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Preface

Hidden Markov models—most often abbreviated to the acronym “HMMs”—
are one of the most successful statistical modelling ideas that have came up in
the last forty years: the use of hidden (or unobservable) states makes the model
generic enough to handle a variety of complex real-world time series, while the
relatively simple prior dependence structure (the “Markov” bit) still allows
for the use of efficient computational procedures. Our goal with this book is to
present a reasonably complete picture of statistical inference for HMMs, from
the simplest finite-valued models, which were already studied in the 1960’s,
to recent topics like computational aspects of models with continuous state
space, asymptotics of maximum likelihood, Bayesian computation and model
selection, and all this illustrated with relevant running examples. We want
to stress at this point that by using the term hidden Markov model we do
not limit ourselves to models with finite state space (for the hidden Markov
chain), but also include models with continuous state space; such models are
often referred to as state-space models in the literature.

We build on the considerable developments that have taken place dur-
ing the past ten years, both at the foundational level (asymptotics of maxi-
mum likelihood estimates, order estimation, etc.) and at the computational
level (variable dimension simulation, simulation-based optimization, etc.), to
present an up-to-date picture of the field that is self-contained from a theoret-
ical point of view and self-sufficient from a methodological point of view. We
therefore expect that the book will appeal to academic researchers in the field
of HMMs, in particular PhD students working on related topics, by summing
up the results obtained so far and presenting some new ideas. We hope that it
will similarly interest practitioners and researchers from other fields by lead-
ing them through the computational steps required for making inference in
HMMs and/or providing them with the relevant underlying statistical theory.

The book starts with an introductory chapter which explains, in simple
terms, what an HMM is, and it contains many examples of the use of HMMs
in fields ranging from biology to telecommunications and finance. This chap-
ter also describes various extension of HMMs, like models with autoregression
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or hierarchical HMMs. Chapter 2 defines some basic concepts like transi-
tion kernels and Markov chains. The remainder of the book is divided into
three parts: State Inference, Parameter Inference and Background and Com-
plements ; there are also three appendices.

Part I of the book covers inference for the unobserved state process. We
start in Chapter 3 by defining smoothing, filtering and predictive distributions
and describe the forward-backward decomposition and the corresponding re-
cursions. We do this in a general framework with no assumption on finiteness
of the hidden state space. The special cases of HMMs with finite state space
and Gaussian linear state-space models are detailed in Chapter 5. Chapter 3
also introduces the idea that the conditional distribution of the hidden Markov
chain, given the observations, is Markov too, although non-homogeneous, for
both ordinary and time-reversed index orderings. As a result, two alternative
algorithms for smoothing are obtained. A major theme of Part I is simulation-
based methods for state inference; Chapter 6 is a brief introduction to Monte
Carlo simulation, and to Markov chain Monte Carlo and its applications to
HMMs in particular, while Chapters 7 and 8 describe, starting from scratch,
so-called sequential Monte Carlo (SMC) methods for approximating filtering
and smoothing distributions in HMMs with continuous state space. Chapter 9
is devoted to asymptotic analysis of SMC algorithms. More specialized top-
ics of Part I include recursive computation of expectations of functions with
respect to smoothed distributions of the hidden chain (Section 4.1), SMC ap-
proximations of such expectations (Section 8.3) and mixing properties of the
conditional distribution of the hidden chain (Section 4.3). Variants of the ba-
sic HMM structure like models with autoregression and hierarchical HMMs
are considered in Sections 4.2, 6.3.2 and 8.2.

Part II of the book deals with inference for model parameters, mostly
from the maximum likelihood and Bayesian points of views. Chapter 10 de-
scribes the expectation-maximization (EM) algorithm in detail, as well as
its implementation for HMMs with finite state space and Gaussian linear
state-space models. This chapter also discusses likelihood maximization us-
ing gradient-based optimization routines. HMMs with continuous state space
do not generally admit exact implementation of EM, but require simulation-
based methods. Chapter 11 covers various Monte Carlo algorithms like Monte
Carlo EM, stochastic gradient algorithms and stochastic approximation EM.
In addition to providing the algorithms and illustrative examples, it also con-
tains an in-depth analysis of their convergence properties. Chapter 12 gives
an overview of the framework for asymptotic analysis of the maximum like-
lihood estimator, with some applications like asymptotics of likelihood-based
tests. Chapter 13 is about Bayesian inference for HMMs, with the focus being
on models with finite state space. It covers so-called reversible jump MCMC
algorithms for choosing between models of different dimensionality, and con-
tains detailed examples illustrating these as well as simpler algorithms. It also
contains a section on multiple imputation algorithms for global maximization
of the posterior density.
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Part III of the book contains a chapter on discrete and general Markov
chains, summarizing some of the most important concepts and results and
applying them to HMMs. The other chapter of this part focuses on order
estimation for HMMs with both finite state space and finite output alphabet;
in particular it describes how concepts from information theory are useful for
elaborating on this subject.

Various parts of the book require different amounts of, and also different
kinds of, prior knowledge from the reader. Generally we assume familiarity
with probability and statistical estimation at the levels of Feller (1971) and
Bickel and Doksum (1977), respectively. Some prior knowledge of Markov
chains (discrete and/or general) is very helpful, although Part III does con-
tain a primer on the topic; this chapter should however be considered more
a brush-up than a comprehensive treatise of the subject. A reader with that
knowledge will be able to understand most parts of the book. Chapter 13 on
Bayesian estimation features a brief introduction to the subject in general but,
again, some previous experience with Bayesian statistics will undoubtedly be
of great help. The more theoretical parts of the book (Section 4.3, Chapter 9,
Sections 11.2–11.3, Chapter 12, Sections 14.2–14.3 and Chapter 15) require
knowledge of probability theory at the measure-theoretic level for a full under-
standing, even though most of the results as such can be understood without
it.

There is no need to read the book in linear order, from cover to cover.
Indeed, this is probably the wrong way to read it! Rather we encourage the
reader to first go through the more algorithmic parts of the book, to get an
overall view of the subject, and then, if desired, later return to the theoretical
parts for a fuller understanding. Readers with particular topics in mind may
of course be even more selective. A reader interested in the EM algorithm,
for instance, could start with Chapter 1, have a look at Chapter 2, and then
proceed to Chapter 3 before reading about the EM algorithm in Chapter 10.
Similarly a reader interested in simulation-based techniques could go to Chap-
ter 6 directly, perhaps after reading some of the introductory parts, or even
directly to Section 6.3 if he/she is already familiar with MCMC methods.
Each of the two chapters entitled “Advanced Topics in...” (Chapters 4 and 8)
is really composed of three disconnected complements to Chapters 3 and 7,
respectively. As such, the sections that compose Chapters 4 and 8 may be
read independently of one another. Most chapters end with a section entitled
“Complements” whose reading is not required for understanding other parts
of the book—most often, this section mostly contains bibliographical notes—
although in some chapters (9 and 11 in particular) it also features elements
needed to prove the results stated in the main text.

Even in a book of this size, it is impossible to include all aspects of hidden
Markov models. We have focused on the use of HMMs to model long, po-
tentially stationary, time series; we call such models ergodic HMMs. In other
applications, for instance speech recognition or protein alignment, HMMs are
used to represent short variable-length sequences; such models are often called
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left-to-right HMMs and are hardly mentioned in this book. Having said that
we stress that the computational tools for both classes of HMMs are virtually
the same. There are also a number of generalizations of HMMs which we do
not consider. In Markov random fields, as used in image processing applica-
tions, the Markov chain is replaced by a graph of dependency which may be
represented as a two-dimensional regular lattice. The numerical techniques
that can be used for inference in hidden Markov random fields are similar to
some of the methods studied in this book but the statistical side is very differ-
ent. Bayesian networks are even more general since the dependency structure
is allowed to take any form representable by a (directed or undirected) graph.
We do not consider Bayesian networks in their generality although some of
the concepts developed in the Bayesian networks literature (the graph repre-
sentation, the sum-product algorithm) are used. Continuous-time HMMs may
also be seen as a further generalization of the models considered in this book.
Some of these “continuous-time HMMs”, and in particular partially observed
diffusion models used in mathematical finance, have recently received consid-
erable attention. We however decided this topic to be outside the range of
the book; furthermore, the stochastic calculus tools needed for studying these
continuous-time models are not appropriate for our purpose.

We acknowledge the help of Stéphane Boucheron, Randal Douc, Gersende
Fort, Elisabeth Gassiat, Christian P. Robert, and Philippe Soulier, who par-
ticipated in the writing of the text and contributed the two chapters that
compose Part III (see next page for details of the contributions). We are also
indebted to them for suggesting various forms of improvement in the nota-
tions, layout, etc., as well as helping us tracking typos and errors. We thank
François Le Gland and Catherine Matias for participating in the early stages
of this book project. We are grateful to Christophe Andrieu, Arnaud Doucet,
Hans Künsch, Steve Levinson, Ya’acov Ritov and Mike Titterington, who pro-
vided various helpful inputs and comments. Finally, we thank John Kimmel
of Springer for his support and enduring patience.

Paris, France Olivier Cappé
& Lund, Sweden, Eric Moulines
March 2005 Tobias Rydén
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1

Introduction

1.1 What Is a Hidden Markov Model?

A hidden Markov model (abbreviated HMM) is, loosely speaking, a Markov
chain observed in noise. Indeed, the model comprises a Markov chain, which
we will denote by {Xk}k≥0, where k is an integer index. This Markov chain
is often assumed to take values in a finite set, but we will not make this
restriction in general, thus allowing for a quite arbitrary state space. Now,
the Markov chain is hidden, that is, it is not observable. What is available to
the observer is another stochastic process {Yk}k≥0, linked to the Markov chain
in that Xk governs the distribution of the corresponding Yk. For instance, Yk

may have a normal distribution, the mean and variance of which is determined
by Xk, or Yk may have a Poisson distribution whose mean is determined by
Xk. The underlying Markov chain {Xk} is sometimes called the regime, or
state. All statistical inference, even on the Markov chain itself, has to be
done in terms of {Yk} only, as {Xk} is not observed. There is also a further
assumption on the relation between the Markov chain and the observable
process, saying that Xk must be the only variable of the Markov chain that
affects the distribution of Yk. This is expressed more precisely in the following
formal definition.

A hidden Markov model is a bivariate discrete time process {Xk, Yk}k≥0,
where {Xk} is a Markov chain and, conditional on {Xk}, {Yk} is a sequence
of independent random variables such that the conditional distribution of Yk

only depends on Xk. We will denote the state space of the Markov chain {Xk}
by X and the set in which {Yk} takes its values by Y.

The dependence structure of an HMM can be represented by a graphical
model as in Figure 1.1. Representations of this sort use a directed graph
without loops to describe dependence structures among random variables. The
nodes (circles) in the graph correspond to the random variables, and the edges
(arrows) represent the structure of the joint probability distribution, with the
interpretation that the latter may be factored as a product of the conditional
distributions of each node given its “parent” nodes (those that are directly
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Main Definitions and Notations

We now formally describe hidden Markov models, setting the notations that
will be used throughout the book. We start by reviewing the basic definitions
and concepts pertaining to Markov chains.

2.1 Markov Chains

2.1.1 Transition Kernels

Definition 2.1.1 (Transition Kernel). Let (X,X ) and (Y,Y) be two mea-
surable spaces. An unnormalized transition kernel from (X,X ) to (Y,Y) is a
function Q : X × Y → [0,∞] that satisfies

(i) for all x ∈ X, Q(x, ·) is a positive measure on (Y,Y);
(ii) for all A ∈ Y, the function x 7→ Q(x, A) is measurable.

If Q(x, Y) = 1 for all x ∈ X, then Q is called a transition kernel, or simply a
kernel. If X = Y and Q(x, X) = 1 for all x ∈ X, then Q will also be referred
to as a Markov transition kernel on (X,X ).

An (unnormalized) transition kernel Q is said to admit a density with
respect to the positive measure µ on Y if there exists a non-negative function
q : X×Y → [0,∞], measurable with respect to the product σ-field X ⊗Y, such
that

Q(x, A) =

∫
A

g(x, y)µ(dy) , A ∈ Y .

The function q is then referred to as an (unnormalized) transition density
function.

When X and Y are countable sets it is customary to write Q(x, y) as a
shorthand notation for Q(x, {y}), and Q is generally referred to as a transition
matrix (whether or not X and Y are finite sets).

We summarize below some key properties of transition kernels, introducing
important pieces of notation that are used in the following.
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Filtering and Smoothing Recursions

This chapter deals with a fundamental issue in hidden Markov modeling:
given a fully specified model and some observations Y0, . . . , Yn, what can be
said about the corresponding unobserved state sequence X0, . . . , Xn? More
specifically, we shall be concerned with the evaluation of the conditional dis-
tributions of the state at index k, Xk, given the observations Y0, . . . , Yn, a task
that is generally referred to as smoothing. There are of course several options
available for tackling this problem (Anderson and Moore, 1979, Chapter 7)
and we focus, in this chapter, on the fixed-interval smoothing paradigm in
which n is held fixed and it is desired to evaluate the conditional distributions
of Xk for all indices k between 0 and n. Note that only the general mechan-
ics of the smoothing problem are dealt with in this chapter. In particular,
most formulas will involve integrals over X. We shall not, for the moment,
discuss ways in which these integrals can be effectively evaluated, or at least
approximated, numerically. We postpone this issue to Chapter 5, which deals
with some specific classes of hidden Markov models, and Chapters 6 and 7, in
which generally applicable Markov chain Monte Carlo methods or sequential
importance sampling techniques are reviewed.

The driving line of this chapter is the existence of a variety of smoothing
approaches that involve a number of steps that only increase linearly with
the number of observations. This is made possible by the fact (to be made
precise in Section 3.3) that conditionally on the observations Y0, . . . , Yn, the
state sequence still is a Markov chain, albeit a non-homogeneous one.

Readers already familiar with the field could certainly object that as the
probabilistic structure of any hidden Markov model may be represented by
the generic probabilistic network drawn in Figure 1.1 (Chapter 1), the fixed
interval smoothing problem under consideration may be solved by applying
the general principle known as probability propagation or sum-product—see
Cowell et al. (1999) or Frey (1998) for further details and references. As patent
however from Figure 1.1, the graph corresponding to the HMM structure is
so simple and systematic in its design that efficient instances of the probabil-
ity propagation approach are all based on combining two systematic phases:
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Advanced Topics in Smoothing

This chapter covers three distinct complements to the basic smoothing rela-
tions developed in the previous chapter.

In the first section, we provide recursive smoothing relations for computing
smoothed expectations of general functions of the hidden states. In many
respects, this technique is reminiscent of the filtering recursion detailed in
Section 3.2.2, but somewhat harder to grasp because the quantity that needs
to be updated recursively is less directly interpretable.

In the second section, it is shown that the filtering and smoothing ap-
proaches discussed so far (including those of Section 4.1) may be applied,
with minimal adaptations, to a family of models that is much broader than
simply the hidden Markov models. We consider in some detail the case of
hierarchical HMMs (introduced in Section 1.3.4) for which marginal filtering
and smoothing formulas are still available, despite the fact that the hierarchic
component of the state process is not a posteriori Markovian.

The third section is different in nature and is devoted to the so-called
forgetting property of the filtering and smoothing recursions, which are in-
strumental in the statistical theory of HMMs (see Chapter 12). Forgetting
refers to the fact that observations that are either far back in the past or
in the remote future (relative to the current time index) have little impact
on the posterior distribution of the current state. Although this section is
written to be self-contained, its content is probably better understood after
some exposure to the stability properties of Markov chains as can be found in
Chapter 14.

4.1 Recursive Computation of Smoothed Functionals

Chapter 3 mostly dealt with fixed-interval smoothing, that is, computation
of φk|n

1 for a fixed value of the observation horizon n and for all indices

1Note that we omit the dependence with respect to the initial distribution ν,

which is not important in this section.
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Applications of Smoothing

Remember that in the previous two chapters, we basically considered that
integration over X was a feasible operation. This is of course not the case in
general, and numerical evaluation of the integrals involved in the smoothing
recursions turns out to be a difficult task. In Chapters 6 and 7, generally
applicable methods for approximate smoothing, based on Monte Carlo simu-
lations, will be considered. Before that, we first examine two very important
particular cases in which an exact numerical evaluation is feasible: models
with finite state space in Section 5.1 and Gaussian linear state-space mod-
els in Section 5.2. Most of the concepts to be used below have already been
introduced in Chapters 3 and 4, and the current chapter mainly deals with
computational aspects and algorithms. It also provides concrete examples of
application of the methods studied in the previous chapters.

Note that we do not yet consider examples of application of the technique
studied in Section 4.1, as the nature of functionals that can be computed
recursively will only become more explicit when we discuss the EM framework
in Chapter 10. Corresponding examples will be considered in Section 10.2.

5.1 Models with Finite State Space

We first consider models for which the state space X of the hidden variables
is finite, that is, when the unobservable states may only take a finite num-
ber of distinct values. In this context, the smoothing recursions discussed in
Chapter 3 take the familiar form described in the seminal paper by Baum
et al. (1970) as well as Rabiner’s (1989) tutorial (which also covers scaling
issues). Section 5.1.2 discusses a technique that is of utmost importance in
many applications, for instance digital communications and speech process-
ing, by which one can determine the maximum a posteriori sequence of hidden
states given the observations.
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Monte Carlo Methods

This chapter takes a different path to the study of hidden Markov models in
that it abandons the pursuit of closed-form formulas and exact algorithms to
cover instead simulation-based techniques. This change of perspective allows
for a much broader coverage of HMMs, which is not restricted to the specific
cases discussed in Chapter 5. In this chapter, we consider sampling the un-
known sequence of states X0, . . . , Xn conditionally on the observed sequence
Y0, . . . Yn. In subsequent chapters, we will also use simulation to do inference
about the parameters of HMMs, either using simulation-based stochastic algo-
rithms that optimize the likelihood (Chapter 11) or in the context of Bayesian
joint inference on the states and parameters (Chapter 13). But even the sole
simulation of the missing states may prove itself a considerable challenge in
complex settings like continuous state-space HMMs. Therefore, and although
these different tasks are presented in separate chapters, simulating hidden
states in a model whose parameters are assumed to be known is certainly
not disconnected from parameter estimation to be discussed in Chapters 11
and 13.

6.1 Basic Monte Carlo Methods

Although we will not go into a complete description of simulation methods
in this book, the reader must be aware that recent developments of these
methods have offered new opportunities for inference in complex models like
hidden Markov models and their generalizations. For a more in-depth covering
of these simulation methods and their implications see, for instance, the books
by Chen and Shao (2000), Evans and Swartz (2000), Liu (2001), and Robert
and Casella (2004).
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Sequential Monte Carlo Methods

The use of Monte Carlo methods for non-linear filtering can be traced back to
the pioneering contributions of Handschin and Mayne (1969) and Handschin
(1970). These early attempts were based on sequential versions of the impor-
tance sampling paradigm, a technique that amounts to simulating samples
under an instrumental distribution and then approximating the target distri-
butions by weighting these samples using appropriately defined importance
weights. In the non-linear filtering context, importance sampling algorithms
can be implemented sequentially in the sense that, by defining carefully a
sequence of instrumental distributions, it is not needed to regenerate the pop-
ulation of samples from scratch upon the arrival of each new observation. This
algorithm is called sequential importance sampling, often abbreviated SIS. Al-
though the SIS algorithm has been known since the early 1970s, its use in
non-linear filtering problems was rather limited at that time. Most likely, the
available computational power was then too limited to allow convincing appli-
cations of these methods. Another less obvious reason is that the SIS algorithm
suffers from a major drawback that was not clearly identified and properly
cured until the seminal paper by Gordon et al. (1993). As the number of it-
erations increases, the importance weights tend to degenerate, a phenomenon
known as sample impoverishment or weight degeneracy. Basically, in the long
run most of the samples have very small normalized importance weights and
thus do not significantly contribute to the approximation of the target distri-
bution. The solution proposed by Gordon et al. (1993) is to allow rejuvenation
of the set of samples by duplicating the samples with high importance weights
and, on the contrary, removing samples with low weights.

The particle filter of Gordon et al. (1993) was the first successful applica-
tion of sequential Monte Carlo techniques to the field of non-linear filtering.
Since then, sequential Monte Carlo (or SMC) methods have been applied in
many different fields including computer vision, signal processing, control,
econometrics, finance, robotics, and statistics (Doucet et al., 2001a; Ristic
et al., 2004). This chapter reviews the basic building blocks that are needed
to implement a sequential Monte Carlo algorithm, starting with concepts re-
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Advanced Topics in Sequential Monte Carlo

This chapter deals with three disconnected topics that correspond to variants
and extensions of the sequential Monte Carlo framework introduced in the
previous chapter. Remember that we have already examined in Section 7.2
a first and very important degree of freedom in the application of sequential
Monte Carlo methods, namely the choice of the instrumental kernel Rk used
to simulate the trajectories of the particles. We now consider solutions that
depart, more or less significantly, from the sequential importance sampling
with resampling (SISR) method of Algorithm 7.3.4.

The first section covers a far-reaching revision of the principles behind the
SISR algorithm in which sequential Monte Carlo is interpreted as a repeated
sampling task. This reinterpretation suggests several other sequential Monte
Carlo schemes that differ, sometimes significantly, from the SISR approach.
Section 8.2 reviews methods that exploit the specific hierarchical structure
found in some hidden Markov models, and in particular in conditionally Gaus-
sian linear state-space models (CGLSSMs). The algorithms to be considered
there combine the sequential simulation approach presented in the previous
chapter with the Kalman filtering recursion discussed in Chapter 5. Finally,
Section 8.3 discusses the use of sequential Monte Carlo methods for approxi-
mating smoothed quantities of the form introduced in Section 4.1.

8.1 Alternatives to SISR

We first present a reinterpretation of the objectives of the sequential impor-
tance sampling with resampling (SISR) algorithm in Section 7.3. This new
interpretation suggests a whole range of different approaches that combines
more closely the sampling (trajectory update) and resampling (weight reset)
operators involved in the SISR algorithm.

In the basic SISR approach (Algorithm 7.3.4), we expect that after a re-
sampling step, say at index k, the particle trajectories ξ1

0:k, . . . , ξN
0:k approx-

imately form an i.i.d. sample of size N from the distribution φ0:k|k. We will
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Analysis of Sequential Monte Carlo Methods

The previous chapters have described many algorithms to approximate pre-
diction, filtering, and smoothing distributions. The development of these al-
gorithms was motivated mainly on heuristic grounds, and the validity of these
approximations is of course a question of central interest. In this chapter, we
analyze these methods, mainly from an asymptotic perspective. That is, we
study the behavior of the estimators in situations where the number of par-
ticles gets large. Asymptotic analysis provides approximations that in many
circumstances have proved to be relatively robust. Most importantly, asymp-
totic arguments provide insights in the sampling methodology by verifying
that the procedures are sensible, providing a framework for comparing com-
peting procedures, and providing understanding of the impact of different
options (choice of importance kernel, etc.) on the overall performance of the
samplers.

9.1 Importance Sampling

9.1.1 Unnormalized Importance Sampling

Let (X,X ) be a measurable space. Define on (X,X ) two probability distribu-
tions: the target distribution µ and the instrumental distribution ν.

Assumption 9.1.1. The target distribution µ is absolutely continuous with
respect to the instrumental distribution ν, µ � ν, and dµ/dν > 0 ν-a.s.

Let f be a real-valued measurable function on X such that µ(|f |) =
∫
|f | dµ <

∞. Denote by ξ1, ξ2, . . . an i.i.d. sample from ν and consider the estimator

µ̃IS
ν,N (f) =

1

N

N∑
i=1

f(ξi)
dµ

dν
(ξi) . (9.1)
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Maximum Likelihood Inference, Part I:

Optimization Through Exact Smoothing

In previous chapters, we have focused on structural results and methods for
HMMs, considering in particular that the models under consideration were
always perfectly known. In most situations, however, the model cannot be fully
specified beforehand, and some of its parameters need to be calibrated based
on observed data. Except for very simplistic instances of HMMs, the structure
of the model is sufficiently complex to prevent the use of direct estimators such
as those provided by moment or least squares methods. We thus focus in the
following on computation of the maximum likelihood estimator.

Given the specific structure of the likelihood function in HMMs, it turns
out that the key ingredient of any optimization method applicable in this
context is the ability to compute smoothed functionals of the unobserved
sequence of states. Hence the methods discussed in the second part of the book
for evaluating smoothed quantities are instrumental in devising parameter
estimation strategies.

This chapter only covers the class of HMMs discussed in Chapter 5, for
which the smoothing recursions described in Chapters 3 and 4 may effectively
be implemented on computers. For such models, the likelihood function is
computable, and hence our main task will be to optimize a possibly complex
but entirely known function. The topic of this chapter thus relates to the
more general field of numerical optimization. For models that do not allow for
exact numerical computation of smoothing distributions, this chapter provides
a framework from which numerical approximations can be built. Those will
be discussed in Chapter 11.

10.1 Likelihood Optimization in Incomplete Data Models

To describe the methods as concisely as possible, we adopt a very general view-
point in which we only assume that the likelihood function of interest may
be written as the marginal of a higher dimensional function. In the terminol-
ogy introduced by Dempster et al. (1977), this higher dimensional function is
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Maximum Likelihood Inference, Part II:

Monte Carlo Optimization

This chapter deals with maximum likelihood parameter estimation for models
in which the smoothing recursions of Chapter 3 cannot be implemented. The
task is then considerably more difficult, as it is not even possible to evaluate
the likelihood to be maximized. Most of the methods applicable in such cases
are reminiscent of the iterative optimization procedures (EM and gradient
methods) discussed in the previous chapter but rely on approximate smooth-
ing computations based on some form of Monte Carlo simulation. In this
context, the methods covered in Chapters 6 and 7 for simulating the unob-
servable sequence of states conditionally on the observations play a prominent
role.

It is important to distinguish the topic of this chapter with a distinct—
although not entirely disconnected—problem. The methods discussed in the
previous chapters were all based on local exploration (also called hill-climbing
strategies) of the likelihood function. Such methods are typically unable to
guarantee that the point reached at convergence is a global maximum of the
function; indeed, it may well be a local maximum only or even a saddle point—
see Section 10.5 for details regarding the EM algorithm. Many techniques have
been proposed to overcome this significant difficulty, and most of them belong
to a class of methods that Geyer (1996) describes as random search optimiza-
tion. Typical examples are the so-called genetic and simulated annealing al-
gorithms that both involve simulating random moves in the parameter space
(see also Section 13.3, which describes a technique related to simulated an-
nealing). In these approaches, the main motivation for using simulations (in
parameter space and/or hidden variable space) is the hope to design more
robust optimization rules that can avoid local maxima.

The focus of the current chapter is different, however, as we examine below
methods that can be considered as simulation-based extensions of approaches
introduced in the previous chapter. The primary objective is here to provide
tools for maximum likelihood inference also for the class of HMMs in which
exact smoothing is not available.
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Statistical Properties of the Maximum

Likelihood Estimator

The maximum likelihood estimator (MLE) is one of the backbones of statis-
tics, and as we have seen in previous chapters, it is very much appropriate
also for HMMs, even though numerical approximations are required when the
state space is not finite. A standard result in statistics says that, except for
“atypical cases”, the MLE is consistent, asymptotically normal with asymp-
totic (scaled) variance equal to the inverse Fisher information matrix, and
efficient. The purpose of the current chapter is to show that these proper-
ties are indeed true for HMMs as well, provided some conditions of rather
standard nature hold. We will also employ the asymptotic results obtained to
verify the validity of certain likelihood-based tests.

Recall that the distribution (law) P of {Yk}k≥0 depends on a parameter θ
that lies in a parameter space Θ, which we assume is a subset of R

dθ for some
dθ. Commonly, θ is a vector containing some components that parameterize
the transition kernel of the hidden Markov chain—such as the transition prob-
abilities if the state space X is finite—and other components that parameterize
the conditional distributions of the observations given the states. Throughout
the chapter, it is assumed that the HMM model is, for all θ, fully dominated in
the sense of Definition 2.2.3 and that the underlying Markov chain is positive
(see Definition 14.2.26).

Assumption 12.0.1.
(i) There exists a probability measure λ on (X,X ) such that for any x ∈

X and any θ ∈ Θ, Qθ(x, ·) � λ with transition density qθ. That is,
Qθ(x, A) =

∫
qθ(x, x′)λ(dx′) for A ∈ X .

(ii) There exists a probability measure µ on (Y,Y) such that for any x ∈ X

and any θ ∈ Θ, Gθ(x, ·) � µ with transition density function gθ. That
is, Gθ(x, A) =

∫
gθ(x, y)µ(dy) for A ∈ Y.

(iii) For any θ ∈ Θ, Qθ is positive, that is, Qθ is phi-irreducible and admits
a (necessarily unique) invariant distribution denoted by πθ.
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Fully Bayesian Approaches

Some previous chapters have already mentioned MCMC and conditional (or
posterior) distributions, especially in the set-up of posterior state estimation
and simulation. The spirit of this chapter is obviously different in that it covers
the fully Bayesian processing of HMMs, which means that, besides the hidden
states and their conditional (or parameterized) distributions, the model pa-
rameters are assigned probability distributions, called prior distributions, and
the inference on these parameters is of Bayesian nature, that is, conditional on
the observations (or the data). Because more advanced Markov chain Monte
Carlo methodology is also needed for this fully Bayesian processing, additional
covering of MCMC methods, like reversible jump techniques, will be given in
this chapter (Section 13.2). The emphasis is put on HMMs with finite state
space (X is finite), but some facts are general and the case of continuous state
space is addressed at some points.

13.1 Parameter Estimation

13.1.1 Bayesian Inference

Although the whole apparatus of modern Bayesian inference cannot be dis-
cussed here (we refer the reader to, e.g., Robert, 2001, or Gelman et al., 1995),
we briefly recall the basics of a Bayesian analysis of a statistical model, and
we also introduce some notation not used in earlier chapters.

Given a general parameterized model

Y ∼ p(y|θ), θ ∈ Θ ,

where p(y|θ) thus denotes a parameterized density, the idea at the core of
Bayesian analysis is to provide an inferential assessment (on θ) conditional
on the realized value of Y , which we denote (as usual) by y. Obviously, to
give a proper probabilistic meaning to this conditioning, θ itself must be em-
bedded with a probability distribution called the prior distribution, which
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Elements of Markov Chain Theory

14.1 Chains on Countable State Spaces

We review the key elements of the mathematical theory developed for study-
ing the limiting behavior of Markov chains. In this first section, we restrict
ourselves to the case where the state space X is countable, which is conceptu-
ally simpler. On our way, we will also meet a number of important concepts
to be used in the next section when dealing with Markov chains on general
state spaces.

14.1.1 Irreducibility

Let {Xk}k≥0 be a Markov chain on a countable state space X with transition
matrix Q. For any x ∈ X , we define the first hitting time σx on x and the
return time τx to x respectively as

σx = inf{n ≥ 0 : Xn = x} , (14.1)

τx = inf{n ≥ 1 : Xn = x} , (14.2)

where, by convention, inf ∅ = +∞. The successive hitting times σ
(n)
x and

return times τ
(n)
x , n ≥ 0, are defined inductively by

σ(0)
x = 0, σ(1)

x = σx, σ(n+1)
x = inf{k > σ(n)

x : Xk = x} ,

τ (0)
x = 0, τ (1)

x = τx, τ (n+1)
x = inf{k > τ (n)

x : Xk = x} .

For two states x and y, we say that state x leads to state y, which we write
x → y, if Px(σy < ∞) > 0. In words, x leads to y if the state y can be reached
from x. An alternative, equivalent definition is that there exists some integer
n ≥ 0 such that the n-step transition probability Qn(x, y) > 0. If both x leads
to y and y leads to x, then we say that the x and y communicate, which we
write x ↔ y.
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An Information-Theoretic Perspective on

Order Estimation

Statistical inference in hidden Markov models with finite state space X has to
face a serious problem: order identification. The order of an HMM {Yk}k≥1

over Y (in this chapter, we let indices start at 1) is the minimum size of the
hidden state space X of an HMM over (X, Y) that can generate {Yk}k≥1. In
many real-life applications of HMM modeling, no hints about this order are
available. As order misspecification is an impediment to parameter estimation,
consistent order identification is a prerequisite to HMM parameter estimation.

Furthermore, HMM order identification is a distinguished representative of
a family of related problems that includes Markov order identification. In all
those problems, a nested family of models is given, and the goal is to identify
the smallest model that contains the distribution that has generated the data.
Those problems differ in an essential way according to whether identifiability
does or does not depend on correct order specification.

Order identification problems are related to composite hypothesis testing.
As the performance of generalized likelihood ratio testing in this framework is
still a matter of debate, order identification problems constitute benchmarks
for which the performance of generalized likelihood ratio testing can be in-
vestigated (see Zeitouni et al., 1992). As a matter of fact, analyzing order
identification issues boils down to understanding the simultaneous behavior
of (possibly infinitely) many maximum likelihood estimators. When identi-
fiability depends on correct order specification, universal coding arguments
have proved to provide very valuable insights into the behavior of likelihood
ratios. This is the main reason why source coding concepts and techniques
have become a standard tool in the area.

This chapter presents four kinds of results: first, in a Bayesian setting, a
general consistency result provides hints about the ideal penalties that could
be used in penalized maximum likelihood order estimation. Then universal
coding arguments are shown to provide a general construction of strongly
consistent order estimators. Afterwards, a general framework for analyzing
the Bahadur efficiency of order estimation procedures is presented, following
the lines of Gassiat and Boucheron (2003). Consistency and efficiency results


