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A Bayesian Approah for Simultaneous

Segmentation and Classi�ation of Count Data

Olivier Capp�e

Abstrat

A Bayesian approah is proposed that provides a onise desription of a series of ounts under the form of homo-

geneous onseutive data segments whih are lassi�ed based their marginal distribution. Due to the exibility of the

orresponding model, arrying out the atual inferene turns out to be a omplex task for whih an original ombination

of several Markov Chain Monte Carlo (MCMC) simulation tools is developed. The proposed MCMC sampler makes

use of reversible jump moves to ahieve ommuniation between models with di�erent numbers of both segments and

lasses. A large setion of the paper is devoted to the disussion of the results obtained on a medium duration setion

(a few minutes) of a publily available teletraÆ trae taken from the Internet traÆ arhive.

EDICS: 2-SYSM System Modeling and Representation (Speial Issue on Monte Carlo Methods for Statistial Signal

Proessing edited by P. M. Djuri and S J. Godsill)

I. introdution

Modeling and analysis of disrete-valued time series plays an important role in various domains whih

range from soial and environmental sienes (monitoring of road traÆ for instane) to teleommuni-

ation engineering (ontrol and predition of the amount of data transmitted over a omputer network,

whih we shall refer to as \teletraÆ" in the following).

In this ontribution, we address the task of simultaneously segmenting and lassifying an observed

reord of disrete-time ount data. Segmentation means �nding ontiguous regions of the data that an

be onsidered as homogeneous, whereas lassi�ation aims at identifying various harateristi levels

in the data. Typial statistial models for these two purposes are, respetively, hangepoint models

(segmentation) and mixture models (lassi�ation). In ahieving this goal of joint segmentation and

lassi�ation, our may onern will be exibility.

A �rst requirement is that the disrete-valued disrete-time nature of the observation be spei�ally

taken into aount. In partiular, the fat that the observations orresponds to time-aggregated ounts

obtained from a point proess must be aounted for (see setion II-A for details).

Flexibility also has some more subtle impliations onerning the prior assumptions that an validly

be made about the typial durations of segments: In disrete time hangepoint models, the most om-

mon option onsists in assuming that the durations of the stationary segments are a priori independent

and geometrially distributed. This has the advantage that, onditionally on the model parameters,

posterior inferene regarding the positions of the hanges an be arried out eÆiently using deter-

ministi algorithms [1℄, [2℄. For suh models, joint parameter and hange loations estimation an be

arried out using methods based on Markov Chain Monte Carlo (MCMC) simulations [2℄, [3℄, [4℄. It

is shown in [5℄ that if the segments are labelled (or belong to a known number of \regimes" following

the author's terminology) and with the same prior assumption on the duration of the segments, the

model is fully equivalent to a so-alled Hidden Markov Model (HMM) [6℄ for whih eÆient blok

simulation strategies are available. In the following however, we will not be using this remark as we

onsider a prior struture whih is more exible than the HMM in the sense that it allows for more

widely dispersed segment durations (see �gure 4 of setion II-B).

Flexibility �nally implies that key quantities inluding the plausible numbers of lasses and segments

needed to represent the data should be inferred by the analysis and not prede�ned by prior expert

analysis. To this end, we follow the same approah as that used for the HMM model by [7℄ whih

Address for orrespondene: Olivier Capp�e <appe�tsi.enst.fr>, ENST Dpt. TSI / CNRS URA 820, 46 rue Barrault, 75634

Paris edex 13, Frane. fax +33 1 45 88 79 35, voie +33 1 45 81 71 11.



2

is based on the reversible jump methodology introdued by [8℄. As far as the MCMC mahinery is

onerned, the proposed approah di�ers from both [4℄, [9℄ or [10℄ and [11℄, [7℄ by the fat that it

implies two di�erent types of dimension hanging moves that are nested.

To illustrate this approah, we onsider its appliation to the analysis of a setion of aggregated

teletraÆ data taken from one of the traes available from the Internet TraÆ Arhive (loated at

http://ita.ee.lbl.gov/). This is a diÆult and hallenging appliation beause there is urrently no

available model whih an adequately represent suh omplex data whih results from the superposition

of a large number of inhomogeneous and non-stationary data ows, espeially without knowledge of

routing information [13℄, [12℄, [14℄, [15℄. The aim here is de�nitely not to the model the physial proess

that generates the data but rather to obtain meaningful summaries (or \stylized fats" following the

terminology used in eonometris) from traÆ traes. Suh summaries ould be used to monitor

the traÆ or serve as development tools, as in [16℄ whih desribes the appliation of a graphial

stylization tool known as \textured plots" to soure level traes in order to validate the so-alled \self-

similar" traÆ model. Note �nally that ontrary to referenes suh as [13℄ or [12℄ whih fous on the

haraterization of the saling properties and large sale behavior of traÆ, the goal of our analysis

will be to obtain a detailed desription of the statistial behavior of short setions of the data. There is

a priori no link between the two approahes sine modeling the long term dependene e�ets does not

require to onsider some statistial features of the traÆ suh as marginal distribution or short term

orrelations, whih are rather onsidered as nuisane parameters. Conversely, we will see in setion IV

that our approah, whih is in some sense a non parametri smoothing method, provides results that

annot be extrapolated to infer the long term behavior of the data.

The rest of the paper is organized as follows: The Bayesian model is presented in setion II; The

assoiated MCMC sampler is desribed in setion III, and setion IV disusses results obtained on a

teletraÆ data.

II. Bayesian model

A. Data and parameterization

We onsider that the data to be analyzed onsists of a setion fn

t

g

t=1;:::;T

of length T of a disrete-

time ount proess (n

t

2 N). To this observable data is assoiated a latent (or unobservable) struture

whih simultaneously de�nes the segmentation (K; b

2

; : : : b

K

) and lassi�ation (M; l

1

; : : : ; l

K

) on�gu-

ration aording to Fig. 1. The segments are hypothetial homogeneous setions of the data whih are

unambiguously de�ned by the number of segments K and the segment boundaries b

1

; : : : b

K+1

, where

the k-th segment extends from indexes b

k

to b

k+1

�1 (inlusive). In aordane with this parameteriza-

tion, the very �rst (b

1

) and last (b

K+1

) segment boundaries are set to one and T +1 respetively. The

lasses de�ne di�erent types of statistial harateristis orresponding to the data setions de�ned by

the segments. The lasses are parametri and are de�ned (up to a permutation of the order in whih

the lasses are numbered) by the number of lasses M , and the lass parameters (�

m

; �

m

)

1�m�M

(see

below for the meaning of these parameters). Eah segment is linked to a partiular lass by means of

an attahed label l

k

whih takes values in the range 1; : : :M .

[Figure 1 about here.℄

To implement the idea that the segments should represent homogeneous regions of the data, we will

assume that given the parameters and the latent data � = (M;�

1

; : : : ; �

M

; �

1

; : : : ; �

M

; K; l

1

; : : : ; l

K

; b

2

; : : : b

K

),

the ounts n

t

are onditionally independent with a marginal distribution whih depends �rst, on the

setion to whih they belong, and, seond, on the label attahed to this setion.

The hoie of the marginal distribution is an issue that must be treated with some are. In many

works that deal with disrete-valued data suh as [17℄ for a semi-parametri model, [8℄ for a hangepoint

model, [18℄ for a parametri model, the (onditionally) Poisson assumption is used. The problem is that

disrete time ount data generally arises from the observation of the number of events assoiated with

an underlying ontinuous time proess. In general, the event patterns assoiated with the underlying



3

ontinuous time proess are less regular than those of a Poisson proess and often are non-homogeneous

(in time). In suh ases, aggregation (or time averaging) has the e�et of inreasing the variability of

the measured ounts with respet to the Poisson distribution with idential mean. This observation

is well established in atuarial sienes for instane [19℄ and will be learly illustrated when analyzing

teletraÆ data in setion IV. To ope with this inrease in variability, we will assume that given the

latent struture �, the observed ounts n

t

are independent with the negative Binomial distribution

Neg � Binomial(�

m

; �

m

), where m is the label assoiated with the segment that ontains t (i.e. l

k

where k is suh that b

k

� t < b

k+1

). Thus, eah lass orresponds to a di�erent negative binomial

distribution haraterized by the two parameters � and �:

Neg � Binomial(nj�; �) =

�

n+ �� 1

�� 1

�

�

�

(1� �)

n

for n 2 N

where � 2 (0; 1) and � > 0 are both treated as ontinuously varying parameters. The above parame-

terization is reminisent of the interpretation of the negative binomial distribution as a waiting time

distribution (number of failures before the �th suess for independent Bernoulli trials with probability

of suess � - assuming that � is an integer). In the model under onsideration, this interpretation

is not appliable and it would be more natural to use as parameters the mean � = �(1 � �)=� and

the variane over-dispersion ratio  = 1=� (ratio of the variane to that of a Poison distribution with

the same mean). We will however use the parameterization de�ned by � and � whih is the most

attrative from a omputational point of view (see setion III-C). The transformations

�(x) =

x

1 + x

and �(x) =

x

1� x

; (1)

will also be needed in the following.

B. Priors and hyperparameters

The omplete prior struture is plotted in �gure 2 using the standard graphial model onventions

(irles denote random variables and boxes ontain �xed hyperparameters).

[Figure 2 about here.℄

The prior on M is geometri with rate �

M

2 (0; 1) (i.e. P (M = m) = (1� �

M

)=�

M

� �

m

M

for m � 1).

This hoie does not favor a priori any spei� value of the number of lasses and is simply meant to

enfore a omplexity penalty (favoring parsimonious models).

[Figure 3 about here.℄

Speifying a proper prior for the parameters �

m

and �

m

of eah lass is an absolute requirement

in this type of model beause of the possible outome of empty lasses for whih the posterior would

be improper { see [20℄ whih disusses this issue for mixture models. We use independent priors for

eah of the ouple of lass-dependent parameters (�

m

; �

m

). It is however not sensible to assume that

�

m

and �

m

themselves are independent even for the purpose of a non informative analysis. In order

to illustrate this latter point we randomly drew 5000 segments, with length between 5 and 60 points

(representing from 5 seonds to one minute of traÆ), in the omplete traÆ trae from whih the

data analyzed in setion IV is extrated. For eah segment, the maximum likelihood estimate of the

negative binomial parameters was approahed using a few steps of the oordinate asent method and

plotted in log-log oordinates. Figure 3 shows that while it is not unrealisti to assume that the mean

� = �(1� �)=� and the dispersion � are independent, the same assumption diretly applied to � and

� would totally ontradit the nature of the model. Fig. 3-(a) indeed reveals that � and � are strongly

interdependent. The hoie of independent priors on � and �, espeially if those priors are vague,
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would result in most of the a priori mass being put on either very small or very large values of the

mean �. As a onsequene, we assume that a priori,

p(�

m

; �

m

) = Gamma(�

m

j�

�

; �

�

) Beta(�

m

j�

�

; �

�

) (2)

whih gives, after appliation of the transformation �

m

= �

m

�

m

=(1� �

m

),

p(�

1

; �

1

; : : : ; �

M

; �

M

jM) =

M

Y

m=1

Gamma(�

m

j�

�

; �

�

=�(�

m

))Beta(�

m

j�

�

; �

�

) (3)

The hoie of (2) is motivated by the fat that the beta distribution is the onjugate prior assoiated

to the negative binomial likelihood for the parameter �

m

[21℄. Although this is no more true of (3), it

is nonetheless possible to use eÆient simulation proedures based quasi-Gibbs updates as desribed

in setion III-C.

Beause (3) is entirely symmetri, any permutation of the way the lasses are numbered leave the

posterior unhanged. As a onsequene, the output of the MCMC sampler for a �xed value of M

should really be interpreted as samples from a set of parameters (�

k

; �

k

)

1�k�M

(for a �xed value of

M). Following the suggestions of [22℄ and [23℄, when the lasses need to be unambiguously identi�ed

(for instane for inferene about the lass dependent parameters), the sampler outomes are ordered

by post-proessing using a lassi�ation rule. In the present work, a simple ordering based on the

mean value �

m

= �

m

(1� �

m

)=�

m

of eah lass was found to be suÆient (performing equivalently to

the lustering approahes of [23℄ applied to �

m

and �

m

jointly). The reason for this good behavior

of suh a simple lassi�er is that the lasses are well separated with respet to their mean values

when onditioning on plausible (and in partiular not too large) values of the number of lasses as

shown in �gure 9 (setion IV). There are of ourse other options whih inlude imposing identi�ability

onstraints on the lass parameters so as to ensure that the ordering of the lasses is indeed de�ned

unambiguously { see [24℄, [11℄, [18℄ and [25℄ for a more detailed aount on this point.

We next assume that

P (K = kjM) / �

k�M

K

for k � M; (4)

P (b

2

; : : : ; b

K

jK) =

�

T � 1

K � 1

�

�1

; (5)

P (l

1

; : : : ; l

K

jK;M) = [M(M � 1)

K�1

℄

�1

; (6)

where / means \proportional to" (up to the normalizing onstant whih ensures that the distribution

sums to 1). The prior on K is geometri as for the number of lass, where the onstraint K � M is

imposed beause the number of lasses would neessarily be ill-de�ned in ases where there are fewer

segments than lasses. Note however that this onstraint is not suÆient to prevent the appearane

of empty lasses in the ourse of the simulations. In pratie, empty lasses our only rarely sine

their appearane is penalized trough the labelling prior given by (6). The geometri prior on M is

intended to allow for large number of segments (whih typially ours when analyzing large setions

of the data) with a high a priori unertainty on the number of segments.

(5) orresponds to the assumption that the segments boundaries b

2

; : : : b

K

over the available range

of time indexes (2 to T ) uniformly. The orresponding prior distribution is that of an ordered draw in

f2; : : : Tg without replaement beause of the onstraint b

k

> b

k�1

for k = 1; : : : ; K whih guarantees

that the segments are indeed well de�ned. Similarly, the label sequene has an uniform a priori

distribution over all theM(M�1)

(K�1)

valid on�gurations, whih are suh that no adjaent segments

share the same label.

[Figure 4 about here.℄
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An important point is that (4) and (5) orrespond to a prior on the segmentation struture (ondi-

tionally on the number of lasses) whih is less informative than the Bernoulli [10℄, [4℄ or Markovian [5℄

priors ommonly used in hangepoint analysis. As noted by [5℄ when the hyperparameters are �xed,

using a Markovian prior for the segmentation boundaries is equivalent to Hidden Markov modeling,

whih is omputationally attrative [18℄. However, the segment durations are then a priori distributed

aording to a geometri distribution whih implies in partiular that long segments are (a priori)

unlikely. We thus follow the suggestion of [8℄ penalizing only the number of segments and not the seg-

ment pattern. Aordingly, this prior struture allows for muh longer segments than the Markovian

prior as illustrated in �gure 4. Note that a di�erent and interesting solution would onsist of using a

parametri assumption for the segment duration as in [9℄.

In the present study, �

M

, �

�

; �

�

, �

�

; �

�

and �

K

are treated as hyperparameters and are set to �xed

values. Beause we would like to be as noninformative as possible partiularly for model harateristis

that have a possible inuene on the segmentation outome, we hoose to set �

M

and �

K

very lose to

one. It turns out that when �

M

and �

K

are greater than 0.9, their preise values have no signi�ant

inuene on the results for the data onsidered in setion IV, and that moreover, one an as well use

�

M

= �

K

= 1. This seemingly ounterintuitive result is interesting beause it reveals the interplay

between the prior hypotheses: For the data under onsideration, the dimension penalty doesn't ome

from the priors ofM and K but rather from those of the segment and label on�gurations given by (5)

and (6). For the remaining parameters we seleted the following values, �

�

= 0:1, �

�

= 1e� 4, �

�

= 1,

�

�

= 1 whih orrespond to distributions of � and � that are distintively more dispersed than the

empirial distributions shown in �gure 3-(b).

III. MCMC sampler

The MCMC sampling strategy onsists of a systemati san through �ve types of moves:

1. Updating the segment boundaries

2. Updating the segment labels

3. Creating or removing segments

4. Updating the parameters of eah lass

5. Modifying the number of lasses

Move 2 and 4 use standard Gibbs and/or Metropolis-Hastings updating proposals. Move 1 is also

of Gibbs type, following the suggestion of [3℄ for general hangepoint models. The two remaining

moves (3 and 5) make use of the reversible jump Metropolis-Hastings sheme introdued by Green [8℄.

Move 3, whih onsists in modifying the segmentation by adding or removing one or two segments,

is tehnially omparable to the solutions used in [10℄ or [9℄ for analyzing ion hannel signals with

unknown segmentation (although the latter paper uses ontinuous hange loations). Move 5 whih

aims at modifying the number of lasses (by splitting one lass in two or merging together two di�erent

lasses) is more involved beause it neessarily implies a simultaneous modi�ation of the number of

lasses and of the number of segments.

An interesting omputational remark here is that the log-likelihood of i.i.d. negative binomial

observations an be omputed in two di�erent ways:

log p(n

1

; : : : ; n

T

j�; �) = T� log(�) + S log(1� �)� T log (�(�)) +

T

X

t=1

log (�(n

t

+ �)) ; (7)

where S =

P

T

t=1

n

t

, or

log p(n

1

; : : : ; n

T

j�; �) = T� log(�) + S log(1� �) +

R

X

r=1

C

r

log(�+ r � 1); (8)

where R = maxfn

1

; : : : ; n

T

g, C

r

= #f1 � t � T : n

t

� rg and with the onvention that the sum

is null if R = 0 (that is if all ounts are zero). Eq. (8) is very eÆient when the observed ounts



6

are small (i.e. when R

T

� T ), espeially when it is needed to evaluate the log-likelihood for several

on�gurations of the parameters � and � beause the rank statistis C

r

are omputed only one. On

the other hand, (7) should be systematially preferred when the observed ounts are large (a few

hundreds or more) whih usually makes the omputation of the rank statistis C

r

(for r = 1 to R)

very penalizing. In the rest of the paper, we assume that the observed ounts exeed only rarely a few

hundred and thus use the form of Eq. (8) whenever the assoiated omputation load an be expeted

to be lower. Note that in pratie, as the length and position of the segments are both unknown and

variable, it is more eÆient to hek for eah segment if either the length or the maximum observed

ount is greater so as to hoose between (7) or (8).

A. Updating the segment boundaries

The segment boundaries b

2

; : : : b

K

are updated using a systemati san Gibbs move. The full ondi-

tional distribution for b

k

is given by

P (b

k

= t

0

j � � � ) /

8

<

:

t

0

�1

Y

t=b

k�1

(1� �

l

k�1

)

n

t

�(n

t

+ �

l

k�1

)

9

=

;

 

�

�

l

k�1

l

k�1

�(�

l

k�1

)

!

(t

0

�b

k�1

)

�

(

b

k+1

�1

Y

t=t

0

(1� �

l

k

)

n

t

�(n

t

+ �

l

k

)

) 

�

�

l

k

l

k

�(�

l

k

)

!

(t

0

�b

k

)

(9)

for b

k�1

< t

0

< b

k+1

.

B. Updating the segment labels

Here again a systemati Gibbs move is used, where the full onditional distribution for l

k

is

P (l

k

= mj � � � ) / �

N

(k)

�

m

m

(1� �

m

)

S

(k)

R

(k)

Y

r=1

(�

m

+ r � 1)

C

(k)

r

� I

l

k

6=l

k�1

I

l

l

6=l

k+1

(10)

where N

(k)

is the number of data points in segment k (that is N

(k)

= b

k+1

� b

k

), S

(k)

the sum of

these points, R

(k)

the maximum value, C

(m)

r

are the rank statistis (the number of points greater or

equal to r) and I denote the indiator funtion. Note that for the �rst (k = 1) and last (k = K)

segments, only one of the two onstraints in (10) is ative beause there are no left (resp. right)

adjaent segment. Beause of this model onstraint, that no neighboring labels should be alike, the

above Gibbs sheme is learly not appliable when there are only two lasses (M = 2) beause all

moves would be rejeted. For this partiular ase however, there are only two valid omplete label

sequenes whatever the number of segments. Thus when M = 2, the omplete sequene (l

1

; : : : ; l

K

) is

drawn diretly in a blok.

C. Updating the parameters of eah lass

The parameters �

1

; : : : ; �

M

are onditionally independent with full onditional distribution given by

p(�

m

j � � � ) / Beta(�

m

j�

m

�

N

(m)

+ �

�

;

�

S

(m)

+ �

�

) Gamma(�

m

j�

�

; �

�

=�(�

m

)) (11)

where

�

N

(m)

is the number of data points lassi�ed within lass m and

�

S

(m)

denotes the sum of these

points. Where the phrase \lassi�ed within lass m" should be interpreted as belonging to a segment

whose label is m (ontrary to the orresponding quantities in (10) whih are omputed from a single

segment of data).

The �rst term in (11) orresponds to the produt of the likelihood by the marginal prior on �

m

while

the seond term orresponds to the prior on �

m

given �

m

. In pratial situations (for noninformative
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analysis at least), the variations of the seond term with �

m

are rather small. An eÆient simulation

proedure thus onsist of using a Metropolis Hastings step where the proposed update �

�

is distributed

aording to a Beta(�

�

j�

m

�

N

(m)

+ �

�

;

�

S

(m)

+ �

�

) distribution and aepted with probability min(1; A)

where

A = (�(�

�

)=�(�

m

))

��

�

e

��

m

(�

�

=�(�

�

)��

�

=�(�

m

))

Note that with the hoie of the hyperparameters �

�

and �

�

made in setion IV, the aept/rejet

orretion is almost unneeded as the rejetion rate is very muh less than 1 perent.

The full onditional distribution for �

m

is

p(�

m

j � � � ) / (�

m

)

�

�

�1

8

<

:

�

R

(m)

Y

r=1

(�

m

+ r � 1)

�

C

(m)

r

9

=

;

e

�[�

�

=�(�

m

)+

�

N

(m)

log(1=�

m

)℄�

m

(12)

where

�

R

(m)

denotes the maximum value of the data points lassi�ed within lass m, and

�

C

(m)

r

are

the orresponding rank statistis. Empirially the full onditional given by (12) appears to be losely

�tted by a Gamma distribution. To take pro�t of this remark we proeed as in [26℄ by using a single

step of the Metropolis-Hastings algorithm with a Gamma proposal tuned to math the mode and the

log-urvature of the full onditional. Di�erentiation of (12) yields

d log p(�

m

j � � � )

d�

m

= �(�

�

=�(�

m

) +

�

N

(m)

log(1=�

m

)) +

�

�

� 1

�

m

+

�

R

(m)

X

r=1

�

C

(m)

r

�

m

+ r � 1

(13)

d

2

log p(�

m

j � � � )

d�

2

m

= �

0

�

�

�

� 1

(�

m

)

2

+

�

R

(m)

X

r=1

�

C

(m)

r

(�

m

+ r � 1)

2

1

A

(14)

This seond expression indiates that the logarithm of the full onditional distribution is a stritly

onvex funtion if

�

R

(m)

� 1. As in [26℄, we thus use (13)- (14) the following way:

� Starting from the moment estimate �

m

=

�

S

(m)

=

�

N

(m)

�

m

=(1 � �

m

), perform a few Newton steps to

�nd the mode � (in the following simulations, only one iteration is used).

� Compute the log-urvature at the mode w = �

d

2

log p(�j��� )

d�

2

aording to (14).

� Compute the parameters of a Gamma distribution with mode and log-spread mathed to � an w

with parameters � = 1 + �

2

w and � = �w

� Use a Gamma(�; �) distributed proposal �

�

whih is aepted with probability min(1; A) where

A =

�

�

�

�

m

�

�

�

��

�

R

(m)

Y

r=1

�

�

�

+ r � 1

�

m

+ r � 1

�

�

C

(m)

r

e

�[�

�

=�(�

m

)+

�

N

(m)

log(1=�

m

)��℄(�

�

��

m

)

(15)

In pratie, the probability of rejetion for the above proposal sheme is about 1-2% whih reets the

fat that (12) is losely mathed to the Gamma(�; �) distribution.

D. Creating or removing segments

We now ome to more elaborate moves whih modify the number of model parameters, beginning

withK, the number of segments. The move used to update this parameter is a straightforward instane

of the general reversible jump approah [8℄, notably beause the dimension varying parameters (number

of segments) are disrete, whih makes the evaluation of the proposal ratio straightforward. This type

of move is thus briey desribed in its simplest version.

The \split or merge" mehanism for drawing K starts by seleting at random either the split (K !

K + 1) or the merge (K  K + 1) alternative. We �rst onsider merging two onseutive segments

assuming that the urrent number of segments is K + 1:
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1. Draw a segment k in f1; : : : ; Kg with probability 1=K (merging will be performed on the segments

numbered k and k + 1),

2. Draw the label l

0

k

of the merged segment uniformly in f1; : : : ;Mg,

where the quantities denoted with a prime pertain to the lower dimension K. The merge proposal is

systematially rejeted at this point if either l

0

k

= l

k�1

or l

0

k

= l

k+2

.

Assuming that the urrent number of segments now is K, the reverse (split) proposal onsists of:

1. Draw a segment k in f1; : : : ; Kg with probability

p(k) = (b

k+1

� b

k

� 1)=(T �K);

2. Draw a new sub-segment boundary b

0

k+1

in fb

k

+1; : : : ; b

k+1

� 1g with probability 1=(b

k+1

� b

k

� 1),

3. Draw independently in f1; : : : ;Mg two labels for the new sub-segments,

where the quantities denoted with a prime sign now refer to the highest dimension (K + 1). The split

proposal is systematially rejeted if any two suessive labels in the sequene (l

k�1

; l

0

k

; l

0

k+1

; l

k+1

) are

idential. In step 1 above, the use of uneven probabilities was found to be muh valuable in making

the seletion of longer segments more likely as well as preventing the seletion of eventual segments of

length 1 whih annot be split any further.

The Metropolis-Hastings aeptane probability for the split move is then given by min(1; A) where

A = likelihood ratio� �

K

K

(T �K)(M � 1)

| {z }

(A1)

�M

(T �K)

K

| {z }

(A2)

(16)

where (A1) orresponds to the prior ratio (when going from K to K + 1 segments), and (A2) to the

proposal ratio. Note that in omputing the likelihood ratio aording to (10) it is only neessary to

take into aount the part of the data whose label is hanging as a onsequene of the split move. As

usual, the reverse move (merge) is aepted with probability min(1; A

�1

) where A is de�ned as in (16)

(whih follows from the remark that after a split move, the quantities b

k

; b

0

k+1

; b

k+1

will be reindexed

as b

k

; b

k+1

; b

k+2

).

As noted by [9℄ and , the above move beomes ineÆient when the number M of lasses is small.

For the model under onsideration, it is easily veri�ed that the previously desribed split move will

be systematially rejeted when M = 2 exept if the splitting ours for the very �rst (k = 1) or last

(k = K) segment. The solution proposed by [9℄ and [10℄ to overome this limitation onsists of devising

an \insert or delete" proposal sheme whih inreases by two the number of segment boundaries by

insertion of a new segment in the middle of an existing segment, or onversely reduing by two the

number of segment boundaries by merging three onseutive segments together. We adopt a similar

solution whih is proposed randomly in plae of the \split or merge" proposal. The details of the

orresponding proposal are omitted sine they are similar to the simpler \split or merge" mehanism

disussed above. This modi�ation is however only required when M is small (two or three) and

ould thus be omitted without notieably reduing the sampler's mixing for the data onsidered in

setion IV.

E. Modifying the number of lasses

Simulation of the number of lasses M is by far the most omplex task beause a modi�ation of M

may imply a omplete rede�nition of all the latent struture, and in partiular of the segmentation.

[Figure 5 about here.℄

Indeed, onsider the ase of �gure 1 and assume that a move from dimension M = 3 to dimension

M = 2 is to be proposed following the merge strategy previously adopted. The latent struture

obtained after appropriate relabelling and removal of the obsolete segments (those whih separate

regions of the data orresponding to the same new label) is shown in �gure 5. Note that the number
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of segments has been redued from seven to three, segments 1 to 3 (resp. 6 to 7) now being merged

together in segment 1' (resp. 3'). This proess is learly dependent on the hoie of the lasses to be

merged as grouping lasses 2 and 3 would not have required any modi�ation of the segmentation. The

most hallenging task is of ourse not going from �gure 1 to �gure 5, but rather onsists of ensuring

that the onverse move has a non zero probability of being proposed. The following remark proves to

be valuable for this purpose: When moving from the on�guration of �gure 1 to that of 5, it is possible

to onsider that the only dimension hanging parameters are the lass parameters (�

m

; �

m

)

m=1;:::;M

.

This is simply a onsequene of the fat that whatever the number K of segments, the boundaries

fb

k

g

1�k�K+1

and the labels fl

k

g

1�k�K

an be equivalently reparameterized by an equivalent set of �xed

dimension parameters, namely the lass indiators fi

t

g

1�t�T

(suh that i

t

= l

k

if b

k

� t < b

k+1

). This

latter parameterization is not onvenient for atually simulating the latent struture and is thus not

used in the present ontribution, but its mere existene shows that the part of the latent struture

whih pertains to the data segmentation may or may not, depending on what's most onvenient, be

onsidered as dimension varying data.

The proposal mehanism one again randomly selets between two alternatives whih orrespond

respetively to merging two lasses together and to splitting a single lass apart.

We �rst onsider the merge move and denote by (M+1) the urrent number of lasses (as previously,

quantities indiated by a prime pertain to the lower dimension whih prevails one the merge move

has been ompleted):

1. Draw the index m of the �rst lass to be merged in f1; : : : ;Mg with probability 1=M (the two

suessive lasses indexed by m and m + 1 will be merged). Let L

m

and L

m+1

denote the number of

segments assoiated with eah lass. The proposal is rejeted at this point if both lasses are empty

(i.e. L

m

= L

m+1

= 0).

2. Compute the parameters of the merged lass aording to

�

0

m

=

p

�

m

�

m+1

(17)

�

0

m

= �

�

p

�(�

m

)�(�

m+1

)

�

(18)

where �(x) and �(x) denote the reparameterization transformations de�ned by (1). The intermediate

reparameterization shown in (18) simply guarantees that the transformed parameters �

0

m

lies in the

valid range (0; 1).

Note that in aordane with �gure 5, merging two lasses indues, in most ases, a redution of the

number of segments to K

0

, and thus neessitates a renumbering of the labels. Finally, the proposal is

systematially rejeted if K

0

< M .

Now, assuming that the urrent number of lasses is M , the reverse move onsists of:

1. Draw the index m of the lass to be split in f1; : : : ;Mg with probability L

m

=K, where L

m

is the

number of segments with label m.

2. For eah segment k

1

; : : : k

L

m

with label m,

(a) Draw the number of additional sub-segments H

k

i

with a Geom(�

B

(b

k

i

+1

� b

k

i

)=T) distribution

(trunated to b

k

i

+1

� b

k

i

� 1).

(b) Draw the new sub-segment's frontiers uniformly if needed (if H

k

i

� 1) with probability

1=

�

b

k

i

+1

� b

k

i

� 1

H

k

i

�

() Draw one of the two valid sequenes of the labels m

0

and (m+ 1)

0

with probability 1=2.

Let L

0

m

and L

0

m+1

denote the number of segments assoiated to eah of the two new lasses as a result

of this random sub-segmentation.

3. Draw two positive perturbations �

�

and �

�

aording to a Gamma(g

�

; g

�

) distribution, and ompute
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the new lass parameters aording to

�

0

m

= �

m

�

�

(19)

�

0

m+1

= �

m

=�

�

(20)

�

0

m

= �(�(�

m

)�

�

) (21)

�

0

m+1

= �(�(�

m

)=�

�

) (22)

As in the ase of the segment splitting move, the inlusion of L

m

(the number of segments with label

m) in step 1 of the lass splitting move avoids splitting empty lasses and favors (to some extent) split

moves that onerns lasses whih are representative of a large number of segments.

The lass splitting move is aepted with probability min(1; A) where

A = likelihood ratio

(A1) � �

M

�

(K

0

�K)

K

�

T � 1

K � 1

�

M(M � 1)

(K�1)

�

T � 1

K

0

� 1

�

(M + 1)M

(K

0

�1)

(A2:1) �

�

�

�

�

�(�

�

)

�

�(�

0

m

)�(�

0

m+1

)

�(�

m

)

�

��

�

�

�

0

m

�

0

m+1

�

m

�

�

�

�1

e

��

�

(

�

0

m

�(�

0

m

)

+

�

0

m+1

�(�

0

m+1

)

�

�

m

�(�

m

)

)

(A2:2) �

�(�

�

+ �

�

)

�(�

�

)�(�

�

)

�

�

0

m

�

0

m+1

�

m

�

�

�

�1

�

(1� �

0

m

)(1� �

0

m+1

)

1� �

m

�

�

�

�1

(A3) �

K

ML

m

L

m

Y

i=1

2

1� �

B

(b

k

i

+1

� b

k

i

)=T

�

T

�

B

(b

k

i

+1

� b

k

i

)

�

H

k

i

�

b

k

i+1

� b

k

i

� 1

H

k

i

�

(A4) � 4 �

0

m+1

�(�

0

m+1

)

(1� �

0

m

)

2

(1� �

0

m+1

)

2

(1� �

m

)

2

(A5) �

�

g

g

�

�

�(g

�

)

�

(g

�

�1)

�

e

�g

�

�

�

g

g

�

�

�(g

�

)

�

(g

�

�1)

�

e

�g

�

�

�

�

�1

where �

�

and �

�

may be equivalently omputed from the lass parameters aording to

�

�

=

q

�

0

m

=�

0

m+1

;

�

�

=

q

�(�

0

m

)=�(�

0

m+1

):

The above aeptane ratio deomposes into the following terms: (A1) inludes the priors on M , K,

fb

k

g

2�k�K

and fl

k

g

1�k�K

; (A2.1) and (A2.2) orrespond to the prior ratio for the parameters of the

split lass; (A3) de�nes the proposal ratio, with the produt term orresponding more spei�ally

to the probability of proposing a partiular relabeling when performing the split move; (A4) is the

Jaobian of the transformation from (�

m

; �

m

; �

�

; �

�

) to (�

0

m

; �

0

m

; �

0

m+1

; �

0

m

); Finally, (A5) is the inverse

of the joint probability density of the random perturbations �

�

and �

�

.

The parameters of the sampler are g

�

, g

�

and �

B

. The larger the values of g

�

and g

�

, the smaller the

perturbations brought to the lass parameters during a split move. On the other hand if g

�

and g

�

are

too large, the presene of the fator (A5) in the aeptane ratio will pratially prevent aeptane

of the merge moves. A value of 100 is used both for g

�

and g

�

for all the simulations. We use �

B

= 0:9

that is a value of the order of that of �

K

sine �

B

de�nes the law of the number of additional sub-

segments when splitting a hypothetial segment of length T (that is, overing all the data). For shorter

segments however, the probability of inserting new sub-segments during a split move steadily dereases
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as a onsequene of the geometri proposal rate for H

k

being set to �

B

(b

k+1

� b

k

)=T whih renders the

expeted number of additional sub-segments proportional to the relative length of the split segment.

The reversible jump moves of setions III-D and III-E are arguably less eÆient than those used to

update the model onditional parameters desribed in setions III-A- III-C. This is a onsequene

both of the fat that the moves of setions III-A- III-C indeed orrespond to full yles through all

the segments or all the lasses, and also that the reversible jump proposals of setions III-D-III-E do

not enfore the onstraints on the parameters so that a fration of them are rejeted irrespetively of

the hange in likelihood. Hene, at eah iteration, 5 reversible jump moves are attempted both for

the number of segments (setion III-D) and for the number of lasses (setion III-E) whereas only one

instane of the moves desribed in setions III-A- III-C is performed. With these sampler settings, the

reversible jump aeptane rate on the data onsidered in the next setion varies from 10 to 20% for

the moves a�eting the number of segments K and are a few perent for the moves whih modi�es the

number of lasses M (see setion IV-B).

IV. Analysis of traffi data

In this setion, we analyze a short setion of a traÆ trae available from the Internet TraÆ

Arhive whih was �rst desribed by Paxson and Floyd (1995) (trae labelled \LBL-TCP-3"). This

trae aptures two hours of TCP (Transmission Control Protool) ativity measured over a wide area

Internet gateway.

The raw data onsists of a olletion of information of a di�erent nature whih inludes the size

of the transferred data pakets (beause TCP is a variable size protool), the soure and destination

addresses, the type of the paket and �nally a time stamp for eah paket. We refer the reader to [13℄

for known observations onsidering this traÆ trae and to [14℄, [15℄ for disussion of the di�erent ways

in whih suh a traÆ trae may be analyzed. In the following, we simply onsider the one seond

aggregated TCP paket ounts (number of pakets transmitted during one seond) measure over a six

minutes (360 data points) period.

A. Results

For this data reord displayed in �gure 8, we onsider estimation results obtained by Monte Carlo

averages omputed from 800 000 iterations of a single instane of the Markov hain sampler desribed

in setion III.

[Figure 6 about here.℄

[Figure 7 about here.℄

[Figure 8 about here.℄

Fig. 6 shows that for the data setion under onsideration, there is signi�ant evidene in favor of

the model orresponding toM = 4, with a posterior probability ofM = 0:71 for the four lasses model.

Interestingly, the hypothesis of a simple ON/OFF model (with only two lasses) is not supported at

all by the data. In the following, we thus only onsider results onditional upon the value M = 4.

Figure 7 shows that for the number of segments (onditional upon M = 4), the piture is less lear ut

and that a point-wise estimate of the number of segment (say K = 35 whih orresponds to the mode)

should be onsidered as poorly reliable. On the other hand, �gure 8 whih is obtained by averaging

the number of times eah label is assoiated to a partiular data point shows that the segmentation

model is well supported by the data with the di�erent data segments learly separated. As the lasses

are ordered by their mean value �

m

, the high ativity regions appear at the bottom of the plot (the

orresponding distribution estimates are plotted in �gure 9). The burstiness of the data whih explains

the sparseness of the plot orresponding to high ativity lass (bottom plot in �gure 8) is also a feature

revealed by the analysis.

[Figure 9 about here.℄
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[Figure 10 about here.℄

Figures 9 and 10 display the lass related summaries with both the posterior distribution of the lass-

dependent parameters (�gure 9) and the lass onditional density estimates (�gure 10). Figure 9 is an

histogram of the simulated lass parameters while �gure 10 is obtained by averaging the probability

density funtions orresponding to the four lasses for all values of these parameters. Figure 9 shows

that there is indeed a good separation of the lass parameters based on the means �

m

(left olumn

plots). Another interesting feature of �gure 9 is the fat that the lasses are more dispersed (i.e. with

high values of 

m

) when onsidering the higher ativity levels (lasses 3 and 4). Even if this �nding

is learly due to a lak of evidene in the ase of the fourth lass, this trend seems signi�ant when

omparing, for example, lasses 2 and 3. With values of 

m

of the order of �ve or more, the obtained

lass onditional distributions are distintively more dispersed than one would expet from a Poisson

assumption.

B. Mixing issues

[Figure 11 about here.℄

[Figure 12 about here.℄

An important issue assoiated with the use of MCMC methods is onvergene of the Monte Carlo

estimations. Even if we lak spae to over this question in muh details (see [27℄ for a disussion of

objetive methods for assessing onvergene), it is interesting to omment �gure 11 whih shows the

onvergene of the posterior probability estimates for the number of lasses M as a funtion of the

number of sampler iterations (�gure 12 displays a similar piture onerning the number of segments

K for 8 quantiles of the empirial posterior of K). Both plots suggest that the MCMC sampler

has reahed stationarity after 500 000 iterations or so, although the posterior distribution of M still

undergoes slight modi�ations (�gure 11) beyond that point. This order of magnitude, whih may

seem onsiderable, is indeed fairly ommon in the MCMC literature [27℄. Granted that the model

under onsideration is quite omplex, �gures 11 and 12 shows that the proposed sampler is quite

eÆient for problems of this sale.

Comparing �gures 11 and 12 nevertheless indiates that the number of segments (�gure 12) tends

to stabilize muh faster than the number of lasses (�gure 11). Experiments arried out for longer

setions of the data revealed that this problem beomes more salient as the number of segments

inreases. When the number of segments is larger than one hundred, the number of lasses does not

hange anymore in the ourse of the iterations. This mixing problem (very slow onvergene of one

of the omponent of the hain) is ertainly a limitation of the method whih will be hard to raise

(see [9℄ for a similar �nding in a related appliation). This limitation is not just due to a failure of the

sampling strategy but rather reveals the omplexity of estimating the number of lasses when they are

many segments: For K = 100 segments for instane, they are about 3:10

12

more on�gurations with

M = 5 lasses than with M = 4 lasses (whih also means that when attempting to split from M = 4

to M = 5 lasses, the rightmost part of ratio (A1) will be the inverse of that �gure { that is extremely

small).

C. Analysis of a longer setion of data

Analysis of slightly longer setions of data is nonetheless possible and provides interesting insights

about the tradeo� between omplexity and aurate representation of the data whih is ahieved by

the method. Figures 13 and 14 are the analogous of �gures 6 and 8 for a setion of data whih is

twie longer (12 mn, 720 data points). The segment of data onsidered in setion IV-A and plotted in

�gure 8 orresponds to the right half of �gure 14 (right of the vertial dashed line).

[Figure 13 about here.℄

[Figure 14 about here.℄
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The most striking di�erene when omparing with �gure 6 is that the posterior for the number

of lasses (�gure 13) is now more spread out and suggests �ve or six as the most likely number of

lasses. The posterior segmentation, onditional on the number of lass being M = 5, shown in

�gure 14 indiates that some features are remarkably stable: In partiular, fousing on the right part

of �gure 14, one learly sees that the fourth and �fth lasses in �gure 14 orresponds to, respetively,

the third and fourth ones in �gure 6. Class 3 in �gure 14 is also omparable to lass 2 in �gure 6

(whih is on�rmed by looking more losely at the estimated values of the lass onditional parameters).

Finally, lass 1 in �gure 6 has been splitted up into lasses 1 and 2 in �gure 14, with the �rst one

(orresponding to the lower mean level) whih is mostly seleted in the �rst half of �gure 14, that is

for the data whih was not inluded in the analysis arried out in setion IV-A. The main message

here is thus that modeling larger setions of data requires more degrees of freedom, in partiular in

terms of the possible marginal distributions. This is oherent with the fat that both halves of the

data in �gure 13 look qualitatively very di�erent.

[Figure 15 about here.℄

An interesting point is that the loations of the segment boundaries appear to be very stable. This

is also on�rmed by �gure 15 whih shows the posterior for the presene of a segment boundary

averaged over all model on�gurations (inluding the number of lasses and segments as well as the

lass onditional parameters) for the data shown in �gure 14. The fat that �gure 15 still shows very

well loated hange points despite the fat that we marginalize over very di�erent models indiate that

the presene of abrupt hanges is well supported by the data. The most likely number of segments is

now K = 74, that is slightly less than the twie the mode of �gure 7, whih is oherent with the fat

that there is less ativity, and orrelatively less hanges, in the �rst half of the setion of data shown

in �gure 14 than in the seond one.

Figure 14 also shows that some omponents like the �fth one have very sparse and irregular time

patterns whih would be hard to model using simple assumptions like Markovian dependene. Finally,

�gure 14 learly indiates that the omplexity required to model the behavior of the data depends on

the time horizon onsidered and that the results obtained on limited setions (number of lasses in

partiular) annot be extrapolated.

V. Conlusions

We have presented a novel approah for the analysis of disrete-time ount data whih is based on

Bayesian modeling and Markov Chain Monte Carlo (MCMC) simulation. We hope to have onvined

the reader with the teletraÆ example overed in setion IV that this approah provides non trivial

insightful results when applied to real data. One advantage of the Bayesian approah in this setting

are its visual and easily interpretable results suh as �gures 8 and 10 whih may be used to asses the

goodness of �t of the model and also suggest possible improvements and/or simpli�ations. Speed

of onvergene is ertainly a onern for MCMC methods in general, and in the ase under study,

there was shown to be a pratial limit to the omplexity of the models that an be handled with the

proposed sampling strategy.

Adaptation of this approah to very large sale problems (hundreds of segments and more) is thus an

interesting and open question for future researh. Solutions that ould be onsidered inlude tempering

shemes [9℄ and parallel simulations (for models with di�erent number of lasses) as advoated by [28℄.

Further omparison with methods based on variable order hidden Markov modeling, and in partiular

with tehniques whih do not rely on data augmentation (ie. the boundaries b

k

and labels l

k

need not

be simulated when proposing dimension hanging moves) as in [29℄ is also of great interest.
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Fig. 1. Example of latent model struture with three lasses (M = 3) and seven segments (K = 7).
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Fig. 2. Graphial representation of the prior struture.
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Fig. 4. Q-Q plot of the empirial a priori distribution of the segment duration versus the adjusted exponential distri-

bution (10 000 draws of the segments onditionally on M = 2 and T = 600 for �
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DATA:

Segments:

Boundaries: b

0

1

= 1 b

0

2

b

0

3

b

0

4

= T + 1

Labels: l

0

1

l

0

2

l

0

3

Classes:

�

0

1

; �

0

1

�

0

2

; �

0

2

Fig. 5. Latent struture of �gure 1 after merging the lasses 1 and 2 in lass 1

0

and relabelling the lass 3 as 2

0

.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of classes

P
o
s
te

ri
o
r 

P
ro

b
a
b
ili

ty

Fig. 6. Estimated posterior for the number of lasses.
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Fig. 7. Estimated posterior for the number of segments onditional upon the number of lasses being equal to four.
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to four.
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Fig. 10. Density estimates for the four lasses onditional upon M = 4.
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Fig. 11. Convergene of the lass probability estimates. Only the estimates orresponding to M = 3; 4; 5 and 6 are

visible on the plot.
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Fig. 12. Convergene of the segment probability estimates orresponding to 8 quantiles.
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Fig. 13. Estimated posterior for the number of lasses (12 mn of data).
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Fig. 14. Data (top plot) with estimated posterior lassi�ation onditional upon the number M of lasses being equal

to �ve (12 mn of data).
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Fig. 15. Estimated posterior for the presene of a segment boundary, marginalizing with respet to all the parameters

of the model (12 mn of data).


