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Summary. Reversible jump methods are the most commonly used Markov Chain Monte Carlo tool for

exploring variable dimension statistical models. Recently however, an alternative approach based on

birth-and-death processes has been proposed by Stephens (2000) in the case of mixtures of distribu-

tions. We show that the birth-and-death setting can be generalised to include other types of continuous

time jumps like split-and-combine moves in the spirit of Richardson and Green (1997). We illustrate

these extensions both for mixtures of distributions and for hidden Markov models. We demonstrate the

strong similarity of reversible jump and continuous time methodologies by showing that upon appropri-

ate rescaling of time, the reversible jump chain converges to a limiting continuous time birth-and-death

process. A numerical comparison in the setting of mixtures of distributions highlights this similarity.
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1. Introduction

Markov Chain Monte Carlo (MCMC) methods for statistial inferene, in partiular Bayesian in-

ferene, have beome standard during the past ten years (Capp�e and Robert, 2000). For variable

dimension problems, often arising through model seletion, a popular approah is Green's (1995)

reversible jump MCMC (RJMCMC) methodology. Reently however, in the ontext of mixtures

of distributions, Stephens (2000) rekindled interest in use of ontinuous time birth-and-death pro-

esses for variable dimension problems, following earlier proposals by Ripley (1977), Geyer and

M�ller (1994), Grenander and Miller (1994) and Phillips and Smith (1996). We will all this

approah birth-and-death MCMC (BDMCMC) and its generalisations ontinuous time MCMC

(CTMCMC).

In this paper, we investigate the similarity between the reversible jump and birth-and-death

methodologies. In partiular, it is shown in Setion 4 that for any BDMCMC proess satisfying

some weak regularity onditions, there exists a sequene of RJMCMC proesses that onverges, in

a sense spei�ed below, to the BDMCMC proess.

In their appliation of RJMCMC to mixtures of distributions, Rihardson and Green (1997)

implemented two types of moves that ould hange the number of omponents of the mixture:

one was birth-and-death, in whih a new omponent is reated or an existing one is deleted, and

the other was split-and-ombine, in whih one omponent is split in two, or two omponents are

ombined into one. In ontrast, Stephens (2000) only dealt with birth-and-death moves in order to

keep the algorithm within the theory of marked point proesses on general spaes, while pointing

out that \one an envision a ontinuous time version of the general reversible jump formulation."

We show here that ontinuous time algorithms are not limited to the birth-and-death struture

and that onvergene of reversible jump to birth-and-death MCMC is muh more general. For

ySupported by the Swedish Researh Counil.
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example, split-and-ombine moves ould be inorporated, resulting in more general CTMCMC

algorithms, and the appropriate theoretial framework is that of Markov jump proesses. To

omplete our study of the onnetions between RJMCMC and CTMCMC, we implemented a full-

sale numerial omparison with moves similar to those in Rihardson and Green (1997) used in

both algorithms: the outome is the same for both samplers, with a longer exeution time for

CTMCMC.

The paper is organised as follows: in Setion 2 we review the main features of the BDMCMC

methodology, inluding moves more general than birth-and-death in Setion 2.4 and variane re-

dution tehniques in Setion 2.5. This tehnology is exempli�ed for hidden Markov models in

Setion 3. Setion 4 addresses the omparison of this approah with reversible jump MCMC

methodology, realling the basis of RJMCMC in Setion 4.1, establishing onvergene of RJM-

CMC to BDMCMC in Setion 4.2 and detailing the numerial omparison of both algorithms in

Setion 4.4. Setion 5 onludes the paper with a disussion.

2. Continuous time MCMC methodologies

In this setion we review BDMCMC in the mixture ase onsidered by Stephens (2000) and disuss

the extension of the birth-and-death moves to other ontinuous time moves. While Stephens

(2000) provides a full desription of the method in the spei� set-up of mixtures of distributions,

ontinuous time MCMC is limited neither to birth-and-death moves, nor to mixture models. For

example, CTMCMC may be applied to any of the examples in Green (1995). See also Ripley

(1977), Geyer and M�ller (1994), Grenander and Miller (1994) and Phillips and Smith (1996),

where broader desriptions of ontinuous time approahes an be found. In partiular, Ripley

(1977) introdues the onept of simulating a birth-and-death proess to approximate its limiting

distribution, even though he was interested in a problem of �xed dimension, while Geyer and

M�ller (1994) propose a Metropolis{Hastings algorithm for spatial point proesses and argue on

the superiority of this sheme ompared with a ontinuous time approah, as do Cli�ord and

Niholls (1994).

2.1. A reference example: mixture models

Our benhmark is a mixture model, with probability density funtion of the form

p(yjk;w;�) =

k

X

i=1

w

i

f(yj�

i

);

where k is the unknown number of omponents, w = (w

1

; : : : ; w

k

) are the omponent weights,

� = (�

1

; : : : ; �

k

) are the omponent parameters and f(�j�) is some parametri lass of densi-

ties indexed by a parameter �, like the Gaussian, the Gamma, the Beta, or the Poisson family.

The omponent weights are non-negative numbers summing to unity. Mixture models have been

extensively onsidered in the literature, but remain a hallenging setting for variable dimension

tehniques.

The above densities are written as onditional on the parameter �, given the Bayesian perspe-

tive of the paper. Hene we need to speify a prior density for (k;w;�), denoted by r(k;w;�).

Here, r is a density with respet to a produt measure, made of the ounting measure in the k-

dimension and of the Lebesgue measure in the (w;�)-dimension. We make no further assumptions

about the prior, exept that it is proper and exhangeable for eah k, that is, invariant under

permutations of the pairs (w

i

; �

i

). We do not impose any ordering of the �

i

, motivated by iden-

ti�ability reasons, as found in Rihardson and Green (1997). We also denote by L(k;w;�) the

likelihood

L(k;w;�) =

m

Y

i=1

p(y

i

jk;w;�);

where y = (y

1

; : : : ; y

m

) is the observed data. The posterior density, whih is our starting point

for inferene, is thus proportional to r(k;w;�)L(k;w;�). More realisti models typially involve
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hyperparameters, whih add no further diÆulty. Below we set � = (w;�), with k being impliit

in this notation, and �

(k)

denotes the spae of k omponent parameters.

A feature inherent to mixture models is that we may assoiate with eah observation y

i

a label

or alloation z

i

2 f1; : : : ; kg with P (z

i

= j j k;w) = w

j

, that indiates from whih omponent y

i

was drawn. Given the data, these labels an be sampled independently aording to

P (z

i

= j j k;w;�; y

i

) = w

j

f(y

i

j�

j

)

�

k

X

`=1

w

`

f(y

`

j�

`

): (1)

This simulation is alled ompleting the sample as, following EM terminology, (z;y) is referred

to as the omplete data. As detailed in Setion 3 and as demonstrated in Celeux et al. (2000)

for mixtures, ompletion is not neessary from a simulation point of view. Rihardson and Green

(1997) devised an algorithm that arries along the omplete data through all moves of the sampler.

In ontrast, the algorithm of Stephens (2000) works with inomplete data, that is, y alone, in the

dimension-hanging moves, but ompletes the data at regular intervals to arry out a resampling

of all parameters and hyperparameters but k.

2.2. Birth-and-death MCMC

In Stephens' (2000) form of BDMCMC, new omponents are reated (born) in ontinuous time at

a rate �(�), where � refers to the urrent state of the sampler. Whenever a new omponent is

born, its weight w and parameter � are drawn from a joint density h(�; (w; �)). In order to inlude

the new omponent, the old omponent weights are saled down proportionally to make all of the

weights, inluding the new one, sum to unity; that is, w

i

:= w

i

=(1 + w). The new omponent

weight-parameter pair (w; �) is then added to �. We denote these operations by `[', so that the

new state is �[ (w; �). Conversely, in a (k+1) omponent on�guration �[ (w; �), the omponent

(w; �) is killed at rate

Æ(�; (w; �)) =

L(�)r(�)

L(� [ (w; �))r(� [ (w; �))

�

1

k + 1

�

�(�)h(�; (w; �))

(1� w)

k�1

: (2)

The fator (1 � w)

k�1

in (2) results from a hange of variable when renormalising the weights.

Indeed, when the omponent (w; �) is removed, the remaining omponent weights are renormalised

to sum to unity. We denote these operations by `n', so that � = (� [ (w; �)) n (w; �).

An important feature of BDMCMC is that a ontinuous time jump proess is assoiated with

the birth-and-death rates: whenever a jump ours, the orresponding move is always aepted.

The aeptane probability of usual MCMC methods is replaed by the di�erential holding times.

In partiular, implausible on�gurations, i.e. on�gurations suh that L(�)r(�) is small, die quikly.

2.3. The Markov jump process view and local balance

The birth-and-death proess desribed in the previous subsetion is a Markov jump proess: when-

ever it reahes state �, it stays there for an exponentially distributed time with expetation depend-

ing on �, and, after expiration of this holding time, jumps to a new state aording to a Markov

transition kernel. To ensure that a Markov jump proess has an invariant density proportional to

L(�)r(�), it is suÆient, although not neessary, that the loal balane equations

L(�)r(�)q(�;�

0

) = L(�

0

)r(�

0

)q(�

0

;�) for all �;�

0

; (3)

are satis�ed (Preston, 1976; Ripley, 1977; Geyer and M�ller, 1994). Here q(�;�

0

) is the rate of

moving from state � to �

0

. Speial are is required with suh onsiderations, however, sine the

transition kernel of the jump hain typially does not have a density with respet to a single

dominating measure. For example, after killing a omponent the new state is ompletely known

given the urrent one. This problem also ours for RJMCMC samplers, as exempli�ed by the

measure onstrution in Green (1995), and we do not detail it further here. Further reading on

Markov jump proesses is found in, for example, Preston (1976), Ripley (1977, Setions 2 and 4),

and Breiman (1992, Chap. 15, Setions 5 and 6).
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Let us now derive (2) from (3). In the partiular ase of birth-and-death moves and a k

omponent on�guration �, (3) takes the form

L(�)r(�)��(�)h(�; (w; �))

.

(k+1)!�(1� w)

k�1

= L(�[(w; �))r(�[(w; �))�Æ(�; (w; �))

.

k! ; (4)

whih indeed leads to (2). The justi�ation for the various fators in (4) is as follows: the fatorials

k! and (k+1)! arise from the exhangeability assumption on the mixture omponents. Given that

we do not impose an ordering onstraint on �

1

; : : : ; �

k

, there are k! and (k + 1)! equivalent ways

of writing � and � [ (w; �), respetively. The equivalene is to be understood as giving the

same likelihood, prior and posterior densities. The 1=(k + 1)! and 1=k! terms thus appear as the

probabilities of seleting one of the (k + 1)! and k! possible ways of writing � [ (w; �) and � in

the birth and death moves. This seletion is immaterial, sine it has no relevane for the posterior

distribution. Furthermore, b(�)h(�; (w; �)) is the density of proposing a new omponent (w; �),

and (1�w)

k�1

is again a Jaobian arising from renormalisation of the weights. This determinant

should be assoiated with the density h, as the (k + 1) omponent parameter � [ (w; �) is not

drawn diretly from a density on �

(k+1)

, but rather indiretly through �rst drawing (w; �) and

then renormalising. In order to ompute the resulting density on �

(k+1)

one must then alulate

a Jaobian. Thus, q(�;� [ (w; �)) = �(�)h(�; (w; �))=(1� w)

k�1

.

2.4. Generalisations of birth-and-death MCMC

Stephens (2000) resampled omponent weights and parameters with �xed k, as well as hyperpa-

rameters, at deterministi times (as opposed to the random ourrenes of the birth-and-death

moves). This makes the overall proess inhomogeneous in time. We an inorporate similar moves

into the ontinuous time sampler by adding a ontinuous time proess in whih, in state �, suh

moves our at rate (�). Birth-and-death rates stay the same. The rates for resampling the

omponent weights, parameters, and hyperparameters, ould also be di�erent.

A further generalisation is to introdue other moves, like the split-and-ombine moves of

Rihardson and Green (1997). We onsider here the speial ase where, as in Green (1995), the

ombine move is deterministi. For simpliity � denotes an element of the k omponent parameter

�. Thus, in a mixture ontext, typially � = (w; �).

As for the RJMCMC proposal, the split move for a given omponent � of the k omponent

vetor � is to split this omponent as to give rise to a new parameter vetor with k+1 omponents,

de�ned as ((� n �) [ T (�; ")) where T is a di�erentiable one-to-one mapping that outputs two new

omponents and " is a random variable with density funtion p. We also assume that the mapping

is symmetri in the sense that

P fT (�; ") 2 B

0

�B

00

g = P fT (�; ") 2 B

00

�B

0

g for all B

0

, B

00

. (5)

We denote the total rate of splitting by �(�) and assume that, in a split move, eah omponent is

hosen with equal probability 1=k. Conversely, the loal balane equation (3) provides for any of

the k(k � 1)=2 pairs of omponents of �, the rate of ombining them. In this partiular ase,

L(�)r(�)�

�(�)

k

� 2 p(")�

�

�

�

�

�T (�; ")

�(�; ")

�

�

�

�

.

(k + 1)!

= L f(� n �) [ T (�; ")g r f(� n �) [ T (�; ")g � q [f(� n �) [ T (�; ")g ;�℄

.

k!

As above, the fatorials arise as probabilities of seleting partiular representations of � and (� n

�) [ T (�; "), and �(�)=k is the rate of splitting a partiular omponent as �(�) is the overall

split rate. The oeÆient 2 is due to the fat that a omponent an be split in two pairs that

are idential apart from the ordering, and that our with the same probability beause of the

symmetry assumption (5); otherwise we would have to replae p(") with the average of two terms.

Thus, the rate of ombining two omponents, q [f(� n �) [ T (�; ")g ;�℄, is

L(�)r(�)

L f(� n �) [ T (�; ")g r f(� n �) [ T (�; ")g

�

�(�)

(k + 1)k

� 2p(")

�

�

�

�

�T (�; ")

�(�; ")

�

�

�

�

: (6)

In Setion 4.3, we will diretly derive this rate from Rihardson and Green's (1997) sampler.
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2.5. Sampling in continuous time: a new Rao–Blackwellisation

For a disrete time RJMCMC sampler, its output is typially monitored after eah step, or on

regular intervals in order to derease inter-sample orrelation as in Ripley (1977, Setion 5) and

Rihardson and Green (1997).

In ontinuous time, there are more options. For example, the proess may be sampled at regular

times, as in Stephens (2000), or at instants given by an independent Poisson proess. In either

ase posterior means E[g(�) j y℄ are estimated by sample means N

�1

P

N

1

g(�(�

i

)), where f�(t)g is

the CTMCMC proess and the �

i

's are the sampling instants. Under the former sampling sheme,

if the sampling interval tends to zero, we e�etively put a weight on eah state visited by f�(t)g

that is equal to the length of the holding time in that state, when omputing the sample mean.

Before elaborating further on this idea, we introdue some additional notation.

Let T

n

be the time of the n-th jump of f�(t)g with T

0

= 0. By the jump hain we mean

the Markov hain f�(T

n

)g of states visited by f�(t)g. We denote this hain by f

e

�

n

g, that is,

e

�

n

= �(T

n

). Let �(�) be the total rate of f�(t)g leaving state �, that is, the sum of the birth and

all death rates, plus the rates of all other kinds of moves there may be. Then the holding time

T

n

�T

n�1

of f�(t)g in its n-th state

e

�

n�1

has a onditional exponential Exp(�(

e

�

n�1

)) distribution.

Returning to the sampling sheme, we an redue sampling variability by replaing the weight

T

n

� T

n�1

by its expetation 1=�(

e

�

n�1

). In this way the varianes of estimators built from the

sampler output are dereased: both numerator and denominator have redued variane by virtue

of the Rao{Blakwell theorem, sine

N

X

n=1

g(

e

�

n�1

)

�(

e

�

n�1

)

=

N

X

n=1

E[T

n

� T

n�1

j

e

�

n�1

℄ g(

e

�

n�1

)

and likewise for the denominator. The asymptoti variane of the ratio

N

X

n=1

g(

e

�

n�1

)=�(

e

�

n�1

)

�

N

X

n=1

1=�(

e

�

n�1

)

an then be shown to be smaller than when using T

n

� T

n�1

in plae of 1=�(

e

�

n�1

), following

Geweke (1989).

When sampling f�(t)g this way, we only simulate the jump hain and store eah state it visits

and the orresponding expeted holding time. Alternatively, the expeted holding times may be

reomputed when post-proessing the sampler output. The transition kernel of the jump hain

is as follows: the probability of an event happening is proportional to its rate. For example, the

probability of a birth is �(�)=�(�), and if a birth ours the new omponent weight and parameter

are drawn from h(�; (w; �)) as before. Thus we need to ompute all rates when simulating the

jump hain, just as we do when simulating f�(t)g. All possible moves are inorporated into the

Rao{Blakwellised estimator, not only those that are seleted.

This reformulation of the ontinuous time algorithm has more than pratial appeal for the

approximation of integrals. Indeed it highlights a point that will be made learer in Setion 4,

namely that the ontinuous time struture is paramount neither for the MCMC algorithm nor for

the approximation of integrals.

3. An illustration for hidden Markov models

Before moving to the omparison with reversible MCMC, we illustrate the potential of our ontin-

uous time extension in the set-up of hidden Markov models (Robert et al., 2000).

3.1. Setting

In this generalisation of the mixture model, the observations y

n

are suh that, onditional on

a hidden Markov hain fz

n

g with �nite state spae f1; : : : ; kg, y

n

is distributed as a N (0; �

2

z

n

)

variate. Therefore, marginally, y

n

is distributed from a mixture of normal distributions.
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Unlike previous implementations, we hoose to parameterise the transition probability matrix

of the Markov hain fz

n

g by P = (!

ij

) as follows:

P (z

n+1

= j j z

n

= i) = !

ij

�

k

X

`=1

!

i`

:

The !

ij

's are therefore not identi�ed, but this parameterisation should failitate the MCMC moves,

provided a vague proper prior is seleted, sine it relaxes the onstraints on those moves. Further,

this reparameterisation allows for a point proess representation of the problem (Preston, 1976;

Ripley, 1977; Geyer and M�ller, 1994). The prior model onsists in a uniform prior Uf1; : : : ;Mg

on k, an Exp(1) prior on the !

ij

's, a uniform U(0; �) prior on the �

i

's and a data dependent

Exp(5max jy

n

j) prior on the hyperparameter 1=�; Robert et al. (2000) notied that the fator 5 in

the exponential distribution was of little onsequene. We stress that we impose no identi�ability

onstraints by ordering the varianes, in ontrast to Robert et al. (2000). Another major di�erene

is that, as in Stephens (2000), we do not use ompletion to run our algorithm. That is to say, the

latent Markov hain fz

n

g is not simulated by the algorithm. This an be avoided due to both the

forward reursive representation of the likelihood for a hidden Markov model (Baum et al., 1970),

already used in Robert et al. (1999), and the random walk proposals as in Hurn et al. (2003).

While not stritly neessary from an algorithmi point of view (Robert et al., 1999), this hoie

failitates the omparison with Stephens (2000).

3.2. The moves of the continuous time MCMC algorithm

Sine Robert et al. (2000) implemented reversible jump for this model, we fous on the CTMCMC

ounterpart, extending Stephens (2000) to this framework. In addition to birth-and-death moves,

whih were enough to provide good mixing in Stephens (2000), we are fored to introdue additional

proposals, similar to those in Rihardson and Green (1997), beause we observed that the birth-and-

death moves are not, by themselves, suÆient to ensure fast onvergene of the MCMC algorithm.

The proposals we add are split-and-ombine moves, as desribed earlier, and �xed-k moves, where

the parameters are modi�ed via a regular Metropolis{Hastings step. The latter proposals are

essential in ensuring irreduibility and good onvergene properties.

The birth-and-death and �xed-k moves are simple to implement, and are equivalent to those

given in Hurn et al. (2003) with �xed-k moves relying on random walk proposals over the transforms

log!

i

and log(�

i

=(�� �

i

)).

The split-and-ombine move follows the general framework of Setion 2.4 with a ombine rate

given by (6). We used �

S

as an individual split rate whih is the same for all omponents. This

means that the overall rate of a split move for a k omponent vetor is �(�) = k�

S

. In the pratial

implementation of the algorithm, we hose �

S

= �

B

= 2 and �

F

= 5, where �

B

and �

F

orrespond

to the birth and �xed-k move rates, respetively.

In the ase of the above normal hidden Markov model, a split of state i

0

into states i

1

and i

2

involves four di�erent types of ations.

(a) A split move in row j 6= i

0

for !

j;i

0

as

!

j;i

1

= !

j;i

0

"

j

; !

j;i

2

= !

j;i

0

(1� "

j

); where "

j

� U(0; 1) :

This proposal is sensible when thinking that both new states i

1

and i

2

are issued from the

state i

0

and the probabilities to reah i

0

are thus distributed between the probabilities to

reah the new states i

1

and i

2

, respetively.

(b) A split move in olumn i 6= i

0

for !

i

0

;i

as

!

i

1

;i

= !

i

0

;i

�

i

; !

i

2

;i

= !

i

0

;i

=�

i

; where �

i

� LN (0; 1) :

The symmetry onstraint (5) is thus satis�ed, that is, �

i

and 1=�

i

have the same lognormal

distribution. Before this, we tried a half-Cauhy C

+

(0; 1) proposal, whih also preserves the

distribution under inversion, but this led to very poor mixing properties of the algorithm.
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() A split move for !

i

0

;i

0

as

!

i

1

;i

1

= !

i

0

;i

0

"

i

0

�

i

1

; !

i

1

;i

2

= !

i

0

;i

0

(1� "

i

0

)�

i

2

;

!

i

2

;i

1

= !

i

0

;i

0

"

i

0

=�

i

1

; !

i

2
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;

where "

i

0

is uniform on (0; 1) and �

i

1

; �

i

2

are LN (0; 1).

(d) A split move for �

2

i

0

as

�

2

i

1

= �

2

i

0

"

�

; �

2

i

2

= �

2

i

0

="

�

; where "

�

� LN (0; 1) :

The ombine move is hosen in a symmetri way, so that states i

1

and i

2

are ombined into

state i

0

by taking �rst the geometri average of rows i

1

and i

2

in the unnormalised transition

probability matrix and then adding olumns i

1

and i

2

. One an hek that this sequene of moves

also applies to the partiular ase of !

i

0

;i

0

. The variane �

2

i

0

is the geometri average of �

2

i

1

and

�

2

i

2

. Appendix B details the omputation of the orresponding Jaobian.

3.3. An illustration

For a omparison with Robert et al. (2000), we onsider a single dataset studied in that paper,

namely the wind intensity in Athens (Franq and Roussignol, 1997). Sine the prior distribution

on the �'s is a uniform U(0; �), � is an hyperparameter that is estimated from the dataset in a

hierarhial way and updated through a slie sampler (see Robert et al. (2000) for details) via an

additional proess with intensity �

�

, set equal to 1. The varianes �

2

i

, being onstrained to be

smaller than �

2

, are updated via a Gaussian random walk proposal in the �-logit domain, that is

using the transform log(�=(� � �)) and its inverse.

Fig. 1 summarises the output for this dataset. As in Robert et al. (2000), we obtain a mode of

the posterior distribution of k at k = 3, although the posterior distribution slightly di�ers in our

ase sine the posterior probabilities for 1; 2; 3; 4 are 0:0064; 0:1848; 0:7584; 0:0488, to be ompared

with Table 1 of Robert et al. (2000). Fig. 1 also provides the distribution of the number of moves

per time unit (on the ontinuous time axis). The loglikelihoods over a wider range than those

found in Robert et al. (2000), although the highest values are the same. For instane, the largest

likelihood for k = 2 is �688, while it is �675 for k = 3 and �670 for k = 4. That we �nd lower

loglikelihoods than with RJMCMC tehniques is to be expeted sine, although both RJMCMC

and CTMCMC explore the same target distribution, ontinuous time algorithms an explore more

unlikely regions in the parameter spae, like the tails of the target, by down-weighting states with

shorter lifetimes.

4. Comparisons of reversible jump MCMC with continuous time algorithms

In this setion we provide a omparison of reversible jump and ontinuous time methodologies,

starting with a review of reversible jump MCMC within the framework of mixtures.

4.1. Reversible jump MCMC

In a k omponent state �, at eah iteration, the simplest version of the reversible jump algorithm

proposes with probability b(�) to reate a new omponent and with probability d(�) to kill one.

Obviously, b(�) + d(�) = 1, if we do not aount for �xed-k moves at this level. If an attempt to

reate a new omponent is made, its weight and parameter are drawn from h(�; (w; �)) as above.

If an attempt to kill a omponent is made then, for instane, in a mixture model, eah omponent

is seleted with equal probability. A new omponent is aepted with probability min(1; A), where

A = A(�;� [ (w; �)) =

L(� [ (w; �))r(� [ (w; �))

L(�)r(�)

�

(k + 1)!

k!

�

d(� [ (w; �))

(k + 1)b(�)

�

(1� w)

k�1

h(�; (w; �))

=

L(� [ (w; �))r(� [ (w; �))

L(�)r(�)

�

d(� [ (w; �))

b(�)

�

(1� w)

k�1

h(�; (w; �))

: (7)

Here the �rst ratio is the ratio of posterior densities, b(�)h(�; (w; �)) is the density orresponding

to proposing a new omponent (w; �), and d(� [ (w; �))=(k + 1) is the probability of proposing to
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Fig. 1. Continuous time MCMC algorithm output for a sequence of 500 wind intensities in Athens; (from

top to bottom) (a) plot of an equal time sample of k’s; (b) plot of the corresponding loglikelihood values; (c)

histogram of the number of moves per time unit; (d) MCMC sequence of the probabilities �
j

of the stationary

distribution of the three components when conditioning on k = 3; (e) same graph for the �
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’s.
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kill omponent (w; �) when in state �[(w; �). Finally (1�w)

k�1

is the same Jaobian determinant

as above, and the fatorial ratio arises from the exhangeability assumption. If a proposal to kill

a omponent (w; �) of a (k + 1) omponent state � [ (w; �) is made, the aeptane probability is

min(1; 1=A), where A = A(�;� [ (w; �)) is as above.

RJMCMC typially involves other kinds of moves like �xed-k moves resampling the omponent

weights, parameters �

i

and, possibly, hyperparameters|see, e.g., Rihardson and Green (1997).

A omplete sweep of the algorithm onsists in the omposition of a birth-and-death move with

these other �xed-k moves. Sampling for a �xed k an be arried out using a Gibbs move after

ompleting the sample aording to (1). As noted above, Rihardson and Green (1997) designed

additional moves for splitting and ombining omponents.

4.2. Convergence to BDMCMC

In this setion we onstrut a sequene of RJMCMC samplers onverging to the BDMCMC sampler.

Before proeeding we introdue some additional notation. Let S

k�1

= f(w

1

; : : : ; w

k

) : w

i

>

0;

P

i

w

i

= 1g and let � denote the spae in whih eah �

i

lies. Hene �

(k)

, the spae of k-

dimensional parameters, is �

(k)

= S

k�1

� �

k

. Finally let � = [

k�1

�

(k)

denote the overall

parameter spae.

For N 2 N we de�ne an RJMCMC sampler by de�ning birth and death probabilities

b

N

(�) = 1� expf��(�)=Ng; d

N

(�) = 1� b

N

(�) = expf��(�)=Ng ;

where �(�) is the birth rate of the BDMCMC sampler. Then A also depends on N , and we write

A = A

N

. We remark that as N !1, b

N

(�) � �(�)=N , and if �(�) is bounded we an take instead

b

N

(�) = �(�)=N . The state at time n = 0; 1; : : : of the N -th RJMCMC sampler is denoted by �

N

n

,

and for eah N we onstrut a ontinuous time proess f�

N

(t)g

t�0

as �

N

(t) = �

N

bNt

, where b�

denotes the integer part. The state of the BDMCMC sampler at time t � 0 is denoted by �(t).

We now onsider what happens as N ! 1. The probability of proposing a birth in state �

tends to zero as �(�)=N . Hene the aeptane ratio A

N

tends to in�nity, so that a birth proposal

is always aepted. If time is speeded up at sale N , on the nominal time sale the limiting proess

of aepted births in state � is a Poisson proess of rate �(�). Furthermore, the saled probability

of deleting omponent (w; �) in a state � [ (w; �) 2 �

(k+1)

is

Nd

N

(�)�min[1; 1=A

N

f�;� [ (w; �)g℄

Æ

k + 1

�!

L(�)r(�)

L(� [ (w; �))r(� [ (w; �))

�

1

k + 1

� �(�)�

h(�; (w; �))

(1� w)

k�1

as N !1;

and the right hand side is just Æ(�; (w; �)), given in (2). Considering the resaled time axis and

the independent attempts to reate or delete omponents, in the limit the waiting time until

this omponent is killed has an exponential distribution with rate Æ(�; (w; �)), agreeing with the

BDMCMC sampler. Thus, as N !1 a birth is rarely proposed but always aepted and a death

is almost always proposed but rarely aepted. Both these shemes result in waiting times whih

are asymptotially exponentially distributed with rates in aordane with the BDMCMC sampler.

Thus, one may expet that as N ! 1, the proesses f�

N

(t)g and f�(t)g will beome more and

more similar.

We will now make this reasoning strit, starting with the following assumptions:

(A0) � has a separable topology whih an be metrised by a omplete metri.

(A1) �(�) is positive and ontinuous on �.

(A2) r(�) and L(�) are positive and ontinuous on �.

(A3) For eah (w; �) 2 (0; 1) � �, h(�; (w; �)) is ontinuous on � and for eah � 2 � there is a

neighbourhood G of � suh that sup

�

0

2G

h(�

0

; �) is integrable.

We �rst note that, sine the standard topology on the open unit interval (0; 1) is separable and

an be metrised by a omplete metri, for example d(x; y) = jlog(x=(1�x))� log(y=(1�y))j, S

k�1
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an be viewed as a omplete separable metri spae. Then �, with the indued natural topology,

is a spae of the same kind. The proess f�(t)g is a Markov proess on � whih we assume has

sample paths in D

�

[0;1), the spae of �-valued funtions on [0;1) whih are right-ontinuous

and have left hand limits everywhere.

We then derive the following result (see Appendix A for a proof).

Theorem 1. Under assumptions (A0){(A3) and assuming that �(0) and �

0

are drawn from

the same initial distribution, f�

N

(t)g

t�0

onverges weakly to f�(t)g

t�0

in the Skorohod topology

on D

�

[0;1) as N !1.

4.3. Convergence to other continuous time processes

Reall again that, in Rihardson and Green's (1997) version, the RJMCMC sampler also inludes

a split-and-ombine move. More preisely, using the same notation as in Setion 2.4, they propose

to split a randomly hosen omponent of the k omponent vetor � with probability s

N

(�) so as to

give rise to a new parameter vetor with k+1 omponents, de�ned as (� n �)[T (�; "). Conversely,

the probability of proposing to ombine a randomly hosen pair of omponents of � (there are

k(k � 1)=2 pairs) is denoted by 

N

(�) = 1� s

N

(�).

A split move hanging the k omponent vetor � to (� n �)[ T (�; ") has aeptane probability

min

�

1;

L ((� n �) [ T (�; ")) r ((� n �) [ T (�; "))

L(�)r(�)

�

(k + 1)!

k!

�



N

((� n �) [ T (�; "))k

s

N

(�)k(k + 1)=2

�

1

2p(")

�

�

�

�

�T (�; ")

�(�; ")

�

�

�

�

�1

�

:

If, as above, we let s

N

(�) = 1 � expf��(�)=Ng for some �(�), so that Ns

N

(�) ! �(�), and

aordingly sale by N the trajetory of the orresponding disrete time sampler, the limiting

ontinuous time proess has a rate of moving from (� n �) [ T (�; ") to � by a ombine move whih

is given by (6). Convergene of reversible jump MCMC to ontinuous time proesses thus ours

in a broader ontext than within the birth-and-death framework of Stephens (2000).

4.4. A numerical comparison of both methodologies

While Theorem 1 establishes a strong onnetion between RJMCMC and CTMCMC, by showing

that CTMCMC an be arbitrarily well approximated by an RJMCMC algorithm, it does not imply

that in pratie both approahes perform equivalently, for instane in terms of omputational ost.

We thus arried a numerial omparison of both approahes based on idential moves and idential

proposals on both sides. Further implementation details are provided in Appendix C. In this

omparison, we hose to remain within the framework of mixtures of distributions, partly beause

the setting is simpler than hidden Markov models and partly beause most of the earlier literature

on the topi relates to this area: for instane, we rely on the Galaxy dataset, heavily used in the

literature sine Roeder (1990).

4.4.1. Implementation issues

We �rst disuss omputational aspets of both disrete and ontinuous time algorithms. In on-

tinuous time settings, one a state � is visited, it is neessary to ompute the rates of all possible

moves leading to an exit from that state, that is O(k) and O(k

2

) omputations for birth-and-death

and split-and-ombine moves, respetively. Disrete time settings do not require this exhaustive

heking, as the aeptane ratio of a move is not omputed until the move is proposed. This

advantage of reversible jump MCMC is however mitigated by three fats.

(i) For ontinuous time moves suh as birth and split, rates are typially very simple (e.g,

onstant) and it is only the death or ombine rates that are expensive to ompute.
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(ii) Exept for small datasets, the ost of evaluating the aeptane probability in RJMCMC

mainly lies in omputing the loglikelihood at the proposed parameters aording to

logL(k;w;�) =

m

X

i=1

log

k

X

j=1

w

j

f(y

i

j�

j

) ; (8)

whih involves O(k � m) omputations. For mixture models, the omputation assoiated

with RJMCMC thus also inreases proportionally to k.

(iii) At the expense of storing all values f(y

i

j�

j

) as in Stephens (2000), it is possible to redue

signi�antly the ost of repeated evaluations of (8). For instane, in a death proposal the

only required new omputations are the summations in i and j, omitting the index of the

seleted omponent. Although this remark also applies to the RJMCMC sampler, it is most

pro�table when applied to the implementation of the ontinuous time sampler.

Thus, when only birth-and-death moves are used, the average omputation times for simu-

lating one jump of the ontinuous time sampler and one step of the reversible jump sampler are

omparable. In our implementation, the former is longer by a fator whih varies between 1.5

and 2, depending on the dataset. On the other hand, the omputation time for ontinuous time

simulation with split-and-ombine moves is a fator 3 longer for the Galaxy dataset.

4.4.2. Birth-and-death samplers

We �rst ontrast the performane of the two types of samplers, RJMCMC and CTMCMC, when

only birth-and-death moves are used in addition to moves that do not modify the number of

omponents. Exept for the �ne details of the proposals desribed in Appendix C and the absene

of ompletion in the �xed-k moves, we are thus in the setting onsidered by Stephens (2000). Note

however that for CTMCMC, we adopted the Rao{Blakwellisation devie disussed in Setion 2.5

(weighting eah visited on�guration by the inverse of the overall rate of leaving rather than by the

orresponding exponentially distributed holding time). We proposed the �xed-k moves aording

to an independent Poisson proess of rate �

F

, whih leaves the overall ontinuous time proess

Markovian, whereas Stephens (2000) proposed these moves at �xed regular times. By setting the

probability P

F

of proposing a �xed-k move in RJMCMC equal to the rate �

F

= 0:5 at whih �xed-k

moves are proposed in CTMCMC, and likewise P

B

= �

B

= 0:25 for the birth moves, we guaranteed

that the moves were proposed in equal proportions by both samplers. The most important aspet

is that both the reversible jump and the ontinuous time sampler were implemented using exatly

the same move proposals to the point of sharing the same routines, whih allows for meaningful

omparisons. In the following, we ompare the performane of both samplers when the number

of jumps (number of visited on�gurations) in CTMCMC is equal to the number of iterations of

RJMCMC.

The main message here is onveyed by Fig. 2 whih shows that there is no signi�ant di�erene

between the samplers: be it for a small (5,000) or a large (500,000) number of iterations, the

auray of the estimated posterior probabilities for all allowed values of k is equivalent for both

samplers. Other signals like posterior parameter estimates onditional on a �xed k tend to show

even less di�erene; this is not surprising granted that both samplers share the same �xed-k moves.

Another evaluation of the performane of MCMC samplers is provided by the autoovariane

funtion of simulated traes. To implement this idea for the ontinuous time sampler, the Rao-

Blakwellised ontinuous time path|that is, the path of the ontinuous time proess where the

inverse rates are substituted for the orresponding holding times|was sampled regularly, with a

number of points equal to the number of jumps. Fig. 3 shows the resulting autoovariane for the

posterior simulations of k for both RJMCMC and CTMCMC, estimated on 2 million iterations

after disarding a burn-in period of 8 million iterations. One again, both samplers are seen to

perform equivalently: although all moves are aepted in CTMCMC, the mixing is not signi�antly

improved over RJMCMC beause of the weighting mehanism. This is well aptured by Fig. 4

whih shows that only about 30% of the on�gurations visited by the ontinuous time sampler are

maximally weighted. Conversely, 15% of the on�gurations have a negligible weight, a situation

whih ours when there is at least one death move whih has a very large rate.
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Fig. 2. Galaxy dataset, box plots for the estimated posterior on k obtained from 200 independent runs:

RJMCMC (top) and CTMCMC (bottom). The number of iterations varies from 5,000 (left), to 50,000 (middle)

and 500,000 (right).
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Fig. 4. Empirical distribution function of the inverse rates in CTMCMC. The maximal value corresponds to

the addition of the fixed rates: 1=(�F + �

B

) = 1=(0:3 + 0:35) and thus occurs in configurations in which all

death rates are negligible.

4.4.3. Samplers with split-and-ombine moves

Rihardson and Green (1997) suggested that for mixture models, it is pro�table to allow moves

that an ombine two omponents in a single one or onversely split a omponent. The inlusion of

suh moves in the CTMCMC framework is straightforward and has been disussed in Setion 4.3.

Fig. 5 is the equivalent of Fig. 2 with all types of moves enabled; here, P

F

= �

F

= P

B

= �

B

=

P

S

= �

S

= 0:2 is used, where P

S

and �

S

are the probability of proposing a split move in RJMCMC

and the split rate in CTMCMC, respetively. Looking in greater detail at the 5,000 iterations plot,

it is possible to see a small advantage for the ontinuous time sampler: the reversible jump one

has a small downward bias for k = 3 and its variability is slightly larger at all bins. Part of the

explanation is that the weights (inverse rates) in the ontinuous time sampler have a very similar

distribution for the death and ombine moves whereas the aeptane probabilities for these are

very di�erent in the reversible jump sampler, where deaths are aepted about three times more

often. This is due to the fat that even when k is large, there are always at least one or two pairs

whih have a reasonable rate of being ombined and these are seleted by the ontinuous time

sampler. In ontrast, when k is large, the reversible jump sampler has a low probability of drawing

preisely these few pairs.

Another interesting onlusion to be drawn from Fig. 2 and Fig. 5 is that the inlusion of

the split-and-ombine moves does not signi�antly improve the auray of the results. This is

understandable for RJMCMC sine split proposals need to be very arefully tuned in order to

maintain reasonable aeptane probabilities (see also Appendix C). For CTMCMC however, the

same onlusion is also true despite the advantage mentioned above.

In onlusion, were we to rank all tehniques on the basis of their omputation time, as detailed

in Setion 4.4.1, the optimal hoie would be RJMCMC with birth-and-death only, very losely

followed by the equivalent CTMCMC sampler; then, at some distane, RJMCMC with both types

of dimension hanging moves enabled and �nally CTMCMC in the same onditions, whih is

unattrative beause of its high omputational ost.

5. Discussion

Our work suggests that there is no learut improvement in using ontinuous time MCMC algo-

rithms: While disrete time moves an also be implemented in ontinuous time, this alternative

implementation does not bring a visible upgrade in the performanes of the algorithms. If any-

thing, the ontinuous time samplers are slower, beause they involve onsideration of the whole
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Fig. 5. Galaxy dataset, box plot for the estimated posterior on k obtained from 500 independent runs: Top

RJMCMC and bottom, CTMCMC. The number of iterations varies from 5,000 (left plots) to 50,000 (right

plots).

range of possible moves and their respetive rates after eah move. Repeated alls to the likelihood

funtion are very ostly in omputing time and/or memory.

The advantage of ontinuous time samplers is rather their ability to move to unlikely plaes:

given that the split and birth rates are independent of the data, the algorithm an impose moves to

low probability regions of the parameter spae. Suh regions are of little interest for inferene but

they an onstitute a kind of springboard for the Markov hains, allowing these to move from one

mode of the posterior distribution to another one. But this potentially better mixing behaviour

an only be ahieved when a wide variety of moves are proposed simultaneously, as illustrated in

Fig. 5.

A typial set-up of BDMCMC is to let �(�) be onstant, say �(�) = 1, sine a di�erent onstant

only resales time. Likewise, for RJMCMC b(�) = d(�) = 1=2 is typial, exept for states � with

k = 1 for whih b(�) = 1. Under these assumptions, equations (2) and (7) relate as A = (k+1)Æ

�1

.

Sine both samplers have the same stationary distribution, we �nd that if one of the algorithms

performs poorly, so does the other one. For RJMCMC this is manifested as small A's|birth

proposals are rarely aepted|while for BDMCMC it is manifested as large Æ's|new omponents

are indeed born but die again quikly.

The \attrative alternative" to Rihardson and Green (1997) in terms of mixing over the values

of k, as reported in Stephens (2000, Setion 5.3), is thus not to be sought in the ontinuous time

nature of his algorithm, but rather in the di�erent hoies made in the sampler: Stephens (2000)

used birth-and-death moves only for modifying the dimension of the model, and these moves did

not involve the omplete data, that is, the omponent labels, while Rihardson and Green (1997)

used split-and-merge moves as well and arried along the omponent labels through all moves,

inluding the dimension-hanging ones. The issue of ompletion is not diretly related to the

entral theme of this paper, but it may be that the absene of ompletion explains the di�erent

behaviour of the sampler. This was not the ase however in the �xed-k mixture setting studied by

Celeux et al. (2000).

Finally we pereive Rao{Blakwellisation as an advantage of ontinuous time algorithms; this

feature is, as noted above, obtained at no extra ost. Rao{Blakwellisation ould in priniple be



Reversible jump and continuous time MCMC 15

arried out in disrete time as well|holding times have geometri distributions|but, there, the

expeted holding times annot be omputed easily; see (9) in the proof of Lemma 1 below. See

also Casella and Robert (1996) for another Rao{Blakwellisation of Metropolis algorithms.
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A. Proof of Theorem 1

For � 2 �

(k)

, let

�(�) = �(�) +

k

X

i=1

Æ(� n (w

i

; �

i

); (w

i

; �

i

))

be the overall rate of leaving state � in the BDMCMC sampler and let �

N

(�) be the overall

probability of moving away from state � (in one step) in the RJMCMC sampler.

Before proving the theorem, we state and prove a lemma.

Lemma 1. For eah k � 1 and �

0

2 �

(k)

, there is a neighbourhood G � �

(k)

of �

0

suh that

sup

�2G

jN�

N

(�)� �(�)j ! 0 as N !1.

Proof. We �rst note that for � 2 �

(k)

, �

N

(�) an be written

�

N

(�) =

Z

b

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) d(w; �)

+

k

X

i=1

d

N

(�)

1

k

minfA

�1

N

(� n (w

i

; �

i

);�); 1g: (9)

Thus

sup

�2G

jN�

N

(�)� �(�)j

�

Z

sup

�2G

jNb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j d(w; �) (10)

+

k

X

i=1

sup

�2G

j

1

k

Nd

N

(�)minfA

�1

N

(� n (w

i

; �

i

);�); 1g � Æ(� n (w

i

; �

i

); (w

i

; �

i

))j: (11)

We start by looking at the `birth part' (10) of this expression. We shall prove that it tends to

zero by showing that the integrand tends to zero for all (w; �) and showing that the integrand is

dominated, for all suÆiently large N , by an integrable funtion. Bound the integrand as

sup

�2G

jNb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � �(�)h(�; (w; �))j

� sup

�2G

jNb

N

(�)� �(�)j � 1� sup

�2G

h(�; (w; �)) (12)

+ sup

�2G

�(�)� sup

�2G

jminfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j: (13)

For � � 0 and N > �,

�

N

�

1

2

�

2

N

2

� 1� e

��=N

�

�

N

;
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so that

jN(1� e

��=N

)� �j � �

2

=2N:

Hene, for suÆiently large N , (12) is bounded by

1

2N

sup

�2G

�

2

(�)� sup

�2G

h(�; (w; �)); (14)

by (A1) and (A3), for an appropriate G this expression tends to zero as N !1 and is dominated

by an integrable funtion.

Regarding (13), it is dominated by an integrable funtion similar to (14) (remove 1=(2N) and

the squaring), and it remains to show that it tends to zero as N !1. We have

jminfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �))j = h(�; (w; �))

� min

�

L(� [ (w; �))r(� [ (w; �))

L(�)r(�)

�

d

N

(� [ (w; �))

b

N

(�)

(1� w)

k�1

; h(�; (w; �))

�

:

By (A2), for eah (w; �), L(� [ (w; �))r(� [ (w; �)) and L(�)r(�) are bounded away from in�nity

and zero, respetively, on a suÆiently small G. Likewise, by (A1), d

N

(� [ (w; �)) and b

N

(�) tend

to unity and zero, respetively, uniformly over suh a G. Finally, by (A3), h(�; (w; �)) is bounded

on an appropriate G, and we onlude that (13) tends to zero uniformly over G as N !1 if G is

small enough.

We now turn to the `death part' (11). By arguments similar to those above, for large N and

suÆiently small G it holds that

1

k

Nd

N

(�)minfA

�1

N

(� n (w

i

; �

i

);�); 1g

=

1

k

N min

�

L(� n (w

i

; �

i

))r(� n (w

i

; �

i

))

L(�)r(�)

�

b

N

(� n (w

i

; �

i

))h(� n (w

i

; �

i

); (w

i

; �

i

))

(1� w

i

)

k�2

; d

N

(�)

�

=

L(� n (w

i

; �

i

))r(� n (w

i

; �

i

))

L(�)r(�)

�

1

k

�

Nb

N

(�)h(� n (w

i

; �

i

); (w

i

; �

i

))

(1� w

i

)

k�2

uniformly over G, and, also using arguments as above, one an show the right hand side of this

expression onverges to Æ(� n (w

i

; �

i

); (w

i

; �

i

)) as N !1, uniformly over a small enough G. 2

Reall the de�nitions of jump times and the jump hain in Setion 2.5. The sequene f

e

�

n

; T

n

�

T

n�1

g of visited states and holding times form a Markov renewal proess (MRP). The transition

kernel of this MRP is denoted by K, that is, K(�;A�B) = P (

e

�

n

2 A; T

n

�T

n�1

2 B j

e

�

n�1

= �).

Sine f�(t)g is Markov, the onditional distribution of T

n

� T

n�1

given

e

�

n�1

= � is exponential

with rate �(�). In addition, �(T

n

) and T

n

� T

n�1

are onditionally independent. Similarly,

f�

N

(t)g is a semi-Markov proess with jump times fT

N

n

g in the lattie i=N , and the kernel of

the assoiated MRP is denoted by K

N

. Sine f�

N

n

g is Markov, �

N

(T

N

n

) and T

N

n

� T

N

n�1

are

onditionally independent given �

N

(T

N

n�1

).

Proof of Theorem 1. Using results of Karr (1975), it is suÆient to prove that for eah real-valued

uniformly ontinuous funtion g on �� [0;1),

(i) Kg(�) is ontinuous on �;

(ii) K

N

g(�)! Kg(�) uniformly on ompat subsets of � as N !1.

We start by showing (ii). By the struture of �, it is suÆient to show that for eah �

0

2 �

(k)

,

there is a neighbourhood G � �

(k)

of �

0

suh that K

N

g(�)! Kg(�) uniformly on G, and this is
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what we will do. For � 2 �

(k)

, K

N

g(�) and Kg(�) an be written

K

N

g(�) =

1

X

m=1

Z

(1� �

N

(�))

m�1

b

N

(�)minfA

N

(�;� [ (w; �)); 1g

h(�; (w; �))g

�

� [ (w; �);

m

N

�

d(w; �)

+

1

X

m=1

(1� �

N

(�))

m�1

k

X

i=1

d

N

(�)

1

k

minfA

�1

N

(� n (w

i

; �

i

);�); 1gg

�

� n (w

i

; �

i

);

m

N

�

=

Z

1

0

Z

(1� �

N

(�))

bNu

Nb

N

(�)minfA

N

(�;� [ (w; �)); 1g

h(�; (w; �))g

�

� [ (w; �);

dNue

N

�

du d(w; �)

+

Z

1

0

(1� �

N

(�))

bNu

k

X

i=1

Nd

N

(�)

1

k

minfA

�1

N

(� n (w

i

; �

i

);�); 1gg

�

� n (w

i

; �

i

);

dNue

N

�

du;

Kg(�) =

Z

1

0

Z

�(�)e

��(�)u

�(�)

�(�)

h(�; (w; �))g(� [ (w; �); u) du d(w; �)

+

Z

1

0

k

X

i=1

�(�)e

��(�)u

Æ(� n (w

i

; �

i

); (w

i

; �

i

))

�(�)

g(� n (w

i

; �

i

); u) du

=

Z

1

0

Z

e

��(�)u

�(�)h(�; (w; �))g(� [ (w; �); u) du d(w; �)

+

Z

1

0

k

X

i=1

e

��(�)u

Æ(� n (w

i

; �

i

); (w

i

; �

i

))g(� n (w

i

; �

i

); u) du;

where dxe is the smallest integer no smaller than x.

We again start by looking at the `birth parts' of the kernels, bounding the orresponding part

of jK

N

g(�)�Kg(�)j as

Z

1

0

Z

sup

�2G

�

�

�

�

(1� �

N

(�))

bNu

Nb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �))

�g

�

� [ (w; �);

dNue

N

�

� e

��(�)u

�(�)h(�; (w; �))g(� [ (w; �); u)

�

�

�

�

du d(w; �):

We wish to prove that this expression tends to zero as N ! 1. We an do this by showing that

the integrand tends to zero for all u � 0 and all (w; �) and that there exists a dominating (for all

suÆiently large N) integrable funtion.
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In order to aomplish this, we add and subtrat a number of telesoping terms, giving us

sup

�2G

�

�

�

�

(1� �

N

(�))

bNu

Nb

N

(�)minfA

N

(�;� [ (w; �)); 1gh(�; (w; �))g

�

� [ (w; �);

dNue

N

�

�e

��(�)u

�(�)h(�; (w; �))g(� [ (w; �); u)

�

�

�

�

� sup

�2G

�

�

�

�

(1� �

N

(�))

bNu

� e

��(�)u

�

�

�

�

� sup

�2G

Nb

N

(�)� 1� h(w; �) � jjgjj

1

+ sup

�2G

e

��(�)u

� sup

�2G

Nb

N

(�)� 1� h(w; �) � Æ

g

1=N

+ sup

�2G

e

��(�)u

� sup

�2G

jNb

N

(�)� �(�)j � 1� h(w; �) � jjgjj

1

+ sup

�2G

e

��(�)u

� sup

�2G

�(�)

� sup

�2G

jminfA

N

(�;� [ (w; �)); 1gh(�; (w; �)) � h(�; (w; �)j � jjgjj

1

;

where h(w; �) = sup

�2G

h(�; (w; �)) and Æ

g

1=N

= sup

�((�;u);(�

0

;u

0

))�1=N

jg(�; u) � g(�

0

; u

0

)j is the

modulus of ontinuity of g; � is a metri making � � [0;1) separable and omplete. All of the

terms on the right hand side but the �rst one an be treated as in the proof of the lemma, with the

extra observation that �(�) � �(�) is bounded away from zero on ompat subsets of �. Moreover,

sine

(1� �

N

(�))

bNu

� e

��

N

(�)bNu

= e

�N�

N

(�)(bNu=N)

;

the lemma implies that the �rst term is, for largeN 's, dominated by an integrable funtion. Finally

(1� �

N

(�))

bNu

� e

��(�)u

� e

��

N

(�)bNu

� e

�(�)u

= e

��(�)u

�

e

��(�)(bNu=N�u)+bNuo(1=N)

� 1

�

;

where, by the lemma, the o(1=N) term is uniform over a small G so that the right hand side tends

to zero uniformly over suh a G. The inequality log(1� x) � �x� 2x

2

for 0 � x � 1=2 leads to a

reverse inequality whih is handled similarly.

The `death parts' of the kernels, that is, bounding the orresponding parts of jK

N

g(�)�Kg(�)j,

an be handled ombining arguments for the `birth parts' and arguments used to prove the lemma.

Finally requirement (i) above an be proved using similar tehniques. 2

B. The Jacobian for the split-and-combine move

The parts of the Jaobian determinant orresponding to the split move in Setion 3.2 are

(a) !

j;i

0

;

(b) 2!
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(d) this part of the Jaobian an be obtained as

4�

2

i

1

�

2

i

2

(�� �

i

1

)(�� �

i

2

)

.

�(� � �

i

0

)�

2

i

0

;

where �

i

1

= �-logit

�1

[�-logit(�

i

0

) + "

�

℄ and �

i

2

= �-logit

�1

[�-logit(�

i

0

)� "

�

℄ (di�erentiat-

ing with respet to �

2

i

0

).

C. Implementation details for the numerical comparison experiment

C.1. Model

We onsider a Gaussian salar mixture model with parameters (w

1:k

; �

1:k

; �

1:k

), where the �

i

's are

the varianes. The prior modelling is suh that

k � U(f1; : : : ;Mg) ; w

1:k

� D

k

(1; : : : ; 1) ; �

i

� N (0; �) ; �

�1

i

� Ga(�; �);

where D denotes the Dirihlet distribution, and with the following hyperparameters (saled for the

reentered Galaxy dataset):

M = 15; � = (maxfY

i

g

1�i�n

�minfY

i

g

1�i�n

)

2

; � = 0:5; � = 10

�3

:

C.2. Sampler

The sampler onsists of �xed-k, birth-and-death and split-and-ombine moves, for both the re-

versible jump and the ontinuous time versions. The �xed-k moves are proposed with probability

P

F

in RJMCMC and with rate �

F

= P

F

in CTMCMC (for k =M these numbers are both zero).

In both ases, it onsists of the three Metropolis-Hasting proposals (weights, means, varianes)

with independent aept/rejet deisions. The proposal is a multipliative lognormal random walk

on the w

i

's, LN (0; �), an additive normal random walk on the �

i

's, N (0; �), and a multipliative

lognormal random walk on the �

i

's, LN (0; �). These moves an just as easily be arried out glob-

ally or one omponent at a time, but only global moves (i.e. with proposal a�eting the parameters

of all the omponents) were used in our simulations. The sampler parameters were tuned in order

to ahieve aeptane rates that stay in the range 0.3{0.7 for all values of k � 15, and we obtained

� = 0:05; � = �

Æ

(2000k); and � = 0:08: The normalisation of � by k tends to stabilise the aep-

tane rate (with onstant � the aeptane rate drops for high values of k). Despite good mixing,

these moves alone are not suÆient to generate label swithing (see Celeux et al., 2000).

The birth-and-death moves are Stephens' (2000), namely suh that when in a k omponent

on�guration we propose a new omponent from the prior aording to w � Be(1; k) ; � � N (0; �),

and �

�1

� Ga(�; �), where Be is the Beta distribution. For the ontinuous time version of the

move, the birth rate is �

B

= P

B

(again, these numbers are zero for k = M) and the death rates

are given by

�

B

L(�)

Æ

L(� [ (w; �)) � k + 1;

where � = (�; �); notie that h(�; (w; �))=(1�w)

k�1

in (2) anels with the ratio r(�)=r(�[(w; �))

of prior densities.

The split-and-ombine move is inspired by Rihardson and Green (1997). If a omponent i is

proposed to be split, this is done aording to

(a) w

i

7! (�w

i

; (1� �)w

i

) with � � Be(

S

; 

S

),

(b) �

i

7! (�

i

� �; �

i

+ �) with � � N (0; �

S

),

() �

i

7! (�

i

=�; �

i

�) with � � LN (0; �

S

).

In the urrent implementation P

S

is onstant exept for edge e�ets (P

S

(M) = 0). On the galaxy

data, the hoie of parameters that maximises the aeptane rate for the split-and-ombine move

is 

S

= 1, �

S

= 0:2, and �

S

= 3. However, the aeptane rate is then only 4.3% (ompared to

13.3% for the birth-and-death move).
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