Implicit eddy parameterization for Quasi-geostrophic models

Louis Thiry, ERC STUOD Postdoc, IRMAR, INRIA, ODISSEY Team

Joint work with Long Li, Etienne Mémin (INRIA) and Guillaume Roullet (UBO, LOPS).

Multi-layer quasi-geostrophic model

- *n* stacked layer, thickness H_k and density ρ_k .
- State variables:

pressure: $\mathbf{p} = (p_1(x, y), \dots, p_n(x, y))$ potential vorticity (PV): $\mathbf{q} = (q_1(x, y), \dots, q_n(x, y))$

 $\begin{aligned} \partial_t \mathbf{q} + (\mathbf{u} \cdot \nabla) \mathbf{q} &= 0 & (PV \text{ advection}) \\ \Delta_H \mathbf{p} - f_0^2 A \mathbf{p} &= f_0 \mathbf{q} - f_0 \beta y & (elliptic) \\ - f_0 \mathbf{u} &= \partial_y \mathbf{p}, \quad f_0 \mathbf{v} &= \partial_x \mathbf{p} & (geos. \ velocity) \end{aligned}$

$$A = \begin{bmatrix} \frac{1}{H_1 g'_1} & \frac{-1}{H_1 g'_1} & \ddots & \ddots \\ \frac{-1}{H_2 g'_1} & \frac{1}{H_2} \left(\frac{1}{g'_1} + \frac{1}{g'_2} \right) & \frac{-1}{H_2 g'_2} & \ddots \\ \vdots & \ddots & \vdots & \ddots \\ \vdots & \vdots & \frac{-1}{H_n g'_{n-1}} & \frac{1}{H_n g'_{n-1}} \end{bmatrix}$$

Idealized double-gyre configuration

- 3 layers, $H_k = 350, 750, 2900$ m.
- Rectangular domain, 3480×4800 km, solid boundaries, free-slip b.c.
- Baroclinic Rossby radii: 39, 22 km.
- Linear bottom drag, idealized wind stress on top, magnitude au_0

Numerical implementation

Following Hogg et al. (2014)

- Usual 5-points laplacian discretization.
- Advection with 9-points energy-conserving Arakawa Jacobian.
- Additional hyperviscosity set with Munk rule.
- Elliptic equation solved with type-I Discrete Sine Transform.
- Heun-RK2 time stepping.

$$\partial_t \mathbf{q} = \frac{1}{f_0} J(\mathbf{q}, \mathbf{p}) - \frac{a_4}{f_0} \Delta^3 \mathbf{p} + \text{forcing} + \text{drag} \qquad (PV \text{ advection})$$
$$(\Delta - f_0^2 A) \mathbf{p} = f_0 \mathbf{q} - f_0 \beta (y - y_0), \qquad (\text{elliptic})$$

https://github.com/louity/qgm_pytorch

Eddy-resolving resolution

- 769×961 grid, resolution 5km.
- $\tau_0 = 0.02 \text{ N/m}^2$
- Hyperviscosity $a_4 = 1.7 \ 10^9 \ m^4 s^{-1}$
- Apparition of proper eastward jet surrounded by eddies.
- 40 yrs spin-up animation

Eddy-resolving resolution

• Rich meso-scale eddies field in the recirculation zone.

Layers relative vorticity, 5km, 40y spinup

Eddy-permitting resolution

- 193×241 grid, resolution 20km.
- Hyperviscosity $a_4 = 5.6 \ 10^{10} \ m^4 s^{-1}$
- No proper eastward jet.
- 40yrs spin-up animation

Layers zonal velocity, 20km, 40y spinup

Eddy-permitting resolution

• Almost no eddies.

Layers relative vorticity, 20km, 40y spinup

Non eddy-resolving resolution

- 97×121 grid, resolution 40km.
- Hyperviscosity $a_4 = 5 \ 10^{11} \ m^4 s^{-1}$
- Tiny eastward jet without any eddy around.
- 40 yrs spin-up animation

 \rightarrow Need for eddy parameterizations.

Existing parameterizations

Eddy parameterization for QG models tested on double-gyre configuration:

- Zanna et al. (2017): deterministic + stochastic.
- Berloff et al. (2021): deterministic data-driven.
- Li et al. (2020): stochastic + mean term (= deterministic).
- Uchida et al. (2022): deterministic.

Deterministic methods can reproduce the jet.

Stochastic ones improves variability and finer-scale structures.

 \longrightarrow Importance of good deterministic parameterization as basis for stochastic ones.

Implicit parameterization

Roullet and Gaillard (2022): A fast monotone discretization of the rotating shallow water equations.

"Monotone? Because what is the point of invoking an adhoc dissipation or a sophisticated SGS theory when a good numerics can do both?" Analogous of implicit-LES for eddy parameterizations.

Implicit parameterization

Roullet and Gaillard (2022): A fast monotone discretization of the rotating shallow water equations.

"Monotone? Because what is the point of invoking an adhoc dissipation or a sophisticated SGS theory when a good numerics can do both?" Analogous of implicit-LES for eddy parameterizations.

Ingredients:

- **p**, **q** on staggered grid
- Finite volume for PV and material conservation.
- High-order WENO (Balsara et al., 2016) interpolation for advection.
 ⇒ implicit diffusion replaces hyper-viscosity.
- Stable strongly preverving RK3 time-stepping.

Implicit parameterization

$$\partial_t \mathbf{q} = -\underbrace{\nabla \cdot (\mathbf{u}\mathbf{q})}_{\text{WENO5 interp.}} + \text{forcing} + \text{drag} \qquad (PV \text{ advection})$$
$$(\Delta - f_0^2 A) \mathbf{p} = \underbrace{f_0 \mathbf{q} - f_0 \beta(y - y_0)}_{4\text{-points interp.}} \qquad (\text{elliptic})$$

p and **q** staggered grids:

Results in non-eddy-resolving resolution

- 97×121 grid, resolution 40km.
- No hyper-viscosity.
- Small eastward jet pushing.
- 40 yrs spin-up animation

Results in eddy-permitting resolution

- 193×241 grid, resolution 20km.
- No hyper-viscosity.
- Half-length eastward jet.
- 40 yrs spin-up animation

Layers zonal velocity, 20km, 40y spinup

Results in eddy-permitting resolution

• Large meso-scale eddies in the recirculation zone.

Top-layer relative vorticity, 20km, 40y spinup

트▶ ▲ Ē ▶ Ē ∽ Q (C

Results in eddy-resolving resolution

- 769×961 grid, resolution 5km.
- Symmetry breaking and effective resolution

Standard QG Our method 0+0

Top-layer relative vorticity, 5km, 1.5y spinup

Results in eddy-resolving resolution

• Symmetry breaking and effective resolution

Top-layer relative vorticity, 5km, 1.5y spinup

Results in eddy-resolving resolution

• Symmetry breaking and effective resolution

Top-layer relative vorticity, jet-region, 5km, 40y spinup

WENO5 implicit parameterization

- Accelerates symmetry breaking in the eddy-resolving resolution.
- Produces a (small) jet in non-eddy-resolving and eddy-permitting resolutions.
- Allows removing ad-hoc hyperviscosity.
- Removes the viscosity CFL condition: possibly larger dt.
- Still too much dissipating...

q to p interpolation

$$\left(\Delta - f_0^2 A\right) \mathbf{p} = \operatorname{Interp}_{q \to p} \left(f_0 \mathbf{q} - f_0 \beta(y - y_0) \right)$$
(elliptic)

- Interpolation needed to solve elliptic equation
- 4-points interpolation has bad frequency response
 - \implies high-frequency are discarded before solving elliptic equation

q to **p** interpolation with DST-II

$$(\Delta - f_0^2 A)\mathbf{p} = \operatorname{Interp}_{q \to p} (f_0 \mathbf{q} - f_0 \beta(y - y_0))$$

- Elliptic equation solved with DST-I
- DST-II(\cdot) = DST-I(Spectral-Interp_{q $\rightarrow p$}(\cdot)) Spectral interpolation \implies highest possible order

DST-I and DST-II

 (x_n) , $n = 0 \dots N - 1$ is a real vector:

$$DST-I[x]_{k} = \sum_{n=0}^{N-1} x_{n} \sin\left[\frac{\pi}{N+1}(n+1)(k+1)\right] \qquad k = 0, \dots, N-1$$
$$DST-II[x]_{k} = \sum_{n=0}^{N-1} x_{n} \sin\left[\frac{\pi}{N}\left(n+\frac{1}{2}\right)(k+1)\right] \qquad k = 0, \dots, N-1.$$

WENO+DST-II, non-eddy-resolving resolution

- 97×121 grid, resolution 40km.
- No hyper-viscosity.
- Jet destructed.
- Grid point oscillations in vorticity near the boundary.
- 40 yrs spin-up animation

WENO+DST-II, eddy-permitting resolution

- 193×241 grid, resolution 20km.
- Pretty long jet surrounded by large eddies.
- Few grid point oscillations (vs 40km).
- 40 yrs spin-up animation

WENO+DST-II, eddy-resolving resolution

- 769×961 grid, resolution 5km.
- Longer jet, more eddies, turbulence all over the domain.
- Almost no grid point oscillations.
- 40 yrs spin-up animation

Rossby waves reflection

Vallis, 2017, chapitre 6:

- " In mid-latitudes, the reflection at a western boundary generates Rossby waves that have a short zonal length scale [...], which means that their meridional velocity is large."
- "If the mean flow is westward so that \overline{u} is negative, then very short waves will be unable to escape from the boundary: the waves will be trapped in a western boundary layer."
- "Even with no mean flow, the short zonal length scale means that frictional effects will be large."

Need for dissipation \rightarrow Munk western boundary layer with laplacian viscosity.

Implicit eddy parameterization

- 3 ingredients:
 - Staggered grid and WENO-5 finite volume for PV advection: high-order, implicit dissipation.
 - DST-II interpolation: preserve high-frequencies.
 - Munk western boundary layer: model large frictional effects.

PyTorch implementation

- 500 lines of code
- seamless CPU/GPU, float32/float64.
- differentiable
- 3.910⁻⁹s per grid-point per Runge-Kutta step on NVIDIA GeForce RTX 2080 Ti GPU (1.910⁻⁹s for Arakawa+hyperviscosity).

Arakawa vs IEP, eddy-permitting

|ロト | 御 | | | 臣 | | | 臣 | | のの()

Arakawa vs IEP, eddy-permitting

ロト 4回 ト 4 ヨト 4 ヨト - ヨー のなの

Arakawa vs IEP, eddy-permitting

36 / 43

Arakawa, 2.5 km

Relative vorticity, units of f0

Coherence of the mean across resolution

Conclusions

Implicit eddy parameterization

- based on careful discretization choices.
- easy to implement and computationally cheap
- coherent mean states across resolutions.
- but no eddies in non-eddy-resolving resolution.
- increases effective resolution, accelerates spin up and symmetry breaking (eddy-resolving resolution).
- allows removing ad-hoc dissipation.
- is complementary to explicit parameterizations, e.g. LU.

Take home message

- Preserving high-frequencies increases significantly the effective resolution.
- Localized dissipation guided by the physics.

Questions ?

< 🗇 🕨

★ E ► < E ►</p>

References I

- Dinshaw S Balsara, Sudip Garain, and Chi-Wang Shu. An efficient class of weno schemes with adaptive order. *Journal of Computational Physics*, 326:780–804, 2016.
- Pavel Berloff, Evgeny Ryzhov, and Igor Shevchenko. On dynamically unresolved oceanic mesoscale motions. *Journal of Fluid Mechanics*, 920, 2021.
- AM Hogg, JR Blundell, WK Dewar, and PD Killworth. Formulation and users' guide for q-gcm, 2014.
- Long Li, Etienne Mémin, and Bertrand Chapron. Quasi-geostrophic flow under location uncertainty. In *Seminar of Stochastic Transport in Upper Ocean Dynamics (STUOD) project*, pages 1–52, 2020.
- Guillaume Roullet and Tugdual Gaillard. A fast monotone discretization of the rotating shallow water equations. *Journal of Advances in Modeling Earth Systems*, 14(2):e2021MS002663, 2022.

- Takaya Uchida, Bruno Deremble, and Stephane Popinet. Deterministic model of the eddy dynamics for a midlatitude ocean model. *Journal of Physical Oceanography*, 2022.
- Laure Zanna, PierGianLuca Porta Mana, James Anstey, Tomos David, and Thomas Bolton. Scale-aware deterministic and stochastic parametrizations of eddy-mean flow interaction. *Ocean Modelling*, 111:66–80, 2017.