Exercice 1 (Generic DLOG). We know how to compute the DLOG in a group in \(O(\sqrt{p})\). In this exercise, we show that this is optimal for generic algorithms (i.e. the ones that use the group in a black-box). Let \(p\) be the prime order of a generic group \(\mathbb{G}\).

1. How would you model a generic algorithm?
2. Show that for any non-zero polynomial \(F(X_1, \ldots, X_k) \in \mathbb{Z}_p[X_1, \ldots, X_k]\) of degree \(d\) and for random \(x_1, \ldots, x_k \leftarrow \mathbb{Z}_p\), it holds that the probability of \(F(x_1, \ldots, x_k) = 0\) is at most \(\frac{d}{p}\).

Tip: perform induction and use the identity \(F(X_1, \ldots, X_k) = \sum_{i=0}^d X_i^d F_i(X_2, \ldots, X_k)\) for appropriate \(F_i\).

Let \(S\) be a set of \(p\) random strings and \(L : \mathbb{Z}_p \mapsto S\) a random injection. Let \(g \in \mathbb{G}\) be a generator. The label \(L(x)\) is interpreted as the group element \(g^x\). We model the generic group via two oracles:

- Labeling query: On input \(x \in \mathbb{Z}_p\), outputs \(L(x)\)
- Group operation: On input \((\ell_0, \ell_1, a_0, a_1) \in S^2 \times \mathbb{Z}_p^2\), outputs \(L(a_0 x_0 + a_1 x_1)\), where \(L(x_b) = \ell_b\).

Next, we wish to show that computing the discrete logarithm assumption holds in \(\mathbb{G}\) statistically. Let \(A\) be a generic algorithm computing the discrete logarithm of a random element \(\ell_h\) to the basis \(\ell_g\). We show that \(A\) computes the DLOG with probability at most \(O(m^2 / p)\), where \(m\) is the number of oracle queries. For this, we identify each group element with its discrete logarithm with basis \(\ell_g\). Instead of choosing the discrete logarithm (of element \(\ell_h\)), we identify \(\ell\) internally with the polynomial \(X\) in \(\mathbb{Z}_p[X]\). Note that \(X\) represents the discrete logarithm to be found and will be initialized with a random element in \(\mathbb{Z}_p\) only after the interaction with \(A\).

3. Challenge \(A\) to compute the DLOG of a random element \(\ell_h\) to basis \(\ell_g\) in \(S\). Represent \(\ell_h\) via the polynomial \(X\) and \(\ell_g\) via the polynomial 1 internally. Simulate the random oracle queries of \(A\), keeping track of a list \(L\) of computed polynomials with their (random) labels.
4. Finally, \(A\) outputs its solution \(z\). Draw a random exponent \(x\) to initialize the variable \(X\), then show that \(z = x\) with probability at most \(1/p\).
5. In what event is this simulation not correct? Show that these events happen with probability at most \(O(m^2 / p)\).

Tip: Evaluate the polynomials in \(L\) at point \(x\). What happens if two polynomials evaluate to the same value in \(\mathbb{Z}_p\)? Question 2 will be helpful for the upper bound.

Exercice 2 (Fermat Primality Test). We show that the Fermat test has a good success probability under some condition.

1. Propose an algorithm that tests if a number \(n\) is prime in \(O(\sqrt{n})\).
2. Show that if \(n\) is prime, then \(x^{n-1} = 1 \mod n\) for all \(x \in [1, n-1]\).
3. Deduce an algorithm to test if a number is prime.
4. Show that if the number \(n\) has at least one witness \(x\) with \(\gcd(x, n) = 1\) such that \(x^{n-1} \neq 1 \mod n\), then the algorithm has failure probability at most \(1/2\). That is, it outputs an element \(x \in [0, 1]\).
5. Characterize the inputs for which the Fermat test fails.

Consider the Miller-Rabin primality test given in Algorithm 1. In the following, let \(x \in [1, n-1]\).
Algorithm 1 Miller-Rabin

Require: odd $n \in \mathbb{N}$
1: Let $2^s t = n - 1$ with d odd
2: $x \leftarrow [1, n - 1]$
3: if $x^t = 1 \mod n$ then
4: \hspace{1em} return potential prime
5: end if
6: if $\exists 0 \leq i < s : x^{2^i t} = -1 \mod n$ then
7: \hspace{1em} return potential prime
8: end if
9: return composite

6. If $n \in \mathbb{N}$ such that $x^2 = 1 \mod n$ but $x \neq \pm 1 \mod n$, then n is composite.
7. Show that if p is an odd prime, then Miller-Rabin(p) outputs potential prime.
8. Show that Miller-Rabin outputs potential prime with probability at most $1/2$ if n is composite.

Note: This exercise is hard and optional. It can even be shown that the error probability is at most $1/4$.

Exercise 3 (RSA). In this exercise we show that RSA decryption works.
1. Recall the RSA encryption scheme.
2. Show that RSA is correct.

Tip: Exercise 2.2 and the CRT ($\mathbb{Z}_n \cong \mathbb{Z}_p \times \mathbb{Z}_q$ for $n = pq$ for co-prime p, q) help.