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and Guillaume Roullet (UBO, LOPS).

1 / 28



Multi-layer quasi-geostrophic model
n stacked layer, thickness Hk and density ρk .

State variables:

pressure: p = (p1(x, y), . . . , pn(x, y))

potential vorticity: q = (q1(x, y), . . . , qn(x, y))

∂tq+ (u · ∇)q = 0

∆Hp− f 20 Ap = f0q− f0βy
− f0u = ∂yp, f0v = ∂xp
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Idealized double-gyre configuration
3 layers, Hk = 350, 750, 2900m.

Rectangular domain, 3480×4800 km, solid boundaries, no-slip b.c.

Baroclinic Rossby radii: 39, 22 km.

Linear bottom drag, idealized wind stress on top, magnitude

τ0 = 2e−5m2s−2
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Numerical implementation

Following Hogg et al. (2014)

Usual 5-points laplacian discretization.

Advection with 9-points energy-conserving Arakawa Jacobian.

Additional hyperviscosity set with Munk scale.

Elliptic equation solved with type-I Discrete Sine Transform.

Heun-RK2 time stepping.

∂tq =
1

f0
J(q,p)−

a4
f0

∆3p+ forcing + drag(
∆− f 20 A

)
p = f0q− f0β(y − y0),

https://github.com/louity/qgm pytorch
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Eddy-resolving regime

769×961 grid, resolution 5km, dt=800s.

Hyperviscosity a4 = 2 109 m4s−1

Apparition of proper eastward jet.

Animation
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https://www.di.ens.fr/louis.thiry/anim_5km_p_Arak.mp4


Eddy-resolving regime

Rich meso-scale eddies field in the recirculation zone.
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Eddy-permitting regime

193×241 grid, resolution 20km, dt=1200s.

Hyperviscosity a4 = 8 1010 m4s−1

No proper eastward jet.

Animation
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https://www.di.ens.fr/louis.thiry/anim_20km_p_Arak.mp4


Eddy-permitting regime

Almost no eddies.
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Non eddy-resolving regime

97×121 grid, resolution 40km, dt=1400s.

Hyperviscosity a4 = 5 1011 m4s−1

Tiny eastward jet without any eddy around.

Animation

−→ Need for eddy parameterizations.
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https://www.di.ens.fr/louis.thiry/anim_40km_p_Arak.mp4


Existing parameterizations

Eddy parameterization for QG models tested on double-gyre

configuration:

Zanna et al. (2017): deterministic + stochastic.

Berloff et al. (2021): deterministic data-driven.

Li et al. (2020): stochastic + mean term (= deterministic).

Uchida et al. (2022): deterministic.

Deterministic parameterizations help producing large scale structures

(jet).

Stochasticity improves variability, finer-scale structures and ensemble

spread.

−→ Importance of good deterministic parameterization as basis for
stochastic ones.
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Implicit parameterization

Roullet and Gaillard (2022): A fast monotone discretization of the

rotating shallow water equations.

”Monotone? Because what is the point of invoking an adhoc dissipation

or a sophisticated SGS theory when a good numerics can do both?”

Analogous of implicit-LES for eddy parameterizations.

Ingredients:

p,q staggered grid

Finite volume for PV and material conservation.

High-order WENO (Balsara et al., 2016) interpolation for advection.

=⇒ implicit diffusion replaces hyper-viscosity.

Stable strongly preverving RK3 time-stepping.
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Numerical implementation

∂tq = − ∇ · (uq)︸ ︷︷ ︸
WENO5 interp.

+forcing + drag

(
∆− f 20 A

)
p = f0q− f0β(y − y0)︸ ︷︷ ︸

4-points interp.

Figure: Staggered grid discretization

12 / 28



Results in eddy-permitting regime

193×241 grid, resolution 20km, dt=2000s.

No hyper-viscosity.

Half-length eastward jet.

Animation
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https://www.di.ens.fr/louis.thiry/anim_20km_p_WENOqpns_4pts.mp4


Results in eddy-permitting regime
Large meso-scale eddies in the recirculation zone.
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Results in non-eddy-resolving regime
97×121 grid, resolution 40km, dt=4000s.

No hyper-viscosity.

Third-length eastward jet.

Animation
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https://www.di.ens.fr/louis.thiry/anim_40km_p_WENOqpns_4pts.mp4


Results in eddy-resolving regime

769×961 grid, resolution 5km, dt=800s.

Symmetry breaking and effective resolution
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Results in eddy-resolving regime

Symmetry breaking and effective resolution
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Results in eddy-resolving regime
Symmetry breaking and effective resolution
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Results in eddy-resolving regime

Statistics
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WENO5 implicit parameterization

Works in the three regimes.

Shows different advantages.

Removes the viscosity CFL condition: larger dt.

... but can still be improved.
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q to p interpolation

(
∆− f 20 A

)
p = Interpq→p (f0q− f0β(y − y0))

Interpolation needed to solve elliptic equation

4-points interpolation has bad frequency response

=⇒ high-frequency are discarded before solving elliptic equation

Figure: Staggered grid discretization
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Interpolation with DST-II

(
∆− f 20 A

)
p = Interpq→p (f0q− f0β(y − y0))

Elliptic equation solved with DST-I

DST-II(·) = DST-I
(

Spectral-Interpq→p(·)
)

Spectral interpolation =⇒ highest possible order

Figure: DST-I and DST-II equivalence on square grid
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Results with WENO + DST-II

Eddy-resolving regime:

769×961 grid, resolution 5km, dt=800s.

Animation.

Longer eastward jet.

Eddy-permitting regime:

193×241 grid, resolution 20km, dt=2000s.

Animation

Proper eastward jet.

Non eddy-resolving regime:

97×121 grid, resolution 40km, dt=4000s.

Animation

ALIASING!

Spectral methods need anti-aliasing treatment, e.g. Dedalus.
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Conclusions

Our implicit eddy parameterization

resolves large-scale structures (eddy-permitting and

non-eddy-resolving regimes).

increases effective resolution, accelerates spin up and symmetry

breaking (eddy-resolving regime).

works in a wide range of resolutions: 1.5 to 40km.

allows removing ad-hoc dissipation, hence the viscosity CFL

condition.

is complementary to physical or stochastic parameterizations.

Take home message

At low resolutions, preserving high-frequencies is crucial...

...but can be tricky : Aliasing ! Rossby waves dissipation ? Badly

resolved western boundary-layer ? (Suggestions ?)
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Perspectives

Add stochastic parameterization: Mémin (2014).

Jump to WENO7 ? Or Semi-lagrangian ?

Ability to resolve eddies:
I Realistic wind
I Inclusion of surface buoyancy: Lapeyre and Klein (2006) (animation)

More realistic simulation :
I Move to non-trivial geometries.
I Beyond quasi-geostrophy: shallow-water ?

Suitable model for data assimilation ?
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https://www.di.ens.fr/louis.thiry/anim_5km_p_WENOqpns_sqg.mp4


Questions ?
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