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outline

SI process on complete graph

Markovian transforms of Markov processes

Application: control of SI process on general graph via isoperimetric
constant

SIS process on general graphs:
Fast extinction and spectral radius
Long survival and isoperimetric constant

SIR process on general graph and spectral radius
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Susceptible-Infective epidemic propagation
s Infection rate 

Graph G = (V ,E ) with n nodes (V = [n])

Infected nodes keep attempting to infect graph neighbors

Models “push”-based distributed information dissemination
mechanism (example of a “gossip” algorithm); variants used in
Peer-to-peer systems (e.g. Bittorrent): pull, push-pull...

⇒ Average time to total infection? Fluctuations around average?
Impact of graph topology?

Variant: each node = origin of its own specific epidemics; each
propagation: forwards all epidemics currently held
⇒Time till everyone heard from everyone else (“all-to-all”
broadcast)? Useful e.g. for estimating graph size
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Susceptible-Infective epidemic propagation: model

Assume first propagation on complete graph

Each node attempts, at instants of Poisson λ process, to infect
neighbor chosen uniformly at random

System description: Xt= number of infected nodes at time t

Rate at which new attempts made when in state x : superposition of
x Poisson λ processes
Success probability of infection attempt: (n − x)/(n − 1)

⇒ next infection time: first time of Poisson xλ process, thinned with
probability (n − x)/(n − 1) of retaining points: Exponential
λx(n − x)/(n − 1) random variable

⇒ Xt a Markov jump process with non-zero jump rate
qx ,x+1 = λx(n − x)/(n − 1)
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Time to total infection

Let Ex : i.i.d. Exponential(1) random variables, Tn: time to total infection
(or broadcast)
Then Tn =

∑n−1
x=x0

1
qx
Ex , with qx = λx(n − x)/(n − 1)

E1(Tn) =
∑n−1

x=1
1
qx

= n−1
n

1
λ

∑n−1
x=1

(
1
x + 1

n−x

)
= n−1

n
2
λH(n − 1)

= 2
λ [ln(n) + γ + o(1)]

where H(k): k-th Harmonic number, and γ ≈ 0.577: Euler’s constant

Similarly, for 0 < a < b < 1: Ean(Tbn)→ 1
λ ln

(
b

1−b
1−a
a

)
Heuristic inversion: starting from X0 = an, Xt ≈ n aeλt

1−a+aeλt

⇒ The celebrated logistic function, or S-curve
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10

Logistic curve
(Verhulst 1838)

Exponential growth

Time to total infection order-optimal
(logarithmic in number of targets) despite random target selection

«Optimal diffusion» (without
failed attempts)
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Controlling fluctuations

Variable Sn := λ(Tn −E(Tn)) satisfies for all θ ∈ [0, 1/2]
E(exp(θSn)) ≤ exp(4π2θ2/3) =: Cθ < +∞
hence (Chernoff bound argument):
P(λ(Tn −E(Tn)) ≥ t) ≤ Cθe

−θt ,
i.e. fluctuations small (order 1) compared to mean (order ln(n))

Proof: For rx = x(n − x)/(n − 1) = qx/λ,
EeθSn =

∏n−1
x=1

rx
rx−θe

−θ/rx

For u ∈ (0, 1/2], e
−u

1−u ≤ 1 + 2u2, hence:

EeθSn ≤
∏n−1

x=1[1 + 2(θ/rx)2] ≤ e
∑n−1

x=1 2(θ/rx )2 ≤ e8θ2
∑

x≥1 x
−2
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Application: All-to-all scenario (one epidemic per user)

Lemma

Let random variables S1, . . .Sn be such that for some a, b > 0 :
∀t > 0, ∀i ∈ [n],P(S i ≥ t) ≤ ae−bt

Then E(supi S
i ) ≤ E((supi S

i )+) ≤ ln(an)+1
b

Proof: Write E((supi S
i )+) =

∫∞
0 P(supi S

i ≥ t)dt
Then upper-bound P(supi S

i ≥ t) by nae−bt for t ≥ ln(an)/b (union
bound) and by 1 otherwise.

Corollary

All-to-all propagation time T satisfies for all θ ∈ (0, 1/2]

ET ≤ 1
λ

[
2(ln(n) + γ) + o(1) + ln(Cθn)+1

θ

]
= O(ln(n)),

same order still

Indeed: T = supremum of n propagation times corresponding each to
single epidemic propagation
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Laurent Massoulié (Inria) Susceptible-Infective and SIS Epidemic propagation models March 8, 2021 8 / 25



Isoperimetric constant of a graph

Definition

For a graph G = (V ,E ) and any m < n, the isoperimetric constant ηm is

defined as ηm = minS⊂V ,|S |≤m
|E(S ,S)|
|S| ,

where E (S , S) denotes the set of edges between S and its complement
S = V \ S .

Remark: When m not specified, η = ηn/2

S

 𝑆
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Markovian transforms of Markov chains

Let {Xn}n∈N be a Markov chain on countable set E with transition matrix
(pij)i ,j∈E .
For countable set F and f : E → F , let Yn := f (Xn), n ∈ N.

Theorem

If for some transition matrix P̂ = (p̂uv )u,v∈F , one has

∀x ∈ E , v ∈ F ,
∑

y∈E :f (y)=v

pxy = p̂f (x),v ,

then {Yn}n∈N is a Markov chain on F with transition matrix P̂.

Proof: by evaluating P(Y k
0 = yk0 ) for arbitrary yk0 ∈ F k+1...

Remark: In general, image of Markov chain fails to be Markovian.
Example: X∞0 = {0, 1, 2, 0, 1, 2, . . .},
f (x) = Ix=2 ⇒ Y∞0 = {0, 0, 1, 0, 0, 1, . . . , }
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Markovian transforms of Markovian jump processes

Let {X (t)}t∈R+ be a non-explosive Markov jump process on countable set
E with infinitesimal generator (qij)i ,j∈E .
For countable set F and f : E → F , let Y (t) := f (X (t)), t ∈ R+.

Theorem

If for some generator Q̂ = (q̂uv )u,v∈F such that
∀u ∈ F , q̂u,u = −

∑
v 6=u q̂uv =: −q̂(u), one has

∀x ∈ E , v ∈ F : f (x) 6= v ,
∑

y∈E :f (y)=v

qxy = q̂f (x),v ,

then {Y (t)}t∈R+ is a Markov jump process on F with infinitesimal

generator Q̂.
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Application: SI epidemics on general graphs and
isoperimetric constant

Consider SI process on G = (V ,E ) with infection rate λ along each edge.

Then propagation is at least as fast as SI process on complete graph with
per-node infection rate ληn/2.

Corollary: Time to total infection in O
(

ln(n)
ληn/2

)
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Coupling proof:

Define process (X ,Z ) on E := {(x , y) ∈ {0, 1}V × [n] :
∑

i∈V xi ≥ z}
(hence for all t ∈ R+,

∑
i∈V Xi (t) ≥ Z (t)) so that:

X : SI process on G with per edge infection rate λ, and
Z : number of infected nodes in SI on complete graph, with per node
infection rate ληn/2.

Process (X ,Z ) specified by non-zero transition rates: for each
(x , z) ∈ E , i ∈ V ,∑

j∈V xj > z ⇒ q(x ,z),(x+ei ,z) = λ
∑

j∼i (1− xi )xj ,

q(x ,z),(x ,z+1) = ληn/2
z(n−z)
n−1 ,∑

j∈V xj = z ⇒ q(x ,z),(x+ei ,z+1) = Cλ
∑

j∼i (1− xi )xj ,

q(x ,z),(x+ei ,z) = [1− C ]λ
∑

j∼i (1− xi )xj ,

where C :=
z(n−z)ηn/2

(n−1)
∑

i∈V
∑

j∼i xi (1−xj )
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Coupling proof:

Well-defined: non-negative rates, as C ≤ 1 because∑
i∈V

∑
j∼i xi (1− xj) ≥ ηn/2Min(z , n − z)

Component processes have desired distributions: use criterion for
transform of jump process to be itself jump process, with
f ((X ,Z )) = X and f ((X ,Z )) = Z .

Examples of verification: for process X ,
q̃x ,x+ei = [C + 1− C ]λ

∑
j∼i (1− xi )xj = λ

∑
j∼i (1− xi )xj ;

For process Z ,
q̃z,z+1 =

∑
i∈V Cλ

∑
j∼i xi (1− xj) = ληn/2

z(n−z)
(n−1) .
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SIS model

Basic model: graph G = (V ,E )

Each infected node infects each of its neighbors at rate β , and
becomes healthy at rate δ

May model propagation of mutating virus, or replication of data in volatile
memories
⇒ Markov jump process on {0, 1}V with non-zero transition rates

q(x , x + ei ) = β
∑

j∼i xj , i ∈ V , x ∈ {0, 1}V , xi = 0;

q(x , x − ei ) = δ, i ∈ V , x ∈ {0, 1}V , xi = 1.

Stationary regime: complete extinction (absorbing state)
Goal: understand impact of β, δ and topology of G on time to extinction
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Example of a grid network
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Behaviour characterized by [Durrett-Liu,Durrett-Schonmann,’88]: there is
a critical threshold c > 0 such that:
β/δ > c ⇒ long survival (expected time to extinction: exponential in
n = |V |),
β/δ < c ⇒ fast extinction (expected time to extinction logarithmic in
n = |V |),
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Fast extinction and spectral radius

Definition

The spectral radius ρ(A) of matrix A is the largest modulus of its
eigenvalues.

Theorem

Let ρ be the spectral radius of the adjacency matrix A of graph
G = (V ,E ). The time to extinction T verifies for all t > 0:

P(T ≥ t) ≤ ne(βρ−δ)t ,

where n = |V |.

Corollary

If βρ < δ, then E(T ) ≤ ln(n)+1
δ−βρ
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Long survival and isoperimetric constants

Theorem

Assume that for some r ∈]0, 1[ and some m < n, βηm ≥ δ
r ·

Then there is a function f : N→ R such that limk→∞ f (k) = 0 and for
any k ∈ N,

P(T ≥ k

2δm
) ≥ 1− r

1− rm

(
1− rm−1

1− rm

)k

(1− f (k))

Corollary

If for fixed r ∈]0, 1[ and a sequence of graphs Gn each on n nodes one has
for some m = m(n) with limn→∞m(n) = +∞ : βηm(Gn) ≥ δ

r , then the
time Tn to extinction of the (β, δ)- epidemic process on Gn verifies:

E[δTn] ≥ (1− r)2

3m
br−m+2c = eΩ(m).
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Example: complete graph

For complete graph on n nodes, ρ = n − 1 and ηm = n −m.

⇒ for fixed ε ∈]0, 1[,

if β(n − 1) ≤ δ(1− ε), E[δTn] ≤ ln(n)+1
ε = O(ln(n));

if β(n − 1) ≥ δ(1 + ε), for m = nε/2 one has βηm ≥ δ/r with
r−1 = (1 + ε)(1− ε/2) > 1, so that

E[δTn] ≥ eΩ(n)

A sharp transition with respect to (βn/δ) at 1.
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Example: hypercube

Hypercube G = {0, 1}d on n = 2d nodes:
ρ = d , ηm ≥ d − k for m = 2k , k < d (ref: [Harper’64])

Fix ε ∈]0, 1[.

If βd ≤ δ(1− ε), then E[δTn] ≤ ln(n)+1
ε = O(ln(n));

If βd ≥ δ(1 + ε), for m = 2εd/2, ηm ≥ (1− ε/2)d .
Hence βηm ≥ δ/r with r < 1, so that

E[δTn] ≥ eΩ(m) = eΩ(nε/2).

A sharp transition with respect to (βd/δ) at 1.
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Example: Erdős-Rényi graph with super-logarithmic
average degree

proposition

Let G = (n, d/n) with d � ln(n), and some fixed α ∈]0, 1[. One then has
the convergences in probability

lim
n→∞

ρ(A)

d
= 1, lim

n→∞

ηαn
(1− α)d

= 1.

Corollary

Let ε > 0 be fixed. One has the following with high probability with
respect to G:
If βd ≤ (1− ε)δ, then ETn

δ ≤
2 ln(n)
ε = O(ln(n)).

If βd ≥ (1 + ε)δ, then ETn
δ ≥ eΩ(εn) = eΩ(n).
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Fast extinction and spectral radius: proof elements

Define branching random walk on graph G = (V ,E ) as process X ′ on NV

with non-zero transition rates q′x ,x+ei
= β

∑
j∼i xj and q′x ,x−ei = δxi .

Couple two processes X ,X ′, where X : SIS on G = (V ,E ) with initial
conditions x(0) ∈ {0, 1}V so that ∀t ∈ R+, X (t) ≤ X ′(t)
Bound probability of SIS survival:

P(T > t) ≤ E(
∑
i

Xi (t)) ≤ E
∑
i

X ′i (t).

Linearity of rates q′ in x ′:

d
dtE(X ′(t)) = βAE(X ′(t))− δE(X ′(t))

⇒ E(X ′(t)) = et(βA−δI )x(0).
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SIR epidemics and spectral radius

Consider Reed-Frost process with neighbor infection parameter β on graph
G = (V ,E ), Xi (t) = Ii infectious at t , Yi (t) = Ii removed at t . Then:

Theorem

Suppose βρ < 1. Then the total number of nodes eventually removed
verifies

E

∑
i∈V

Yi (∞) ≤ 1

1− βρ

√
n
∑
i∈V

Xi (0).

If moreover G is d- regular, then

E

∑
i∈V

Yi (∞) ≤ 1

1− βρ
∑
i∈V

Xi (0).

Laurent Massoulié (Inria) Susceptible-Infective and SIS Epidemic propagation models March 8, 2021 23 / 25



SIR epidemics: proof

By union bound,

P(Yu(∞) = 1) ≤
∑

t≥0

∑
u0,...,ut

βtXu0(0)

=
∑

t≥0

∑
v∈V (βA)tuvXv (0)

where u0, . . . , ut : graph path with ut = u.
Hence

E
∑

u Yu(∞) ≤
∑

t≥0 e
T (βA)tX (0)

= eT (I − βA)−1X (0)
=
∑

i 〈xi , e〉
1

1−βλi 〈xi ,X (0)〉
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Takeaway messages
SI Epidemics spreads in logarithmic time on well-connected graphs (as
measured by isoperimetric constant) for single propagation and for
all-to-all propagation, same order as if infection targets were chosen
optimally

Epidemic (or gossip) algorithms good candidates for managing
information dissemination in P2P systems

Behaviour of SIS epidemics undergoes phase transitions as ratio β/δ
crosses thresholds

Graph topology determines thresholds; in several scenarios (complete
graph, hypercube, E-R graphs), spectral radius and isoperimetric
constants are close, hence a single threshold

Coupling constructions allow control of complex process by simpler
ones
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