Differentiable ocean models from large to small scales

Louis Thiry INRIA Paris, ANGE team

Ocean dynamics: a large range of scales

 $10^6\ {\rm m}$ to $10^2\ {\rm m}$

Hierarchy of dynamical equations

 \rightarrow deep denoiser priors

 \rightarrow physical params

Starting from simple models...

simplifications

Quasi-geostrophic scaling of Shallow-water eqs

- q: potential vorticity
- u, v: horizontal velocity
- $\mathbf{u}, \mathbf{v} = \nabla^{\perp} (\Delta \lambda Id)^{-1} \mathbf{q}$ (elliptic eq.)

$$\partial_t \mathbf{q} + \nabla \cdot \left(\mathbf{q} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \right) = \underset{\text{forcing}}{Q}$$

Usual discretization (Uchida et al. 2022)

- Advection: second order linear Arakawa (1981)
- Additional bilaplacian dissipation (hand-tuned coefficient)
- github.com/louity/qgm_pytorch (400 lignes)

Idealized Gulf-stream configuration, $R_d = 40$ km.

 $dx \longrightarrow R_d$: Gulf-stream severely impacted

Working on the advection scheme (Thiry et al., 2023)

- Finite-volume, staggered grid
- Second-order discretization for $\nabla\cdot,\ \nabla\wedge,\ \nabla^{\perp}$
- Flux: non-linear order 3/5 WENO (Borges et al., 2008)
- Implicit dissipation \implies no explicit dissipation, no tuning

Usual (top) vs. our (bottom) QG discretization on idealized Gulf-stream config (ours costs $\sim 2\times$ usual)

Non-rectangular domain with capacitance matrix method

Realistic Gulf-stream simulation (20min runtime)

Non-rectangular domain with capacitance matrix method

Rankine vortex shear instability resolved in tripole

What is the point of WENO-5 vs WENO-3 ?

Evolution of $\|\mathbf{q}\|_2$ at different resolution using WENO-3/5

WENO-5 vs WENO-3

Final state, 1024² WENO-5, 7min30 runtime

WENO-5 vs WENO-3

Final state, 1024² WENO-3, 6min runtime

WENO-5 vs WENO-3

Final state, 512² WENO-5, 1min runtime

$$\partial_t \mathbf{q} + \nabla \cdot \left(\mathbf{q} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \right) = 0$$

Why does the enstrophy decrease ? \rightarrow numerical dissipation

Lessons from our QG new implementation

simplifications

- Benefits of high-order non-linear advection scheme
 - Large-scale structures (Gulf-stream)
 - Small-scale structures (Eddies and filaments)
 - No parameter tuning (Bilaplacian eddy viscosity)
- $\bullet\,$ Extension to non-rectangular geometries $\rightarrow\,$ realistic Gulf-stream
- Implicit dissipation diagnostic (G. Roullet)

Moving to the right...

QG variable: $\mathbf{q} \neq$ Shallow-water variables: $\mathbf{u}, \mathbf{v}, \eta$ (free-surface)

A new formulation of Shallow-water equations

$$\begin{array}{l} \partial_t^{\mathrm{qg}}\left(\mathbf{u},\,\mathbf{v},\,\boldsymbol{\eta}\right) = P(\partial_t^{\mathrm{sw}}(\mathbf{u},\mathbf{v},\boldsymbol{\eta}))\\ P = G \circ (Q \circ G)^{-1} \circ Q \qquad \qquad (\text{projecteur QG}) \end{array}$$

Continuous version in Frederic Charve Thesis.

Benefits for implementation

$\mathsf{Quasi-Geostrophic\ scaling\ }\Longleftrightarrow\ \mathsf{class\ inheritance}$

```
lass SW:
   """Concise implementation of multilayer shallow-water model."""
   def init (self, param):
   def compute time derivatives(self):
       self.compute diagnostic variables()
       dt h = self.advection h()
       dt u. dt v = self.advection momentum()
       return dt u, dt v, dt h
class OG(SW):
   """QG as projected SW."""
   def init (self, param):
       super(). init (param)
   def compute time derivatives(self):
       dt u sw, dt v sw, dt h sw = super().compute time derivatives()
       self.dt u sw, self.dt v sw = dt u sw, dt v sw
       dt u qg, dt v qg, dt h qg = self.compute qg projection(dt u sw, dt v sw, dt h sw)
       return dt u gg, dt v gg, dt h gg
```

Comparing QG and SW on a small system

QG equations valid for $Bu \leq 1$ and $Ro \ll 1$.

Vortex shear instability Ro = 0.01 and Bu = 1

Vortex shear instability Ro = 0.5 and Bu = 1

QG equations valid for $Bu \leq 1$ and $Ro \ll 1$.

Vortex shear instability Ro = 0.5 and Bu = 1

Lessons from our SW new implementation

Simplifications

- Restoring the continuity in variables
- QG implementation via class inheritance, simply with a projection
- Compare QG and SW physics with same numerics

Data assimilation

- \rightarrow 4D Var
- \rightarrow deep denoiser priors

 \rightarrow emulators

 \rightarrow physical params

Data assimilation

Ocean observations

- Sea surface height (SSH)
- Sea surface temperature (SST)

(a) SSH NADIR (b) SSH SWOT (c) SST les 1 et 30 sept. 22 Source: NASA earth observatory, Copernicus Marine.

Data assimilation with 4D Var

lower dimension

$$\begin{array}{lll} \boldsymbol{\mathsf{X}}^{*} & = \underset{\boldsymbol{\mathsf{X}}_{t_{0}}}{\operatorname{argmin}} & \|\mathcal{H}(\boldsymbol{\mathsf{X}}) - \boldsymbol{\mathsf{y}}\|^{2} + \mathcal{L}_{\operatorname{prior}}(\boldsymbol{\mathsf{X}}) \end{array}$$

• $X_{t_0} \rightarrow X$ with the model

• argmin ? automatic differentiation (PyTorch)

Simple models (QG, SW) \implies low-dimension , strong regularization

Current products on copernicus marine

Products 3

and Forecast

MEDSEA_ANALYSISFORECAST_PHY_006_013 Models

Med Sea, 0.042° × 0.042° × 141 levels Since 29 Nov 2020, sub-hourly, hourly, daily,... Mixed layer thickness, salinity, sea surface height, temperature, velocity

Mediterranean Sea Physics Reanalysis

MEDSEA_MULTIYEAR_PHY_006_004 Models

Med Sea, 0.042° × 0.042° × 141 levels Since 1 Jan 1987, hourly, daily, monthly, yearly... Mixed layer thickness, salinity, sea surface height, temperature, velocity

Mediterranean Sea - High Resolution Diurnal Subskin Sea...

SST_MED_PHY_SUBSKIN_L4_NRT_010_036 Satellite (L4) Med Sea, 0.0625° × 0.0625° Since 1 Jan 2019, hourly Temperature

- Observation: 6km, surface only
- Reanalysis: primitive equations, $4 \text{km} \times 141$ vertical levels (!!!)

Machine learning

ightarrow automatic differentiation

II. Data assimilation

- ightarrow 4D Var
- \rightarrow deep denoiser priors

III. Machine learning

- \rightarrow emulators
- ightarrow physical params

Available Data for Machine Learning

Ocean: only surface observations, Copernicus poor quality reanalysis **Atmosphere**: lots of observations, ECMWF ERA5 high-quality reanalysis

- january 1940 to present
- whole atmosphere, res. 25km, 137 vertical levels
- time resolution: 1h

NeuralGCM: hybrid physics + ML model

Differentiable physical dynamical core $+\ machine\ learned\ physics\ on\ the\ vertical$

https://github.com/google-research/dinosaur , 8609 of Python-JAX code.

Questions ?

References I

- Rafael Borges, Monique Carmona, Bruno Costa, and Wai Sun Don. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. *Journal of Computational Physics*, 227(6): 3191–3211, 2008.
- Dudley B Chelton, Michael G Schlax, Roger M Samelson, and Roland A de Szoeke. Global observations of large oceanic eddies. *Geophysical Research Letters*, 34(15), 2007.
- K Shafer Smith. The geography of linear baroclinic instability in earth's oceans. *Journal of Marine Research*, 65(5):655–683, 2007.
- Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin. Finite-volume discretization of the quasi-geostrophic equations with implicit dissipation. *Authorea Preprints*, 2023.