Efficiency of local methods in image classification and energy regression in physics

Louis Thiry, ENS Paris https://www.di.ens.fr/louis.thiry/

• Predict the class of an image in a set S of classes.

• Given training samples (x_i, y_i) annotated by humans, find an approximation of the classification function F

• MNIST database, 28x28 images, 50,000 samples, 10 classes

• CIFAR-10, 50,000 samples, 32x32 images, 10 classes

airplane	🛁 🔌 📈 🌳 = 🛃 🔐 🛶 💒
automobile	ar 😪 🚵 🚵 🐭 😂 📾 🐝
bird	in the second
cat	💱 📚 🚔 🔊 🎇 🗶 🌠 🍋 🤝 蒙
deer	
dog	994 📣 👟 🍋 🎒 👘 🐼 🔊

 ImageNet, 1,3 million samples, 256x256 images, 1000 classes

standard schnauzer giant schnauzer rhodesian ridgeback

boston bull

english_setter

appenzeller

affenpinscher

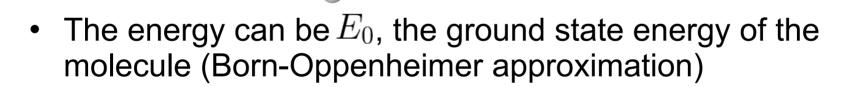
rhodesian ridgeback

border terrier

brittany_spaniel

• Predict the energy of a set of interacting atoms.

$$F: (r_1, Z_1, \ldots, r_N, Z_N) \mapsto E$$



- It can be the Free energy $F = E_0 TS$
- Energy rules stability and chemical properties

- Find an approximation of the energy function given training samples (\boldsymbol{x}_i, y_i)

<u>Samples</u>

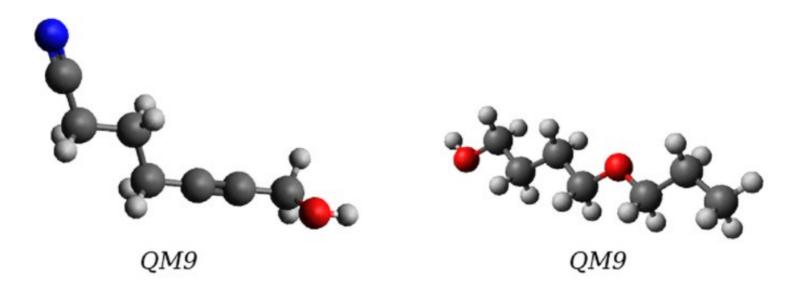
- Experimental data
- Numerical quantum mechanics computations whose cost scales likes N² to N⁸

<u>Goals</u>

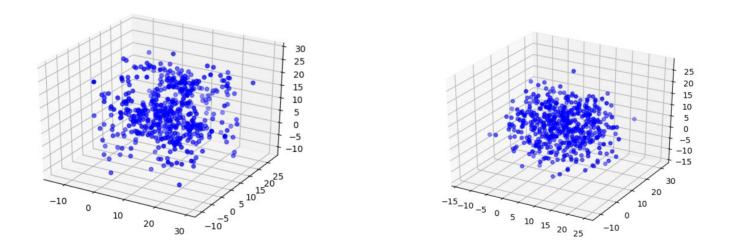
• Speed up computations and tackle large systems data

• QM9 database

134,000 organic molecules with up to 9 non-Hydrogen atoms Ground-state energies computed using DFT



Graphene database
 2,500 periodic cells of carbon atoms solids (graphene)
 Ground-state energies computed using MBD



Curse of dimensionality

The input variable x is in high-dimension.

- A 256x256x3 image lies in dimension d = 196,608
- A 512 atoms cell of graphene lies in dimension d = 1536

Under usual Lipschitz regularity assumptions

$$||F(x) - F(x')|| \le ||x - x'||$$

We need ϵ^{-d} samples to have a precision ϵ in the approximation

Deep Convolutional Neural Networks

ImageNet database

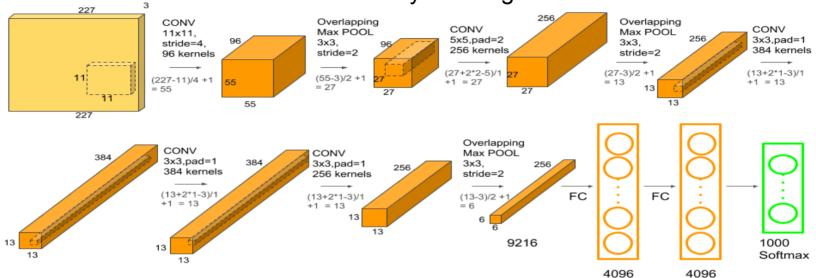
- 1,3 M images in dimension $\sim 10^{5}$
- 1000 image classes
- 84 % classification accuracy with ResNet (He et al, 2016)

QM9 database

- 134 K molecules in dimension ~10⁴
- Energies ranging from -400 to -3000 kcal/mol
- MAE of 0.3 kcal/mol with SchNet (Schutt et al, 2017)

AlexNet

Krizhevsky et al. 2012 59% accuracy on ImageNet



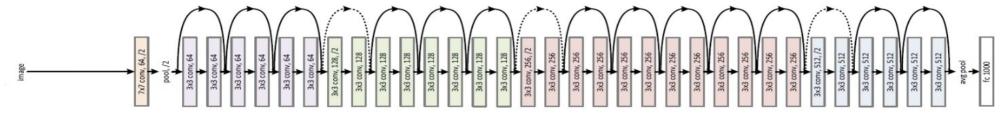
Convolutional filters in the first layer

ResNet

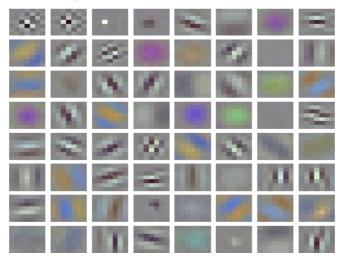
He et al. 2016

80.2 % accuracy on ImageNet

- skip connections
- up to 152 convolutional layers

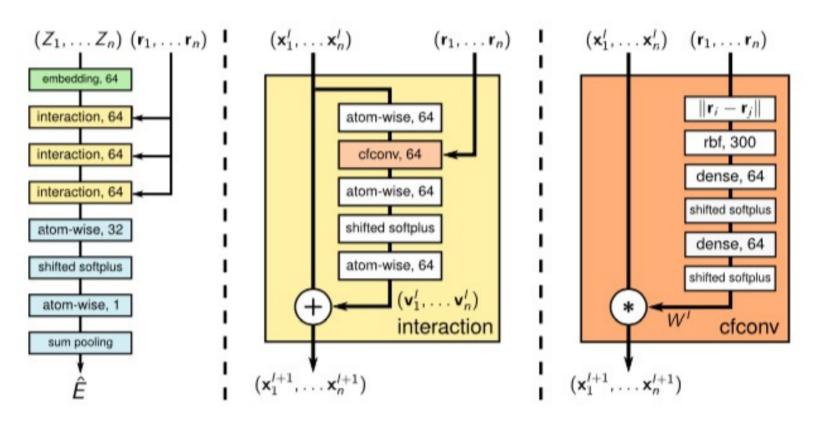


Convolutional filters in the first layer



SchNet

Schutt et al. 2017 MAE 0.3 kcal/mol on QM9



Deep CNNs in image classification and energy regression

- CNN approximate well energy and classification functions
- The number of data is far below an exponential of the dimension (of the order of the dimension)
- What are these functions underlying regularity properties?
- Are there similarities between these two problems?

Image classification and energy regression

• Local methods based on atomic neighborhoods and patches in images are important methods.

- Invariance properties drive atomic neighborhood or image patches :
 - rotation and translation for atoms
 - scale, lightening, and deformation for image patches.

Image classification and energy regression

Multi-scale problems

- Energy results from different scale interactions:
 - Ionic and covalent bonds at short range,
 - Van-der-Waals interactions at the mesoscale
 - Long-range Coulomb interactions.
- One can classify an image using
 - texture information at a small scale
 - pattern information at a larger scale
 - shape information at the image scale.

Image classification and energy regression

Differences

- Regression vs. classification.
- Continuous 3D space vs. variable sampling grid (32² to 2048²)
- Absolute distances (Angstrom) vs. variable number of pixels
- Kernel methods are on par with CNNs for energy regression. CNNs far above kernel methods for image classification.

SOAP for energy regression Bartok et al. 2013

Principle

• Energy is a sum of local energies E_l of the neighborhood x^i

$$E(r_1, Z_1, \dots, r_N, Z_N) = \sum_{i=1}^{N_a} E_i(x^i)$$

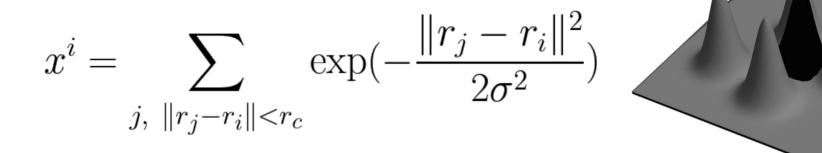
• Local energies are computed with a Kernel Ridge Regression

$$E_l(x^i) = \sum_{n=1}^{N_d} \alpha_n k(x^i, x_n)$$

SOAP for energy regression

Bartok et al. 2013

Atomic neighborhood representation



The scalar product $\langle x^i, x \rangle$

- is invariant to global translation of the atoms
- is stable to small move of the atomic position

SOAP for energy regression Bartok et al. 2013

Atomic neighborhood similarity kernel

$$k(x^i, x) = \int_{R \in SO_3} |\langle x^i, R. x \rangle|^p dR$$

This kernel is invariant to rotation of the atoms by construction.

SOAP for energy regression

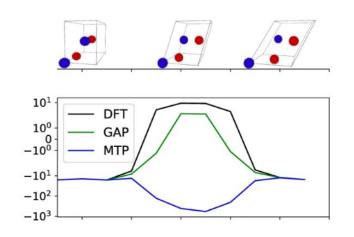
Bartok et al. 2013

QM9 Database

- MAE of 0.4 kcal/mol.
- Optimal neighborhood size is 3 A
- MAE of 0.25 kcal/mol when combining 2 SOAP

Solids database

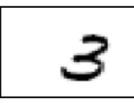
- Graphene solids
- Silicon solids
- Ag-Pd alloys

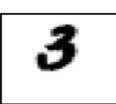


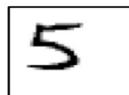
Invariant based digits classification MNIST database

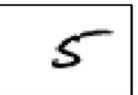
3681796691 6757863485 2179712845 4819018894

Invariance to translations, stability to deformations

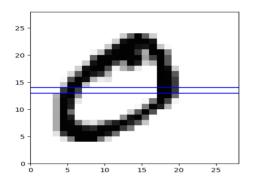


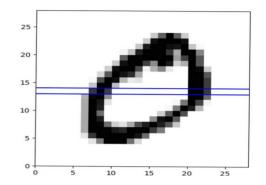


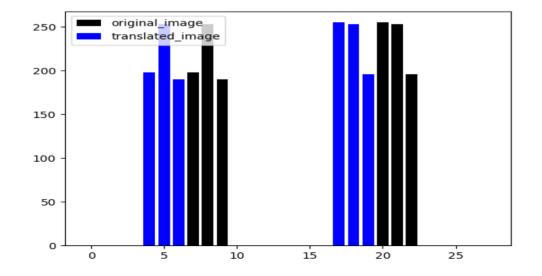




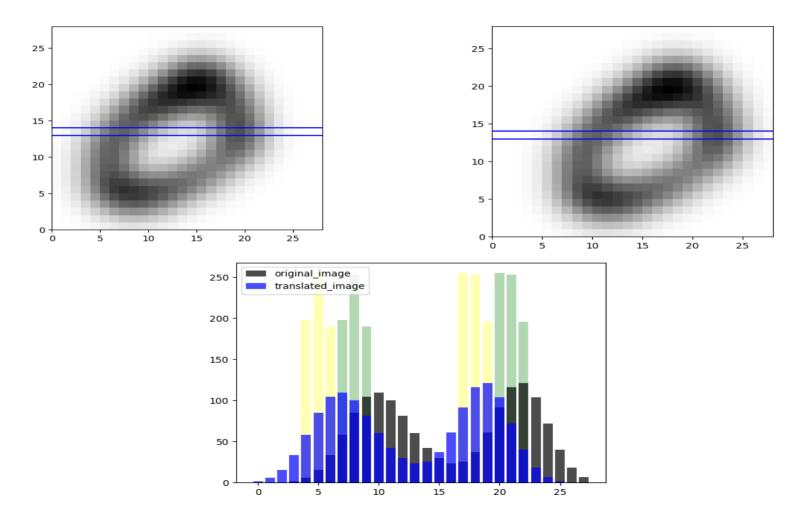
I₂ metric Instability to translations



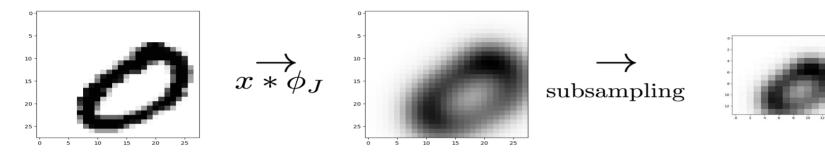




Local averaging



Stability to geometric transformations

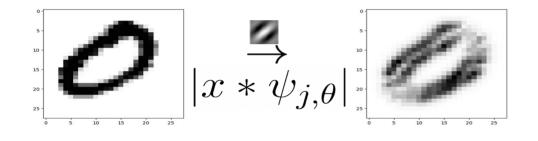


Convolution with Gaussian kernel ϕ_J :

- stable to geometric deformations
 dimensionality reduction via subsampling
 lots of details are lost

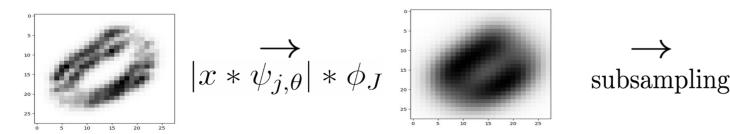
Preserving signal information

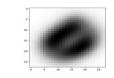
Recover information lost in averaging



Gabor wavelets $\psi_{j,\theta}$

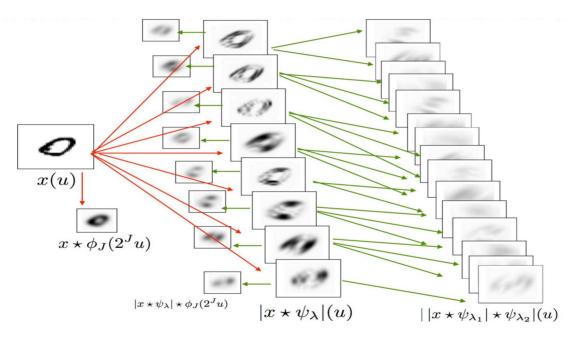
Stability to geometric transformations





Scattering transform

Mallat (2011), Mallat, Bruna (2012)



Theorem

 $\|Sx_{\tau} - Sx\| \le K \|x\| \|\nabla \tau\|_{\infty}$

Dataset	Scattering Transform	AlexNet	ResNet
MNIST 28 ² digit images 10 classes	>99 %	>99 %	>99 %
67	817 578 797 190	634	85 45

Dataset	Scattering Transform	AlexNet	ResNet
CIFAR-10 32 ² object images 10 classes	82.3 %	89.1 %	95.5 %

Dataset	Scattering Transform	AlexNet	ResNet
ImageNet 224 ² object images 1000 classes	24.3 %	58.7 %	80.2 %

<u>Remarks</u>

- Invariant representation is competitive for digits
- Large performance gap on ImageNet
- Energy regression:
 - Invariant properties are exact
 - Variabilities are geometry and atomic species
 - Samples are clean
- Image classification:
 - Local invariant properties
 - Huge variabilities (texture, background, noise...)
 - Samples are noisy

Patch based classification with deep CNN

Dense patch extraction

6² patches for 32² CIFAR images

Mahalanobis distance

random vector X with covariance $\Sigma = P \Lambda P^T$

$$D_M(x, x') = \sqrt{(x - x')^T \Sigma^{-1} (x - x')}$$

whitening operator w

$$\operatorname{Cov}(w(\mathbf{X})) \equiv I_n$$

$$w : \mathbf{X} \mapsto O\Lambda^{-1/2} P^T (\mathbf{X} - \mu), \quad \forall O \in O_n(\mathbb{R})$$
$$\|w(x) - w(x')\| = D_M(x, x')$$

Patch based K-nearest-neighbors classifier Ours Method

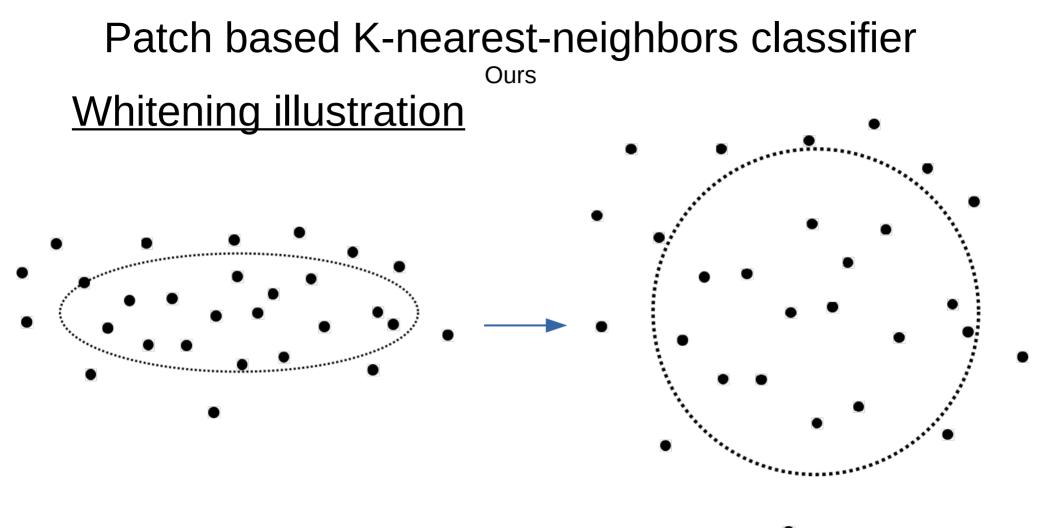
- Randomly select a set D of patches
- Regularized whitening operator $W = (\lambda I + \Sigma)^{-1/2}$
- For each image patch $p_{i,x}$ compute set of Mahanalobis distances

$$\mathcal{C}_{i,x} = \{ \|Wp_{i,x} - Wd\| \, d \in \mathcal{D} \}$$

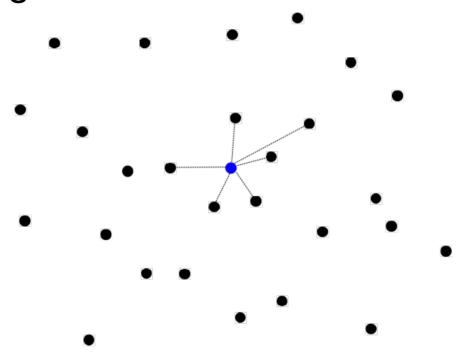
• K nearest neighbors encoding

 $\tau_{i,x}$ the K-th smallest element of $\mathcal{C}_{i,x}$

$$\phi(x)_{d,i} = \begin{cases} 1, & \text{if } \|p_{i,x} - d\| \le \tau_{i,x} \\ 0, & \text{otherwise.} \end{cases}$$



K nearest neighbors



Classification decision

- Voting system to aggregate patch evidence
- Random patch do not really have a class
- Linear classifier optimized on the training set

$$F(x) = \sum_{p \in x} \sum_{k \in \text{KNN}(x)} w_k$$

Linear classification on CIFAR-10

Method	$ \mathcal{D} $	VQ	Online	P	Acc.
Coates et al. (2011)	$1\cdot 10^3$	\checkmark	\times	6	68.6
Ba and Caruana (2014)	$4\cdot 10^3$	×	\checkmark	-	81.6
Wavelets (Oyallon and Mallat, 2015)	-	×	×	8	82.2
Recht et al. (2019)	$2\cdot 10^5$	×	×	6	85.6
SimplePatch (Ours)	$1\cdot 10^4$	~	\checkmark	6	85.6
SimplePatch (Ours)	$6\cdot 10^4$	~	\checkmark	6	86.7
SimplePatch (Ours)	$6\cdot 10^4$	×	\checkmark	6	86.9

Linear classification ImageNet

Method	$ \mathcal{D} $	VQ	P	Depth	Resolution	Top1	Top5
Random (Arandjelovic et al., 2017)	-	×	-	9	224	18.9	-
Wavelets (Zarka et al., 2019)	-	×	32	2	224	26.1	44.7
SimplePatch (Ours)	2.10^{3}	\checkmark	6	1	64	33.2	54.3
SimplePatch (Ours)	2.10^{3}	\checkmark	12	1	128	35.9	57.4
SimplePatch (Ours)	2.10^{3}	×	12	1	128	36.0	57.6

When is nearest neighbor meaningful? Beyer et al. (1999)

Dimensionality and nearest-neighbors

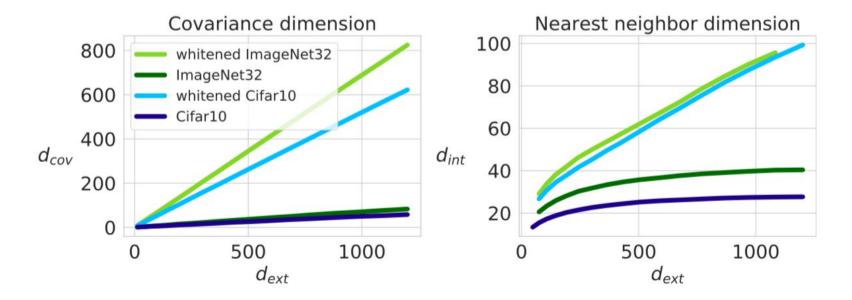
- « Under a broad set of conditions, for as few as 10-15 dimensions, the distance to the nearest datapoint approaches the distance to the farthest datapoint »
- « Scenario where high-dimensional nearest neighbors are meaningful occurs when the underlying dimensionality of the data is much lower than the actual dimensionality »

Dimensionality study

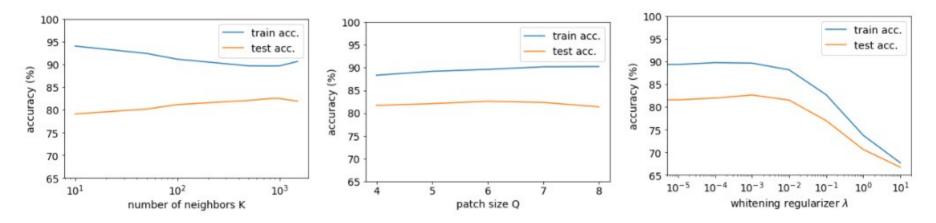
Dimensionality measures

- Covariance dimension : sum of covariance eigenvalues
- Nearest-neighbor dimension : $d_{int}(p) = \left(\frac{1}{K}\right)$

$$d_{\rm int}(p) = \left(\frac{1}{K-1} \sum_{k=1}^{K-1} \log \frac{\tau_K(p)}{\tau_k(p)}\right)^{-1}$$



Ablation study on CIFAR 10



- Large number of neighbors reduces overfitting
- Patch size does not affect the performance
- Whitening $W = (\lambda I + \Sigma)^{-1/2}$ does not need regularization

Remarks

- Competitive performance
- Form of low-dimensionality in natural image patches
- Mahanalobis distance is key aspect
- Form of regularity lies in the data
- A large perfomance gap, but using 2K patches for 1,3M images

Questions ?

Paper: https://openreview.net/forum?id=aYuZO9DIdnn Ph.D. defense in May, https://www.di.ens.fr/louis.thiry/