
Description Logics and Reasoning on Data
2: Reasoning in ALC

C. Bourgaux, M. Thomazo

Outline

Reminders

Tableau algorithms
Negation normal form
Tableau algorithm for concept satisfiability
Tableau algorithm for KB satisfiability

Complexity issues
Concept satisfiability
KB satisfiability

Optimizations

References

Reminder: ALC

The ALC DL is defined as follows:

▶ if A is an atomic concept, then A is an ALC concept
▶ if C ,D are ALC concepts and R is an atomic role, then the

following are ALC concepts:
▶ C ⊓ D (conjunction)
▶ C ⊔ D (disjunction)
▶ ¬C (negation)
▶ ∃R.C (existential restriction)
▶ ∀R.C (universal restriction)

▶ an ALC TBox contains only concept inclusions

Note that A ⊓ ¬A can be abbreviated by ⊥ and A ⊔ ¬A by ⊤.

Reminder: Concept and KB Satisfiability

▶ Concept satisfiability w.r.t. an empty TBox: Given a concept
C , is there an interpretation I = (∆I , ·I) such that CI ̸= ∅?
▶ A ⊓ B is satisfiable, A ⊓ ¬A is not satisfiable

▶ Concept satisfiability w.r.t. a TBox: Given a concept C and a
TBox T , is there a model I of T such that CI ̸= ∅?
▶ A ⊓ B is not satisfiable w.r.t. T = {A ⊑ ¬B}

▶ KB satisfiability: Given a KB ⟨T ,A⟩, does ⟨T ,A⟩ have a
model?
▶ ⟨{A ⊑ ¬B}, {A(a),B(a)}⟩ is not satisfiable,

⟨{A ⊑ ¬B}, {A(a),B(b)}⟩ is satisfiable
▶ Important in practice to build and debug ontologies

▶ we usually don’t want to use an unsatisfiable concept when
defining an ontology

▶ we may want to check that the model is sufficiently
constrained to prevent some situation captured by a concept
that should be unsatisfiable w.r.t. the TBox

▶ an unsatisfiable KB indicates a modelisation problem

Reminder: Reduction Between Reasoning Tasks in ALC

▶ From subsumption to concept satisfiability:
T |= C ⊑ D iff C ⊓ ¬D is not satisfiable w.r.t. T
▶ note that if C and D are ALC concepts, so is C ⊓ ¬D

▶ From concept satisfiability to KB satisfiability:
C is satisfiable w.r.t. T iff ⟨T ∪ {A ⊑ C},A ∪ {C (a)}⟩ is
satisfiable

▶ From instance checking to KB satisfiability:
⟨T ,A⟩ |= C (a) iff ⟨T ∪ {C ⊑ ¬A},A ∪ {A(a)}⟩ is not
satisfiable

In this course: Algorithms to decide concept satisfiability w.r.t. an
empty TBox and KB satisfiability
→ concept satisfiability w.r.t. a non-empty TBox, subsumption and
instance checking can be solved via reduction to KB satisfiability

Tableau Algorithms

▶ Tableau-based methods are used to decide satisfiability of a
formula or theory by using rules to construct a model
▶ if it succeeds, the theory is satisfiable
▶ if it fails, despite having considered all possibilities, the theory

is unsatisfiable

▶ Classical approach used for different kinds of logics
(propositional, FOL, modal...)

▶ Popular approach for reasoning in expressive DLs (ALC and
its extensions), implemented in state-of-the-art DL reasoners
(with variants and optimizations)

Negation Normal Form

▶ The algorithms we consider need ALC concepts to be in
negation normal form (NNF):
An ALC concept C is in NNF if the symbol ¬ appears only in
front of atomic concepts:
▶ in NNF: A ⊓ ¬B, ∃R.¬A, A ⊔ B
▶ not in NNF: ¬(A ⊓ B), ∃R.¬(∀S .B), A ⊓ ¬(B ⊔ C)

▶ Every ALC concept C is equivalent to an ALC concept
nnf(C) in NNF
▶ CI = nnf(C)I for every interpretation I

▶ nnf(C) can be computed in linear time by “pushing the
negation inside” using the following equivalences

¬(C ⊓ D) ≡ ¬C ⊔ ¬D ¬(∃R.C) ≡ ∀R.¬C ¬(¬C) ≡ C

¬(C ⊔ D) ≡ ¬C ⊓ ¬D ¬(∀R.C) ≡ ∃R.¬C

Negation Normal Form

Given an ALC concept C , nnf(C) is computed by the recursive
algorithm:

▶ nnf(A) = A for A atomic concept

▶ nnf(¬A) = ¬A for A atomic concept

▶ nnf(C ⊓ D) = nnf(C) ⊓ nnf(D)

▶ nnf(C ⊔ D) = nnf(C) ⊔ nnf(D)

▶ nnf(∃R.C) = ∃R.nnf(C)

▶ nnf(∀R.C) = ∀R.nnf(C)

▶ nnf(¬(¬C)) = nnf(C)

▶ nnf(¬(C ⊓ D)) = nnf(¬C) ⊔ nnf(¬D)

▶ nnf(¬(C ⊔ D)) = nnf(¬C) ⊓ nnf(¬D)

▶ nnf(¬(∃R.C)) = ∀R.nnf(¬C)

▶ nnf(¬(∀R.C)) = ∃R.nnf(¬C)

Tableau Algorithm for Concept Satisfiability
Overview

▶ Take as input an ALC concept C in NNF

▶ Decide the satisfiability of C by trying to construct an
interpretation I such that CI ̸= ∅

▶ Represent an interpretation I by an ABox AI such that
a ∈ AI (resp. (a, b) ∈ RI) iff A(a) ∈ AI (resp. R(a, b) ∈ AI)

▶ Initialize a set S of ABoxes, containing a single ABox {C (a0)}
▶ At each stage, apply a tableau rule to some A ∈ S

(see rules next slide)

▶ A rule application replaces A by one or two ABoxes that
extend A with new assertions

▶ Stop applying rules when either:

1. every A ∈ S contains a clash, that is, a pair {A(ai),¬A(ai)}
2. some A ∈ S is clash-free and complete, meaning that no rule

can be applied to A
▶ Return “yes” if some A ∈ S is clash-free, “no” otherwise

Tableau Algorithm for Concept Satisfiability
Tableau rules

⊓-rule:
if (C1 ⊓ C2)(a) ∈ A (C1 ⊓ C2)(a)

C1(a)

C2(a)

and {C1(a),C2(a)} ̸⊆ A
replace A with A ∪ {C1(a),C2(a)}.

⊔-rule:
if (C1 ⊔ C2)(a) ∈ A (C1 ⊔ C2)(a)

C1(a) C2(a)
and {C1(a),C2(a)} ∩ A = ∅
replace A with A ∪ {C1(a)} and A ∪ {C2(a)}.

∀-rule:
if {∀R.C (a),R(a, b)} ⊆ A ∀R.C(a)

. . .

R(a, b)

C(b)

R(a, b)
. . .

∀R.C(a)

C(b)

and C (b) ̸∈ A
replace A with A ∪ {C (b)}.

∃-rule:

if ∃R.C (a) ∈ A ∃R.C(a)

R(a, c)

C(c)

and there is no b with {R(a, b),C (b)} ⊆ A
create a new individual name c and
replace A with A ∪ {R(a, c),C (c)}.

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)

✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)

✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)

✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)

✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)

✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)

✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)
✗

D(a0)

✓

Tableau Algorithm for Concept Satisfiability
Example

(A ⊔ B) ⊓ ((¬B ⊔ D) ⊓ ¬A)(a0)

A ⊔ B(a0)

((¬B ⊔ D) ⊓ ¬A)(a0)

A(a0) B(a0)

¬B ⊔ D(a0)

¬A(a0)
✗

¬B ⊔ D(a0)

¬A(a0)

¬B(a0)
✗

D(a0)
✓

Tableau Algorithm for Concept Satisfiability
Another example

(∃R.A ⊓ ∀R.¬A)(a0)

∃R.A(a0)
∀R.¬A(a0)

⊓-rule

R(a0, a1)

A(a1)

∃-rule

¬A(a1)
✗

∀-rule

Tableau Algorithm for Concept Satisfiability
Another example

(∃R.A ⊓ ∀R.¬A)(a0)

∃R.A(a0)
∀R.¬A(a0)

⊓-rule

R(a0, a1)

A(a1)

∃-rule

¬A(a1)
✗

∀-rule

Tableau Algorithm for Concept Satisfiability
Another example

(∃R.A ⊓ ∀R.¬A)(a0)

∃R.A(a0)
∀R.¬A(a0)

⊓-rule

R(a0, a1)

A(a1)

∃-rule

¬A(a1)
✗

∀-rule

Tableau Algorithm for Concept Satisfiability
Another example

(∃R.A ⊓ ∀R.¬A)(a0)

∃R.A(a0)
∀R.¬A(a0)

⊓-rule

R(a0, a1)

A(a1)

∃-rule

¬A(a1)
✗

∀-rule

Exercise

Use the tableau algorithm to decide which of the following
concepts is satisfiable:

▶ ∃R.(A ⊓ B) ⊓ ∀R.(¬A ⊔ C) ⊓ ∀R.(¬B ⊔ ¬C)

▶ ∃R.A ⊓ ∀R.(∃R.A ⊔ ¬A)

Tableau Algorithm for Concept Satisfiability

Let us call our tableau algorithm CSat (for concept satisfiability)

Theorem
CSat terminates and it answers yes if and only if the input concept
is satisfiable.

To prove this theorem, we must show:

▶ termination: CSat always terminates

▶ soundness: if Csat outputs “yes” on input C0, then the
concept C0 is satisfiable

▶ completeness: if C0 is satisfiable, then CSat outputs “yes” on
input C0

Preliminary Definitions
Subconcepts of a concept

sub(A) = {A}
sub(¬C) = {¬C} ∪ sub(C)

sub(∃R.C) = {∃R.C} ∪ sub(C)

sub(∀R.C) = {∀R.C} ∪ sub(C)

sub(C1 ⊔ C2) = {C1 ⊔ C2} ∪ sub(C1) ∪ sub(C2)

sub(C1 ⊓ C2) = {C1 ⊓ C2} ∪ sub(C1) ∪ sub(C2)

Example

sub(∃R.(A⊓∀S .(B ⊔ ¬C))) = {
∃R.(A ⊓ ∀S .(B ⊔ ¬C)), A ⊓ ∀S .(B ⊔ ¬C), A,

∀S .(B ⊔ ¬C), B ⊔ ¬C , B, ¬C , C

}

Preliminary Definitions
Subconcepts of a concept

sub(A) = {A}
sub(¬C) = {¬C} ∪ sub(C)

sub(∃R.C) = {∃R.C} ∪ sub(C)

sub(∀R.C) = {∀R.C} ∪ sub(C)

sub(C1 ⊔ C2) = {C1 ⊔ C2} ∪ sub(C1) ∪ sub(C2)

sub(C1 ⊓ C2) = {C1 ⊓ C2} ∪ sub(C1) ∪ sub(C2)

Example

sub(∃R.(A⊓∀S .(B ⊔ ¬C))) = {
∃R.(A ⊓ ∀S .(B ⊔ ¬C)), A ⊓ ∀S .(B ⊔ ¬C), A,

∀S .(B ⊔ ¬C), B ⊔ ¬C , B, ¬C , C

}

Preliminary Definitions
Role depth of a concept

depth(A) = 0

depth(¬C) = depth(C)

depth(∃R.C) = depth(∀R.C) = depth(C) + 1

depth(C1 ⊔ C2) = depth(C1 ⊓ C2) = max(depth(C1), depth(C2))

Example

depth(∃R.(A ⊓ ∀S .(B ⊔ C))) = 2

Preliminary Definitions
Role depth of a concept

depth(A) = 0

depth(¬C) = depth(C)

depth(∃R.C) = depth(∀R.C) = depth(C) + 1

depth(C1 ⊔ C2) = depth(C1 ⊓ C2) = max(depth(C1), depth(C2))

Example

depth(∃R.(A ⊓ ∀S .(B ⊔ C))) = 2

Preliminary Definitions
Tree-shaped ABox

Graph representation of an ABox A: graph whose vertices are
individual names of A and such that there is a (directed) edge
from a to b labelled by R iff R(a, b) ∈ A.
If this graph is a tree, A is tree-shaped.

Example

{R(a, b),S(b, c),S(a, d)} is tree-shaped

a

b

c

R S

S

d

Termination of CSat (Informal Proof)

Suppose we run CSat starting from S = {{C (a0)}}. Let us make
the following observations for every ABox A generated by CSat:

1. A is tree-shaped

2. The depth of the tree is bounded by the role depth of C : each
individual in A is at distance k ≤ depth(C) from a0
▶ if D(b) ∈ A and the unique path from a0 to b has length k,

then depth(D) ≤ depth(C)− k

3. The degree of the tree is bounded by the number of
existentials in C

4. The number of concept assertions per individual is bounded
by the number of subconcepts |sub(C)|
▶ if D(b) ∈ A, then D ∈ sub(C)

Hence there is a bound on the size of generated ABoxes. Since
CSat only adds assertions to ABoxes, every generated ABox will
eventually be complete or contain a clash. Hence CSat terminates.

Soundness of CSat

Assume that CSat returns “yes” on input C .

▶ Then S must contain a complete and clash-free ABox A.
▶ Define an interpretation I as follows:

▶ ∆I = {a | a is an individual in A}
▶ AI = {a | A(a) ∈ A}
▶ RI = {(a, b) | R(a, b) ∈ A}

▶ Claim: I is such that CI ̸= ∅
To show the claim, we prove by induction on the size of
concepts that:

D(b) ∈ A ⇒ b ∈ DI

Since the completion algorithm never deletes assertions,
C (a0) ∈ A for every A ∈ S and the claim follows.

It follows from the claim that C is satisfiable.

Soundness of CSat
Proof of the claim: D(b) ∈ A ⇒ b ∈ DI

Base Case: D = A or D = ¬A
▶ If D = A, then b ∈ AI by definition of I
▶ If D = ¬A, then A(b) ̸∈ A because A is clash-free, hence

b /∈ AI , i.e., b ∈ ¬AI

Induction Hypothesis: statement holds whenever |D| ≤ k

Induction Step: show statement holds for D with |D| = k + 1

▶ D = E ⊓ F : since A is complete, A contains E (b) and F (b).
By the induction hypothesis, b ∈ EI and b ∈ F I , so
b ∈ (E ⊓ F)I

▶ D = ∃R.E : since A is complete, there is some c such that
R(b, c) ∈ A and E (c) ∈ A. Then (b, c) ∈ RI , and by the
induction hypothesis, we get that c ∈ EI , so b ∈ (∃R.E)I

▶ D = E ⊔ F : left as practice

▶ D = ∀R.E : left as practice

Soundness of CSat
Proof of the claim: D(b) ∈ A ⇒ b ∈ DI

Base Case: D = A or D = ¬A
▶ If D = A, then b ∈ AI by definition of I
▶ If D = ¬A, then A(b) ̸∈ A because A is clash-free, hence

b /∈ AI , i.e., b ∈ ¬AI

Induction Hypothesis: statement holds whenever |D| ≤ k

Induction Step: show statement holds for D with |D| = k + 1

▶ D = E ⊓ F : since A is complete, A contains E (b) and F (b).
By the induction hypothesis, b ∈ EI and b ∈ F I , so
b ∈ (E ⊓ F)I

▶ D = ∃R.E : since A is complete, there is some c such that
R(b, c) ∈ A and E (c) ∈ A. Then (b, c) ∈ RI , and by the
induction hypothesis, we get that c ∈ EI , so b ∈ (∃R.E)I

▶ D = E ⊔ F : left as practice

▶ D = ∀R.E : left as practice

Soundness of CSat
Proof of the claim: D(b) ∈ A ⇒ b ∈ DI

Base Case: D = A or D = ¬A
▶ If D = A, then b ∈ AI by definition of I
▶ If D = ¬A, then A(b) ̸∈ A because A is clash-free, hence

b /∈ AI , i.e., b ∈ ¬AI

Induction Hypothesis: statement holds whenever |D| ≤ k

Induction Step: show statement holds for D with |D| = k + 1

▶ D = E ⊓ F : since A is complete, A contains E (b) and F (b).
By the induction hypothesis, b ∈ EI and b ∈ F I , so
b ∈ (E ⊓ F)I

▶ D = ∃R.E : since A is complete, there is some c such that
R(b, c) ∈ A and E (c) ∈ A. Then (b, c) ∈ RI , and by the
induction hypothesis, we get that c ∈ EI , so b ∈ (∃R.E)I

▶ D = E ⊔ F : left as practice

▶ D = ∀R.E : left as practice

Soundness of CSat
Proof of the claim: D(b) ∈ A ⇒ b ∈ DI

Base Case: D = A or D = ¬A
▶ If D = A, then b ∈ AI by definition of I
▶ If D = ¬A, then A(b) ̸∈ A because A is clash-free, hence

b /∈ AI , i.e., b ∈ ¬AI

Induction Hypothesis: statement holds whenever |D| ≤ k

Induction Step: show statement holds for D with |D| = k + 1

▶ D = E ⊓ F : since A is complete, A contains E (b) and F (b).
By the induction hypothesis, b ∈ EI and b ∈ F I , so
b ∈ (E ⊓ F)I

▶ D = ∃R.E : since A is complete, there is some c such that
R(b, c) ∈ A and E (c) ∈ A. Then (b, c) ∈ RI , and by the
induction hypothesis, we get that c ∈ EI , so b ∈ (∃R.E)I

▶ D = E ⊔ F : left as practice

▶ D = ∀R.E : left as practice

Soundness of CSat
Proof of the claim: D(b) ∈ A ⇒ b ∈ DI

Base Case: D = A or D = ¬A
▶ If D = A, then b ∈ AI by definition of I
▶ If D = ¬A, then A(b) ̸∈ A because A is clash-free, hence

b /∈ AI , i.e., b ∈ ¬AI

Induction Hypothesis: statement holds whenever |D| ≤ k

Induction Step: show statement holds for D with |D| = k + 1

▶ D = E ⊓ F : since A is complete, A contains E (b) and F (b).
By the induction hypothesis, b ∈ EI and b ∈ F I , so
b ∈ (E ⊓ F)I

▶ D = ∃R.E : since A is complete, there is some c such that
R(b, c) ∈ A and E (c) ∈ A. Then (b, c) ∈ RI , and by the
induction hypothesis, we get that c ∈ EI , so b ∈ (∃R.E)I

▶ D = E ⊔ F : left as practice

▶ D = ∀R.E : left as practice

Completeness of CSat

Suppose that C is satisfiable.

▶ This implies that the ABox {C (a0)} is satisfiable.
▶ Claim: Tableau rules are satisfiability-preserving:

▶ if an ABox A is satisfiable and A′ is the result of applying a
rule to A, then A′ is also satisfiable

▶ if an ABox A is satisfiable and A1 and A2 are obtained when
applying a rule to A, then either A1 or A2 is satisfiable

▶ Since ABoxes containing a clash are not satisfiable and we
start with the satisfiable ABox {C (a0)}, CSat will eventually
generate a complete satisfiable (thus clash-free) ABox.

Hence CSat returns “yes” on input C .

Completeness of CSat
Proof of the claim: Tableau rules are satisfiability-preserving

Let A be a satisfiable ABox and I = (∆I , ·I) be a model of A
▶ If A′ is the result of applying the ⊓-rule to A, there is

(C1 ⊓ C2)(b) ∈ A and A′ = A ∪ {C1(b),C2(b)}
▶ since bI ∈ (C1 ⊓ C2)

I , then bI ∈ CI
1 and bI ∈ CI

2
▶ it follows that I is a model of A′, thus A′ is satisfiable

▶ If A1 and A2 are the result of applying the ⊔-rule to A, there
is (C1 ⊔ C2)(b) ∈ A, A1=A∪{C1(b)}, and A2=A∪{C2(b)}
▶ since bI ∈ (C1 ⊔ C2)

I , then bI ∈ CI
1 or bI ∈ CI

2
▶ it follows that I is a model of A1 or of A2, thus A1 or A2 is

satisfiable

▶ ∀-rule: left as practice
▶ ∃-rule: left as practice

Tree Model Property

CSat produces tree-shaped ABoxes, so we get that for every ALC
concept C , if C has a model, then it has a tree-shaped model

This is an important property

▶ We only need to look at tree-shaped structures when
reasoning about ALC concepts

▶ Trees are computationally “friendly”

▶ This property exposes a limitation in the expressive power of
ALC (for example they cannot describe structures with cycles)

Extension to KB Satisfiability

We want to modify CSat to check the satisfiability of a knowledge
base ⟨T ,A⟩

Adding the ABox is easy:

▶ start from S = {A} instead of S = {{C (a)}}

For the TBox, note that C ⊑ D ≡ ⊤ ⊑ ¬C ⊔ D and add the
following rule to the tableau rules:

TBox-rule:

if C ⊑ D ∈ T , X (a)

(nnf(¬C ⊔ D))(a)
a is an individual of A
and (nnf(¬C ⊔ D))(a) /∈ A
replace A with A ∪ {(nnf(¬C ⊔ D))(a)}.

Extension to KB Satisfiability

We want to modify CSat to check the satisfiability of a knowledge
base ⟨T ,A⟩

Adding the ABox is easy:

▶ start from S = {A} instead of S = {{C (a)}}

For the TBox, note that C ⊑ D ≡ ⊤ ⊑ ¬C ⊔ D and add the
following rule to the tableau rules:

TBox-rule:

if C ⊑ D ∈ T , X (a)

(nnf(¬C ⊔ D))(a)
a is an individual of A
and (nnf(¬C ⊔ D))(a) /∈ A
replace A with A ∪ {(nnf(¬C ⊔ D))(a)}.

Exercise

Use the tableau algorithm to check whether the following KBs are
satisfiable:

▶ ⟨T , {A(a)}⟩
▶ ⟨T , {R(c , a),B(a)}⟩

where
T = {A ⊑ ∃R.B, B ⊑ D, ∃R.D ⊑ ¬A}

Exercise

Now try on the following KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

(∃R.A)(a0)

R(a0, a1)

A(a1)

(¬A ⊔ ∃R.A)(a1)

(∃R.A)(a1)

R(a1, a2)

A(a2)

. . .

¬A(a1)
✗

¬A(a0)
✗

Termination is not guaranteed anymore!

Exercise

Now try on the following KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

(∃R.A)(a0)

R(a0, a1)

A(a1)

(¬A ⊔ ∃R.A)(a1)

(∃R.A)(a1)

R(a1, a2)

A(a2)

. . .

¬A(a1)
✗

¬A(a0)
✗

Termination is not guaranteed anymore!

Making the Algorithm Terminate

Basic idea: if two individuals “look the same”, explore only one

Blocking

An individual a blocks an individual b in an ABox A if:

▶ {C | C (b) ∈ A} ⊆ {C | C (a) ∈ A}
▶ a was in A when b has been introduced

An individual b is blocked if some a blocks b

The blocked individual b can use the role successors of a instead of
generating new ones

Modify the tableau rules to apply them only to individuals that are
not blocked

Making the Algorithm Terminate

Basic idea: if two individuals “look the same”, explore only one

Blocking

An individual a blocks an individual b in an ABox A if:

▶ {C | C (b) ∈ A} ⊆ {C | C (a) ∈ A}
▶ a was in A when b has been introduced

An individual b is blocked if some a blocks b

The blocked individual b can use the role successors of a instead of
generating new ones

Modify the tableau rules to apply them only to individuals that are
not blocked

Making the Algorithm Terminate

Basic idea: if two individuals “look the same”, explore only one

Blocking

An individual a blocks an individual b in an ABox A if:

▶ {C | C (b) ∈ A} ⊆ {C | C (a) ∈ A}
▶ a was in A when b has been introduced

An individual b is blocked if some a blocks b

The blocked individual b can use the role successors of a instead of
generating new ones

Modify the tableau rules to apply them only to individuals that are
not blocked

Tableau Algorithm for KB Satisfiability
Tableau rules

⊓-rule: if (C1 ⊓ C2)(a) ∈ A, a is not blocked, and {C1(a),C2(a)} ̸⊆ A,
replace A with A ∪ {C1(a),C2(a)}.

⊔-rule: if (C1 ⊔ C2)(a) ∈ A, a is not blocked, and {C1(a),C2(a)} ∩ A = ∅
replace A with A ∪ {C1(a)} and A ∪ {C2(a)}.

∀-rule: if {∀R.C (a),R(a, b)} ⊆ A, a is not blocked, and C (b) ̸∈ A,
replace A with A ∪ {C (b)}.

∃-rule: if ∃R.C (a) ∈ A, a is not blocked, and there is no b with
{R(a, b),C (b)} ⊆ A, create a new individual name c and
replace A with A ∪ {R(a, c),C (c)}.

TBox-rule: if C ⊑ D ∈ T , a is not blocked, and (nnf(¬C ⊔ D))(a) ̸∈ A,
replace A by A ∪ {(nnf(¬C ⊔ D)(a))}.

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)

✓
a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)

✓
a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)

✓
a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)

✓
a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)

✓
a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)
✓

a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Example

Apply blocking to the previous KB: ⟨{A ⊑ ∃R.A}, {A(a0)}⟩

A(a0)

(¬A ⊔ ∃R.A)(a0)

¬A(a0)
✗

∃R.A(a0)

R(a0, a1)

A(a1)
✓

a1 is blocked by a0!

We obtain a complete, clash-free ABox

→ ⟨{A ⊑ ∃R.A}, {A(a0)}⟩ is satisfiable

Tableau Algorithm for KB Satisfiability
Another example

Consider
T = {A ⊑ ∃R.A, A ⊑ B, ∃R.B ⊑ D}

We want to test whether T |= A ⊑ D using the tableau algorithm

→ check whether the following KB is satisfiable

⟨T , {(A ⊓ ¬D)(a0)}⟩

⟨T , {(A ⊓ ¬D)(a0)}⟩ is unsatisfiable so T |= A ⊑ D

Remark: an individual can be blocked then later become unblocked

Tableau Algorithm for KB Satisfiability
Another example

(A ⊓ ¬D)(a0)

(¬A ⊔ ∃R.A)(a0), (¬A ⊔ B)(a0), (∀R.¬B ⊔ D)(a0)

A(a0)

¬D(a0)

(∃R.A)(a0)

R(a0, a1)

A(a1)

B(a0)

D(a0)
✗

(∀R.¬B)(a0)

¬B(a1)

(¬A ⊔ ∃R.A)(a1), (¬A ⊔ B)(a1), (∀R.¬B ⊔ D)(a1)

(∃R.A)(a1)

R(a1, a2)

A(a2)

B(a1)
✗

¬A(a1)
✗

¬A(a1)
✗

¬A(a0)
✗

¬A(a0)
✗

Tableau Algorithm for KB Satisfiability
Another example

Consider
T = {A ⊑ ∃R.A, A ⊑ B, ∃R.B ⊑ D}

We want to test whether T |= A ⊑ D using the tableau algorithm

→ check whether the following KB is satisfiable

⟨T , {(A ⊓ ¬D)(a0)}⟩

⟨T , {(A ⊓ ¬D)(a0)}⟩ is unsatisfiable so T |= A ⊑ D

Remark: an individual can be blocked then later become unblocked

Tableau Algorithm for KB Satisfiability

Let us call our tableau algorithm KBSat (for KB satisfiability)

Theorem
KBSat terminates and it answers yes if and only if the input KB is
satisfiable.

Termination of KBSat (Informal Proof)

KBSat terminates on every input ⟨T ,A⟩.

Similar to the proof of termination for CSat: Show that there is a
bound on the size of the generated ABoxes

For every ABox A′ generated by KBSat:

1. The number of concept assertions per individual is bounded
by the total number of subconcepts of concepts that occur in
A or in {nnf(¬C ⊔ D) | C ⊑ D ∈ T }

2. The individuals generated by the ∃-rule form trees whose
roots are individuals from A

3. Blocking ensures that the depth of each tree is finite
(bounded by the number of sets of subconcepts of concepts
that occur in A or in {nnf(¬C ⊔ D) | C ⊑ D ∈ T })

4. The degree of each tree is bounded by the number of
existentials in T

Soundness of KBSat
If KBSat returns “yes” on input ⟨T ,A⟩, then ⟨T ,A⟩ is satisfiable.
▶ Build a model I from a complete and clash-free ABox A′

▶ Difference with CSat: deal with the blocked individuals
▶ ∆I = {a | a is an individual in A′ which is not blocked}
▶ AI = {a | A(a) ∈ A′, a not blocked}
▶ RI = {(a, b) | R(a, b) ∈ A′, a, b not blocked}∪ {(a, b) |

R(a, c) ∈ A′, a not blocked, c blocked by b, b not blocked}
▶ Claim: I is a model of ⟨T ,A⟩

▶ Since individuals from A are never blocked, I |= A
▶ Let C ⊑ D ∈ T and b ∈ CI

▶ since b is not blocked in A′ and A′ is complete,
nnf(¬C ⊔ D)(b) ∈ A′ (TBox-rule) so nnf(¬C)(b) or
nnf(D)(b) is in A′ (⊔-rule)

▶ we prove that E(b) ∈ A′ and b not blocked ⇒ b ∈ EI for
every concept E by induction on the size of E

▶ since b ∈ CI (so that b /∈ nnf(¬C)I), it follows that
nnf(¬C)(b) /∈ A′

▶ thus nnf(D)(b) is in A′ and b ∈ nnf(D)I = DI

It follows that I |= C ⊑ D
▶ Hence I |= T

Soundness of KBSat
If KBSat returns “yes” on input ⟨T ,A⟩, then ⟨T ,A⟩ is satisfiable.
▶ Build a model I from a complete and clash-free ABox A′

▶ Difference with CSat: deal with the blocked individuals
▶ ∆I = {a | a is an individual in A′ which is not blocked}
▶ AI = {a | A(a) ∈ A′, a not blocked}
▶ RI = {(a, b) | R(a, b) ∈ A′, a, b not blocked}∪ {(a, b) |

R(a, c) ∈ A′, a not blocked, c blocked by b, b not blocked}
▶ Claim: I is a model of ⟨T ,A⟩

▶ Since individuals from A are never blocked, I |= A
▶ Let C ⊑ D ∈ T and b ∈ CI

▶ since b is not blocked in A′ and A′ is complete,
nnf(¬C ⊔ D)(b) ∈ A′ (TBox-rule) so nnf(¬C)(b) or
nnf(D)(b) is in A′ (⊔-rule)

▶ we prove that E(b) ∈ A′ and b not blocked ⇒ b ∈ EI for
every concept E by induction on the size of E

▶ since b ∈ CI (so that b /∈ nnf(¬C)I), it follows that
nnf(¬C)(b) /∈ A′

▶ thus nnf(D)(b) is in A′ and b ∈ nnf(D)I = DI

It follows that I |= C ⊑ D
▶ Hence I |= T

Soundness of KBSat
Proof of the claim: E(b) ∈ A′ and b not blocked ⇒ b ∈ EI

Base Case: E = A or E = ¬A
▶ If E = A, then b ∈ AI , by definition of I
▶ If E = ¬A, then A(b) ̸∈ A′ because A′ is clash-free, hence

b ∈ ¬AI

Induction Hypothesis: statement holds whenever |E | ≤ k

Induction Step: show statement holds for |E | = k + 1
▶ E = ∃R.F : since A′ is complete and b is not blocked, there is

some c such that R(b, c) ∈ A′ and F (c) ∈ A′

▶ if c is not blocked, (b, c) ∈ RI , and by the induction
hypothesis, c ∈ FI , so b ∈ (∃R.F)I

▶ if c is blocked, it must be blocked by some d which is not
blocked, so (b, d) ∈ RI , and F (d) ∈ A′ so by the induction
hypothesis, d ∈ FI , so b ∈ (∃R.F)I

▶ E = ∀R.F : left as practice
▶ E = F ⊓ G : left as practice

▶ E = F ⊔ G : left as practice

Soundness of KBSat
Proof of the claim: E(b) ∈ A′ and b not blocked ⇒ b ∈ EI

Base Case: E = A or E = ¬A
▶ If E = A, then b ∈ AI , by definition of I
▶ If E = ¬A, then A(b) ̸∈ A′ because A′ is clash-free, hence

b ∈ ¬AI

Induction Hypothesis: statement holds whenever |E | ≤ k

Induction Step: show statement holds for |E | = k + 1

▶ E = ∃R.F : since A′ is complete and b is not blocked, there is
some c such that R(b, c) ∈ A′ and F (c) ∈ A′

▶ if c is not blocked, (b, c) ∈ RI , and by the induction
hypothesis, c ∈ FI , so b ∈ (∃R.F)I

▶ if c is blocked, it must be blocked by some d which is not
blocked, so (b, d) ∈ RI , and F (d) ∈ A′ so by the induction
hypothesis, d ∈ FI , so b ∈ (∃R.F)I

▶ E = ∀R.F : left as practice
▶ E = F ⊓ G : left as practice

▶ E = F ⊔ G : left as practice

Soundness of KBSat
Proof of the claim: E(b) ∈ A′ and b not blocked ⇒ b ∈ EI

Base Case: E = A or E = ¬A
▶ If E = A, then b ∈ AI , by definition of I
▶ If E = ¬A, then A(b) ̸∈ A′ because A′ is clash-free, hence

b ∈ ¬AI

Induction Hypothesis: statement holds whenever |E | ≤ k

Induction Step: show statement holds for |E | = k + 1
▶ E = ∃R.F : since A′ is complete and b is not blocked, there is

some c such that R(b, c) ∈ A′ and F (c) ∈ A′

▶ if c is not blocked, (b, c) ∈ RI , and by the induction
hypothesis, c ∈ FI , so b ∈ (∃R.F)I

▶ if c is blocked, it must be blocked by some d which is not
blocked, so (b, d) ∈ RI , and F (d) ∈ A′ so by the induction
hypothesis, d ∈ FI , so b ∈ (∃R.F)I

▶ E = ∀R.F : left as practice
▶ E = F ⊓ G : left as practice

▶ E = F ⊔ G : left as practice

Soundness of KBSat
Proof of the claim: E(b) ∈ A′ and b not blocked ⇒ b ∈ EI

Base Case: E = A or E = ¬A
▶ If E = A, then b ∈ AI , by definition of I
▶ If E = ¬A, then A(b) ̸∈ A′ because A′ is clash-free, hence

b ∈ ¬AI

Induction Hypothesis: statement holds whenever |E | ≤ k

Induction Step: show statement holds for |E | = k + 1
▶ E = ∃R.F : since A′ is complete and b is not blocked, there is

some c such that R(b, c) ∈ A′ and F (c) ∈ A′

▶ if c is not blocked, (b, c) ∈ RI , and by the induction
hypothesis, c ∈ FI , so b ∈ (∃R.F)I

▶ if c is blocked, it must be blocked by some d which is not
blocked, so (b, d) ∈ RI , and F (d) ∈ A′ so by the induction
hypothesis, d ∈ FI , so b ∈ (∃R.F)I

▶ E = ∀R.F : left as practice
▶ E = F ⊓ G : left as practice

▶ E = F ⊔ G : left as practice

Completeness of KBSat

If ⟨T ,A⟩ is satisfiable, then KBSat returns “yes” on input ⟨T ,A⟩.

Similar to the proof of completeness of CSat: Show that tableau
rules are satisfiability-preserving

Let ⟨T ,A⟩ be a satisfiable KB and I = (∆I , ·I) be a model of
⟨T ,A⟩
▶ For the new TBox-rule: If A′ is the result of applying the

TBox-rule to A, there is C ⊑ D ∈ T and
A′ = A ∪ {(nnf(¬C ⊔ D)(a))}
▶ if aI /∈ (¬C)I , i.e., aI ∈ CI , since I |= T , then aI ∈ DI

▶ hence aI ∈ (¬C)I ∪ DI , i.e.,
aI ∈ (¬C ⊔ D)I = nnf(¬C ⊔ D)I

▶ it follows that I |= ⟨T ,A′⟩, thus ⟨T ,A′⟩ is satisfiable
▶ Adding the condition that a is not blocked only restricts the

rules applicability

Forest Model Property

▶ An interpretation I is forest-shaped if the graph whose
vertices are the domain elements and edges are

{(d , d ′) | (d , d ′) ∈ RI for some R and

d , d ′ /∈ {aI | a individual name}}

is a set of (disconnected) trees

▶ The model built in the proof of tableau algorithm soundness
need not be forest-shaped because of the way it handles
blocked individuals

▶ It can be shown that every satisfiable ALC KB has a
forest-shaped model

▶ Unlike the case of ALC concepts, trees may be infinite

Tableau Algorithm for Expressive DLs

Tableau algorithm can be modified to handle extensions of ALC
(with number restrictions, role inclusions, transitive roles...)

▶ additional tableau rule for each constructor

▶ new types of clashes

▶ different blocking conditions

Complexity Issues

▶ CSat decides whether an ALC concept is satisfiable
▶ KBSat decides whether an ALC KB is satisfiable

▶ also concept satisfiability w.r.t. a TBox, subsumption and
instance checking via polynomial reduction

Two questions for each case:
▶ What is the complexity of the algorithm?

▶ what amount of ressources (time, memory) is required to run
the algorithm, expressed as a function of the input size, in the
worst possible case?

▶ What is the complexity of the decision problem solved?
▶ what is the complexity of the best algorithms that solve the

problem?

Complexity of CSat
CSat needs exponential time and space:
▶ Due to the ⊔-rule, exponentially many complete ABoxes may

be generated
▶ consider C = ⊔ni=1(Ai ⊔ Bi)

▶ Due to the interaction of ∀- and ∃-rules, complete ABoxes
may be exponentially large
▶ consider C = ⊔ni=0 ∀R. . . .∀R︸ ︷︷ ︸

i times

(∃R.B ⊓ ∃R.¬B)

Complexity of CSat
CSat needs exponential time and space:
▶ Due to the ⊔-rule, exponentially many complete ABoxes may

be generated
▶ consider C = ⊔ni=1(Ai ⊔ Bi)

▶ |C | is linear w.r.t. n and CSat(C) generates 2n complete
ABoxes

⊔ni=1(Ai ⊔ Bi)

(A1 ⊔ B1)(a0)

. . .

(An ⊔ Bn)(a0)

B1(a0)

B2(a0)

...

Bn(a0)An(a0)

...

Bn(a0)An(a0)

A2(a0)

...

Bn(a0)An(a0)

...

Bn(a0)An(a0)

A1(a0)

B2(a0)

...

Bn(a0)An(a0)

...

Bn(a0)An(a0)

A2(a0)

...

Bn(a0)An(a0)

...

Bn(a0)An(a0)

▶ Due to the interaction of ∀- and ∃-rules, complete ABoxes
may be exponentially large
▶ consider C = ⊔ni=0 ∀R. . . .∀R︸ ︷︷ ︸

i times

(∃R.B ⊓ ∃R.¬B)

Complexity of CSat
CSat needs exponential time and space:
▶ Due to the ⊔-rule, exponentially many complete ABoxes may

be generated
▶ consider C = ⊔ni=1(Ai ⊔ Bi)

▶ Due to the interaction of ∀- and ∃-rules, complete ABoxes
may be exponentially large
▶ consider C = ⊔ni=0 ∀R. . . .∀R︸ ︷︷ ︸

i times

(∃R.B ⊓ ∃R.¬B)

Complexity of CSat
CSat needs exponential time and space:
▶ Due to the ⊔-rule, exponentially many complete ABoxes may

be generated
▶ consider C = ⊔ni=1(Ai ⊔ Bi)

▶ Due to the interaction of ∀- and ∃-rules, complete ABoxes
may be exponentially large
▶ consider C = ⊔ni=0 ∀R. . . .∀R︸ ︷︷ ︸

i times

(∃R.B ⊓ ∃R.¬B)

▶ |C | is polynomial w.r.t. n and CSat(C) generates a complete
ABox with 2n+2 − 1 individuals

a0

a2

a6

...

a
Σn+1
i=1 2

i· · ·

...

· · ·· · ·

a5

...

· · ·· · ·

...

· · ·· · ·

a1

a4

...

· · ·· · ·

...

· · ·· · ·

a3

...

· · ·· · ·

...

· · ·aΣn
i=12

i+1

depth(C)
=

n + 1

Complexity of CSat

CSat can be modified so that it runs in polynomial space
▶ Keep only one ABox in memory at a time:

▶ when applying the ⊔-rule, first examine A1, then afterwards
examine A2

▶ keep in memory that the second disjunct needs to be checked

▶ Keep at most depth(C) + 1 individuals in memory:
▶ explore the children of an individual one at a time, in a

depth-first manner
▶ possible because no interaction between individuals in different

branches
▶ store which ∃R.C have been explored and which are left to do

Complexity of CSat

CSat can be modified so that it runs in polynomial space
▶ Keep only one ABox in memory at a time:

▶ when applying the ⊔-rule, first examine A1, then afterwards
examine A2

▶ keep in memory that the second disjunct needs to be checked

▶ Keep at most depth(C) + 1 individuals in memory:
▶ explore the children of an individual one at a time, in a

depth-first manner
▶ possible because no interaction between individuals in different

branches
▶ store which ∃R.C have been explored and which are left to do

Complexity of ALC Concept Satisfiability (No TBox)

▶ CSat runs in polynomial space so the problem of deciding
whether an ALC concept is satisfiable is in PSpace

▶ Any hope for better algorithms?

PTime ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace

▶ inclusions are believed to be strict

▶ It can be shown that deciding whether an ALC concept is
satisfiable is PSpace-hard
▶ reduction from a PSpace-complete problem (for instance

deciding whether a quantified Boolean formula is valid)

Theorem
Checking the satisfiability of an ALC concept in the absence of a
TBox is PSpace-complete.

Complexity of KBSat

We cannot make KBSat run in polynomial space as we did for
CSat because we may need to generate exponentially many
individuals on a single “branch”

▶ consider A = {F1(a0), . . . ,Fn(a0)} and

T ={
n⊔

i=1

Fi ⊑ ∃R.⊤} ∪ {Fi ⊑ ¬Ti | 1 ≤ i ≤ n}

∪ {T1 ⊓ · · · ⊓ Tk−1 ⊓ Fk ⊑
∀R.(F1 ⊓ · · · ⊓ Fk−1 ⊓ Tk)⊓

⊔

k+1≤ℓ≤n

((Tℓ ⊓ ∀R.Tℓ) ⊔ (Fℓ ⊓ ∀R.Fℓ)) | 1 ≤ k ≤ n}

Complexity of ALC KB Satisfiability

▶ What is the complexity of KB satisfiability?

Theorem
Checking the satisfiability of an ALC KB is ExpTime-complete.

▶ we will next show membership

▶ hardness can be shown by reduction from an
ExpTime-complete problem (for instance the problem of
deciding the existence of a winning strategy for infinite
Boolean games)

Complexity of ALC KB Satisfiability
ExpTime membership

▶ Show that concept satisfiability w.r.t. a TBox is in ExpTime
▶ to decide whether a KB ⟨T ,A⟩ is satisfiable, let

T ′ = T ∪ {Ca ⊑ A | A(a) ∈ A} ∪ {Ca ⊑ ∃R.Cb | R(a, b) ∈ A}
and decide whether ⊓a individual of A∃S .Ca is satisfiable w.r.t. T ′

where S and all Ca are fresh role and concept names

▶ We consider an atomic concept A0

▶ C is satisfiable w.r.t. T iff A0 is satisfiable w.r.t. T ∪ {A0 ⊑ C}
▶ We assume that T contains a single axiom of the form

⊤ ⊑ CT with CT an ALC concept in NNF
▶ A0 is satisfiable w.r.t. T iff A0 is satisfiable w.r.t.

{⊤ ⊑ ⊔C⊑D∈T nnf(¬C ⊔ D)}
▶ We assume that A0 ∈ sub(CT)

▶ otherwise A0 is satisfiable w.r.t. {⊤ ⊑ CT } iff CT is satisfiable

Complexity of ALC KB Satisfiability
ExpTime membership

▶ Show that concept satisfiability w.r.t. a TBox is in ExpTime
▶ to decide whether a KB ⟨T ,A⟩ is satisfiable, let

T ′ = T ∪ {Ca ⊑ A | A(a) ∈ A} ∪ {Ca ⊑ ∃R.Cb | R(a, b) ∈ A}
and decide whether ⊓a individual of A∃S .Ca is satisfiable w.r.t. T ′

where S and all Ca are fresh role and concept names

▶ We consider an atomic concept A0

▶ C is satisfiable w.r.t. T iff A0 is satisfiable w.r.t. T ∪ {A0 ⊑ C}
▶ We assume that T contains a single axiom of the form

⊤ ⊑ CT with CT an ALC concept in NNF
▶ A0 is satisfiable w.r.t. T iff A0 is satisfiable w.r.t.

{⊤ ⊑ ⊔C⊑D∈T nnf(¬C ⊔ D)}
▶ We assume that A0 ∈ sub(CT)

▶ otherwise A0 is satisfiable w.r.t. {⊤ ⊑ CT } iff CT is satisfiable

Complexity of ALC KB Satisfiability
Type elimination algorithm

We use a type elimination algorithm to decide whether A0 is
satisfiable w.r.t. {⊤ ⊑ CT }
▶ A T -type is a set of concepts τ ⊆ sub(CT) such that

▶ C ∈ τ implies nnf(¬C) /∈ τ for all C ∈ sub(CT)
▶ C ⊓ D ∈ τ implies C ∈ τ and D ∈ τ
▶ C ⊔ D ∈ τ implies C ∈ τ or D ∈ τ
▶ CT ∈ τ

▶ There are at most 2|sub(CT)| types

▶ The algorithm starts with the set of all types and iteratively
removes the bad types that contain some existential
restriction that cannot be satisfied in models of T
▶ Given a set of types T , τ is bad in T if there exists ∃R.C ∈ τ

such that the set {C} ∪ {D | ∀R.D ∈ τ} is not a subset of any
type in T

▶ If at the end of the algorithm there remains some type that
contains A0, return “satisfiable”, otherwise return “not
satisfiable”

Complexity of ALC KB Satisfiability
Type elimination algorithm

We use a type elimination algorithm to decide whether A0 is
satisfiable w.r.t. {⊤ ⊑ CT }
▶ A T -type is a set of concepts τ ⊆ sub(CT) such that

▶ C ∈ τ implies nnf(¬C) /∈ τ for all C ∈ sub(CT)
▶ C ⊓ D ∈ τ implies C ∈ τ and D ∈ τ
▶ C ⊔ D ∈ τ implies C ∈ τ or D ∈ τ
▶ CT ∈ τ

▶ There are at most 2|sub(CT)| types
▶ The algorithm starts with the set of all types and iteratively

removes the bad types that contain some existential
restriction that cannot be satisfied in models of T
▶ Given a set of types T , τ is bad in T if there exists ∃R.C ∈ τ

such that the set {C} ∪ {D | ∀R.D ∈ τ} is not a subset of any
type in T

▶ If at the end of the algorithm there remains some type that
contains A0, return “satisfiable”, otherwise return “not
satisfiable”

Complexity of ALC KB Satisfiability
Type elimination algorithm: Complexity

The type elimination algorithm runs in exponential time w.r.t. the
size of CT

▶ At most 2|sub(CT)| iterations and |sub(CT)| is linear in the size
of CT

▶ Each step takes polynomial time in the number of remaining
types, thus is in O(2|sub(CT)|)

▶ Hence the algorithm runs in O(22∗|sub(CT)|)

Complexity of ALC KB Satisfiability
Type elimination algorithm: Soundness

The type elimination algorithm is sound

▶ Assume that the algorithm returns “satisfiable”

▶ At the end of the algorithm, T is a set of types such that
every τ ∈ T is good in T and there exists τ0 ∈ T such that
A0 ∈ τ0

▶ Let I = (∆I , ·I) with
▶ ∆I = T
▶ AI = {τ | A ∈ τ}
▶ RI = {(τ1, τ2) | ∃R.C ∈ τ1, {C} ∪ {D | ∀R.D ∈ τ1} ⊆ τ2}

▶ Since A0 ∈ τ0, τ0 ∈ AI
0 and AI

0 ̸= ∅
▶ Claim: I |= ⊤ ⊑ CT
▶ Hence A0 is satisfiable w.r.t. {⊤ ⊑ CT }

Complexity of ALC KB Satisfiability
Type elimination algorithm: Soundness – Proof of the claim

I = (∆I , ·I) with ∆I = T , AI = {τ | A ∈ τ} and
RI = {(τ1, τ2) | ∃R.C ∈ τ1, {C} ∪ {D | ∀R.D ∈ τ1} ⊆ τ2}

▶ Show by induction that for every concept E , for every τ ∈ T
such that E ∈ τ , τ ∈ EI

▶ Base case: E = A or E = ¬A.
▶ if E = A, A ∈ τ implies τ ∈ AI by definition of I
▶ if E = ¬A, ¬A ∈ τ implies that A /∈ τ because τ is a type, so

τ /∈ AI

▶ Induction step:
▶ if E = C ⊓D, since τ is a type, then C and D are in τ , and by

induction hypothesis, τ ∈ CI and τ ∈ DI so τ ∈ (C ⊓ D)I

▶ if E = ∃R.C , since τ is good in T , there exists τ ′ such that
(τ, τ ′) ∈ RI and C ∈ τ ′, so by induction hypothesis τ ′ ∈ CI

so τ ∈ ∃R.CI

▶ E = C ⊔ D: left as practice
▶ E = ∀R.C : left as practice

▶ For every τ ∈ T , since τ is a T -type, then CT ∈ τ so τ ∈ CI
T

Hence I |= ⊤ ⊑ CT

Complexity of ALC KB Satisfiability
Type elimination algorithm: Soundness – Proof of the claim

I = (∆I , ·I) with ∆I = T , AI = {τ | A ∈ τ} and
RI = {(τ1, τ2) | ∃R.C ∈ τ1, {C} ∪ {D | ∀R.D ∈ τ1} ⊆ τ2}

▶ Show by induction that for every concept E , for every τ ∈ T
such that E ∈ τ , τ ∈ EI

▶ Base case: E = A or E = ¬A.
▶ if E = A, A ∈ τ implies τ ∈ AI by definition of I
▶ if E = ¬A, ¬A ∈ τ implies that A /∈ τ because τ is a type, so

τ /∈ AI

▶ Induction step:
▶ if E = C ⊓D, since τ is a type, then C and D are in τ , and by

induction hypothesis, τ ∈ CI and τ ∈ DI so τ ∈ (C ⊓ D)I

▶ if E = ∃R.C , since τ is good in T , there exists τ ′ such that
(τ, τ ′) ∈ RI and C ∈ τ ′, so by induction hypothesis τ ′ ∈ CI

so τ ∈ ∃R.CI

▶ E = C ⊔ D: left as practice
▶ E = ∀R.C : left as practice

▶ For every τ ∈ T , since τ is a T -type, then CT ∈ τ so τ ∈ CI
T

Hence I |= ⊤ ⊑ CT

Complexity of ALC KB Satisfiability
Type elimination algorithm: Soundness – Proof of the claim

I = (∆I , ·I) with ∆I = T , AI = {τ | A ∈ τ} and
RI = {(τ1, τ2) | ∃R.C ∈ τ1, {C} ∪ {D | ∀R.D ∈ τ1} ⊆ τ2}

▶ Show by induction that for every concept E , for every τ ∈ T
such that E ∈ τ , τ ∈ EI

▶ Base case: E = A or E = ¬A.
▶ if E = A, A ∈ τ implies τ ∈ AI by definition of I
▶ if E = ¬A, ¬A ∈ τ implies that A /∈ τ because τ is a type, so

τ /∈ AI

▶ Induction step:
▶ if E = C ⊓D, since τ is a type, then C and D are in τ , and by

induction hypothesis, τ ∈ CI and τ ∈ DI so τ ∈ (C ⊓ D)I

▶ if E = ∃R.C , since τ is good in T , there exists τ ′ such that
(τ, τ ′) ∈ RI and C ∈ τ ′, so by induction hypothesis τ ′ ∈ CI

so τ ∈ ∃R.CI

▶ E = C ⊔ D: left as practice
▶ E = ∀R.C : left as practice

▶ For every τ ∈ T , since τ is a T -type, then CT ∈ τ so τ ∈ CI
T

Hence I |= ⊤ ⊑ CT

Complexity of ALC KB Satisfiability
Type elimination algorithm: Completeness

The type elimination algorithm is complete

▶ Assume that A0 is satisfiable w.r.t. {⊤ ⊑ CT }
▶ There is a model I = (∆I , ·I) of ⊤ ⊑ CT such that AI

0 ̸= ∅
▶ Claim: T = {τ | e ∈ ∆I , τ = {C | C ∈ sub(CT), e ∈ CI}} is

a set of T -types such that there is τ ∈ T with A0 ∈ τ and the
type elimination algorithm does not remove any of the types
in T

Complexity of ALC KB Satisfiability
Type elimination algorithm: Completeness – Proof of the claim

T = {τ | e ∈ ∆I , τ = {C | C ∈ sub(CT), e ∈ CI}}
▶ Since AI

0 ̸= ∅, there is τ ∈ T such that A0 ∈ τ

▶ T is a set of T -types: for every τ ∈ T
▶ e ∈ CI implies e /∈ nnf(¬C)I , so C ∈ τ implies nnf(¬C) /∈ τ
▶ e ∈ (C ⊓ D)I implies e ∈ CI and e ∈ DI , so C ⊓ D ∈ τ

implies C ∈ τ and D ∈ τ
▶ similarly for C ⊔ D
▶ I |= ⊤ ⊑ CT , so CT ∈ τ

▶ Every τ ∈ T is good in T
▶ let τ ∈ T and ∃R.C ∈ τ
▶ there is e ∈ ∆I such that τ = {C | C ∈ sub(CT), e ∈ CI}
▶ e ∈ ∃R.CI so there is d ∈ ∆I s.t. (e, d) ∈ RI and d ∈ CI

▶ for every D such that ∀R.D ∈ τ , e ∈ (∀R.D)I so d ∈ DI

▶ the type τd = {E | E ∈ sub(CT), d ∈ EI} is such that
{C} ∪ {D | ∀R.D ∈ τ} ⊆ τd and belongs to T

▶ The type elimination algorithm never removes any type
τ ∈ T : by induction on the number of iterations

Complexity of ALC KB Satisfiability
Type elimination algorithm: Completeness – Proof of the claim

T = {τ | e ∈ ∆I , τ = {C | C ∈ sub(CT), e ∈ CI}}
▶ Since AI

0 ̸= ∅, there is τ ∈ T such that A0 ∈ τ

▶ T is a set of T -types: for every τ ∈ T
▶ e ∈ CI implies e /∈ nnf(¬C)I , so C ∈ τ implies nnf(¬C) /∈ τ
▶ e ∈ (C ⊓ D)I implies e ∈ CI and e ∈ DI , so C ⊓ D ∈ τ

implies C ∈ τ and D ∈ τ
▶ similarly for C ⊔ D
▶ I |= ⊤ ⊑ CT , so CT ∈ τ

▶ Every τ ∈ T is good in T
▶ let τ ∈ T and ∃R.C ∈ τ
▶ there is e ∈ ∆I such that τ = {C | C ∈ sub(CT), e ∈ CI}
▶ e ∈ ∃R.CI so there is d ∈ ∆I s.t. (e, d) ∈ RI and d ∈ CI

▶ for every D such that ∀R.D ∈ τ , e ∈ (∀R.D)I so d ∈ DI

▶ the type τd = {E | E ∈ sub(CT), d ∈ EI} is such that
{C} ∪ {D | ∀R.D ∈ τ} ⊆ τd and belongs to T

▶ The type elimination algorithm never removes any type
τ ∈ T : by induction on the number of iterations

In Practice: Optimizations

▶ Tableau algorithms are implemented and work well in practice
▶ type elimination algorithm has optimal worst-case complexity

but its best-case complexity is exponential!

▶ However, good performances crucially depends on
optimizations
▶ explore only one branch of one ABox at a time
▶ strategies/heuristics for choosing next rule to apply
▶ caching of results to reduce redundant computation
▶ examine source of conflicts to prune search space
▶ reduce numbers of ⊔’s created by TBox inclusions
▶ reduce number of satisfiability checks during classification

In Practice: Optimizations
Absorption: reduce number of disjunctions

If T = {Ci ⊑ Di | 1 ≤ i ≤ n}, for each individual a, the TBox-rule
builds n disjunctions nnf(¬Ci ⊔ Di)(a)
→ Try to reduce this number

▶ When Ci or Di is an atomic concept, trigger the TBox-rule
only when we have information about this concept
▶ for inclusions A ⊑ D with atomic left-hand side, replace the

TBox-rule by
TBox-atomic-left-rule: if A(a) ∈ A, a is not blocked,
A ⊑ D ∈ T (A atomic), and D(a) /∈ A, replace A with
A ∪ {D(a)}.

▶ for inclusions D ⊑ A with atomic right-hand side, replace the
TBox-rule by
TBox-atomic-right-rule: if ¬A(a) ∈ A, a is not blocked,
D ⊑ A ∈ T (A atomic), and ¬D(a) /∈ A, replace A with
A ∪ {¬D(a)}.

In Practice: Optimizations
Absorption: reduce number of disjunctions

▶ Preprocess the TBox
▶ to decrease the number of concept inclusions with non-atomic

left- and right-hand sides
▶ (A ⊓ C ⊑ D) ≡ (A ⊑ ¬C ⊔ D)
▶ (D ⊑ A ⊔ C) ≡ (D ⊓ ¬C ⊑ A)
▶ . . .

▶ to obtain a single concept inclusion per atomic concept with
this concept as right- or left-hand side (“absorption”)

▶ A ⊑ C1,A ⊑ C2 ⇒ A ⊑ C1 ⊓ C2

▶ C1 ⊑ A,C2 ⊑ A ⇒ C1 ⊔ C2 ⊑ A

In Practice: Optimizations
Classification: reduce number of satisfiability checks

Classification consists in finding all pairs of atomic concepts A, B
such that T |= A ⊑ B

▶ Näıve approach: test satisfiability of A⊓¬B w.r.t. T for every
pair A, B

▶ Reduce the number of satisfiability checks
▶ some subsumptions are obvious

▶ A ⊑ A
▶ A ⊑ B ∈ T

▶ use simple reasoning to obtain new (non-)subsumptions
▶ if we found that T |= A ⊑ B and T |= B ⊑ C , then

T |= A ⊑ C
▶ if we found that T |= A ⊑ B and T ̸|= A ⊑ C , then

T ̸|= B ⊑ C

References

▶ Baader, Calvanese, McGuinness, Nardi, Patel-Schneider (2003): The
Description Logic Handbook: Theory, Implementation, and
Applications (book, can be found online)

▶ Bienvenu (2022): Ontologies & Description Logics (lecture:
https://www.labri.fr/perso/meghyn/teaching/lola-2022/

2-lola-tableau.pdf)
▶ Baader (2019): course on Description Logics (lecture:

https://tu-dresden.de/ing/informatik/thi/lat/studium/

lehrveranstaltungen/sommersemester-2019/description-logic)
▶ Ortiz (2012): course on Declarative Knowledge Processing (lecture:

http://www.kr.tuwien.ac.at/education/dekl_slides/ws12/)

https://www.labri.fr/perso/meghyn/teaching/lola-2022/2-lola-tableau.pdf
https://www.labri.fr/perso/meghyn/teaching/lola-2022/2-lola-tableau.pdf
https://tu-dresden.de/ing/informatik/thi/lat/studium/lehrveranstaltungen/sommersemester-2019/description-logic
https://tu-dresden.de/ing/informatik/thi/lat/studium/lehrveranstaltungen/sommersemester-2019/description-logic
http://www.kr.tuwien.ac.at/education/dekl_slides/ws12/

	Reminders
	Tableau algorithms
	Negation normal form
	Tableau algorithm for concept satisfiability
	Tableau algorithm for KB satisfiability

	Complexity issues
	Concept satisfiability
	KB satisfiability

	Optimizations
	References

