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Abstract

This paper deals with joint detection and decoding tech-

niques for coded CDMA (Code Division Multiple Access)

systems. A promising approach in this context consists of

combining the results of a soft output multiuser detector

(MUD) with single user soft-input soft-output (SISO) de-

coders in an iterative fashion (so called “turbo” principle).

In a first part of the paper we describe the CDMA chan-

nel under the form of a probabilistic graphical model (also

known as Bayesian, or belief, network) which provides a

very generic and natural way of deriving turbo algorithms.

The structure of the algorithm is then obtained by direct

application of general probability propagation rules rather

than by using the context dependent notions of intrinsic and

extrinsic information.

It turns out however that the obtained algorithm still re-

quires soft output multiuser detection in a pseudo model

where the symbols emitted by the user are a priori indepen-

dent, which is not computationally feasible. The second part

of the paper describes a simulation based MUD scheme

which draws upon recent advances in Markov Chain Monte

Carlo methods. The performance of the overall turbo mul-

tiuser decoder is compared with that of a state-of-the-art

algorithm with comparable computational cost.

Keywords: CDMA, Multiuser Detection, Turbo Decod-

ing, Graphical Models, Markov Chain Monte Carlo, Gibbs

Sampler, Rao-Blackwellization

1. Introduction

Multiuser detection is the crux for high-spectral effi-

ciency in digital communication systems using CDMA.

As recently advocated in many contributions [7, 9], sin-

gle user performance can almost be reached in a coded

CDMA system by coupling joint multiuser detection and

error-correcting coding in an iterative mode inspired from

the turbo-decoding principle [3]. These turbo multiuser

strategies however require efficient approximations to the

optimal SISO MUD such as those proposed by Wang and

Poor [12] and Alexander et al [1].

In this paper, we consider a probabilistic graphical rep-

resentation of the dispersive CDMA channel. In the graph-

ical model framework, the structure of the turbo decoder

can be derived by applying generic probability propagation

rules [4], [6]. We use this approach to justify the fact that

the SISO joint multiuser detector must be designed so as

to estimate the marginal posterior probabilities of the emit-

ted information symbols given the observed signal frame,

in a pseudo model where the symbols are a priori inde-

pendent, with prior probabilities coming from the bank of

single user decoders. It is well known that this task is not

computationally feasible when the number of users is not

very small (say, less than four), particularly in the pres-

ence of dispersive fading. We thus propose to use a sim-

ulation based SISO MUD which uses a user-by-user and

symbol-by-symbol Gibbs sampling approach. The use of

Markov Chain Monte-Carlo (MCMC) methods (like Gibbs

sampling) in digital communication settings has been pro-

posed recently by [11]. The main contributions of this paper

are an evaluation of the simulation based approach in a real-

istic setting, in particular with a very low number of MCMC

simulations, as well as an improved scheme for estimating

the posterior probabilities at the SISO MUD stage based on

a Rao-Blackwellization procedure [10].

2. Problem Statement

2.1. Signal Model

We consider a K-users direct-sequence code-division

multiple access (DS-CDMA) with channel coding over a

multipath channel. Assuming that the baseband received

signal is fractionally sampled and/or received with spatial



diversity, the discrete time signal at time index t writes
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where the superscript T denotes transposition and N is

the equivalent number of polyphase components, including

oversampling and multi-sensors reception. In a frequency

selective multipath environment, the CDMA channel takes

the form of a finite length MIMO linear filtering
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the matrix and vector forms of the channel parameter and

the channel state respectively. Each coefficient Hl contains

the polyphase components of the lth channel coefficient of

each user, i.e.
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T. Thus, we may consider

the received signal as a noisy mixture of the K users, as

shown on figure 1. We assume that the symbols (st
k

)
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result from the modulation of q consecutive interleaved bits
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Figure 1. Equivalent Coded CDMA Channel

assume a M -symbols frame transmission leading to an ob-

served signal denoted r1:M , [(r

1

)

T
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)
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lowing the linear model
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T and where H is a

N(M + L) � KM filtering matrix composed of shifted

versions of H on its rows. Moreover, we assume that the

transmission of the symbols s1:M corresponds to the trans-

mission of M
d

information bits.

2.2. Iterative joint detection and decoding

The optimal joint decoder-an-detector proceeds by

finding the marginal maximum a posteriori estimate

f
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for each user, given the received signal

r

1:M and the code structure C. Because this operation is

computationally feasible only for non-interleaved systems

with very small number of users, channel order and code

constraint length [5], turbo schemes [8, 1, 12] appear has an

appealing solution since they usually lead to near optimal

performance with a manageable computation load. To de-

scribed turbo algorithms it is standard to refer to the notion

of “intrinsic” and “extrinsic” information although these are

clearly context dependent an somewhat ill-defined in gen-

eral settings. In this contribution, we adopt the point of

view of Frey [4], McEliece [6] et al who consider the turbo

principle as an instance of the probability propagation algo-

rithm. To describe the CDMA channel, we use the repre-

sentation advocated by Frey [4] (“factor graph”) in which

the circled symbols denote random variables, the dark dots

correspond to a priori or conditional distributions, and the

edges stand for conditional independence relations.

2.3. Graphical Model of the CDMA Channel

We represent the coded frame-based CDMA system de-

scribed in section 2.1 by the graphical model given in figure

2, where p(r1:M j s1:M ) denotes the conditional distribution

of the observations r1:M given the symbols s1:M and C

k

denotes a prior code structure on the symbols s1:T
k

(see fig-

ure 3). From eq. (3), we may write

p(r

1:M

j s

1:M

) =

1

(��

2

)

(M+L)

exp

 

�







r

1:M

�H s

1:M







2

�

2

!

(4)

Making the convolutive structure of eq. (1) appear in the

above equation would be useless since, even in the sim-

plest case (i.e. when there is no inter-symbol interference),

the required state space has dimension Q

K , and, for a L-

order convolutive channel, the space dimension increases

to Q

KL (see eq. (2)). Applying the probability propaga-

tion rules [4] to the graph of figure 2, one obtains an it-

erative scheme which consists of “messages”1 passing be-

1Although these are quite often referred to a APP (for a posteriori prob-

abilities), these messages are not always interpretable as probabilities : in

a graph without cycle, they either correspond to an unnormalized proba-

bility distribution or to a likelihood defined up to an unknown normalizing

constant. In a graph with cycles, such as the one we are considering, the

messages have no direct interpretation in term of probabilities.
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Figure 2. Graphical Bayesian Model of the CDMA

system
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Figure 3. Graphical representation of the code struc-

ture C
k

tween the multiple access channel and theK code structures
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. The messages are either propagated from

the multiple access channel to the symbols st
k
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on figure 2) or in the reverse direction (� on figure 2). The

probability propagation rules for messages of type � and �
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Both (i) and (ii) have the usual interpretation

� if �t
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) (1 � k � K and 1 � t � M ), are inde-

pendent priors on symbols as illustrated in the pseudo

model given in figure 4(a), then the messages �t
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Because figure 4(b) corresponds to the structure of a Hidden

Markov Model (see also figure 3 which shows the detailed

graphical representation of the code structure C
k

), eq. (6)

can be implemented efficiently for a given code C
k

using

the forward-backward algorithm [2].
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from the single user decoders
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Figure 4. Message propagation in the CDMA graph-

ical model

3. A Sampling-Based Approach

Given independent priors �t
k

(s

t

k

) on symbols st
k

, we pro-

pose to estimate the posterior distribution P (s

t

k

j�; r

1:M

)

through a particular Markov Chain Monte-Carlo (MCMC)

technique, namely the Gibbs sampler. MCMC [10] is a

class of powerful techniques which make it possible to

estimate posterior quantities in high-dimensional models.

MCMC is a stochastic approximation procedure, compara-

ble in many respects to conventional Monte Carlo except for

the fact that successive simulations are Markov dependent.



3.1. The Gibbs sampling approach

For Bayesian probabilistic inference, all quantities of

interest may be written as g
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3.2. Application to Joint Multiuser Detection

Let s�t
�k

denote the sequence s1:M in which the symbol

s
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has been suppressed. The Gibbs sampling update at sim-

ulation indexn+1 (simulation of s(n+1) given s(n)) consists
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where C is a normalizing constant obtained by summa-

tion over the possible values of st
k

of the right-hand side

of the expression. Expression (8) is not as computation-

ally demanding as expected, since the possible values of st
k

are sharing common factors in p(r
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) that

vanish due to the normalizing constant C. Without any

loss of information, one can replace p(r
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), which is computationally much

less demanding and is of complexity O(n

s

:K:N) per turbo

iteration per user and per symbol.

Finally, the estimation of the posterior distributions is

performed using a Rao-Blackwell procedure [10] : Instead

of using g(s) = 1 if st
k

= s and (zero otherwise) to estimate

P (s

t

k

= sj�; r

1:M

) from (7) as suggested by [11], we use

g(s) = P (s

t

k

= sjs
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). This term is readily avail-

able since it is already computed during the Gibbs update as

detailed in (8). For independent (ie. Monte Carlo) simula-

tions, this choice would lead to a systematic decrease of the

variance of the approximation error by virtue of the Rao-

Blakwell theorem. For MCMC methods, this is not true

anymore (because of the Markov dependence) but a similar

gain is generally observed empirically [10]. For commu-

nications applications with a small number n
s

of MCMC

simulations, this procedure also avoids the risk of estimat-

ing posterior probabilities that are exactly 0 or 1 (in [11] this

was achieved through the use of ad hoc thresholds).

Since we are considering cases where the number of

MCMC simulations n
s

is kept small, the initialization of

the Gibbs sampler does play a significant role and we use a

MMSE linear receiver inspired from [12] for the very first

turbo iteration. For subsequent turbo iterations, the initial

guess s(0) is chosen as the marginal maximum a posteriori

decision (given the current estimate of the symbol probabil-

ities).

4. Simulations Results and Conclusion

Simulations results are illustrated on figure 5 for a K =

8-users coded DS-CDMA system using orthogonal spread-

ing (OVSF) codes of spreading factor 8 and QPSK modula-

tion. We use for each user a rate-1=2 convolutional code

with octal generator polynomials (23; 35), and pseudo-

random interleavers of size 256. The CDMA channel is de-

fined from a standardized ETRVA channel with 6-Rayleigh

faded paths and a raised-cosine spectral emission pulse with

roll-off 0:2, leading to a global channel order L = 3. An

oversampling rate of 2=T



and a single sensor antenna were

used at the receiver, thus leading to N = 16. During the

simulations, the channel was kept constant and is known to

the receiver.

In order to illustrate the robustness of the proposed

method to the near-far effect, the signal-to-noise ratio

(SNR) of the first 4 users is kept constant and equal to 0dB.

The Gibbs receiver is illustrated on figures 5(a) and 5(b)

for 4 iterations of the turbo mode and n

s

= 50 Gibbs sim-

ulations. The performance of the single user system on a



synchronous AWGN channel is drawn in bold line, and the

linear SISO MMSE receiver proposed in [12] are also pre-

sented on figures 5(c) and 5(d) for comparison purpose. The

number of MCMC simulations (n
s

= 50) was chosen inten-

tionnally so that the Gibbs receiver presents a comparable

complexity to the linear SISO MMSE for identical system

caracteristics.

Figures 5(a) show that the Gibbs receiver is very effi-

cient for the weak users in presence of a strong near-far ef-

fect, leading to near single-user performance in 2 iterations

only, whereas the linear SISO MMSE receiver shows com-

paratively poor performance after 2 iterations. When users

have equal 0dB power, single-user performance can nearly

be reached after 3 iterations for the Gibbs which converges

more rapidly than the MMSE receiver for which 4 iterations

are needed.

In conclusion, the performance and the low cost of the

Gibbs receiver show that MCMCs can be efficiently applied

to turbo multiuser detection, even for heavy-loaded systems

and severe transmission conditions. Proper initialization of

the symbols and Rao-Blackwellization of the quantities of

interest allows us to perform only few MCMC simulations

and to still get a very robust behaviour.
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Figure 5. Performance of the turbo Gibbs MUD and

the SISO MMSE MUD in a 8-users dispersive CDMA

system. SNRs of users 1� 4 is fixed to 0dB.


