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A Bayesian Approa
h for Simultaneous

Segmentation and Classi�
ation of Count Data

Olivier Capp�e

Abstra
t

A Bayesian approa
h is proposed that provides a 
on
ise des
ription of a series of 
ounts under the form of homo-

geneous 
onse
utive data segments whi
h are 
lassi�ed based their marginal distribution. Due to the 
exibility of the


orresponding model, 
arrying out the a
tual inferen
e turns out to be a 
omplex task for whi
h an original 
ombination

of several Markov Chain Monte Carlo (MCMC) simulation tools is developed. The proposed MCMC sampler makes

use of reversible jump moves to a
hieve 
ommuni
ation between models with di�erent numbers of both segments and


lasses. A large se
tion of the paper is devoted to the dis
ussion of the results obtained on a medium duration se
tion

(a few minutes) of a publi
ly available teletraÆ
 tra
e taken from the Internet traÆ
 ar
hive.

EDICS: 2-SYSM System Modeling and Representation (Spe
ial Issue on Monte Carlo Methods for Statisti
al Signal

Pro
essing edited by P. M. Djuri
 and S J. Godsill)

I. introdu
tion

Modeling and analysis of dis
rete-valued time series plays an important role in various domains whi
h

range from so
ial and environmental s
ien
es (monitoring of road traÆ
 for instan
e) to tele
ommuni-


ation engineering (
ontrol and predi
tion of the amount of data transmitted over a 
omputer network,

whi
h we shall refer to as \teletraÆ
" in the following).

In this 
ontribution, we address the task of simultaneously segmenting and 
lassifying an observed

re
ord of dis
rete-time 
ount data. Segmentation means �nding 
ontiguous regions of the data that 
an

be 
onsidered as homogeneous, whereas 
lassi�
ation aims at identifying various 
hara
teristi
 levels

in the data. Typi
al statisti
al models for these two purposes are, respe
tively, 
hangepoint models

(segmentation) and mixture models (
lassi�
ation). In a
hieving this goal of joint segmentation and


lassi�
ation, our may 
on
ern will be 
exibility.

A �rst requirement is that the dis
rete-valued dis
rete-time nature of the observation be spe
i�
ally

taken into a

ount. In parti
ular, the fa
t that the observations 
orresponds to time-aggregated 
ounts

obtained from a point pro
ess must be a

ounted for (see se
tion II-A for details).

Flexibility also has some more subtle impli
ations 
on
erning the prior assumptions that 
an validly

be made about the typi
al durations of segments: In dis
rete time 
hangepoint models, the most 
om-

mon option 
onsists in assuming that the durations of the stationary segments are a priori independent

and geometri
ally distributed. This has the advantage that, 
onditionally on the model parameters,

posterior inferen
e regarding the positions of the 
hanges 
an be 
arried out eÆ
iently using deter-

ministi
 algorithms [1℄, [2℄. For su
h models, joint parameter and 
hange lo
ations estimation 
an be


arried out using methods based on Markov Chain Monte Carlo (MCMC) simulations [2℄, [3℄, [4℄. It

is shown in [5℄ that if the segments are labelled (or belong to a known number of \regimes" following

the author's terminology) and with the same prior assumption on the duration of the segments, the

model is fully equivalent to a so-
alled Hidden Markov Model (HMM) [6℄ for whi
h eÆ
ient blo
k

simulation strategies are available. In the following however, we will not be using this remark as we


onsider a prior stru
ture whi
h is more 
exible than the HMM in the sense that it allows for more

widely dispersed segment durations (see �gure 4 of se
tion II-B).

Flexibility �nally implies that key quantities in
luding the plausible numbers of 
lasses and segments

needed to represent the data should be inferred by the analysis and not prede�ned by prior expert

analysis. To this end, we follow the same approa
h as that used for the HMM model by [7℄ whi
h
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is based on the reversible jump methodology introdu
ed by [8℄. As far as the MCMC ma
hinery is


on
erned, the proposed approa
h di�ers from both [4℄, [9℄ or [10℄ and [11℄, [7℄ by the fa
t that it

implies two di�erent types of dimension 
hanging moves that are nested.

To illustrate this approa
h, we 
onsider its appli
ation to the analysis of a se
tion of aggregated

teletraÆ
 data taken from one of the tra
es available from the Internet TraÆ
 Ar
hive (lo
ated at

http://ita.ee.lbl.gov/). This is a diÆ
ult and 
hallenging appli
ation be
ause there is 
urrently no

available model whi
h 
an adequately represent su
h 
omplex data whi
h results from the superposition

of a large number of inhomogeneous and non-stationary data 
ows, espe
ially without knowledge of

routing information [13℄, [12℄, [14℄, [15℄. The aim here is de�nitely not to the model the physi
al pro
ess

that generates the data but rather to obtain meaningful summaries (or \stylized fa
ts" following the

terminology used in e
onometri
s) from traÆ
 tra
es. Su
h summaries 
ould be used to monitor

the traÆ
 or serve as development tools, as in [16℄ whi
h des
ribes the appli
ation of a graphi
al

stylization tool known as \textured plots" to sour
e level tra
es in order to validate the so-
alled \self-

similar" traÆ
 model. Note �nally that 
ontrary to referen
es su
h as [13℄ or [12℄ whi
h fo
us on the


hara
terization of the s
aling properties and large s
ale behavior of traÆ
, the goal of our analysis

will be to obtain a detailed des
ription of the statisti
al behavior of short se
tions of the data. There is

a priori no link between the two approa
hes sin
e modeling the long term dependen
e e�e
ts does not

require to 
onsider some statisti
al features of the traÆ
 su
h as marginal distribution or short term


orrelations, whi
h are rather 
onsidered as nuisan
e parameters. Conversely, we will see in se
tion IV

that our approa
h, whi
h is in some sense a non parametri
 smoothing method, provides results that


annot be extrapolated to infer the long term behavior of the data.

The rest of the paper is organized as follows: The Bayesian model is presented in se
tion II; The

asso
iated MCMC sampler is des
ribed in se
tion III, and se
tion IV dis
usses results obtained on a

teletraÆ
 data.

II. Bayesian model

A. Data and parameterization

We 
onsider that the data to be analyzed 
onsists of a se
tion fn

t

g

t=1;:::;T

of length T of a dis
rete-

time 
ount pro
ess (n

t

2 N). To this observable data is asso
iated a latent (or unobservable) stru
ture

whi
h simultaneously de�nes the segmentation (K; b

2

; : : : b

K

) and 
lassi�
ation (M; l

1

; : : : ; l

K

) 
on�gu-

ration a

ording to Fig. 1. The segments are hypotheti
al homogeneous se
tions of the data whi
h are

unambiguously de�ned by the number of segments K and the segment boundaries b

1

; : : : b

K+1

, where

the k-th segment extends from indexes b

k

to b

k+1

�1 (in
lusive). In a

ordan
e with this parameteriza-

tion, the very �rst (b

1

) and last (b

K+1

) segment boundaries are set to one and T +1 respe
tively. The


lasses de�ne di�erent types of statisti
al 
hara
teristi
s 
orresponding to the data se
tions de�ned by

the segments. The 
lasses are parametri
 and are de�ned (up to a permutation of the order in whi
h

the 
lasses are numbered) by the number of 
lasses M , and the 
lass parameters (�

m

; �

m

)

1�m�M

(see

below for the meaning of these parameters). Ea
h segment is linked to a parti
ular 
lass by means of

an atta
hed label l

k

whi
h takes values in the range 1; : : :M .

[Figure 1 about here.℄

To implement the idea that the segments should represent homogeneous regions of the data, we will

assume that given the parameters and the latent data � = (M;�

1

; : : : ; �

M

; �

1

; : : : ; �

M

; K; l

1

; : : : ; l

K

; b

2

; : : : b

K

),

the 
ounts n

t

are 
onditionally independent with a marginal distribution whi
h depends �rst, on the

se
tion to whi
h they belong, and, se
ond, on the label atta
hed to this se
tion.

The 
hoi
e of the marginal distribution is an issue that must be treated with some 
are. In many

works that deal with dis
rete-valued data su
h as [17℄ for a semi-parametri
 model, [8℄ for a 
hangepoint

model, [18℄ for a parametri
 model, the (
onditionally) Poisson assumption is used. The problem is that

dis
rete time 
ount data generally arises from the observation of the number of events asso
iated with

an underlying 
ontinuous time pro
ess. In general, the event patterns asso
iated with the underlying
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ontinuous time pro
ess are less regular than those of a Poisson pro
ess and often are non-homogeneous

(in time). In su
h 
ases, aggregation (or time averaging) has the e�e
t of in
reasing the variability of

the measured 
ounts with respe
t to the Poisson distribution with identi
al mean. This observation

is well established in a
tuarial s
ien
es for instan
e [19℄ and will be 
learly illustrated when analyzing

teletraÆ
 data in se
tion IV. To 
ope with this in
rease in variability, we will assume that given the

latent stru
ture �, the observed 
ounts n

t

are independent with the negative Binomial distribution

Neg � Binomial(�

m

; �

m

), where m is the label asso
iated with the segment that 
ontains t (i.e. l

k

where k is su
h that b

k

� t < b

k+1

). Thus, ea
h 
lass 
orresponds to a di�erent negative binomial

distribution 
hara
terized by the two parameters � and �:

Neg � Binomial(nj�; �) =

�

n+ �� 1

�� 1

�

�

�

(1� �)

n

for n 2 N

where � 2 (0; 1) and � > 0 are both treated as 
ontinuously varying parameters. The above parame-

terization is reminis
ent of the interpretation of the negative binomial distribution as a waiting time

distribution (number of failures before the �th su

ess for independent Bernoulli trials with probability

of su

ess � - assuming that � is an integer). In the model under 
onsideration, this interpretation

is not appli
able and it would be more natural to use as parameters the mean � = �(1 � �)=� and

the varian
e over-dispersion ratio 
 = 1=� (ratio of the varian
e to that of a Poison distribution with

the same mean). We will however use the parameterization de�ned by � and � whi
h is the most

attra
tive from a 
omputational point of view (see se
tion III-C). The transformations

�(x) =

x

1 + x

and �(x) =

x

1� x

; (1)

will also be needed in the following.

B. Priors and hyperparameters

The 
omplete prior stru
ture is plotted in �gure 2 using the standard graphi
al model 
onventions

(
ir
les denote random variables and boxes 
ontain �xed hyperparameters).

[Figure 2 about here.℄

The prior on M is geometri
 with rate �

M

2 (0; 1) (i.e. P (M = m) = (1� �

M

)=�

M

� �

m

M

for m � 1).

This 
hoi
e does not favor a priori any spe
i�
 value of the number of 
lasses and is simply meant to

enfor
e a 
omplexity penalty (favoring parsimonious models).

[Figure 3 about here.℄

Spe
ifying a proper prior for the parameters �

m

and �

m

of ea
h 
lass is an absolute requirement

in this type of model be
ause of the possible out
ome of empty 
lasses for whi
h the posterior would

be improper { see [20℄ whi
h dis
usses this issue for mixture models. We use independent priors for

ea
h of the 
ouple of 
lass-dependent parameters (�

m

; �

m

). It is however not sensible to assume that

�

m

and �

m

themselves are independent even for the purpose of a non informative analysis. In order

to illustrate this latter point we randomly drew 5000 segments, with length between 5 and 60 points

(representing from 5 se
onds to one minute of traÆ
), in the 
omplete traÆ
 tra
e from whi
h the

data analyzed in se
tion IV is extra
ted. For ea
h segment, the maximum likelihood estimate of the

negative binomial parameters was approa
hed using a few steps of the 
oordinate as
ent method and

plotted in log-log 
oordinates. Figure 3 shows that while it is not unrealisti
 to assume that the mean

� = �(1� �)=� and the dispersion � are independent, the same assumption dire
tly applied to � and

� would totally 
ontradi
t the nature of the model. Fig. 3-(a) indeed reveals that � and � are strongly

interdependent. The 
hoi
e of independent priors on � and �, espe
ially if those priors are vague,
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would result in most of the a priori mass being put on either very small or very large values of the

mean �. As a 
onsequen
e, we assume that a priori,

p(�

m

; �

m

) = Gamma(�

m

j�

�

; �

�

) Beta(�

m

j�

�

; �

�

) (2)

whi
h gives, after appli
ation of the transformation �

m

= �

m

�

m

=(1� �

m

),

p(�

1

; �

1

; : : : ; �

M

; �

M

jM) =

M

Y

m=1

Gamma(�

m

j�

�

; �

�

=�(�

m

))Beta(�

m

j�

�

; �

�

) (3)

The 
hoi
e of (2) is motivated by the fa
t that the beta distribution is the 
onjugate prior asso
iated

to the negative binomial likelihood for the parameter �

m

[21℄. Although this is no more true of (3), it

is nonetheless possible to use eÆ
ient simulation pro
edures based quasi-Gibbs updates as des
ribed

in se
tion III-C.

Be
ause (3) is entirely symmetri
, any permutation of the way the 
lasses are numbered leave the

posterior un
hanged. As a 
onsequen
e, the output of the MCMC sampler for a �xed value of M

should really be interpreted as samples from a set of parameters (�

k

; �

k

)

1�k�M

(for a �xed value of

M). Following the suggestions of [22℄ and [23℄, when the 
lasses need to be unambiguously identi�ed

(for instan
e for inferen
e about the 
lass dependent parameters), the sampler out
omes are ordered

by post-pro
essing using a 
lassi�
ation rule. In the present work, a simple ordering based on the

mean value �

m

= �

m

(1� �

m

)=�

m

of ea
h 
lass was found to be suÆ
ient (performing equivalently to

the 
lustering approa
hes of [23℄ applied to �

m

and �

m

jointly). The reason for this good behavior

of su
h a simple 
lassi�er is that the 
lasses are well separated with respe
t to their mean values

when 
onditioning on plausible (and in parti
ular not too large) values of the number of 
lasses as

shown in �gure 9 (se
tion IV). There are of 
ourse other options whi
h in
lude imposing identi�ability


onstraints on the 
lass parameters so as to ensure that the ordering of the 
lasses is indeed de�ned

unambiguously { see [24℄, [11℄, [18℄ and [25℄ for a more detailed a

ount on this point.

We next assume that

P (K = kjM) / �

k�M

K

for k � M; (4)

P (b

2

; : : : ; b

K

jK) =

�

T � 1

K � 1

�

�1

; (5)

P (l

1

; : : : ; l

K

jK;M) = [M(M � 1)

K�1

℄

�1

; (6)

where / means \proportional to" (up to the normalizing 
onstant whi
h ensures that the distribution

sums to 1). The prior on K is geometri
 as for the number of 
lass, where the 
onstraint K � M is

imposed be
ause the number of 
lasses would ne
essarily be ill-de�ned in 
ases where there are fewer

segments than 
lasses. Note however that this 
onstraint is not suÆ
ient to prevent the appearan
e

of empty 
lasses in the 
ourse of the simulations. In pra
ti
e, empty 
lasses o

ur only rarely sin
e

their appearan
e is penalized trough the labelling prior given by (6). The geometri
 prior on M is

intended to allow for large number of segments (whi
h typi
ally o

urs when analyzing large se
tions

of the data) with a high a priori un
ertainty on the number of segments.

(5) 
orresponds to the assumption that the segments boundaries b

2

; : : : b

K


over the available range

of time indexes (2 to T ) uniformly. The 
orresponding prior distribution is that of an ordered draw in

f2; : : : Tg without repla
ement be
ause of the 
onstraint b

k

> b

k�1

for k = 1; : : : ; K whi
h guarantees

that the segments are indeed well de�ned. Similarly, the label sequen
e has an uniform a priori

distribution over all theM(M�1)

(K�1)

valid 
on�gurations, whi
h are su
h that no adja
ent segments

share the same label.

[Figure 4 about here.℄
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An important point is that (4) and (5) 
orrespond to a prior on the segmentation stru
ture (
ondi-

tionally on the number of 
lasses) whi
h is less informative than the Bernoulli [10℄, [4℄ or Markovian [5℄

priors 
ommonly used in 
hangepoint analysis. As noted by [5℄ when the hyperparameters are �xed,

using a Markovian prior for the segmentation boundaries is equivalent to Hidden Markov modeling,

whi
h is 
omputationally attra
tive [18℄. However, the segment durations are then a priori distributed

a

ording to a geometri
 distribution whi
h implies in parti
ular that long segments are (a priori)

unlikely. We thus follow the suggestion of [8℄ penalizing only the number of segments and not the seg-

ment pattern. A

ordingly, this prior stru
ture allows for mu
h longer segments than the Markovian

prior as illustrated in �gure 4. Note that a di�erent and interesting solution would 
onsist of using a

parametri
 assumption for the segment duration as in [9℄.

In the present study, �

M

, �

�

; �

�

, �

�

; �

�

and �

K

are treated as hyperparameters and are set to �xed

values. Be
ause we would like to be as noninformative as possible parti
ularly for model 
hara
teristi
s

that have a possible in
uen
e on the segmentation out
ome, we 
hoose to set �

M

and �

K

very 
lose to

one. It turns out that when �

M

and �

K

are greater than 0.9, their pre
ise values have no signi�
ant

in
uen
e on the results for the data 
onsidered in se
tion IV, and that moreover, one 
an as well use

�

M

= �

K

= 1. This seemingly 
ounterintuitive result is interesting be
ause it reveals the interplay

between the prior hypotheses: For the data under 
onsideration, the dimension penalty doesn't 
ome

from the priors ofM and K but rather from those of the segment and label 
on�gurations given by (5)

and (6). For the remaining parameters we sele
ted the following values, �

�

= 0:1, �

�

= 1e� 4, �

�

= 1,

�

�

= 1 whi
h 
orrespond to distributions of � and � that are distin
tively more dispersed than the

empiri
al distributions shown in �gure 3-(b).

III. MCMC sampler

The MCMC sampling strategy 
onsists of a systemati
 s
an through �ve types of moves:

1. Updating the segment boundaries

2. Updating the segment labels

3. Creating or removing segments

4. Updating the parameters of ea
h 
lass

5. Modifying the number of 
lasses

Move 2 and 4 use standard Gibbs and/or Metropolis-Hastings updating proposals. Move 1 is also

of Gibbs type, following the suggestion of [3℄ for general 
hangepoint models. The two remaining

moves (3 and 5) make use of the reversible jump Metropolis-Hastings s
heme introdu
ed by Green [8℄.

Move 3, whi
h 
onsists in modifying the segmentation by adding or removing one or two segments,

is te
hni
ally 
omparable to the solutions used in [10℄ or [9℄ for analyzing ion 
hannel signals with

unknown segmentation (although the latter paper uses 
ontinuous 
hange lo
ations). Move 5 whi
h

aims at modifying the number of 
lasses (by splitting one 
lass in two or merging together two di�erent


lasses) is more involved be
ause it ne
essarily implies a simultaneous modi�
ation of the number of


lasses and of the number of segments.

An interesting 
omputational remark here is that the log-likelihood of i.i.d. negative binomial

observations 
an be 
omputed in two di�erent ways:

log p(n

1

; : : : ; n

T

j�; �) = T� log(�) + S log(1� �)� T log (�(�)) +

T

X

t=1

log (�(n

t

+ �)) ; (7)

where S =

P

T

t=1

n

t

, or

log p(n

1

; : : : ; n

T

j�; �) = T� log(�) + S log(1� �) +

R

X

r=1

C

r

log(�+ r � 1); (8)

where R = maxfn

1

; : : : ; n

T

g, C

r

= #f1 � t � T : n

t

� rg and with the 
onvention that the sum

is null if R = 0 (that is if all 
ounts are zero). Eq. (8) is very eÆ
ient when the observed 
ounts
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are small (i.e. when R

T

� T ), espe
ially when it is needed to evaluate the log-likelihood for several


on�gurations of the parameters � and � be
ause the rank statisti
s C

r

are 
omputed only on
e. On

the other hand, (7) should be systemati
ally preferred when the observed 
ounts are large (a few

hundreds or more) whi
h usually makes the 
omputation of the rank statisti
s C

r

(for r = 1 to R)

very penalizing. In the rest of the paper, we assume that the observed 
ounts ex
eed only rarely a few

hundred and thus use the form of Eq. (8) whenever the asso
iated 
omputation load 
an be expe
ted

to be lower. Note that in pra
ti
e, as the length and position of the segments are both unknown and

variable, it is more eÆ
ient to 
he
k for ea
h segment if either the length or the maximum observed


ount is greater so as to 
hoose between (7) or (8).

A. Updating the segment boundaries

The segment boundaries b

2

; : : : b

K

are updated using a systemati
 s
an Gibbs move. The full 
ondi-

tional distribution for b

k

is given by

P (b

k

= t

0

j � � � ) /

8

<

:

t

0

�1

Y

t=b

k�1

(1� �

l

k�1

)

n

t

�(n

t

+ �

l

k�1

)

9

=

;

 

�

�

l

k�1

l

k�1

�(�

l

k�1

)

!

(t

0

�b

k�1

)

�

(

b

k+1

�1

Y

t=t

0

(1� �

l

k

)

n

t

�(n

t

+ �

l

k

)

) 

�

�

l

k

l

k

�(�

l

k

)

!

(t

0

�b

k

)

(9)

for b

k�1

< t

0

< b

k+1

.

B. Updating the segment labels

Here again a systemati
 Gibbs move is used, where the full 
onditional distribution for l

k

is

P (l

k

= mj � � � ) / �

N

(k)

�

m

m

(1� �

m

)

S

(k)

R

(k)

Y

r=1

(�

m

+ r � 1)

C

(k)

r

� I

l

k

6=l

k�1

I

l

l

6=l

k+1

(10)

where N

(k)

is the number of data points in segment k (that is N

(k)

= b

k+1

� b

k

), S

(k)

the sum of

these points, R

(k)

the maximum value, C

(m)

r

are the rank statisti
s (the number of points greater or

equal to r) and I denote the indi
ator fun
tion. Note that for the �rst (k = 1) and last (k = K)

segments, only one of the two 
onstraints in (10) is a
tive be
ause there are no left (resp. right)

adja
ent segment. Be
ause of this model 
onstraint, that no neighboring labels should be alike, the

above Gibbs s
heme is 
learly not appli
able when there are only two 
lasses (M = 2) be
ause all

moves would be reje
ted. For this parti
ular 
ase however, there are only two valid 
omplete label

sequen
es whatever the number of segments. Thus when M = 2, the 
omplete sequen
e (l

1

; : : : ; l

K

) is

drawn dire
tly in a blo
k.

C. Updating the parameters of ea
h 
lass

The parameters �

1

; : : : ; �

M

are 
onditionally independent with full 
onditional distribution given by

p(�

m

j � � � ) / Beta(�

m

j�

m

�

N

(m)

+ �

�

;

�

S

(m)

+ �

�

) Gamma(�

m

j�

�

; �

�

=�(�

m

)) (11)

where

�

N

(m)

is the number of data points 
lassi�ed within 
lass m and

�

S

(m)

denotes the sum of these

points. Where the phrase \
lassi�ed within 
lass m" should be interpreted as belonging to a segment

whose label is m (
ontrary to the 
orresponding quantities in (10) whi
h are 
omputed from a single

segment of data).

The �rst term in (11) 
orresponds to the produ
t of the likelihood by the marginal prior on �

m

while

the se
ond term 
orresponds to the prior on �

m

given �

m

. In pra
ti
al situations (for noninformative
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analysis at least), the variations of the se
ond term with �

m

are rather small. An eÆ
ient simulation

pro
edure thus 
onsist of using a Metropolis Hastings step where the proposed update �

�

is distributed

a

ording to a Beta(�

�

j�

m

�

N

(m)

+ �

�

;

�

S

(m)

+ �

�

) distribution and a

epted with probability min(1; A)

where

A = (�(�

�

)=�(�

m

))

��

�

e

��

m

(�

�

=�(�

�

)��

�

=�(�

m

))

Note that with the 
hoi
e of the hyperparameters �

�

and �

�

made in se
tion IV, the a

ept/reje
t


orre
tion is almost unneeded as the reje
tion rate is very mu
h less than 1 per
ent.

The full 
onditional distribution for �

m

is

p(�

m

j � � � ) / (�

m

)

�

�

�1

8

<

:

�

R

(m)

Y

r=1

(�

m

+ r � 1)

�

C

(m)

r

9

=

;

e

�[�

�

=�(�

m

)+

�

N

(m)

log(1=�

m

)℄�

m

(12)

where

�

R

(m)

denotes the maximum value of the data points 
lassi�ed within 
lass m, and

�

C

(m)

r

are

the 
orresponding rank statisti
s. Empiri
ally the full 
onditional given by (12) appears to be 
losely

�tted by a Gamma distribution. To take pro�t of this remark we pro
eed as in [26℄ by using a single

step of the Metropolis-Hastings algorithm with a Gamma proposal tuned to mat
h the mode and the

log-
urvature of the full 
onditional. Di�erentiation of (12) yields

d log p(�

m

j � � � )

d�

m

= �(�

�

=�(�

m

) +

�

N

(m)

log(1=�

m

)) +

�

�

� 1

�

m

+

�

R

(m)

X

r=1

�

C

(m)

r

�

m

+ r � 1

(13)

d

2

log p(�

m

j � � � )

d�

2

m

= �

0

�

�

�

� 1

(�

m

)

2

+

�

R

(m)

X

r=1

�

C

(m)

r

(�

m

+ r � 1)

2

1

A

(14)

This se
ond expression indi
ates that the logarithm of the full 
onditional distribution is a stri
tly


onvex fun
tion if

�

R

(m)

� 1. As in [26℄, we thus use (13)- (14) the following way:

� Starting from the moment estimate �

m

=

�

S

(m)

=

�

N

(m)

�

m

=(1 � �

m

), perform a few Newton steps to

�nd the mode � (in the following simulations, only one iteration is used).

� Compute the log-
urvature at the mode w = �

d

2

log p(�j��� )

d�

2

a

ording to (14).

� Compute the parameters of a Gamma distribution with mode and log-spread mat
hed to � an w

with parameters � = 1 + �

2

w and � = �w

� Use a Gamma(�; �) distributed proposal �

�

whi
h is a

epted with probability min(1; A) where

A =

�

�

�

�

m

�

�

�

��

�

R

(m)

Y

r=1

�

�

�

+ r � 1

�

m

+ r � 1

�

�

C

(m)

r

e

�[�

�

=�(�

m

)+

�

N

(m)

log(1=�

m

)��℄(�

�

��

m

)

(15)

In pra
ti
e, the probability of reje
tion for the above proposal s
heme is about 1-2% whi
h re
e
ts the

fa
t that (12) is 
losely mat
hed to the Gamma(�; �) distribution.

D. Creating or removing segments

We now 
ome to more elaborate moves whi
h modify the number of model parameters, beginning

withK, the number of segments. The move used to update this parameter is a straightforward instan
e

of the general reversible jump approa
h [8℄, notably be
ause the dimension varying parameters (number

of segments) are dis
rete, whi
h makes the evaluation of the proposal ratio straightforward. This type

of move is thus brie
y des
ribed in its simplest version.

The \split or merge" me
hanism for drawing K starts by sele
ting at random either the split (K !

K + 1) or the merge (K  K + 1) alternative. We �rst 
onsider merging two 
onse
utive segments

assuming that the 
urrent number of segments is K + 1:
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1. Draw a segment k in f1; : : : ; Kg with probability 1=K (merging will be performed on the segments

numbered k and k + 1),

2. Draw the label l

0

k

of the merged segment uniformly in f1; : : : ;Mg,

where the quantities denoted with a prime pertain to the lower dimension K. The merge proposal is

systemati
ally reje
ted at this point if either l

0

k

= l

k�1

or l

0

k

= l

k+2

.

Assuming that the 
urrent number of segments now is K, the reverse (split) proposal 
onsists of:

1. Draw a segment k in f1; : : : ; Kg with probability

p(k) = (b

k+1

� b

k

� 1)=(T �K);

2. Draw a new sub-segment boundary b

0

k+1

in fb

k

+1; : : : ; b

k+1

� 1g with probability 1=(b

k+1

� b

k

� 1),

3. Draw independently in f1; : : : ;Mg two labels for the new sub-segments,

where the quantities denoted with a prime sign now refer to the highest dimension (K + 1). The split

proposal is systemati
ally reje
ted if any two su

essive labels in the sequen
e (l

k�1

; l

0

k

; l

0

k+1

; l

k+1

) are

identi
al. In step 1 above, the use of uneven probabilities was found to be mu
h valuable in making

the sele
tion of longer segments more likely as well as preventing the sele
tion of eventual segments of

length 1 whi
h 
annot be split any further.

The Metropolis-Hastings a

eptan
e probability for the split move is then given by min(1; A) where

A = likelihood ratio� �

K

K

(T �K)(M � 1)

| {z }

(A1)

�M

(T �K)

K

| {z }

(A2)

(16)

where (A1) 
orresponds to the prior ratio (when going from K to K + 1 segments), and (A2) to the

proposal ratio. Note that in 
omputing the likelihood ratio a

ording to (10) it is only ne
essary to

take into a

ount the part of the data whose label is 
hanging as a 
onsequen
e of the split move. As

usual, the reverse move (merge) is a

epted with probability min(1; A

�1

) where A is de�ned as in (16)

(whi
h follows from the remark that after a split move, the quantities b

k

; b

0

k+1

; b

k+1

will be reindexed

as b

k

; b

k+1

; b

k+2

).

As noted by [9℄ and , the above move be
omes ineÆ
ient when the number M of 
lasses is small.

For the model under 
onsideration, it is easily veri�ed that the previously des
ribed split move will

be systemati
ally reje
ted when M = 2 ex
ept if the splitting o

urs for the very �rst (k = 1) or last

(k = K) segment. The solution proposed by [9℄ and [10℄ to over
ome this limitation 
onsists of devising

an \insert or delete" proposal s
heme whi
h in
reases by two the number of segment boundaries by

insertion of a new segment in the middle of an existing segment, or 
onversely redu
ing by two the

number of segment boundaries by merging three 
onse
utive segments together. We adopt a similar

solution whi
h is proposed randomly in pla
e of the \split or merge" proposal. The details of the


orresponding proposal are omitted sin
e they are similar to the simpler \split or merge" me
hanism

dis
ussed above. This modi�
ation is however only required when M is small (two or three) and


ould thus be omitted without noti
eably redu
ing the sampler's mixing for the data 
onsidered in

se
tion IV.

E. Modifying the number of 
lasses

Simulation of the number of 
lasses M is by far the most 
omplex task be
ause a modi�
ation of M

may imply a 
omplete rede�nition of all the latent stru
ture, and in parti
ular of the segmentation.

[Figure 5 about here.℄

Indeed, 
onsider the 
ase of �gure 1 and assume that a move from dimension M = 3 to dimension

M = 2 is to be proposed following the merge strategy previously adopted. The latent stru
ture

obtained after appropriate relabelling and removal of the obsolete segments (those whi
h separate

regions of the data 
orresponding to the same new label) is shown in �gure 5. Note that the number
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of segments has been redu
ed from seven to three, segments 1 to 3 (resp. 6 to 7) now being merged

together in segment 1' (resp. 3'). This pro
ess is 
learly dependent on the 
hoi
e of the 
lasses to be

merged as grouping 
lasses 2 and 3 would not have required any modi�
ation of the segmentation. The

most 
hallenging task is of 
ourse not going from �gure 1 to �gure 5, but rather 
onsists of ensuring

that the 
onverse move has a non zero probability of being proposed. The following remark proves to

be valuable for this purpose: When moving from the 
on�guration of �gure 1 to that of 5, it is possible

to 
onsider that the only dimension 
hanging parameters are the 
lass parameters (�

m

; �

m

)

m=1;:::;M

.

This is simply a 
onsequen
e of the fa
t that whatever the number K of segments, the boundaries

fb

k

g

1�k�K+1

and the labels fl

k

g

1�k�K


an be equivalently reparameterized by an equivalent set of �xed

dimension parameters, namely the 
lass indi
ators fi

t

g

1�t�T

(su
h that i

t

= l

k

if b

k

� t < b

k+1

). This

latter parameterization is not 
onvenient for a
tually simulating the latent stru
ture and is thus not

used in the present 
ontribution, but its mere existen
e shows that the part of the latent stru
ture

whi
h pertains to the data segmentation may or may not, depending on what's most 
onvenient, be


onsidered as dimension varying data.

The proposal me
hanism on
e again randomly sele
ts between two alternatives whi
h 
orrespond

respe
tively to merging two 
lasses together and to splitting a single 
lass apart.

We �rst 
onsider the merge move and denote by (M+1) the 
urrent number of 
lasses (as previously,

quantities indi
ated by a prime pertain to the lower dimension whi
h prevails on
e the merge move

has been 
ompleted):

1. Draw the index m of the �rst 
lass to be merged in f1; : : : ;Mg with probability 1=M (the two

su

essive 
lasses indexed by m and m + 1 will be merged). Let L

m

and L

m+1

denote the number of

segments asso
iated with ea
h 
lass. The proposal is reje
ted at this point if both 
lasses are empty

(i.e. L

m

= L

m+1

= 0).

2. Compute the parameters of the merged 
lass a

ording to

�

0

m

=

p

�

m

�

m+1

(17)

�

0

m

= �

�

p

�(�

m

)�(�

m+1

)

�

(18)

where �(x) and �(x) denote the reparameterization transformations de�ned by (1). The intermediate

reparameterization shown in (18) simply guarantees that the transformed parameters �

0

m

lies in the

valid range (0; 1).

Note that in a

ordan
e with �gure 5, merging two 
lasses indu
es, in most 
ases, a redu
tion of the

number of segments to K

0

, and thus ne
essitates a renumbering of the labels. Finally, the proposal is

systemati
ally reje
ted if K

0

< M .

Now, assuming that the 
urrent number of 
lasses is M , the reverse move 
onsists of:

1. Draw the index m of the 
lass to be split in f1; : : : ;Mg with probability L

m

=K, where L

m

is the

number of segments with label m.

2. For ea
h segment k

1

; : : : k

L

m

with label m,

(a) Draw the number of additional sub-segments H

k

i

with a Geom(�

B

(b

k

i

+1

� b

k

i

)=T) distribution

(trun
ated to b

k

i

+1

� b

k

i

� 1).

(b) Draw the new sub-segment's frontiers uniformly if needed (if H

k

i

� 1) with probability

1=

�

b

k

i

+1

� b

k

i

� 1

H

k

i

�

(
) Draw one of the two valid sequen
es of the labels m

0

and (m+ 1)

0

with probability 1=2.

Let L

0

m

and L

0

m+1

denote the number of segments asso
iated to ea
h of the two new 
lasses as a result

of this random sub-segmentation.

3. Draw two positive perturbations �

�

and �

�

a

ording to a Gamma(g

�

; g

�

) distribution, and 
ompute
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the new 
lass parameters a

ording to

�

0

m

= �

m

�

�

(19)

�

0

m+1

= �

m

=�

�

(20)

�

0

m

= �(�(�

m

)�

�

) (21)

�

0

m+1

= �(�(�

m

)=�

�

) (22)

As in the 
ase of the segment splitting move, the in
lusion of L

m

(the number of segments with label

m) in step 1 of the 
lass splitting move avoids splitting empty 
lasses and favors (to some extent) split

moves that 
on
erns 
lasses whi
h are representative of a large number of segments.

The 
lass splitting move is a

epted with probability min(1; A) where

A = likelihood ratio

(A1) � �

M

�

(K

0

�K)

K

�

T � 1

K � 1

�

M(M � 1)

(K�1)

�

T � 1

K

0

� 1

�

(M + 1)M

(K

0

�1)

(A2:1) �

�

�

�

�

�(�

�

)

�

�(�

0

m

)�(�

0

m+1

)

�(�

m

)

�

��

�

�

�

0

m

�

0

m+1

�

m

�

�

�

�1

e

��

�

(

�

0

m

�(�

0

m

)

+

�

0

m+1

�(�

0

m+1

)

�

�

m

�(�

m

)

)

(A2:2) �

�(�

�

+ �

�

)

�(�

�

)�(�

�

)

�

�

0

m

�

0

m+1

�

m

�

�

�

�1

�

(1� �

0

m

)(1� �

0

m+1

)

1� �

m

�

�

�

�1

(A3) �

K

ML

m

L

m

Y

i=1

2

1� �

B

(b

k

i

+1

� b

k

i

)=T

�

T

�

B

(b

k

i

+1

� b

k

i

)

�

H

k

i

�

b

k

i+1

� b

k

i

� 1

H

k

i

�

(A4) � 4 �

0

m+1

�(�

0

m+1

)

(1� �

0

m

)

2

(1� �

0

m+1

)

2

(1� �

m

)

2

(A5) �

�

g

g

�

�

�(g

�

)

�

(g

�

�1)

�

e

�g

�

�

�

g

g

�

�

�(g

�

)

�

(g

�

�1)

�

e

�g

�

�

�

�

�1

where �

�

and �

�

may be equivalently 
omputed from the 
lass parameters a

ording to

�

�

=

q

�

0

m

=�

0

m+1

;

�

�

=

q

�(�

0

m

)=�(�

0

m+1

):

The above a

eptan
e ratio de
omposes into the following terms: (A1) in
ludes the priors on M , K,

fb

k

g

2�k�K

and fl

k

g

1�k�K

; (A2.1) and (A2.2) 
orrespond to the prior ratio for the parameters of the

split 
lass; (A3) de�nes the proposal ratio, with the produ
t term 
orresponding more spe
i�
ally

to the probability of proposing a parti
ular relabeling when performing the split move; (A4) is the

Ja
obian of the transformation from (�

m

; �

m

; �

�

; �

�

) to (�

0

m

; �

0

m

; �

0

m+1

; �

0

m

); Finally, (A5) is the inverse

of the joint probability density of the random perturbations �

�

and �

�

.

The parameters of the sampler are g

�

, g

�

and �

B

. The larger the values of g

�

and g

�

, the smaller the

perturbations brought to the 
lass parameters during a split move. On the other hand if g

�

and g

�

are

too large, the presen
e of the fa
tor (A5) in the a

eptan
e ratio will pra
ti
ally prevent a

eptan
e

of the merge moves. A value of 100 is used both for g

�

and g

�

for all the simulations. We use �

B

= 0:9

that is a value of the order of that of �

K

sin
e �

B

de�nes the law of the number of additional sub-

segments when splitting a hypotheti
al segment of length T (that is, 
overing all the data). For shorter

segments however, the probability of inserting new sub-segments during a split move steadily de
reases
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as a 
onsequen
e of the geometri
 proposal rate for H

k

being set to �

B

(b

k+1

� b

k

)=T whi
h renders the

expe
ted number of additional sub-segments proportional to the relative length of the split segment.

The reversible jump moves of se
tions III-D and III-E are arguably less eÆ
ient than those used to

update the model 
onditional parameters des
ribed in se
tions III-A- III-C. This is a 
onsequen
e

both of the fa
t that the moves of se
tions III-A- III-C indeed 
orrespond to full 
y
les through all

the segments or all the 
lasses, and also that the reversible jump proposals of se
tions III-D-III-E do

not enfor
e the 
onstraints on the parameters so that a fra
tion of them are reje
ted irrespe
tively of

the 
hange in likelihood. Hen
e, at ea
h iteration, 5 reversible jump moves are attempted both for

the number of segments (se
tion III-D) and for the number of 
lasses (se
tion III-E) whereas only one

instan
e of the moves des
ribed in se
tions III-A- III-C is performed. With these sampler settings, the

reversible jump a

eptan
e rate on the data 
onsidered in the next se
tion varies from 10 to 20% for

the moves a�e
ting the number of segments K and are a few per
ent for the moves whi
h modi�es the

number of 
lasses M (see se
tion IV-B).

IV. Analysis of traffi
 data

In this se
tion, we analyze a short se
tion of a traÆ
 tra
e available from the Internet TraÆ


Ar
hive whi
h was �rst des
ribed by Paxson and Floyd (1995) (tra
e labelled \LBL-TCP-3"). This

tra
e 
aptures two hours of TCP (Transmission Control Proto
ol) a
tivity measured over a wide area

Internet gateway.

The raw data 
onsists of a 
olle
tion of information of a di�erent nature whi
h in
ludes the size

of the transferred data pa
kets (be
ause TCP is a variable size proto
ol), the sour
e and destination

addresses, the type of the pa
ket and �nally a time stamp for ea
h pa
ket. We refer the reader to [13℄

for known observations 
onsidering this traÆ
 tra
e and to [14℄, [15℄ for dis
ussion of the di�erent ways

in whi
h su
h a traÆ
 tra
e may be analyzed. In the following, we simply 
onsider the one se
ond

aggregated TCP pa
ket 
ounts (number of pa
kets transmitted during one se
ond) measure over a six

minutes (360 data points) period.

A. Results

For this data re
ord displayed in �gure 8, we 
onsider estimation results obtained by Monte Carlo

averages 
omputed from 800 000 iterations of a single instan
e of the Markov 
hain sampler des
ribed

in se
tion III.

[Figure 6 about here.℄

[Figure 7 about here.℄

[Figure 8 about here.℄

Fig. 6 shows that for the data se
tion under 
onsideration, there is signi�
ant eviden
e in favor of

the model 
orresponding toM = 4, with a posterior probability ofM = 0:71 for the four 
lasses model.

Interestingly, the hypothesis of a simple ON/OFF model (with only two 
lasses) is not supported at

all by the data. In the following, we thus only 
onsider results 
onditional upon the value M = 4.

Figure 7 shows that for the number of segments (
onditional upon M = 4), the pi
ture is less 
lear 
ut

and that a point-wise estimate of the number of segment (say K = 35 whi
h 
orresponds to the mode)

should be 
onsidered as poorly reliable. On the other hand, �gure 8 whi
h is obtained by averaging

the number of times ea
h label is asso
iated to a parti
ular data point shows that the segmentation

model is well supported by the data with the di�erent data segments 
learly separated. As the 
lasses

are ordered by their mean value �

m

, the high a
tivity regions appear at the bottom of the plot (the


orresponding distribution estimates are plotted in �gure 9). The burstiness of the data whi
h explains

the sparseness of the plot 
orresponding to high a
tivity 
lass (bottom plot in �gure 8) is also a feature

revealed by the analysis.

[Figure 9 about here.℄
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[Figure 10 about here.℄

Figures 9 and 10 display the 
lass related summaries with both the posterior distribution of the 
lass-

dependent parameters (�gure 9) and the 
lass 
onditional density estimates (�gure 10). Figure 9 is an

histogram of the simulated 
lass parameters while �gure 10 is obtained by averaging the probability

density fun
tions 
orresponding to the four 
lasses for all values of these parameters. Figure 9 shows

that there is indeed a good separation of the 
lass parameters based on the means �

m

(left 
olumn

plots). Another interesting feature of �gure 9 is the fa
t that the 
lasses are more dispersed (i.e. with

high values of 


m

) when 
onsidering the higher a
tivity levels (
lasses 3 and 4). Even if this �nding

is 
learly due to a la
k of eviden
e in the 
ase of the fourth 
lass, this trend seems signi�
ant when


omparing, for example, 
lasses 2 and 3. With values of 


m

of the order of �ve or more, the obtained


lass 
onditional distributions are distin
tively more dispersed than one would expe
t from a Poisson

assumption.

B. Mixing issues

[Figure 11 about here.℄

[Figure 12 about here.℄

An important issue asso
iated with the use of MCMC methods is 
onvergen
e of the Monte Carlo

estimations. Even if we la
k spa
e to 
over this question in mu
h details (see [27℄ for a dis
ussion of

obje
tive methods for assessing 
onvergen
e), it is interesting to 
omment �gure 11 whi
h shows the


onvergen
e of the posterior probability estimates for the number of 
lasses M as a fun
tion of the

number of sampler iterations (�gure 12 displays a similar pi
ture 
on
erning the number of segments

K for 8 quantiles of the empiri
al posterior of K). Both plots suggest that the MCMC sampler

has rea
hed stationarity after 500 000 iterations or so, although the posterior distribution of M still

undergoes slight modi�
ations (�gure 11) beyond that point. This order of magnitude, whi
h may

seem 
onsiderable, is indeed fairly 
ommon in the MCMC literature [27℄. Granted that the model

under 
onsideration is quite 
omplex, �gures 11 and 12 shows that the proposed sampler is quite

eÆ
ient for problems of this s
ale.

Comparing �gures 11 and 12 nevertheless indi
ates that the number of segments (�gure 12) tends

to stabilize mu
h faster than the number of 
lasses (�gure 11). Experiments 
arried out for longer

se
tions of the data revealed that this problem be
omes more salient as the number of segments

in
reases. When the number of segments is larger than one hundred, the number of 
lasses does not


hange anymore in the 
ourse of the iterations. This mixing problem (very slow 
onvergen
e of one

of the 
omponent of the 
hain) is 
ertainly a limitation of the method whi
h will be hard to raise

(see [9℄ for a similar �nding in a related appli
ation). This limitation is not just due to a failure of the

sampling strategy but rather reveals the 
omplexity of estimating the number of 
lasses when they are

many segments: For K = 100 segments for instan
e, they are about 3:10

12

more 
on�gurations with

M = 5 
lasses than with M = 4 
lasses (whi
h also means that when attempting to split from M = 4

to M = 5 
lasses, the rightmost part of ratio (A1) will be the inverse of that �gure { that is extremely

small).

C. Analysis of a longer se
tion of data

Analysis of slightly longer se
tions of data is nonetheless possible and provides interesting insights

about the tradeo� between 
omplexity and a

urate representation of the data whi
h is a
hieved by

the method. Figures 13 and 14 are the analogous of �gures 6 and 8 for a se
tion of data whi
h is

twi
e longer (12 mn, 720 data points). The segment of data 
onsidered in se
tion IV-A and plotted in

�gure 8 
orresponds to the right half of �gure 14 (right of the verti
al dashed line).

[Figure 13 about here.℄

[Figure 14 about here.℄
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The most striking di�eren
e when 
omparing with �gure 6 is that the posterior for the number

of 
lasses (�gure 13) is now more spread out and suggests �ve or six as the most likely number of


lasses. The posterior segmentation, 
onditional on the number of 
lass being M = 5, shown in

�gure 14 indi
ates that some features are remarkably stable: In parti
ular, fo
using on the right part

of �gure 14, one 
learly sees that the fourth and �fth 
lasses in �gure 14 
orresponds to, respe
tively,

the third and fourth ones in �gure 6. Class 3 in �gure 14 is also 
omparable to 
lass 2 in �gure 6

(whi
h is 
on�rmed by looking more 
losely at the estimated values of the 
lass 
onditional parameters).

Finally, 
lass 1 in �gure 6 has been splitted up into 
lasses 1 and 2 in �gure 14, with the �rst one

(
orresponding to the lower mean level) whi
h is mostly sele
ted in the �rst half of �gure 14, that is

for the data whi
h was not in
luded in the analysis 
arried out in se
tion IV-A. The main message

here is thus that modeling larger se
tions of data requires more degrees of freedom, in parti
ular in

terms of the possible marginal distributions. This is 
oherent with the fa
t that both halves of the

data in �gure 13 look qualitatively very di�erent.

[Figure 15 about here.℄

An interesting point is that the lo
ations of the segment boundaries appear to be very stable. This

is also 
on�rmed by �gure 15 whi
h shows the posterior for the presen
e of a segment boundary

averaged over all model 
on�gurations (in
luding the number of 
lasses and segments as well as the


lass 
onditional parameters) for the data shown in �gure 14. The fa
t that �gure 15 still shows very

well lo
ated 
hange points despite the fa
t that we marginalize over very di�erent models indi
ate that

the presen
e of abrupt 
hanges is well supported by the data. The most likely number of segments is

now K = 74, that is slightly less than the twi
e the mode of �gure 7, whi
h is 
oherent with the fa
t

that there is less a
tivity, and 
orrelatively less 
hanges, in the �rst half of the se
tion of data shown

in �gure 14 than in the se
ond one.

Figure 14 also shows that some 
omponents like the �fth one have very sparse and irregular time

patterns whi
h would be hard to model using simple assumptions like Markovian dependen
e. Finally,

�gure 14 
learly indi
ates that the 
omplexity required to model the behavior of the data depends on

the time horizon 
onsidered and that the results obtained on limited se
tions (number of 
lasses in

parti
ular) 
annot be extrapolated.

V. Con
lusions

We have presented a novel approa
h for the analysis of dis
rete-time 
ount data whi
h is based on

Bayesian modeling and Markov Chain Monte Carlo (MCMC) simulation. We hope to have 
onvin
ed

the reader with the teletraÆ
 example 
overed in se
tion IV that this approa
h provides non trivial

insightful results when applied to real data. One advantage of the Bayesian approa
h in this setting

are its visual and easily interpretable results su
h as �gures 8 and 10 whi
h may be used to asses the

goodness of �t of the model and also suggest possible improvements and/or simpli�
ations. Speed

of 
onvergen
e is 
ertainly a 
on
ern for MCMC methods in general, and in the 
ase under study,

there was shown to be a pra
ti
al limit to the 
omplexity of the models that 
an be handled with the

proposed sampling strategy.

Adaptation of this approa
h to very large s
ale problems (hundreds of segments and more) is thus an

interesting and open question for future resear
h. Solutions that 
ould be 
onsidered in
lude tempering

s
hemes [9℄ and parallel simulations (for models with di�erent number of 
lasses) as advo
ated by [28℄.

Further 
omparison with methods based on variable order hidden Markov modeling, and in parti
ular

with te
hniques whi
h do not rely on data augmentation (ie. the boundaries b

k

and labels l

k

need not

be simulated when proposing dimension 
hanging moves) as in [29℄ is also of great interest.
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Fig. 13. Estimated posterior for the number of 
lasses (12 mn of data).
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