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A.I. art narratives

I ”Making a curatorial choice” Mario Klingelmann.
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A.I. art narratives

I ”Embrace the machine imperfections”, Sougwen Chung

I ”Give to the [algorithm’s] fragments order and purpose,
inhabit them until they became our own”, Claire Evans

→ understand the algorithm’s agency in the creative process.

3 / 19



A.I. artwork : a two-body problem

Goal: Develop a methodology to understand algorithm
contribution in an interactive creative process.
Two components

I Algorithm : GAN generating image, RNN controlling robot,
NN generating sentences...

I Artist : expresses its subjectivity from the algorithm creation.

Simple case study

I Neural style transfer : ”backtrackable” output.

I Human painter on a canvas: classical playground and feelings.
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Style Transfer Algorithms

Relies on numerical quantification of ’content’ and ’style’ : strong
intuitions, but hard define semantically, various choices in practice.

I Neural style transfer [Gatys et al., 2015]: style and content
defined with CNN features, solve optimization problem.

I [Ulyanov, 2016, Johnson et al., 2016]: feedforward versions.

I STROTSS [Kolkin et al., 2019] : self-similarity for content
and optimal transport for style
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Style Transfer Algorithms

6 / 19



Understanding the algorithm

Style transfer evaluation [Jing et al., 2017] :

I Computational cost : not relevant here.

I Quantitative evaluations : measure how well the quantitative
objective has been achieved.

I Crowd-sourcing approaches (AMT):
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Limits of quantitative evaluation

STROTSS method [Kolkin et al., 2019]

I style similarity defined with earth movers distance (EMD)

I uses relaxed earth movers distance (REMD) :

REMD ≈ 0.6 EMD

I Sinkhorn earth movers distance [Cuturi, 2013] (SEMD) :

SEMD ≈ 1.05 EMD
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Limits of quantitative evaluation

(left) content, (right) style
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Limits of quantitative evaluation

STROTSS outputs with REMD (left) and SEMD (right)
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Limits of crowd-sourcing based evaluation.

I novice people opinions

I limited to a style/content preservation trade-off

I capture an average taste/trend
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Qualitative Predictive Evaluation
Pair dataset from Cathédrale de Rouen series, Monet.
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Qualitative Predictive Evaluation

Figure: Detail of Le Portail de la cathédrale de Rouen au soleil, Monet,
corresponding photograph and style transfer outputs (using STROTSS
and GATYS).
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Style Transfer in Painting Experiments

Method: Use style transfer outputs in interactive games with a
painter.

Goal: Observe the agency intertwining between painter and
algorithms.

Motivate painters to the experiment:

I Algorithms could be a medium to interact with their own past
productions.

I Algorithm generated outputs as computational landscapes.

14 / 19



Set-up

Set-up: Project style transfer outputs on the canvas and update it
along the painting.

We focus here on painting portraits with a few important rules

I All the painters can see are stylized versions of an initial
portrait.

I Algorithms outputs are projected directly on the canvas.

I The algorithms outputs are suggestions.
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Some Feed-back of the interaction

Some artists feedback

I Tracing the agency by the colors.

I Loosing track of the original real material along the paintings.

I Human and machine spaces are different. The interface itself
plays a role in characterizing the computational creativity.

I Algorithms are computational catalysts.
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Conclusion

I Expert resources are under-exploited (e.g. evaluation of style
transfer method).

I Computational creativity fields address the word choice in the
creative agency of the algorithms in creative processes.

I ”Simple” A.I. algorithms are enough to have rich agency
structures between algorithms’ outputs and painters.
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Questions

I louis.thiry@ens.fr

I thomas.kerdreux@inria.fr
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