature is, as noted above, obtained at no extra 
ost. Rao{Bla
kwellisation 
ould in prin
iple be
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arried out in dis
rete time as well|holding times have geometri
 distributions|but, there, the

expe
ted holding times 
annot be 
omputed easily; see (9) in the proof of Lemma 1 below. See

also Casella and Robert (1996) for another Rao{Bla
kwellisation of Metropolis algorithms.
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A. Proof of Theorem 1

For � 2 �

(k)

, let

�(�) = �(�) +

k

X

i=1

Æ(� n (w

i

; �

i

); (w

i

; �

i

))

be the overall rate of leaving state � in the BDMCMC sampler and let �

N

(�) be the overall

probability of moving away from state � (in one step) in the RJMCMC sampler.

Before proving the theorem, we state and prove a lemma.

Lemma 1. For ea
h k � 1 and �

0

2 �

(k)

, there is a neighbourhood G � �

(k)

of �

0

su
h that

sup

�2G

jN�

N

(�)� �(�)j ! 0 as N !1.

Proof. We �rst note that for � 2 �

(k)

, �

N

(�) 
an be written

�

N

(�) =

Z

b

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) d(w; �)

+

k

X

i=1

d

N

(�)

1

k

minfA

�1

N

(� n (w

i

; �

i

);�); 1g: (9)

Thus

sup

�2G

jN�

N

(�)� �(�)j

�

Z

sup

�2G

jNb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j d(w; �) (10)

+

k

X

i=1

sup

�2G

j

1

k

Nd

N

(�)minfA

�1

N

(� n (w

i

; �

i

);�); 1g � Æ(� n (w

i

; �

i

); (w

i

; �

i

))j: (11)

We start by looking at the `birth part' (10) of this expression. We shall prove that it tends to

zero by showing that the integrand tends to zero for all (w; �) and showing that the integrand is

dominated, for all suÆ
iently large N , by an integrable fun
tion. Bound the integrand as

sup

�2G

jNb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j

� sup

�2G

jNb

N

(�)� �(�)j � 1� sup

�2G

h(�; (w; �)) (12)

+ sup

�2G

�(�)� sup

�2G

jminfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j: (13)

For � � 0 and N > �,

�

N

�

1

2

�

2

N

2

� 1� e

��=N

�

�

N

;



16 Cappé et al.

so that

jN(1� e

��=N

)� �j � �

2

=2N:

Hen
e, for suÆ
iently large N , (12) is bounded by

1

2N

sup

�2G

�

2

(�)� sup

�2G

h(�; (w; �)); (14)

by (A1) and (A3), for an appropriate G this expression tends to zero as N !1 and is dominated

by an integrable fun
tion.

Regarding (13), it is dominated by an integrable fun
tion similar to (14) (remove 1=(2N) and

the squaring), and it remains to show that it tends to zero as N !1. We have

jminfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j = h(�; (w; �))

� min

�

L(� [ (w; �))r(� [ (w; �))

L(�)r(�)

�

d

N

(� [ (w; �))

b

N

(�)

(1� w)

k�1

; h(�; (w; �))

�

:

By (A2), for ea
h (w; �), L(� [ (w; �))r(� [ (w; �)) and L(�)r(�) are bounded away from in�nity

and zero, respe
tively, on a suÆ
iently small G. Likewise, by (A1), d

N

(� [ (w; �)) and b

N

(�) tend

to unity and zero, respe
tively, uniformly over su
h a G. Finally, by (A3), h(�; (w; �)) is bounded

on an appropriate G, and we 
on
lude that (13) tends to zero uniformly over G as N !1 if G is

small enough.

We now turn to the `death part' (11). By arguments similar to those above, for large N and

suÆ
iently small G it holds that

1

k

Nd

N

(�)minfA

�1

N

(� n (w

i

; �

i

);�); 1g

=

1

k

N min

�

L(� n (w

i

; �

i

))r(� n (w

i

; �

i

))

L(�)r(�)

�

b

N

(� n (w

i

; �

i

))h(� n (w

i

; �

i

); (w

i

; �

i

))

(1� w

i

)

k�2

; d

N

(�)

�

=

L(� n (w

i

; �

i

))r(� n (w

i

; �

i

))

L(�)r(�)

�

1

k

�

Nb

N

(�)h(� n (w

i

; �

i

); (w

i

; �

i

))

(1� w

i

)

k�2

uniformly over G, and, also using arguments as above, one 
an show the right hand side of this

expression 
onverges to Æ(� n (w

i

; �

i

); (w

i

; �

i

)) as N !1, uniformly over a small enough G. 2

Re
all the de�nitions of jump times and the jump 
hain in Se
tion 2.5. The sequen
e f

e

�

n

; T

n

�

T

n�1

g of visited states and holding times form a Markov renewal pro
ess (MRP). The transition

kernel of this MRP is denoted by K, that is, K(�;A�B) = P (

e

�

n

2 A; T

n

�T

n�1

2 B j

e

�

n�1

= �).

Sin
e f�(t)g is Markov, the 
onditional distribution of T

n

� T

n�1

given

e

�

n�1

= � is exponential

with rate �(�). In addition, �(T

n

) and T

n

� T

n�1

are 
onditionally independent. Similarly,

f�

N

(t)g is a semi-Markov pro
ess with jump times fT

N

n

g in the latti
e i=N , and the kernel of

the asso
iated MRP is denoted by K

N

. Sin
e f�

N

n

g is Markov, �

N

(T

N

n

) and T

N

n

� T

N

n�1

are


onditionally independent given �

N

(T

N

n�1

).

Proof of Theorem 1. Using results of Karr (1975), it is suÆ
ient to prove that for ea
h real-valued

uniformly 
ontinuous fun
tion g on �� [0;1),

(i) Kg(�) is 
ontinuous on �;

(ii) K

N

g(�)! Kg(�) uniformly on 
ompa
t subsets of � as N !1.

We start by showing (ii). By the stru
ture of �, it is suÆ
ient to show that for ea
h �

0

2 �

(k)

,

there is a neighbourhood G � �

(k)

of �

0

su
h that K

N

g(�)! Kg(�) uniformly on G, and this is
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what we will do. For � 2 �

(k)

, K

N

g(�) and Kg(�) 
an be written

K

N

g(�) =

1

X

m=1

Z

(1� �

N

(�))

m�1

b

N

(�)minfA

N

(�;� [ (w; �)); 1g

h(�; (w; �))g

�

� [ (w; �);

m

N

�

d(w; �)

+

1

X

m=1

(1� �

N

(�))

m�1

k

X

i=1

d

N

(�)

1

k

minfA

�1

N

(� n (w

i

; �

i

);�); 1gg

�

� n (w

i

; �

i

);

m

N

�

=

Z

1

0

Z

(1� �

N

(�))

bNu


Nb

N

(�)minfA

N

(�;� [ (w; �)); 1g

h(�; (w; �))g

�

� [ (w; �);

dNue

N

�

du d(w; �)

+

Z

1

0

(1� �

N

(�))

bNu


k

X

i=1

Nd

N

(�)

1

k

minfA

�1

N

(� n (w

i

; �

i

);�); 1gg

�

� n (w

i

; �

i

);

dNue

N

�

du;

Kg(�) =

Z

1

0

Z

�(�)e

��(�)u

�(�)

�(�)

h(�; (w; �))g(� [ (w; �); u) du d(w; �)

+

Z

1

0

k

X

i=1

�(�)e

��(�)u

Æ(� n (w

i

; �

i

); (w

i

; �

i

))

�(�)

g(� n (w

i

; �

i

); u) du

=

Z

1

0

Z

e

��(�)u

�(�)h(�; (w; �))g(� [ (w; �); u) du d(w; �)

+

Z

1

0

k

X

i=1

e

��(�)u

Æ(� n (w

i

; �

i

); (w

i

; �

i

))g(� n (w

i

; �

i

); u) du;

where dxe is the smallest integer no smaller than x.

We again start by looking at the `birth parts' of the kernels, bounding the 
orresponding part

of jK

N

g(�)�Kg(�)j as

Z

1

0

Z

sup

�2G

�

�

�

�

(1� �

N

(�))

bNu


Nb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �))

�g

�

� [ (w; �);

dNue

N

�

� e

��(�)u

�(�)h(�; (w; �))g(� [ (w; �); u)

�

�

�

�

du d(w; �):

We wish to prove that this expression tends to zero as N ! 1. We 
an do this by showing that

the integrand tends to zero for all u � 0 and all (w; �) and that there exists a dominating (for all

suÆ
iently large N) integrable fun
tion.
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In order to a

omplish this, we add and subtra
t a number of teles
oping terms, giving us

sup

�2G

�

�

�

�

(1� �

N

(�))

bNu


Nb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �))g

�

� [ (w; �);

dNue

N

�

�e

��(�)u

�(�)h(�; (w; �))g(� [ (w; �); u)

�

�

�

�

� sup

�2G

�

�

�

�

(1� �

N

(�))

bNu


� e

��(�)u

�

�

�

�

� sup

�2G

Nb

N

(�)� 1� h(w; �) � jjgjj

1

+ sup

�2G

e

��(�)u

� sup

�2G

Nb

N

(�)� 1� h(w; �) � Æ

g

1=N

+ sup

�2G

e

��(�)u

� sup

�2G

jNb

N

(�)� �(�)j � 1� h(w; �) � jjgjj

1

+ sup

�2G

e

��(�)u

� sup

�2G

�(�)

� sup

�2G

jminfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �)j � jjgjj

1

;

where h(w; �) = sup

�2G

h(�; (w; �)) and Æ

g

1=N

= sup

�((�;u);(�

0

;u

0

))�1=N

jg(�; u) � g(�

0

; u

0

)j is the

modulus of 
ontinuity of g; � is a metri
 making � � [0;1) separable and 
omplete. All of the

terms on the right hand side but the �rst one 
an be treated as in the proof of the lemma, with the

extra observation that �(�) � �(�) is bounded away from zero on 
ompa
t subsets of �. Moreover,

sin
e

(1� �

N

(�))

bNu


� e

��

N

(�)bNu


= e

�N�

N

(�)(bNu
=N)

;

the lemma implies that the �rst term is, for largeN 's, dominated by an integrable fun
tion. Finally

(1� �

N

(�))

bNu


� e

��(�)u

� e

��

N

(�)bNu


� e

�(�)u

= e

��(�)u

�

e

��(�)(bNu
=N�u)+bNu
o(1=N)

� 1

�

;

where, by the lemma, the o(1=N) term is uniform over a small G so that the right hand side tends

to zero uniformly over su
h a G. The inequality log(1� x) � �x� 2x

2

for 0 � x � 1=2 leads to a

reverse inequality whi
h is handled similarly.

The `death parts' of the kernels, that is, bounding the 
orresponding parts of jK

N

g(�)�Kg(�)j,


an be handled 
ombining arguments for the `birth parts' and arguments used to prove the lemma.

Finally requirement (i) above 
an be proved using similar te
hniques. 2

B. The Jacobian for the split-and-combine move

The parts of the Ja
obian determinant 
orresponding to the split move in Se
tion 3.2 are

(a) !

j;i

0

;

(b) 2!
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;
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;
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(d) this part of the Ja
obian 
an be obtained as

4�

2

i

1

�

2

i

2

(�� �

i

1

)(�� �

i

2

)

.

�(� � �

i

0

)�

2

i

0

;

where �

i

1

= �-logit

�1

[�-logit(�

i

0

) + "

�

℄ and �

i

2

= �-logit

�1

[�-logit(�

i

0

)� "

�

℄ (di�erentiat-

ing with respe
t to �

2

i

0

).

C. Implementation details for the numerical comparison experiment

C.1. Model

We 
onsider a Gaussian s
alar mixture model with parameters (w

1:k

; �

1:k

; �

1:k

), where the �

i

's are

the varian
es. The prior modelling is su
h that

k � U(f1; : : : ;Mg) ; w

1:k

� D

k

(1; : : : ; 1) ; �

i

� N (0; �) ; �

�1

i

� Ga(�; �);

where D denotes the Diri
hlet distribution, and with the following hyperparameters (s
aled for the

re
entered Galaxy dataset):

M = 15; � = (maxfY

i

g

1�i�n

�minfY

i

g

1�i�n

)

2

; � = 0:5; � = 10

�3

:

C.2. Sampler

The sampler 
onsists of �xed-k, birth-and-death and split-and-
ombine moves, for both the re-

versible jump and the 
ontinuous time versions. The �xed-k moves are proposed with probability

P

F

in RJMCMC and with rate �

F

= P

F

in CTMCMC (for k =M these numbers are both zero).

In both 
ases, it 
onsists of the three Metropolis-Hasting proposals (weights, means, varian
es)

with independent a

ept/reje
t de
isions. The proposal is a multipli
ative lognormal random walk

on the w

i

's, LN (0; �), an additive normal random walk on the �

i

's, N (0; �), and a multipli
ative

lognormal random walk on the �

i

's, LN (0; �). These moves 
an just as easily be 
arried out glob-

ally or one 
omponent at a time, but only global moves (i.e. with proposal a�e
ting the parameters

of all the 
omponents) were used in our simulations. The sampler parameters were tuned in order

to a
hieve a

eptan
e rates that stay in the range 0.3{0.7 for all values of k � 15, and we obtained

� = 0:05; � = �

Æ

(2000k); and � = 0:08: The normalisation of � by k tends to stabilise the a

ep-

tan
e rate (with 
onstant � the a

eptan
e rate drops for high values of k). Despite good mixing,

these moves alone are not suÆ
ient to generate label swit
hing (see Celeux et al., 2000).

The birth-and-death moves are Stephens' (2000), namely su
h that when in a k 
omponent


on�guration we propose a new 
omponent from the prior a

ording to w � Be(1; k) ; � � N (0; �),

and �

�1

� Ga(�; �), where Be is the Beta distribution. For the 
ontinuous time version of the

move, the birth rate is �

B

= P

B

(again, these numbers are zero for k = M) and the death rates

are given by

�

B

L(�)

Æ

L(� [ (w; �)) � k + 1;

where � = (�; �); noti
e that h(�; (w; �))=(1�w)

k�1

in (2) 
an
els with the ratio r(�)=r(�[(w; �))

of prior densities.

The split-and-
ombine move is inspired by Ri
hardson and Green (1997). If a 
omponent i is

proposed to be split, this is done a

ording to

(a) w

i

7! (�w

i

; (1� �)w

i

) with � � Be(


S

; 


S

),

(b) �

i

7! (�

i

� �; �

i

+ �) with � � N (0; �

S

),

(
) �

i

7! (�

i

=�; �

i

�) with � � LN (0; �

S

).

In the 
urrent implementation P

S

is 
onstant ex
ept for edge e�e
ts (P

S

(M) = 0). On the galaxy

data, the 
hoi
e of parameters that maximises the a

eptan
e rate for the split-and-
ombine move

is 


S

= 1, �

S

= 0:2, and �

S

= 3. However, the a

eptan
e rate is then only 4.3% (
ompared to

13.3% for the birth-and-death move).
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