Exercice 1 (BLS Signatures). Let \mathbb{G} be a group with generator g and bilinear pairing $e : \mathbb{G} \times \mathbb{G} \mapsto \mathbb{G}_T$. Recall that to sign a message m, the signer outputs $\sigma = H(m)^x$, where $y = g^x$ is the public key.

1. Recall the verification algorithm.

2. Show that it is hard to output a signature on an arbitrary message m^* under the CDH assumption, even given access to a signature oracle, provided m^* was never queried. For this, we model the H as a programmable random oracle. That is, the challenger can program the oracle output in the security game with chosen random values.

Next, we to construct a signature issuance protocol, where the signer does not learn the message it signed. The scheme should remain unforgeable, that is a user should obtain at most Q valid signatures from Q signing sessions.

3. Propose such a protocol.

 Hint: The user sends $A = \text{rand}(H(m), r)$ to the signer, where rand is an appropriate randomization function that allows to recover a valid signature given $B = A^x$ and r.

4. Show that the scheme is blind, i.e., the user cannot distinguish between signing m_0 or m_1 first, when presented signatures σ_0 and σ_1 on m_0 and m_1, respectively.

5. Show that the scheme is unforgeable if H is modeled as a programmable random oracle, assuming the One-more CDH assumption holds. That is, the adversary \mathcal{A} has access to two oracles, the first oracle $(\cdot)^x$ outputs h^x given h and the second oracle outputs challenges h_i. The assumption is that \mathcal{A} cannot compute h_i^x for $Q + 1$ different h_i efficiently, given $(\cdot)^x$ was queried at most Q times.

6. Is the One-more CDH assumption reasonable?

Exercice 2 (IBE-based signatures). Recall that identity-based encryption allows to encrypt a message under unstructured public key, for example an email address. An IBE scheme consists of algorithms (Setup, Extract, Encrypt, Decrypt). Setup generates system parameters, denoted by params, and a master key m_k. Extract receives an identity id and the master key m_k as input and outputs a private key pk_{id}. Encrypt encrypts messages for a given identity id (via params) and Decrypt decrypts ciphertexts using the private key.

1. What should be hard for an adversary in the context of IBE?

2. Give a generic construction of a signature scheme given any IBE scheme.

 Hint: Identify the identities with messages.

3. Apply the transformation to Boneh-Franklin IBE and simplify the verification algorithm. Is the scheme familiar?

Again, let \mathbb{G} be a group with generator g and bilinear pairing $e : \mathbb{G} \times \mathbb{G} \mapsto \mathbb{G}_T$. A well-known signature scheme obtained via this transformation are Boneh-Boyen signatures:

- $\text{KeyGen}()$: samples $\alpha, \beta, \gamma \leftarrow \mathbb{Z}_p$, and sets $u = g^\alpha, h = g^\beta, v = e(g, g)^{\alpha \beta}$, and outputs $pk = (u, h, v)$ and $sk = g^{\beta}$.
- $\text{Sign}(sk, m)$: samples $r \in \mathbb{Z}_p$ and outputs $(\sigma_1, \sigma_2) = (sk \cdot (u^m h)^r, g^r) \in \mathbb{G}^2$.
- $\text{Verify}(pk, m, (\sigma_1, \sigma_2))$: outputs 1 if $e(\sigma_1, g) = v \cdot e(\sigma_2, u^m h)$, and otherwise outputs 0.

The rest of the exercise is about Boneh-Boyen signatures.

4. We want to show selective unforgeability: the user should not be able to forge a signature for a message fixed m^* chosen before seeing the public key. Given the structure of the scheme, what seems to be the underlying hardness assumption?

5. Show that given $A = g^\alpha, B = g^\beta$, the public key $pk = (A, A^{-m^*} \cdot g^\delta)$ is indistinguishable from a public key output by KeyGen.
6. Show that the scheme is selectively unforgeable under the CDH assumption.
 \textbf{Hint}: Setup the public key as above for a CDH challenge \((A, B)\). To sign a message \(m_i \neq m^*\), draw \(\tilde{r}_i \leftarrow \mathbb{Z}_p\), set \(\sigma_2 = g^{\tilde{r}_i \cdot B^{-1}(m_i - m^*)}\), and recompute an appropriate \(\sigma_1\). Finally, show that a valid signature on \(m^*\) allows to break CDH.

7. Is selective security satisfying in practice?

8. Show that the scheme is rerandomizable, i.e., given a signature on a message \(m\) you can make it look like a random signature on message \(m\).

9. Modify the Boneh-Boyen scheme such that it unforgeable (for arbitrary messages). Feel free to use a programmable random oracle.

\textbf{Exercice 3} (Lattice-based encryption). We consider the Regev encryption system given below:

- **KeyGen**\((1^\lambda)\) : set \(A = \begin{bmatrix} \bar{A} & \bar{s}^T \bar{A} + e^T \end{bmatrix} \in \mathbb{Z}_p^{n \times m}\) and \(s^T = [-\bar{s}^T | 1]\), and output public key \(A\) and secret key \(s\). Note that \(e\) is a small random error and \(\bar{A}, \bar{s}\) are random values.

- **Encrypt**\((\mu)\) : for \(\mu \in \{0, 1\}\), sample \(r \leftarrow \{0, 1\}^m\) and output \(c = Ar + \begin{bmatrix} 0^{n-1} \\ \lceil q/2 \rceil \cdot \mu \end{bmatrix}\).

1. How would you decrypt the ciphertext \(c\)?
2. Argue that the scheme is secure under the LWE assumption.
 \textbf{Hint}: \(Ar\) is (almost) uniform if \(A\) and \(r\) is drawn at random.
3. Show that the scheme is additively homomorph.
4. What happens if you multiply ciphertexts? Can you still decrypt?

5. Assume we have an encryption scheme that allows for \(N\) additions and \(M\) multiplications, and that decryption can be implemented with less than \(N\) additions and \(M\) multiplications\(^1\). Propose a scheme that allows for an unbounded number of multiplications and additions.
 \textbf{Hint}: Add an encryption of the secret key to the public key.

\(^1\) The Regev encryption scheme can be adapted to fulfil this property.