Ex 2.
1. $L \in \text{BPP} \implies$ polynomial decider $D = \text{Verifier}$ on check $x \in \text{BPP}$ itself
2. decide $x \in L$ via D defined as follows
 - let $(s, r) \leftarrow \mathcal{S}(x)$, sample random a, output $b = \text{Verifier}(TT, b)$
 - claim: $x \notin L$, then $\Pr[DC(x) = 1] \leq \frac{2}{3}$
 - as honest proofs verify due to completeness w.h.p., and Π is ind. from honest proof
 - claim: if $x \in L$, then $\Pr[DC(x) = 1] \leq \frac{1}{4}$
 - as otherwise the prover P that outputs simulated proofs can break soundness
3. ROM is not captured by the setting we consider
4. verify deterministic \implies prover can collapse rounds into a $\mathcal{N}2^k \times y$, ex. 2

Ex 3.
1. Alice
 - let a, r

 \begin{align*}
 a \leftarrow g, a
 c \leftarrow C(x)
 \end{align*}

 open:
 - $a, b \leftarrow \text{check } C(s) \oplus b \cdot r = 1$

 hiding: b hides $b \cdot r$

 binding: Alice needs to output c, c', s s.t.
 \begin{align*}
 C(s) &= a \quad \text{and } C(c') = c \oplus r
 \end{align*}

 \begin{align*}
 c \oplus C(s') &= r \in 2k, a
 \end{align*}

 then on 2^m pairs (s, s') but 2^m choices for r

 \begin{align*}
 \Pr[(3, s, c, s \oplus r)] &\leq 2^m
 \end{align*}

2. $\text{pp} \equiv \text{Shap}(a)$ is the function description
 - $Fpp(b, r) = \text{Comp}(b, r)$
 - assume $\exists A$ that breaks OWF property
 - sample $b \leftarrow \mathcal{U}(k)$, r
 - set $c = \text{Comp}(b, r)$
 - let $(b', r') \leftarrow A(c)$
 \begin{itemize}
 \item if $b = b'$ can use to break binding
 \item if $b \neq b'$ can use to break hiding
 \end{itemize}

Note: ex. 1 is from an old exam, so it is a good exercise for the preparation (without solutions).