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S| process on complete graph

@ Markovian transforms of Markov processes

Application: control of Sl process on general graph via isoperimetric
constant

SIS process on general graphs:
Fast extinction and spectral radius
Long survival and isoperimetric constant

@ SIR process on general graph and spectral radius
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Susceptible-Infective epidemic propagation

~Infection rate A

e Graph G = (V, E) with n nodes (V = [n])

@ Infected nodes keep attempting to infect graph neighbors

@ Models “push”-based distributed information dissemination
mechanism (example of a “gossip” algorithm); variants used in
Peer-to-peer systems (e.g. Bittorrent): pull, push-pull...
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Susceptible-Infective epidemic propagation

~Infection rate A

e Graph G = (V, E) with n nodes (V = [n])

@ Infected nodes keep attempting to infect graph neighbors

@ Models “push”-based distributed information dissemination
mechanism (example of a “gossip” algorithm); variants used in
Peer-to-peer systems (e.g. Bittorrent): pull, push-pull...
=- Average time to total infection? Fluctuations around average?
Impact of graph topology?

@ Variant: each node = origin of its own specific epidemics; each
propagation: forwards all epidemics currently held
=Time till everyone heard from everyone else (“all-to-all”
broadcast)? Useful e.g. for estimating graph size
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Susceptible-Infective epidemic propagation: model
@ Assume first propagation on complete graph

@ Each node attempts, at instants of Poisson A process, to infect
neighbor chosen uniformly at random
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Susceptible-Infective epidemic propagation: model

@ Assume first propagation on complete graph

@ Each node attempts, at instants of Poisson A process, to infect
neighbor chosen uniformly at random

@ System description: X;= number of infected nodes at time t

@ Rate at which new attempts made when in state x: superposition of
x Poisson \ processes
Success probability of infection attempt: (n — x)/(n— 1)
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Susceptible-Infective epidemic propagation: model

Assume first propagation on complete graph

Each node attempts, at instants of Poisson A process, to infect
neighbor chosen uniformly at random

System description: X;= number of infected nodes at time ¢

Rate at which new attempts made when in state x: superposition of
x Poisson A processes
Success probability of infection attempt: (n — x)/(n— 1)

= next infection time: first time of Poisson x\ process, thinned with
probability (n — x)/(n — 1) of retaining points: Exponential

Ax(n — x)/(n—1) random variable

= X: a Markov jump process with non-zero jump rate
Oxx+1 = Ax(n —x)/(n —1)
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Time to total infection

Let E: i.i.d. Exponential(1) random variables, T,: time to total infection
(or broadcast)
Then T, =>""1 LE  with g, = Ax(n —x)/(n—1)

X=X0 qx
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Time to total infection

Let E: i.i.d. Exponential(1) random variables, T,: time to total infection

(or broadcast)
Then T, =>""1 LE  with g, = Ax(n —x)/(n—1)

X=X0 qx

-1 - -1
IE1(Tn) = Zzzl é = nnl% Z:l (% + nix)
=212H(n-1)

= 2lIn(n) +~ + o(1)]
where H(k): k-th Harmonic number, and v ~ 0.577: Euler’s constant
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(or broadcast)
Then T, =>""1 LE  with g, = Ax(n —x)/(n—1)

X=X0 qx

-1 — -1
Ei(Th) =202 é =y Y (% +
=212H(n-1)

= 2lIn(n) +~ + o(1)]
where H(k): k-th Harmonic number, and v ~ 0.577: Euler’s constant

1
n—x

a

Similarly, for 0 < a < b < 1: Eup(Tpn) — L 1n (rbb§>

Laurent Massoulié (Inria) Susceptible-Infective and SIS Epidemic propa March 8, 2021 5/25



Time to total infection

Let E: i.i.d. Exponential(1) random variables, T,: time to total infection
(or broadcast)
Then T, = "1_} LE,, with g, = Ax(n— x)/(n— 1)

X=X q

-1 - -1
IE1(Tn) = 2221 é = nnl% Z:l (% + nix)
=212H(n-1)

= 2lIn(n) +~ + o(1)]
where H(k): k-th Harmonic number, and v ~ 0.577: Euler’s constant

Similarly, for 0 < a < b < 1: E p(Tp,) — %In (ﬁ%)

- . . . At
Heuristic inversion: starting from Xy = an, X; ~ n—2¢

oL . 1—a+aert
= The celebrated logistic function, or S-curve
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Controlling fluctuations

Variable S, := \(T,, — E(T,)) satisfies for all § € [0,1/2]
E(exp(0S,)) < exp(4726?/3) =: Gy < 400

hence (Chernoff bound argument):

P\(T, — E(Tn)) > t) < Ge %,

i.e. fluctuations small (order 1) compared to mean (order In(n))
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Controlling fluctuations

Variable S, := \(T,, — E(T,)) satisfies for all § € [0,1/2]
E(exp(0S,)) < exp(4726?/3) =: Gy < 400

hence (Chernoff bound argument):

P\(T, — E(Tn)) > t) < Ge %,

i.e. fluctuations small (order 1) compared to mean (order In(n))

Proof: For r, = x(n—x)/(n—1) = gx/\,
Eeesn — Hg_} rxrxee—e/rx

For u € (0, 1/2], £~ <1+ 2u? hence:
EefSh < 1= [1 + 2(0/rx) ] < =1 2(0/rx)? <e 8023 oy X2
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Application: All-to-all scenario (one epidemic per user)

Lemma

Let random variables S*,...S" be such that for some a,b > 0 :
Yt > 0,Vi € [n],P(S" > t) < ae™bt

i i In(an)+1
Then E(sup; S') < E((sup; S')T) < —(ab)
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Lemma

Let random variables S*,...S" be such that for some a,b > 0 :
Yt > 0,Vi € [n],P(S" > t) < ae™bt

i i In(an)+1
Then E(sup; S') < E((sup; S')T) < —(ab)

Proof: Write E((sup; S')*) = [;° P(sup; S' > t)dt
Then upper-bound IP(sup, S’ > t) by nae~®* for t > In(an)/b (union
bound) and by 1 otherwise.
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Vt > 0,Vi € [n],P(S" > t) < ae™bt

i i In(an)+1
Then E(sup; S') < E((sup; S')T) < %

Proof: Write E((sup; S')*) = [;° P(sup; S' > t)dt

Then upper-bound lP(sup, S’ > t) by nae~?* for t > In(an)/b (union
bound) and by 1 otherwise.

Corollary

All-to-all propagation time T satisfies for all 6 € (0,1/2]

ET <4 [2(In(n) + ) + o(1) + ™2 — O(in(n)),
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Application: All-to-all scenario (one epidemic per user)

Lemma

Let random variables S*,...S" be such that for some a,b > 0 :
Vt > 0,Vi € [n],P(S" > t) < ae™bt

Then E(sup; S') < E((sup; S')T) < M

Proof: Write E((sup; S')*) = [;° P(sup; S' > t)dt

Then upper-bound lP(sup, S’ > t) by nae~?* for t > In(an)/b (union
bound) and by 1 otherwise.

Corollary

All-to-all propagation time T satisfies for all 6 € (0,1/2]

ET <4 [2(In(n) + ) + o(1) + ™2 — O(in(n)),

same order still

Indeed: T = supremum of n propagation times corresponding each to
single epidemic propagation
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Isoperimetric constant of a graph
Definition

For a graph G = (V/, E) and any m < n, the isoperimetric constant 7, is
E(S,5)|

m ISl

where E(S,S) denotes the set of edges between S and its complement
S=V\S.

defined as 7, = minscy |s|<m |

Remark: When m not specified, n = 7,,
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Markovian transforms of Markov chains

Let {X,}nen be @ Markov chain on countable set E with transition matrix

(Pij)ijeE-
For countable set F and f: E — F, let Y, := f(X,), n€ N.

Theorem

If for some transition matrix P = (Puy)u,vcF, one has

VxeE,veF, Z Pxy = ﬁf(x),va
yEE:f(y)=v

then { Y, }new is a Markov chain on F with transition matrix P.

Proof: by evaluating P( Yy = y§) for arbitrary y& € F<+1..

Remark: In general, image of Markov chain fails to be Markovian.
Example: X3° ={0,1,2,0,1,2,...},
f(x) =I4= = Yy* =1{0,0,1,0,0,1,...,}
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Markovian transforms of Markovian jump processes

Let {X(t)}+cr, be a non-explosive Markov jump process on countable set

E with infinitesimal generator (qj;)i jck-
For countable set F and f : E — F, let Y(t) := f(X(t)), t € Ry.
Theorem

If for some generator Q= (Guv)u,veF such that
S E (5 G = — Z#u Guy =: —§(u), one has

Vx € E, veF: f(X) 7£ v, Z Axy = af(x),va
yeEE:Af(y)=v

then {Y(t)}ter, is a Markov jump process on F with infinitesimal
generator Q.
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Application: Sl epidemics on general graphs and
iIsoperimetric constant

Consider Sl process on G = (V/, E) with infection rate \ along each edge.

Then propagation is at least as fast as Sl process on complete graph with
per-node infection rate A7, /5.

Corollary: Time to total infection in O In(n)
)‘nn/2
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Coupling proof:

Define process (X, Z) on E := {(x,y) € {0, 1}V x [n] : > ;cy xi > z}
(hence for all t € Ry, ;o Xi(t) > Z(t)) so that:

X: Sl process on G with per edge infection rate ), and

Z: number of infected nodes in S| on complete graph, with per node
infection rate A, 5.

Process (X, Z) specified by non-zero transition rates: for each
(x,z) € E, i€V,
ZjeVXj >z = 9(x,2),(x+ej,z) — )‘iji(]-_xi)xjy
Y(x,2),(x,24+1) = Mnj2 =p—12
Zjevxj =Z= (xz),(x+e,z+1) = CA EJNI( = Xi)xj,
9(x,z),(x+e,z) = [1- C])‘ZjNi(]- - Xi)Xja

2(n=2)1n/2

n—1) Ziev ZjNi xi(1—x;)

where C := 0
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Coupling proof:

Well-defined: non-negative rates, as C < 1 because
>oicv 2jmi Xi(L = %) = npoMin(z, n — z)

Component processes have desired distributions: use criterion for

transform of jump process to be itself jump process, with
f((X,Z2))=Xand f((X,2))=Z.

Examples of verification: for process X,
Guxtre; = [C+ 1= CIA Y, (1= xi)xg = A3 (1 — xi)x;;

For process Z,
Eiz,erl = ZiEV CA iji Xi(]' - XJ) = )‘nn/Qz((nn:lz))
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SIS model

e Basic model: graph G = (V,E)
@ Each infected node infects each of its neighbors at rate 3, and
becomes healthy at rate

May model propagation of mutating virus, or replication of data in volatile
memories
= Markov jump process on {0, l}V with non-zero transition rates

q(X7X+ef) :5Zj~ixjv i € \/7 X € {O,]_}V7 Xj =0;
gx,x—e) =6,ieV, xe{0,1}V, x,=1.

Stationary regime: complete extinction (absorbing state)
Goal: understand impact of 3, § and topology of G on time to extinction
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Example of a grid network

Number of infected hosts

0 02 04 06 08 1 12 14 16 18 2
Time o

Behaviour characterized by [Durrett-Liu,Durrett-Schonmann,’88]: there is
a critical threshold ¢ > 0 such that:

B/ > ¢ = long survival (expected time to extinction: exponential in
n= V),

B/6 < c = fast extinction (expected time to extinction logarithmic in
n= V),
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Fast extinction and spectral radius

Definition
The spectral radius p(A) of matrix A is the largest modulus of its
eigenvalues.

Theorem

Let p be the spectral radius of the adjacency matrix A of graph
G = (V,E). The time to extinction T verifies for all t > 0:

P(T > t) < nelAr=9)t,

where n = |V/|.

Corollary
In(n)+1
If Bp < 6, then E(T) < =5~ J
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Long survival and isoperimetric constants

Theorem

Assume that for some r €]0,1[ and some m < n, 81y, > %-

Then there is a function f : N — R such that limy_,, f(k) = 0 and for
any k € N,

k 1—r [1—r"
—2m” — 1—rm

1\ k
P(T> -~ )> 1_rm)(1—f(k))

Corollary

If for fixed r €]0,1[ and a sequence of graphs G, each on n nodes one has
for some m = m(n) with lim,_,oc m(n) = +00 : Bnm(G,) > %, then the
time T, to extinction of the ([3,9)- epidemic process on G, verifies:

(1= r)

E[6T,] > |r~m 2] = fm),

v
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Example: complete graph

For complete graph on n nodes, p=n—1and ny,, =n—m.
= for fixed € €]0, 1],

if B(n—1) <6(1—e), B[6T,] < "L — O(In(n));

if B(n—1) > (1 +¢€), for m = ne/2 one has 1, > 0/r with
rl=(1+¢€)(1—¢/2)>1, so that

E[6T,] > %"

A sharp transition with respect to (5n/d) at 1.
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Example: hypercube

Hypercube G = {0,1}9 on n = 29 nodes:
p=d, nm>d—kform=2k k < d (ref: [Harper'64])

Fix € €]0, 1].
If Bd < 3(1 — e), then E[6T,] < "L — O(In(n));

If 8d > (1 + €), for m = 2¢9/2, p, > (1 — €/2)d.
Hence 81y, > 6/r with r < 1, so that
E[5T,] > em) — /%),

A sharp transition with respect to (8d/d) at 1.
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Example: Erdés-Rényi graph with super-logarithmic
average degree
proposition

Let G = (n,d/n) with d > In(n), and some fixed « €]0, 1[. One then has
the convergences in probability
p(A)

n||—>nc1>o d =1, n||—>nc1>o (1 = a)d

Corollary

Let € > 0 be fixed. One has the following with high probability with
respect to G:

If Bd < (1 —¢€)6, then Bl
If Bd > (1 + €)6, then E-L»

2in(n) — O(In(n)).
eSen) — oQ(n)

<
>

v
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Fast extinction and spectral radius: proof elements

Define branching random walk on graph G = (V, E) as process X’ on NV
with non-zero transition rates ¢} .o, = 8, % and g, .., = dx;.

Couple two processes X, X', where X: SIS on G = (V, E) with initial
conditions x(0) € {0,1}V so that Vt € Ry, X(t) < X'(t)
Bound probability of SIS survival:

P(T > 1) < B _Xi(t) <BY_ X/(1).

i i
Linearity of rates ¢’ in x’:

di(g

i ) = BAE(X'(1)) — SE(X'(t))
t

t
(1)) = e PA-x(0).
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SIR epidemics and spectral radius

Consider Reed-Frost process with neighbor infection parameter 3 on graph
G = (V,E), Xi(t) = I, infectious at ¢ Yi(t) =1; removed at - Then:
Theorem

Suppose p < 1. Then the total number of nodes eventually removed

verifies .
E ) Yi(oo) < : n>_ Xi(0).
icv —Pr icv

If moreover G is d- regular, then

1
B} Yi(eo) < 1—5, >_Xi(0)

eV ieV
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SIR epidemics: proof

By union bound,

P(Yu(0) =1) <350 2w, B Xuo(0)
= tho Zvev(ﬁA)ZvXV(O)

where ug, ..., u;: graph path with u; = u.

Hence
EY, Yu(0) <X pge’ (BA)X(0)
=e(I - BA)1X(0)
= 2%, &) 1=px (xi, X(0))
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Takeaway messages

e S| Epidemics spreads in logarithmic time on well-connected graphs (as
measured by isoperimetric constant) for single propagation and for
all-to-all propagation, same order as if infection targets were chosen
optimally

e Epidemic (or gossip) algorithms good candidates for managing
information dissemination in P2P systems

@ Behaviour of SIS epidemics undergoes phase transitions as ratio 3/
crosses thresholds

@ Graph topology determines thresholds; in several scenarios (complete
graph, hypercube, E-R graphs), spectral radius and isoperimetric
constants are close, hence a single threshold

@ Coupling constructions allow control of complex process by simpler
ones
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