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Motivation for Ontology-Based Data Access

“Data is stored in various heterogeneous formats over many
differently structured databases. As a result, the gathering of only
relevant data spread over disparate sources becomes a very time

consuming task.”

Jim Crompton, W3C Workshop on Semantic Web in Oil & Gas
Industry, 2008
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The Challenge of Accessing Big Data
The Statoil Example

Experts in geology and geophysics develop stratigraphic models of
unexplored areas on the basis of data acquired from previous
operations at nearby geographical locations.
Fact:

▶ 1000TB of relational data

▶ Using diverse schemata

▶ spread over 2000 tables, over mutiple individual databases

Data Access for Exploration::

▶ 900 experts in Statoil Exploration

▶ Up to 4 days for new data access queries – assistance by IT
experts

▶ 30 - 70 % of time spent on data gathering
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Ontology-Based Data Access (OBDA)

▶ achieve transparency in accessing data using logic

▶ manage data by exploiting knowledge representation
techniques

Key principles underlying OBDA:

▶ conceptual, high level representation of the domain of interest
in terms of an ontology

▶ map the data sources to the ontology – do not migrate the
data

▶ specify all information requests to the data in terms of the
ontology
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Ontology-Based Data Access: Architecture

▶ Ontology: provides a unified conceptual view of the data
▶ Data Sources: external and independent (possibly multiple

and heterogeneous)
▶ Mappings: semantically link data at the sources with the

ontology
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Ontology-Based Data Access: An Example

Ontology – logical representation of the domain of interest

∀X (Researcher(X ) → ∃Y (worksFor(X ,Y ) ∧ Project(Y )))

∀X (Project(X ) → ∃Y (worksFor(Y ,X ) ∧ Researcher(Y )))

∀X ,Y (worksFor(X ,Y ) → Researcher(X ) ∧ Project(Y ))

∀X (Project(X) → ∃Y (PrName(X ,Y )))
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Ontology-Based Data Access: An Example

Relational Database D – a single database that represents the
sources

worksIn

SSN Name

100 AAA
200 BBB
300 CCC

Intuitively, represents “The researcher with SSN 100 works for
project AAA”.
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Ontology-Based Data Access: An Example

Mappings M – semantically link data at the sources with the
ontology

Researcher(person(SSN))∧
SELECT SSN, Name ⇝ Project(proj(Name)) ∧
FROM worksIn worksFor(person(SSN),proj(Name))∧

PrName(proj(Name),Name)

▶ person and proj are constructors to create objects of the
ontology from tuple of values from the database

▶ they are Skolem functions

Mappings could have varying expressivity, including negation,
inequality,...
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Ontology-Based Data Access: An Example
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SSN Name

100 AAA
200 BBB
300 CCC

Researcher(person(SSN))∧
SELECT SSN, Name ⇝ Project(proj(Name)) ∧
FROM worksIn worksFor(person(SSN), proj(Name))∧

PrName(proj(Name),Name)

Researcher(person(100)) ∧ Project(proj(AAA))∧
worksFor(person(100), proj(AAA)) ∧ PrName(proj(AAA),AAA)

Researcher(person(200)) ∧ Project(proj(BBB))∧
worksFor(person(200),proj(BBB)) ∧ PrName(proj(BBB),BBB)

Researcher(person(300)) ∧ Project(proj(CCC ))∧
worksFor(person(300),proj(CCC )) ∧ PrName(proj(CCC ),CCC )
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Ontology-Based Query Answering

▶ we assume a unique database source

▶ whose vocabulary coincide with the vocabulary of the ontology

No more mappings! We focus on the core problem of query
answering while taking an ontology into account. The problem
boils down to decide, given a database D, an ontology Σ and a
query q whether:

D,Σ |= q
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Influence of Ontology and Query Languages

What is the/a right ontology language?

▶ there is a wide spectrum of languages that differ in expressive
power and computational complexity

▶ an important aspect is the scalability to large amounts of data

What is the/a right query language?

▶ “core” fragment of traditional database query languages?

▶ navigational components, such as can be seen in SPARQL?

▶ counting aspects?
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Combined vs. Data Complexity

When considering OBQA, there are two classical ways of
measuring complexity:

▶ combined complexity, where the database, the ontology and
the query are considered part of the input;

▶ data complexity, where only the database is considered part of
the input, whereas the ontology and the query are considered
to be constant.
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Query Languages

Several query languages have been introduced/studied so far,
among which:

▶ conjunctive queries;

▶ union of conjunctive queries;

▶ first-order queries;

▶ (conjunctive) regular path queries;

▶ Datalog.

We will mostly focus on conjunctive queries in this course.
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Conjunctive Queries – Syntax

A conjunctive query (CQ) is an expression of the shape

∃Yφ(X,Y),

where:

▶ X and Y are tuples of variables

▶ φ(X,Y) is a conjunction of atoms whose set of variables is
X ∪ Y, and possibly containing constants

Forms the SELECT-FROM-WHERE fragment of SQL. Core of
numerous query languages.

q(x) : −∃y ∃z P(x , y) ∧ S(x , z) ∧ T (y , z)
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Conjunctive Queries – Semantics

▶ a match of a CQ ∃Y φ(X,Y) in a database D is a
homomorphism h such that h(φ(X,Y)) ⊆ D – all the atoms
of the query are satisfied

▶ the answer to Q = ∃Y φ(X,Y) over D is the set of tuples

Q(D) = {h(X) | h is a match of Q in D}

NB: a tuple in Q(D) is commonly called an answer of Q over D.
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Two Dimensions of Infinity

models of D ∧ Σ

size

. . .

D ∧ Σ admits infinitely many models, and each one may be of of
infinite size.
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Two Dimensions of Infinity

Consider D = {P(c)} and
Σ = {∀X (P(X ) → ∃Y (R(X ,Y ) ∧ P(Y )))}.

P(c)

R(c , c)

P(c)

R(c , x1)

P(x1)

R(x1, c)

. . .

P(c)

R(c , x1)

P(x1)

R(x1, x2)

P(x2)

R(x2, x3)

. . .

models of D ∧ Σ

size
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Taming One Dimension of Infinity

Consider D = {P(c)} and
Σ = {∀X (P(X ) → ∃Y (R(X ,Y ) ∧ P(Y )))}.

P(c)

R(c , c)

P(c)

R(c , x1)

P(x1)

R(x1, c)

. . .

P(c)

R(c , x1)

P(x1)

R(x1, x2)

P(x2)

R(x2, x3)

. . .

models of D ∧ Σ

size

Key Idea: focus on a representative, a model as general as
possible.
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Universal Models (a.k.a. Canonical Models)

. . .

U

D1 D2 Dn

h1
h2

hn

A database U is a universal model of D ∧Σ if the following holds:

▶ U is a model of D ∧ Σ;

▶ for any model D ′ of D ∧ Σ, there exists a homomorphism hD′

from U to D ′.
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Links between Query Answering and Universal Models

Theorem
If U is a universal model of D ∧ Σ, then, for any homomorphism
closed query, it holds that:

D ∧ Σ |= q iff U |= q

. . .

U

I1 I2 In

h1
h2

hn

q
h
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Choice of the Ontology Language

From now on, we focus on existential rules.

The reason for this choice it that it guarantees the existence of a
universal model.
Exercise: show that this property does not hold for some ontology
languages that we have seen in this course.
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The Chase Procedure: an Example

Let us see the chase on an example:

▶ D = {Person(Alice)}
▶ Σ = {∀X (Person(X ) → ∃Y (hasParent(X ,Y )∧Person(Y )))}

chase(D,Σ) = D ∪ {hasParent(Alice, x1),Person(x1)}
∪ {hasParent(x1, x2),Person(x2)}
∪ {hasParent(x2, x3),Person(x3)}
. . .

In that case, an infinite database is generated.
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Rule Applicability

A rule σ = ∀X∀Y(φ(X,Y) → ∃Z(ψ(X,Z))) is applicable to a
database D if:

1. there exists a homomorphism h such that h(φ(X,Y)) ⊆ D;

2. there is no extension h′ of h such that h′(ψ(X,Z)) ⊆ D.

Example

▶ D = {R(a),P(a, b)} and Σ = {∀X (R(X ) → ∃Y P(X ,Y ))}
▶ D = {R(a),P(b, a)} and Σ = {∀X (R(X ) → ∃Y P(X ,Y ))}
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Rule Application

Let σ be a rule applicable to D through a homomorphism π of its
body. The result of the application of σ to D is defined as
D ∪ πs(H), where:

▶ H is the head of σ

▶ πs(x) = π(x) if x appears in the body of σ, and is a fresh null
otherwise.

Example: D = {R(a),P(b, a)} and
Σ = {∀X (R(X ) → ∃Y P(X ,Y ))}

{R(a),P(b, a),P(a,⊥1)}

C. Bourgaux, M. Thomazo

Knowledge Graphs, Description Logics and Reasoning on Data



Chase Sequence

A chase sequence of D w.r.t. Σ is a potentially infinite sequence
D0, (σ1, h1),D1, . . . ,Dn, . . . such that:

▶ σi is applicable to Di−1 through hi
▶ Di is the result of the application of σi to Di−1 through hi
▶ for any (σ, h) that is applicable to Dj for some j , there exists

k > j such that (σ, h) is not applicable to Dk

This is called fairness.

The result of a chase sequence is either the last database in the
sequence, or

⋃∞
i=1Di if the sequence is infinite.

Properties of the Chase

For any two chase sequences, their results are homomorphically
equivalent, and are a univeral model of D and Σ. We will denote
the result by chase(D,Σ).
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What about the Second Dimension of Infinity?

P(c)

R(c , c)

P(c)

R(c , x1)

P(x1)

R(x1, c)

. . .

P(c)

R(c , x1)

P(x1)

R(x1, x2)

P(x2)

R(x2, x3)

. . .

models of D ∧ Σ

size

Intrisic difficulty: OBQA is undecidable.
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Gaining Decidability

When faced with an undecidable problem, one may want to restrict
the input to regain decidability.

By Restricting the database

▶ the problem is already undecidable for singleton databases;

▶ not much to do in this direction!

By Restricting the query language

▶ the problem is already undecidable for atomic queries;

▶ not much to do in this direction!

By Restricting the ontology language

▶ we then aim at achieving a good trade-off between expressive
power and complexity;

▶ lot of research has been done in this direction;

▶ any idea?
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Chase Termination

Let us revisit the chase example we have seen before.

▶ D = {Person(Alice)}
▶ Σ = {∀X (Person(X ) → ∃Y (hasParent(X ,Y )∧Person(Y )))}

chase(D,Σ) = D ∪ {hasParent(Alice, x1),Person(x1)}
∪ {hasParent(x1, x2),Person(x2)}
∪ {hasParent(x2, x3),Person(x3)}
. . .

Two ingredients of non-termination:

▶ existential quantification;

▶ recursive definitions.
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Syntactic Conditions to Ensure Chase Termination

Drop the existential quantification

▶ we obtain the class of full existential rules

Drop (or limit) the recursive definitions:

▶ plethora of acyclicity conditions defined

▶ see exercise sheets regarding this.
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Full Existential Rules

A full existential rule is an existential rule of the shape:

∀X∀Y(φ(X,Y) → ψ(X))

We denote by FULL the class of full existential rules.
Belonging to FULL is:

▶ a local property: one can check each rule independently;

▶ and hence closed under union.
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Upper Bound on the Chase under FULL

Consider a database D and a set Σ ∈ FULL.

chase(D,Σ) ⊆ {P(c1, . . . , cn) |(c1, . . . , cn) ∈ terms(D)

and P ∈ sch(Σ)}

Hence, the size of chase(D,Σ) is upper bounded by:

|sch(Σ)| × |terms(D)|maxarity(sch(Σ))
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Data Complexity of BCQ Answering under FULL

Theorem
Boolean Conjuctive Query (BCQ) Answering under FULL is in
PTime in data complexity.

Proof idea:

1. compute the chase of D and Σ;

2. check whether there is a homomorphism from q to
chase(D,Σ).

Can we do any better?
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Data Complexity of BCQ Answering under FULL

Theorem
Boolean Conjuctive Query (BCQ) Answering under FULL is
PTime-hard in data complexity.

Proof idea: by a LogSpace reduction from Monotone Circuit
Value problem.
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Data Complexity of BCQ Answering under FULL

∨

∧ ∨

g1 g2 g3

g4
g5

g6

1 0 1

Encoding the circuit as:

T (g1) T (g3)

AND(g4, g1, g2),OR(g5, g2, g3),OR(g6, g4, g5)

Evaluation of the
circuit via a fixed set:

∀X∀Y ∀Z (T (X ) ∧ OR(Z ,X ,Y )

→ T (Z ))

∀X∀Y ∀Z (T (Y ) ∧ OR(Z ,X ,Y )

→ T (Z ))

∀X∀Y ∀Z (T (X ) ∧ T (Y ) ∧ AND(Z ,X ,Y )

→ T (Z ))
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Combined Complexity of BCQ Answering under FULL

We can show that the problem is ExpTime-complete by
simulating an ExpTime Turing machine.
Adaptation of what we have already seen:

▶ not possible anymore to create new tapes using existential
▶ hence we use two counters:

▶ one for the cell address
▶ one as a time stamp
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Alternative Approaches

▶ stop the chase at some arbitrary step, and work with the
obtained results:
▶ not very satisfying...

▶ stop the chase for some reason, and get the complete set of
results:
▶ what could be a criterion for stopping the chase?

▶ avoid any chase computation, and rely on a different
paradigm:
▶ this is the approach that we are going to see during the next

course.
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The DL-Lite Family and OWL 2 QL

▶ OWL 2 QL is the OWL 2 profile designed for efficient query
answering

▶ Target large datasets: CQ answering is in AC0 in data
complexity (below LogSpace)

▶ Based on the DL-LiteR language of the DL-Lite family
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The DL-Lite Family and OWL 2 QL

DL-Litecore : concept inclusions of the form B ⊑ C where

C := B | ¬B, B := A | ∃S , S := R | R−

with A an atomic concept and R an atomic role

Several extensions of DL-Litecore, among which:

▶ DL-LiteR = DL-Litecore +
role inclusions S ⊑ Q with Q := S | ¬S

▶ DL-LiteF = DL-Litecore + functionality axioms (func S)
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Linear Rules

∀X⃗∀Y⃗ (P(X⃗ , Y⃗ ) → ∃Z⃗ψ(X⃗ , Z⃗ ))

▶ Linear existential rules have only one atom in the body

▶ Generalize DL-LiteR restricted to positive inclusions (of the
form B1 ⊑ B2 or S1 ⊑ S2)
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Relationships between DL-Lite and Linear Rules

DL-LiteR Linear rule

A1 ⊑ A2 A1(x) → A2(x)
R1 ⊑ R2 R1(x , y) → R2(x , y)
R1 ⊑ R−

2 R1(x , y) → R2(y , x)
A ⊑ ∃R A(x) → R(x , y)
∃R ⊑ A R(x , y) → A(x)
...

Negative inclusions B1 ⊑ ¬B2 or S1 ⊑ ¬S2 are not expressible by
linear rules: need to add negative constraints of the form

∀X⃗∀Y⃗ (ϕ(X⃗ , Y⃗ ) → ⊥)

Functionality axioms present in DL-LiteF are not expressible either:
need to add equality rules

∀X⃗∀X1,X2(ϕ(X⃗ ,X1,X2) → X1 = X2)
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Linear Rules

Linear rule:
∀X (Person(X ) → ∃Y (hasParent(X ,Y ) ∧ Person(Y )))

In DL syntax: Person ⊑ ∃hasParent.Person

Can be expressed in DL-Lite:

Person ⊑ ∃hasParentPerson
∃hasParentPerson− ⊑ Person

hasParentPerson ⊑ hasParent

We have seen that the chase may not terminate with this rule,
however, CQ answering can be done very efficiently in DL-LiteR!
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Query Rewriting

Instead of computing chase(D,Σ) and evaluate a query q on it, we
compute a query q′ such that:

⟨Σ,D⟩ |= q ⇔ D |= q′

▶ the dataset (ABox, set of facts) is stored as a traditional
database

▶ the input query is rewritten to integrate the relevant
information from the ontology

▶ the new query is evaluated over the database

▶ allow to exploit the efficiency of relational database systems
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Query Rewriting

A query qΣ is called a sound and complete rewriting of a CQ q
w.r.t. an ontology Σ if and only if for every database D, the
certain answers of q over ⟨Σ,D⟩ are the same as the answers of qΣ
over D.

If for every Σ expressed in an ontology language LΣ and CQ q,
there exists a sound and complete rewriting which belongs to a
query language LQ , we say that CQ answering under LΣ is
LQ-rewritable.

CQ answering under linear existential rules is UCQ-rewritable.
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Query Rewriting
Example

T = { Mother ⊑ Parent, Parent ⊑ ∃hasChild,
Parent ⊑ Person, ∃isMarriedTo ⊑ Person }

A = { Mother(mary), hasChild(alice, john), isMarriedTo(alice, bob) }
q(x) = ∃yPerson(x) ∧ hasChild(x , y)

q′(x) =

(∃y Person(x) ∧ hasChild(x , y))

∨ (∃y Parent(x) ∧ hasChild(x , y))

∨ (∃y Mother(x) ∧ hasChild(x , y)) ∨ (Person(x) ∧ Parent(x))

∨ Parent(x) ∨ (Mother(x) ∧ Parent(x)) ∨Mother(x)

∨ (∃yz isMarriedTo(x , z) ∧ hasChild(x , y))

∨ (∃z isMarriedTo(x , z) ∧ Parent(x))

∨ (∃z isMarriedTo(x , z) ∧Mother(x))
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Simplifying Assumption
For now, we consider normalized existential rules, where only one
atom appears in the head.

Every existential rule can be transformed into a set of normalized
rules equivalent w.r.t. query answering.

ϕ(X⃗ , Y⃗ ) → P1(X⃗ , Z⃗ ) ∧ · · · ∧ Pn(X⃗ , Z⃗ )

⇓

ϕ(X⃗ , Y⃗ ) → Aux(X⃗ , Z⃗ )

Aux(X⃗ , Z⃗ ) → P1(X⃗ , Z⃗ )

.

.

.

Aux(X⃗ , Z⃗ ) → Pn(X⃗ , Z⃗ )
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Rewriting Step
Datalog rewriting (Datalog = FULL = no existential)

Σ ={hasCollaborator(X ,Y ,Z ) → Collaborator(X )}
q =Collaborator(a) ∧ worksFor(a, b)

Unify head rule and query atom µ = {X 7→ a}
Replace query atom by µ(body(rule))

qΣ =Collaborator(a) ∧ worksFor(a, b)

∨
∃YZ hasCollaborator(a,Y ,Z ) ∧ worksFor(a, b)
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Rewriting Step
Existential in the head

Σ ={Project(X ) ∧ inArea(X ,Y ) → hasCollaborator(Z ,Y ,X )}
q =∃UV hasCollaborator(U, b,V )

Unify head rule and query atom µ = {X 7→ V ,Y 7→ b,Z 7→ U}
Replace query atom by µ(body(rule))

qΣ =∃UV hasCollaborator(U, b,V )

∨
∃V Project(V ) ∧ inArea(V , b)
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Rewriting Step
Existential in the head : unsound rewriting

Σ ={Project(X ) ∧ inArea(X ,Y ) → hasCollaborator(Z ,Y ,X )}
q =∃V hasCollaborator(a, b,V )

Unify head rule and query atom µ = {X 7→ V ,Y 7→ b,Z 7→ a}
Replace query atom by µ(body(rule))

qΣ =∃V hasCollaborator(a, b,V )

∨
∃V Project(V ) ∧ inArea(V , b)

Consider D = {Project(c), inArea(c , b)}

D |= qΣ but ⟨Σ,D⟩ ̸|= q : qΣ is not sound !

Problem: constant a has been unified with an existential variable
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D |= qΣ but ⟨Σ,D⟩ ̸|= q : qΣ is not sound !

Problem: an atom containing the a variable unified with the
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Applicability conditions

What if we add conditions to apply a rewriting step to a query
atom ?

1. only universal variables of the rule head can be unified with a
constant

2. only universal variables of the rule head can be unified with a
shared variable of the query

3. an existential variable of the rule head cannot be unified with
another variable of the rule head
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Incomplete rewriting

Σ ={hasCollaborator(X ,Y ,Z ) → Collaborator(X ),

Project(X ) ∧ inArea(X ,Y ) → hasCollaborator(Z ,Y ,X )}
q =∃UVW hasCollaborator(U,V ,W ) ∧ Collaborator(U)

qΣ =∃UVW hasCollaborator(U,V ,W ) ∧ Collaborator(U)

∨
∃UVWYZ hasCollaborator(U,V ,W ) ∧ hasCollaborator(U,Y ,Z )

Consider D = {Project(a), inArea(a, b)}

⟨Σ,D⟩ |= q but D ̸|= qΣ: qΣ is not complete !

Applicability conditions may destroy completeness !
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Minimization Step

Σ ={hasCollaborator(X ,Y ,Z ) → Collaborator(X )

Project(X ) ∧ inArea(X ,Y ) → hasCollaborator(Z ,Y ,X )}
q =∃UVW hasCollaborator(U,V ,W ) ∧ Collaborator(U)

qΣ =∃UVW hasCollaborator(U,V ,W ) ∧ Collaborator(U)

∨
∃UVWYZ hasCollaborator(U,V ,W ) ∧ hasCollaborator(U,Y ,Z )

∨
∃UVW hasCollaborator(U,V ,W ) - by minimization

∨
∃VW Project(W ) ∧ inArea(W ,V )
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Rewriting Algorithm

The standard algorithm for computing UCQ-rewritings performs an
exhaustive application of the following two steps:

1. Rewriting

2. Minimization
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Piece Based Unification

A piece unifier of a query q with an existential rule σ is a triple
µ = (q′,H ′,Pu) such that:

▶ q′ is a non empty subset of q

▶ H ′ is a subset of the head H of σ
▶ Pu is partition on the terms of H ′ and q′ s.t.:

▶ no two constants belong to the same class
▶ if a class of Pu contains an existential variable of H ′, then the

other terms are non-separating variables of q′ (i.e., variables of
q′ that do not appear in q \ q′)
▶ note: no constants, no other existential variable of H ′

▶ u(H ′) = u(q′), where u is a substitution being the identity on
constants and assigning to two terms the same image if and
only if their are in the same class in Pu.
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Piece Based Unification

Rewriting step: given a piece unifier µ = (q′,H ′,Pu),
rewrite(q, σ, µ) is the query obtained by replacing q′ by
u(body(σ)) in q

Using piece based unification instead of atom unification
▶ replace minimization step+rewriting step by a single rewriting

step that rewrites several axioms together
▶ integrate the applicability conditions : sound rewriting
▶ may rewrite several axioms that unify together: complete

rewriting

▶ allow us to drop the simplifying assumption that rules contain
a single atom in the head
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Piece Based Unification

Theorem
⟨Σ,D⟩ |= q iff there is a sequence q0 = q, q1, . . . , qk such that

▶ for all i with 0 ≤ i < k , there is σi ∈ Σ and a piece unifier µi
of qi with σi such that qi+1 = rewrite(qi , σi , µi )

▶ D |= qk
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Find the Piece Unifiers!

Σ = {R(X ,Y ,Z ) → P(X ,Y ,T ,R)}

q1 =P(a, a, b, c)

q2 =∃VW P(a, b,V ,W )

q3 =∃UVW P(U,U,V ,W )

q4 =∃UVW P(U,V ,W ,W )

q5 =∃UVW P(U,V ,V ,W )

q6 =∃UVWH P(a, b,U,W ) ∧ P(a, b,V ,H)

q7 =∃UVWH P(a, b,U,H) ∧ P(W , b,V ,H)

q8 =∃UVWHK P(U,V ,W ,H) ∧ P(U,U,V ,K )
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A Naive Rewriting Algorithm

Algorithm 1 Naive rewriting algorithm

1: qΣ = ∅, Rew = {q}
2: while Rew ̸= qΣ do
3: qΣ = Rew
4: for qi ∈ Rew do
5: for σ ∈ Σ do
6: for µ piece unifier of qi with σ do
7: qrew = rewrite(qi , σ, µ)
8: if qrew /∈ Rew modulo variables renaming then
9: Rew = Rew ∪ {qrew}

10: Output qΣ
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A Naive Rewriting Algorithm

If the naive rewriting algorithm terminates,
then ⟨Σ,D⟩ |= q iff D |= qΣ
▶ Soundness : every q′ ∈ qΣ is obtained by a sequence of piece

based rewriting steps

▶ Completeness: if the algorithm terminates, then qΣ contains
all queries that can be obtained by a sequence of piece based
rewriting steps
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Proof of Termination for Linear Rules

▶ The size of qΣ grows at each iteration

▶ qΣ does not contain any two queries that are equal modulo
variables renaming

▶ Since |body(σ)| = 1, then |rewrite(qi , σ, µ)| ≤ |qi |
▶ So |qΣ| is bounded by (|sch(Σ)| ×maxtermsmaxarity )|q| where

maxterms = maxarity × |q|
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Improving the Algorithm

▶ If qi has been rewritten, it is not useful to consider it again

▶ If there is an homomorphism from q1 to q2 and qΣ is a sound
and complete rewriting of q, then qΣ \ {q2} is also a sound
and complete rewriting of q

▶ If there is an homomorphism from q1 to q2, then for every
rewriting q′2 of q2, there exists a rewriting q′1 of q1 such that
there is an homomorphism from q′1 to q′2
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Rewrite

Σ = {hasChild(X ,Y ) → hasParent(Y ,X ),

hasChild(X ,Y ) → Parent(X ),

Spouse(X ) → isMarriedTo(X ,Y ),

isMarriedTo(X ,Y ) → Spouse(X ),

sisterOf(X ,Y ) → siblingOf(X ,Y ),

siblingOf(X ,Y ) → siblingOf(Y ,X ),

hasSisterInLaw(X ,Z ) → isMarriedTo(X ,Y ) ∧ sisterOf(Y ,Z ),

hasParentInLaw(X ,Z ) → isMarriedTo(X ,Y ) ∧ hasParent(Y ,Z )}

q1(x) = ∃yz isMarriedTo(x , y) ∧ siblingOf(y , z)

q2(x) = ∃y Parent(x) ∧ hasParent(y , x) ∧ Spouse(y)
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Conjunctive Query Answering in EL
▶ In EL, the chase does not terminate

▶ Person ⊑ ∃hasParent.Person

▶ The rewriting algorithm does not terminate either !
▶ ∃hasParent.Person ⊑ Person

▶ EL is not UCQ-rewritable
▶ q = Person(a)
▶ T = {∃hasParent.Person ⊑ Person}
▶ Ak = {hasParent(a, a1), hasParent(a1, a2), . . . ,

hasParent(ak−1, ak),Person(ak)}
▶ ⟨T ,Ak⟩ |= q
▶ qi = ∃x1 . . . xihasParent(a, x1) ∧ · · · ∧ hasParent(xi−1, xi ),Person(xi )
▶ Ak |= qk but Ak ̸|= qi for i ̸= k

▶ CQ answering in EL is still in PTime
▶ EL is Datalog-rewritable
▶ also possible to combine some kind of chase and some FO-rewriting
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Tutorial: Analyzing Rule Sets with Kiabora

▶ A set of rules is a finite expansion set (fes) if its chase is finite.

▶ A set of rules is a finite unification set (fus) if every
conjunctive query has a sound and complete UCQ-rewriting
w.r.t. this set.

Deciding if a set of rules is a fus or a fes is undecidable in general
but some recognizable rule classes are known to be fus or fes.

Kiabora is a tool dedicated to the analysis of a set of existential
rules:
https://graphik-team.github.io/graal/downloads/kiabora
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