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Image classification

* Predict the class of an image in a set S of classes.

S ={"cat”,”dog”," car” } = {(1,0,0),(0,1,0), (0,0,1)}

« Given training samples (Z;, ¥;) annotated by humans, find an
approximation of the classification function F



Image classification

* MNIST database, 28x28 images,

50,000 samples, 10 classes



Image classification

* CIFAR-10, 50,000 samples,
32x32 images, 10 classes
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Image classification

* ImageNet, 1,3 million samples,
256x256 images, 1000 classes
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Energy regression in physics

Predict the energy of a set of interacting atoms.

FZ(?"th:,...,?"N,ZN)'—)E

The energy can be Ly, the ground state energy of the
molecule (Born-Oppenheimer approximation)

It can be the Freeenergy F' = Ey — T'S

Energy rules stability and chemical properties



Energy regression in physics

* Find an approximation of the energy function given training
samples (z;, ¥;)

Samples

* Experimental data

* Numerical quantum mechanics computations whose cost
scales likes N?to N8

Goals
e Speed up computations and tackle large systems data



Energy regression in physics

* QM9 database
134,000 organic molecules with up to 9 non-Hydrogen atoms
Ground-state energies computed using DFT

QM9



Energy regression in physics

* Graphene database
2,500 periodic cells of carbon atoms solids (graphene)
Ground-state energies computed using MBD




Curse of dimensionality

The input variable Z is in high-dimension.

* A 256x256x3 image lies in dimension d = 196,608
* A 512 atoms cell of graphene lies in dimension d = 1536

Under usual Lipschitz regularity assumptions
|F(2) = F(2')]| < [lz — 2|

—d . . L
We need €  samples to have a precision € in the approximation



Deep Convolutional Neural
Networks

ImageNet database

* 1,3 M images in dimension ~10°

* 1000 image classes

* 84 % classification accuracy with ResNet (He et al, 2016)

QM9 database

* 134 K molecules in dimension ~104

* Energies ranging from -400 to -3000 kcal/mol

* MAE of 0.3 kcal/mol with SchNet (Schutt et al, 2017)




AlexNet

Krizhevsky et al. 2012
59% accuracy on ImageNet
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- skip connections

ResNet

He et al. 2016
80.2 % accuracy on ImageNet

- up to 152 convolutional layers
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SchNet

Schutt et al. 2017

MAE 0.3 kcal/mol on QM9
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Deep CNNSs in image classification
and energy regression

* CNN approximate well energy and classification functions
* The number of data is far below an exponential of the
dimension (of the order of the dimension)

What are these functions underlying regularity properties?
Are there similarities between these two problems?



Image classification and energy
o regression
Similarities

* Local methods based on atomic neighborhoods and
patches in images are important methods.

NE R YA

* Invariance properties drive atomic neighborhood or image
patches :
* rotation and translation for atoms
* scale, lightening, and deformation for image patches.




Image classification and energy
regression

Multi-scale problems

* Energy results from different scale interactions:
* lonic and covalent bonds at short range,
* Van-der-Waals interactions at the mesoscale
* Long-range Coulomb interactions.

* One can classify an image using
* texture information at a small scale
* pattern information at a larger scale
* shape information at the image scale.




Image classification and energy
regression

Differences

* Regression vs. classification.
* Continuous 3D space vs. variable sampling grid (322 to 20482)
* Absolute distances (Angstrom) vs. variable number of pixels

* Kernel methods are on par with CNNs for energy regression.
CNNs far above kernel methods for image classification.



SOAP for energy regression

Bartok et al. 2013
Principle

* Energy is a sum of local energies £; of the neighborhood 7!
N,
E(T‘b le ooy TN, ZN) — Z Eg(.ilfz)
i=1

* Local energies are computed with a Kernel Ridge Regression

Ny
E(x") = Z ank(x', x,,)
n=1



SOAP for energy regression

Bartok et al. 2013
Atomic neighborhood representation

I”

i lry —
— Z exp( ‘7202 )

Jy rj=rill<re

The scalar product <-”IJZ, il?')
* is invariant to global translation of the atoms
* is stable to small move of the atomic position



SOAP for energy regression

Bartok et al. 2013

Atomic neighborhood similarity kernel

k(z', x) = / (2", R.x)|PdR
Re S04

This kernel is invariant to rotation of the atoms by construction.



SOAP for energy regression

Bartok et al. 2013

QM9 Database

* MAE of 0.4 kcal/mol.

* Optimal neighborhood size is 3 A

* MAE of 0.25 kcal/mol when combining 2 SOAP

& o0 o

Solids database B Y L
* Graphene solids i
* Silicon solids 10} — Gap

-109{ —— MTP
* Ag-Pd alloys =%




Invariant based digits classification
MNIST database
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* |nvariance to translations, stability to deformations
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, metric Instability to translations
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Stability to geometric
transformations

T *xQpy - subsampling

Convolution with Gaussian kernel @ :

- stable to geometric deformations |
- dimensionality reduction via subsampling
- lots of details are lost




Preserving signal information

Recover information lost in averaging
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Scattering transform

Mallat (2011), Mallat, Bruna (2012)

*Pa| * pr(27u)
R R VN C7Y) IEF M)

Theorem

|Szr — Sz|| < K[| V7o



Scattering vs Deep ConvNets

MNIST

2821c(i)igcilt images >99 % >99 % >99 %
Z e % / 792 b 6 g |\
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Scattering vs Deep ConvNets

CIFAR-10
322 object images 82.3 % 89.1 % 95.5 %

10 classes
ﬁ i
39’ Fs




Scattering vs Deep ConvNets

ImageNet
2242 object images 24.3 % 58.7 % 80.2 %

1000 classes




Scattering vs Deep ConvNets

Remarks

* |nvariant representation is competitive for digits
* Large performance gap on ImageNet
* Energy regression:
* Invariant properties are exact
* Variabilities are geometry and atomic species
* Samples are clean
* Image classification:
* Local invariant properties
* Huge variabilities (texture, background, noise...)
* Samples are noisy



BagNets

Brendel et al. 2019

Patch based classification with deep CNN
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Patch based K-nearest-neighbors classifier

Ours

Dense patch extraction

62 patches for 322 CIFAR images

Mahalanobis distance

random vector X with covariance >, = PAPT

D (z,a') = \/(z — 2/) TS} (z — o)
whitening operator w

Cov(w(X)) = [,
w:X = OAY2PT(X — 1), YO € 0,(R)
|lw(x) —w(a")|| = Dy (z,x")



Patch based K-nearest-neighbors classifier
Ours
Method

Randomly select a set D of patches

Regularized whitening operator W = ()J_|_E)—1f2
For each image patch Pi,> compute set of Mahanalobis distances
Cie = {|Wpi. — Wd||d € D}

K nearest neighbors encoding
T; « the K -th smallest element of C; ,

| 1, if||lpiz—d|l < Tiz
(z)ai = {U} otherwise.



Patch based K-nearest-neighbors classifier

Ours
Whitening illustration .
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Patch based K-nearest-neighbors classifier

ours
K nearest neighbors
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Patch based K-nearest-neighbors classifier

Ours

Classification decision

* Voting system to aggregate patch evidence
* Random patch do not really have a class
* Linear classifier optimized on the training set

F(x) Z Z wk

pex keKNN(x



Patch based K-nearest-neighbors classifier

Qurs

Linear classification on CIFAR-10

Method D) VQ Online P Acc.

- Coates et al. (2011) 1:10° ¢ X 6 68.6

Ba and Caruana (2014)  4-10° x v - 81.6
Wavelets [f)yd]]un and Mallat, 2015) -  x  x 8 8272
Recht et al. (2019) 2.105 X X 6 85.6
SimplePatch (Ours) 1.10¢ v v 6 85.6
SimplePatch (Ours) 6:10* v 6 86.7
Sim_plcPult:h (Ours) 6 - 104 X v 6 86.9



Patch based K-nearest-neighbors classifier

Linear classification ImageNet

Qurs
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When Is nearest neighbor meaningful ?
Beyer et al. (1999)

Dimensionality and nearest-neighbors

« Under a broad set of conditions, for as few as 10-15 dimensions,
the distance to the nearest datapoint approaches the distance to the
farthest datapoint »

« Scenario where high-dimensional nearest neighbors are
meaningful occurs when the underlying dimensionality of the data is
much lower than the actual dimensionality »



Dimensionality study

Qurs

Dimensionality measures

 Covariance dimension : sum of covariance eigenvalues

* Nearest-neighbor dimension : 4, (p) (

Covariance dimension
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Ablation study on CIFAR 10

Patch based K-nearest-neighbors classifier
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* Large number of neighbors reduces overfitting
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* Patch size does not affect the performance
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» Whitening W = (A +X)~!/2 does not need regularization




Patch based K-nearest-neighbors classifier

Qurs

Remarks

Competitive performance

Form of low-dimensionality in natural image patches
Mahanalobis distance is key aspect

Form of regularity lies in the data

A large perfomance gap, but using 2K patches for
1,3M Images



Questions ?

Paper: https://openreview.net/forum?id=aYuZO9DIdnn
Ph.D. defense in May, https://www.di.ens.fr/louis.thiry/
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