Poisson process and Markov jump processes

Laurent Massoulié

Inria

February 22, 2021

Laurent Massoulié (Inria) Pois

Poisson process and Markov jump processes

February 22, 2021 1 / 20

Outline

- Poisson processes
- Markov jump processes

・ 何 ト ・ ヨ ト ・ ヨ ト

3

2/20

The Poisson distribution (Siméon-Denis Poisson, 1781-1840)

 $\big\{e^{-\lambda \frac{\lambda^n}{n!}}\big\}_{n\in\mathbb{N}}$ As prevalent as Gaussian distribution

The Poisson distribution (Siméon-Denis Poisson, 1781-1840)

 $\{e^{-\lambda} \frac{\lambda^{n}}{n!}\}_{n \in \mathbb{N}} \text{ As prevalent as Gaussian distribution } \sum_{n,i} \left(p_{n,i} + 0 \right)$

Law of rare events (a.k.a. law of small numbers) $p_{n,i} \ge 0$ such that $\lim_{n\to\infty} \sup_i p_{n,i} = 0$, $\lim_{n\to\infty} \sum_i p_{n,i} = \lambda > 0$

Then $X_n = \sum_i Z_{n,i}$ with $Z_{n,i}$: independent Bernoulli $(p_{n,i})$ verifies

 $X_n \stackrel{\mathcal{D}}{\rightarrow} \mathsf{Poisson}(\lambda)$

 $\partial_{n} \in \sum_{i} P_{n,i} = \mathbb{E} X_{n}$ $d_{OBN} \left(X_{n}, \operatorname{Sol}(\lambda_{n}) \right) \in 2\operatorname{Min}(\Lambda, \lambda_{n}^{-1})$

Point process on \mathbb{R}_+

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Poisson process on \mathbb{R}_+

$$\mathcal{N}_{\mathcal{S}_{i}} = \mathcal{N}_{\mathcal{S}_{i-1}} = \mathcal{N}\left(\left(\mathcal{S}_{i-1}, \mathcal{S}_{i}\right)\right) + \mathcal{N}\left(\left(\mathcal{S}_{i-1}, \mathcal{S}_{i}\right)\right) + \mathcal{N}\left(\mathcal{S}_{i-1}, \mathcal{S}_{i}\right)\right)$$

Definition

Point process such that for all $s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

- Increments $\{N_{s_i} N_{s_{i-1}}\}_{1 \le i \le n}$ independent
- 2 Law of $N_{t+s} N_s$ only depends on t

• for some $\lambda > 0$, $N_t \sim \text{Poisson}(\lambda t)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

Poisson process on \mathbb{R}_+

Definition

Point process such that for all $s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

- Increments $\{N_{s_i} N_{s_{i-1}}\}_{1 \le i \le n}$ independent
- 2 Law of $N_{t+s} N_s$ only depends on t
- for some $\lambda > 0$, $N_t \sim \text{Poisson}(\lambda t)$

In fact, (3) follows from (1)-(2); see lecture notes.

・ 同 ト ・ ヨ ト ・ ヨ ト

Poisson process on \mathbb{R}_+

Definition

Point process such that for all $s_0 = 0 < s_1 < s_2 < \ldots < s_n$,

- Increments $\{N_{s_i} N_{s_{i-1}}\}_{1 \le i \le n}$ independent
- 2 Law of $N_{t+s} N_s$ only depends on t
- for some $\lambda > 0$, $N_t \sim \text{Poisson}(\lambda t)$

In fact, (3) follows from (1)-(2); see lecture notes.

 λ is called the intensity of the process

Structure of interarrival sequences

Proposition For Poisson process $\{T_n\}_{n>0}$ of intensity λ , its interarrival times $\tau_i = T_{i+1} - T_i$, where $T_0 = 0$, verify $\{\tau_n\}_{n>0}$ i.i.d. with common distribution $\text{Exp}(\lambda)$

Density of $\text{Exp}(\lambda)$: $\lambda e^{-\lambda x} \mathbb{I}_{x>0}$

Key property: Exponential random variable τ is **memoryless**, i.e. $\forall t > 0$, $\mathbb{P}(\tau - t \in \cdot | \tau > t) = \mathbb{P}(\tau \in \cdot)$

A (1) < A (1) < A (1) </p>

Proof:

$$\mathbb{E} e^{-\Delta tip \{ \}} = \int_{0}^{\infty} e^{-\Delta tip A_{n}} e^{-\alpha_{i}\tau_{i}}$$
Characterization of law of $\{\tau_{i}\}_{i\in[n]}\}$ by Laplace transform $\mathbb{E} \prod_{i\in[n]} e^{-\alpha_{i}\tau_{i}}$:
show that for all $n \ge 1$, $\alpha_{1}^{n} \in \mathbb{R}_{+}^{n}$, $\mathbb{E} \prod_{i\in[n]} e^{-\alpha_{i}\tau_{i}} = \prod_{i\in[n]} \frac{\lambda}{\lambda+\alpha_{i}}$.
Fix $h > 0$. Let $Z_{n} = \mathbb{I}_{N_{nh}-N_{(n-1)h} \ge 1}$, $S_{1} = \inf\{n > 0 : Z_{n} \ge 1\}$,
 $S_{i} = \inf\{n > S_{i-1} : Z_{n} = 1\}$, $i > 1$.
Approximation of interarrivals: $\tau_{i}^{(h)} := h(S_{i+1} - S_{i})$.
 $\{S_{i+1} - S_{i}\}$: i.i.d. Geom $(1 - e^{-\lambda h})$, so that
 $\mathbb{E} \prod_{i\in[n]} e^{-\alpha_{i}\tau_{i}^{(h)}} = (1 + O(h)) \prod_{i\in[n]} \frac{\lambda}{\lambda+\alpha_{i}}$.
On event $\mathcal{A}_{h} := \{\forall i \in [n], \tau_{i} > h\}, \forall i \in [n], |\tau_{i} - \tau_{i}^{(h)}| \le h$ and hence
 $\prod_{i\in[n]} e^{-\alpha_{i}\tau_{i}} = (1 + O(h)) \prod_{i\in[n]} e^{-\alpha_{i}\tau_{i}^{(h)}}$.
Conclude by noting that $\mathcal{A}_{h} \uparrow \{\forall i \in [n], \tau_{i} > 0\}$ hence $\lim_{h \to 0} \mathbb{P}(\mathcal{A}_{h}) = 1$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Alternative construction

Proposition

Process with i.i.d., $\text{Exp}(\lambda)$ interarrival times $\{\tau_i\}_{i\geq 0}$ can be constructed on [0, t] by 1) Drawing $N_t \sim \text{Poisson}(\lambda t)$

2) Putting N_t points U_1, \ldots, U_{N_t} on [0, t] where U_i : i.i.d. uniform on [0, t]

 $= e^{-2t} (3t)^{m}$ $\frac{(n+)}{n!} \int \frac{m!}{R_{+}^{m}} \frac{1}{T} \frac{1}{OCt} Ct} Ct Ct$ $\phi(t_1, \dots, t_m) dt_{\cdots}$ $\mathbb{P}\left(\operatorname{Goi}\left(\lambda^{+}\right):M\right)$ $\mathbb{E}\left(\Phi(u^{(1)}, u^{(n)}, \dots, u^{(n)})\right)$ $\mathbb{E}\left(\Phi(u^{(1)}, u^{(n)}, \dots, u^{(n)})\right)$ $\frac{u^{(i)}}{e^{(i)}} = \frac{1}{2} \frac{u^{(i)} - u^{(i)}}{u^{(i)}} = \frac{1}{2} \frac{u^{(i)} - u^{(i)}}{u^{(i)}}} = \frac{1}{2} \frac{u^{(i)} - u^{(i)}}{u^{(i)}} = \frac{1}{2} \frac{u^{(i)} - u$

 $\mathbb{E}\left[\varphi\left(T_{e_{1}},...,T_{e^{k-1}},T_{e^{k-1}}\right)^{-1}N_{e^{e^{k-1}}}\right]$ SIT 2 e 2sids; IR_{L}^{-} (10, 30+ 2, , ~, 8+ ~+ 2 ~,) e-2(t-(t+++)) 1 Doist $= e^{\lambda + \lambda} \int_{\mathbb{R}_{1}^{m}} \varphi(\lambda_{1}, \lambda_{2}, \lambda_{1}, \dots, \lambda_{2}, \dots, \lambda_{m-1})$ $M_{2} + \dots + M_{m-1} \leq L$

Alternative construction

Proposition

Process with i.i.d., $Exp(\lambda)$ interarrival times $\{\tau_i\}_{i\geq 0}$ can be constructed on [0, t] by 1) Drawing $N_t \sim Poisson(\lambda t)$

2) Putting N_t points U_1, \ldots, U_{N_t} on [0, t] where U_i : i.i.d. uniform on [0, t]

Proof.

Establish identity for all $n \in \mathbb{N}$, $\phi : \mathbb{R}^n_+ \to \mathbb{R}$:

$$\mathbb{E}[\phi(\tau_0,\tau_0+\tau_1,\ldots,\tau_0+\ldots+\tau_{n-1})\mathbb{I}_{N_t=n}]=\cdots$$

$$e^{-\lambda t} rac{(\lambda t)^n}{n!} imes n! \int_{(0,t]^n} \phi(s_1,s_2,\ldots,s_n) \mathbb{I}_{s_1 < s_2 < \ldots < s_n} \prod_{i=1}^n rac{1}{t} ds_i$$

$$= \mathbb{P}(\mathsf{Poisson}(\lambda t) = n) \times \mathbb{E}[\phi(S_1, \dots, S_n)]$$

where S_1^n : sorted version of i.i.d. variables uniform on [0, t]

Definition

For function $f : \mathbb{R}_+ \to \mathbb{R}_+$, let

$$N(f) := \sum_{n>0} f(T_n).$$

The Laplace transform of point process $N \leftrightarrow \{T_n\}_{n\geq 0}$ is the functional whose evaluation at $f : \mathbb{R}_+ \to \mathbb{R}_+$ is

$$\mathcal{L}_{N}(f) := \mathbb{E} \exp(-N(f)) = \mathbb{E} (\exp(-\sum_{n>0} f(T_n)))$$

$$N(g) = \sum_{i=1}^{n} A_i X_i = N_{g_i} - N_{g_{i+1}}$$

$$M(g) = \sum_{i=1}^{n} A_i X_i - He^{N(g)} = He^{-\sum_{i=1}^{n} A_i X_i}$$

Definition

For function $f : \mathbb{R}_+ \to \mathbb{R}_+$, let

$$N(f) := \sum_{n>0} f(T_n).$$

The Laplace transform of point process $N \leftrightarrow \{T_n\}_{n>0}$ is the functional whose evaluation at $f : \mathbb{R}_+ \to \mathbb{R}_+$ is

$$\mathcal{L}_{N}(f) := \mathbb{E} \exp(-N(f)) = \mathbb{E} (\exp(-\sum_{n>0} f(T_n))).$$

Proposition: Knowledge of $\mathcal{L}_N(f)$ on sufficiently rich class of functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ characterizes law of point process N. Exemples of such classes of functions:

- non-negative piecewise constant with compact support
- non-negative piecewise continuous with compact support

Laurent Massoulié (Inria)

Proposition

Poisson process with intensity λ admits Laplace transform

$$\mathcal{L}_{N}(f) = \exp(-\int_{\mathbb{R}_{+}} \lambda(1 - e^{-f(x)}) dx)$$

$$\int : a \operatorname{support} [o_{r} + j \cdot N_{t} \sim \operatorname{Poi}(n+); u_{1} \cdots u_{1}:$$

$$|E e^{-N(g)} = |E\left(\bigcap_{i=1}^{N_{t}} e^{-\beta(u_{i})} \right) = \sum_{n \geq 0} e^{-\lambda t} (n+) \left(\frac{1}{t} \int_{0}^{t} e^{-\beta(u_{i})} du \right)^{n}$$

$$= e^{-\lambda t} e^{-\beta(u_{i})} du$$

$$= e^{-\lambda t} e^{-\beta(u_{i})} du$$

$$= e^{-\sum_{n+1}^{t} \beta(1 - e^{-\beta(u_{i})})} du$$

Proposition

Poisson process with intensity λ admits Laplace transform

$$\mathcal{L}_{N}(f) = \exp(-\int_{\mathbb{R}_{+}} \lambda(1 - e^{-f(x)}) dx)$$

Proof: Previous construction yields expression for $\mathcal{L}_N(f)$ Corollary: For $f = \sum_i \alpha_i \mathbb{I}_{C_i} \Rightarrow N(C_i) \sim \text{Poisson}(\lambda \int_{C_i} dx)$, with independence for disjoint C_i . Hence existence of Poisson process.

$$\int \mathcal{N}_{\mathcal{S}_{i}} - \mathcal{N}_{\mathcal{S}_{i-1}} = (\mathcal{A}^{\mathcal{B}} \sim \mathcal{B}(\gamma(\mathcal{S}_{i} - \mathcal{S}_{i-1})))$$

Poisson process with general space and intensity

Definition

Point process on \mathbb{R}^d : countable or finite collection $\{T_i\}_{i\geq 1}$ of distinct points of \mathbb{R}^d

Definition

For $\lambda : \mathbb{R}^d \to \mathbb{R}_+$ locally integrable function, $N \leftrightarrow \{T_n\}_{n>0}$ point process on \mathbb{R}^d is Poisson with intensity function λ if and only if for measurable, disjoint $C_i \subset \mathbb{R}^d, i = 1, ..., n$, $N(C_i)$ independent, ~ Poisson $(\int_{C_i} \lambda(x) dx)$

O Suppose
$$\mathcal{A}(\mathbf{x})$$
: à support compact, $C \subseteq |\mathbf{R}^{d}$.
 $N(c) \sim \operatorname{Poi}\left(\int_{C} \mathcal{A}(\mathbf{x}) d\mathbf{x}\right)$.
 $\mathcal{U} = \mathcal{U}_{1} = \operatorname{id}_{1} de dennihé = \frac{\mathcal{A}(\mathbf{x})}{S} \operatorname{Poi}_{2} dn kt^{d}$.
 $\mathcal{M} = \mathcal{U}_{1} = \operatorname{id}_{1} de dennihé = \frac{\mathcal{A}(\mathbf{x})}{S} \operatorname{Poi}_{2} dn kt^{d}$.
 $\mathcal{M} = \mathcal{M} = \{\mathcal{U}_{1}, \dots, \mathcal{U}_{N_{t}}\}$.
 $\mathcal{M} = \{\mathcal{U}_{1}, \dots, \mathcal{U}_{N_{t}}\}$.
 $\mathcal{M} = \mathbb{E} \left[\mathbb{E} \left[\mathbb$

Poisson process with general space and intensity

Definition

Point process on \mathbb{R}^d : countable or finite collection $\{T_i\}_{i\geq 1}$ of distinct points of \mathbb{R}^d

Definition

For $\lambda : \mathbb{R}^d \to \mathbb{R}_+$ locally integrable function, $N \leftrightarrow \{T_n\}_{n>0}$ point process on \mathbb{R}^d is Poisson with intensity function λ if and only if for measurable, disjoint $C_i \subset \mathbb{R}^d, i = 1, ..., n$, $N(C_i)$ independent, $\sim \text{Poisson}(\int_{C_i} \lambda(x) dx)$

Proposition

Such a process exists and admits Laplace transform

$$\mathcal{L}_N(f) = \exp\left(-\int_{\mathbb{R}^d} \lambda(x)(1-e^{-f(x)})dx\right)$$

$$V^{(0)} \rightleftharpoons \lambda^{(0)} (x) = \lambda^{(-)} \mathcal{I}_{||x|| \leq 1}$$

$$V^{(1)} \qquad C_{g} = \{x : ||x|| \in [4, b+1)\}$$

$$(k) \qquad (k) \qquad (k) \qquad (k, b+1)\}$$

$$(k) \qquad (k) \qquad (k) \qquad (k) \qquad (k-1) = \sum_{i=0}^{n} \lambda^{(i)} (1 - \frac{1}{2} \cdot \frac{g(x)}{x})$$

$$(k) \qquad (k) \qquad (k) \qquad (k) \qquad (k-1) = \sum_{i=0}^{n} \lambda^{(i)} (1 - \frac{1}{2} \cdot \frac{g(x)}{x})$$

$$(k) \qquad (k) \qquad$$

Markov jump processes Process $\{X_t\}_{t \in \mathbb{R}_+}$ with values in E, countable or finite, is

Markov if $\mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}),$ $t_1^n \in \mathbb{R}^n_+, t_1 < \dots < t_n, x_1^n \in E^n$

Homogeneous if $\mathbb{P}(X_{t+s} = y | X_s = x) =: p_{xy}(t)$ independent of *s*, $s, t \in \mathbb{R}_+, x, y \in E$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Markov jump processes Process $\{X_t\}_{t \in \mathbb{R}_+}$ with values in *E*, countable or finite, is

Markov if

 $\mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}),$ $t_1^n \in \mathbb{R}^n_+, \ t_1 < \dots < t_n, \ x_1^n \in E^n$

Homogeneous if $\mathbb{P}(X_{t+s} = y | X_s = x) =: p_{xy}(t)$ independent of s, $s, t \in \mathbb{R}_+, x, y \in E$ $\mathbb{P}(X_{t+s} = y | X_s = x) = \sum_{z \in E} p_{xz}(t) p_{zy}(s),$ \Rightarrow Semi-group property $p_{xy}(t+s) = \sum_{z \in E} p_{xz}(t) p_{zy}(s),$ or P(t+s) = P(t)P(s) with $P(t) = \{p_{xy}(t)\}_{x,y \in E}$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Markov jump processes Process $\{X_t\}_{t \in \mathbb{R}_+}$ with values in *E*, countable or finite, is

Markov if

 $\mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}, \dots, X_{t_1} = x_1) = \mathbb{P}(X_{t_n} = x_n | X_{t_{n-1}} = x_{n-1}),$ $t_1^n \in \mathbb{R}^n_+, \ t_1 < \dots < t_n, \ x_1^n \in \mathbb{E}^n$

Homogeneous if $\mathbb{P}(X_{t+s} = y | X_s = x) =: p_{xy}(t)$ independent of *s*, $s, t \in \mathbb{R}_+, x, y \in E$

 $\Rightarrow \text{Semi-group property } p_{xy}(t+s) = \sum_{z \in E} p_{xz}(t)p_{zy}(s),$ or P(t+s) = P(t)P(s) with $P(t) = \{p_{xy}(t)\}_{x,y \in E}$

Definition

 ${X_t}_{t \in \mathbb{R}_+}$ is a **pure jump** Markov process if in addition (i) It spends with probability 1 a strictly positive time in each state (ii) Trajectories $t \to X_t$ are right-continuous Markov jump processes: examples

$$\mathbb{P}(N_{t_{n}} = x_{n} | N_{t_{n}} = x_{t_{n}} | i = 1^{n} - n - i)$$

$$= \mathbb{P}(N_{t_{n}} - N_{t_{n}} = x_{n} - x_{n} - i)$$

• Poisson process $\{N_t\}_{t \in \mathbb{R}_+}$: then Markov jump process with $p_{xy}(t) = \mathbb{P}(\text{Poisson}(\lambda t) = y - x)$

< 回 > < 回 > < 回 >

3

Markov jump processes: examples $X_t \in V$

- Poisson process $\{N_t\}_{t \in \mathbb{R}_+}$: then Markov jump process with $p_{xy}(t) = \mathbb{P}(\text{Poisson}(\lambda t) = y x)$
- Continuous-time random walk on finite, undirected graph G = (V, E): Sojourn time at node $i \in V$: exponentially distributed with parameter d_i , degree of node i,

after which: jump to neighbor of i selected uniformly at random

Markov jump processes: more examples

 Single-server queue, FIFO ("First-in-first-out") discipline, arrival times: N Poisson (λ), service times: i.i.d. Exp(μ) independent of N X_t = number of customers present at time t: Markov jump process by Memoryless property of Exponential distribution + Markov property ub de sevens of Poisson process (the M/M/1) (queue) the de service Exp(m) t er t+n : ivées entre ems Kauslate N(+) = N rocermo de Poisson, ind' des Nt;, t: st. taille de file

inter A

Markov jump processes: more examples

• Single-server queue, FIFO ("First-in-first-out") discipline, arrival times: *N* Poisson (λ), service times: i.i.d. Exp(μ) independent of *N* X_t = number of customers present at time *t*: Markov jump process by Memoryless property of Exponential distribution + Markov property of Poisson process

(the $M/M/1/\infty$ queue)

Infinite server queue with Poisson arrivals and Exponential service times: customer arrived at T_n stays in system till T_n + σ_n, where σ_n: service time X_t= number of customers present at time t:

Markov jump process (the $M/M/\infty/\infty$ queue)

Structure of Markov jump processes

Infinitesimal Generator $\forall x, y, y \neq x \in E$, limits $q_x := \lim_{t \to 0} \frac{1 - p_{xx}(t)}{t}$, $q_{xy} = \lim_{t \to 0} \frac{p_{xy}(t)}{t}$ exist in \mathbb{R}_+ and satisfy $\sum_{y \neq x} q_{xy} = q_x$ q_{xy} : **Jump rate** from x to y $Q := \{q_{xy}\}_{x,y \in E}$ where $q_{xx} = -q_x$: **Infinitesimal Generator** of process $\{X_t\}_{t \in \mathbb{R}_+}$

Formally: $Q = \lim_{h \to 0} \frac{1}{h} [P(h) - I]$ where I: identity matrix

Structure of Markov jump processes Infinitesimal Generator $\forall x, y, y \neq x \in E$, limits $q_x := \lim_{t \to 0} \frac{1 - p_{xx}(t)}{t}$, $q_{xy} = \lim_{t \to 0} \frac{p_{xy}(t)}{t}$ exist in \mathbb{R}_+ and satisfy $\sum_{y \neq x} q_{xy} = q_x$ q_{xy} : Jump rate from x to y $Q := \{q_{xy}\}_{x,y \in E}$ where $q_{xx} = -q_x$: Infinitesimal Generator of process $\{X_t\}_{t \in \mathbb{R}_+}$

Formally: $Q = \lim_{h \to 0} \frac{1}{h} [P(h) - I]$ where I: identity matrix

Structure of Markov jump processes

Sequence $\{Y_n\}_{n \in \mathbb{N}}$ of visited states: Markov chain with transition matrix $p_{xy} = \mathbb{I}_{x \neq y} \frac{q_{xy}}{q_x}$ Conditionally on $\{Y_n\}_{n \in \mathbb{N}}$, sojourn times $\{\tau_n\}_{n \in \mathbb{N}}$ in successive states Y_n : independent, with distributions $\text{Exp}(q_{Y_n})$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Proof elements $0 < T_1 < \cdots < T_n < \cdots$: jump times; $\tau_i = T_{i+1} - T_i$ sojourn time

Discrete time chain for h > 0: $Z_n := X_{nh}$ $\mathbb{P}_{\mathbf{x}}(\tau_{o} > t) = e^{i n_{o}} \frac{t}{t}(\mathbf{x}_{o} t^{h_{o}}, \mathbf{y})$ $\tau_0^{(h)} := h \inf\{n > 0 : Z_n \neq Z_{n-1}\}.$ On $\{\tau_1 > h\}, \tau_0^{(h)} - h \le \tau_0 \le \tau_0^{(h)}$ 12 x (2, 74)= 0 ¥ (. 2, = 0 p. A. By assumption, $\lim_{h\to 0} \mathbb{P}(\tau_1 > h) = 1$, hence $\mathbb{P}_{\mathsf{x}}(\tau_0 > t) = \lim_{h \to 0} \mathbb{P}_{\mathsf{x}}(\tau_0^{(h)} > t; \tau_1 > h)$ $\mathbb{C}_{\mathbf{x}}(\tau, \mathbf{y}_{t}) = \mathbf{1} \mathbf{y}_{t}.$ $=\lim_{h\to 0} p_{yy}(h)^{\left\lfloor \frac{t}{h} \right\rfloor}$ $= e^{\lim_{h\to 0} \left\lceil \frac{t}{h} \right\rceil \ln p_{xx}(h)}$ Since $p_{xx}(h) \ge \mathbb{P}_x(\tau_0 > h) \stackrel{h \to 0}{\rightarrow} 1$, $\lceil \frac{t}{h} \rceil \ln p_{xx}(h) \sim \frac{t}{h}(p_{xx}(h) - 1)$. Hence $\exists q_x := \lim_{h \to 0} \frac{1 - p_{xx}(h)}{h}$, and $\mathbb{P}_x(\tau_0 > t) = e^{-q_x t}$. Case $q_x = +\infty$ ruled out ($au_0 > 0$ a.s.); case $q_x = 0$: $au_0 = +\infty$ a.s., i.e. process absorbed in x. Laurent Massoulié (Inria) Poisson process and Markov jump processe February 22, 2021 16 / 20

Assuming
$$q_{x} > 0$$
:

$$\mathbb{E}_{x}(e^{-\alpha\tau_{0}}\mathbb{I}_{Y_{1}=y}) \sim \mathbb{E}_{x}[e^{-\alpha\tau_{0}^{(h)}}\mathbb{I}_{X_{\tau_{0}^{(h)}=y}}] \qquad \mathbb{E}_{c}^{(A)} = \dots = \lambda$$

$$= \sum_{n\geq 1} e^{-\alpha nh} \mathbb{P}_{x}(X_{h} = \dots = X_{h(n-1)} = x, X_{hn} = y)$$

$$= \sum_{n\geq 1} e^{-\alpha nh} [p_{xx}(h)]^{n-1} p_{xy}(h)$$

$$= \sum_{n\geq 1} e^{-\alpha nh} \sum_{m\geq n} \mathbb{P}_{x}(\tau_{0}^{(h)} = hm) p_{xy}(h)$$

$$= \sum_{m\geq 1} \mathbb{P}_{x}(\tau_{0}^{(h)} = m) e^{-\alpha h} \frac{1-e^{-\alpha hm}}{1-e^{-\alpha h}} p_{xy}(h)$$

$$= e^{-\alpha h} [1 - \mathbb{E}_{x} e^{-\alpha\tau_{0}^{(h)}}] \frac{p_{xy}(h)}{1-e^{-\alpha h}} \qquad \int^{n} de d$$

$$\sim [1 - \frac{q_{x}}{q_{x}+\alpha}] \frac{p_{xy}(h)}{h} = (\underbrace{q_{x}}{q_{x}+\alpha}) (\underbrace{q_{x}}{q_{x}})^{Ae} \underbrace{q_{x}}{q_{x}}$$
Implies existence of limit $\lim_{h\to 0} \frac{p_{xy}(h)}{h} = q_{xy}$, independence of τ_{0} and Y_{1}

Similar arguments for joint law of Y_1^n, τ_0^{n-1} .

イロト イポト イヨト イヨト

æ

Examples

 $X_{L} = N_{E} = \sum_{n>0}^{\infty} T_{n} \in [0, \ell]$

• for Poisson process (λ): only non-zero jump rate $q_{x,x+1} = \lambda = q_x, x \in \mathbb{N}$ $p_{xy}(+) = o(+), y_{-x}y_2$ $p_{xy}(+) = o(+), y_{-x}y_2$ $p_{xy}(+) = o(+), y_{-x}y_2$ $p_{xy}(+) = o(+), y_{-x}y_2$ $p_{xy}(+) = o(+), y_{-x}y_2$

Examples

$$\mathcal{C}_{\mathbf{x}}\left(\mathbf{x}_{t}=\mathbf{x}_{-1}\right) = \mathcal{C}_{\mathbf{x}}\left(\mathsf{Exp}(\mathbf{x}) \in t\right)$$
$$= \mathbf{x} + \mathbf{o}(t)$$

- for Poisson process (λ): only non-zero jump rate $q_{x,x+1} = \lambda = q_x, \ x \in \mathbb{N}$
- For continuous-time random walk on graph G = (V, E), non-zero rates: $q_{i,j} = \mathbb{I}_{i \sim j}$, hence $q_i = d_i$. Generator Q is opposite of so-called Laplacian matrix L(G) of graph G $\mathscr{L} (\mathcal{Y}_{\downarrow} - \mathcal{Y}_{\circ} \supset 2) \in \mathscr{L}(\mathcal{N}_{\downarrow} \neg \mathcal{Y})$

• For FIFO $M/M/1/\infty$ queue, non-zero rates: $q_{x,x+1} = \lambda$, f = 0 (*). $q_{x,x-1} = \mu \mathbb{I}_{x>0}, x \in \mathbb{N}$ hence $q_x = \lambda + \mu \mathbb{I}_{x>0}$

Examples

- for Poisson process (λ): only non-zero jump rate $q_{x,x+1} = \lambda = q_x, x \in \mathbb{N}$
- For continuous-time random walk on graph G = (V, E), non-zero rates: q_{i,j} = I_{i~j}, hence q_i = d_i. Generator Q is opposite of so-called Laplacian matrix L(G) of graph G
- For FIFO $M/M/1/\infty$ queue, non-zero rates: $q_{x,x+1} = \lambda$, $q_{x,x-1} = \mu \mathbb{I}_{x>0}, x \in \mathbb{N}$ hence $q_x = \lambda + \mu \mathbb{I}_{x>0}$
- For $M/M/\infty/\infty$ queue, non-zero rates: $q_{x,x+1} = \lambda$, $q_{x,x-1} = \mu x$, $x \in \mathbb{N}$ hence $q_x = \lambda + \mu x$

・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

Structure of Markov jump processes (continued) Let $T_n := \sum_{k=0}^{n-1} \tau_k$: time of *n*-th jump.

If $T_{\infty} = +\infty$ almost surely: trajectory determined on \mathbb{R}_+ , hence generator Q determines law of process $\{X_t\}_{t \in \mathbb{R}_+}$

Structure of Markov jump processes (continued) Let $T_n := \sum_{k=0}^{n-1} \tau_k$: time of *n*-th jump.

If $T_{\infty} = +\infty$ almost surely: trajectory determined on \mathbb{R}_+ , hence generator Q determines law of process $\{X_t\}_{t \in \mathbb{R}_+}$

Process is called **explosive** if instead $T_{\infty} < +\infty$ with positive probability. Then process not completely characterized by generator Structure of Markov jump processes (continued) Let $T_n := \sum_{k=0}^{n-1} \tau_k$: time of *n*-th jump.

If $T_{\infty} = +\infty$ almost surely: trajectory determined on \mathbb{R}_+ , hence generator Q determines law of process $\{X_t\}_{t \in \mathbb{R}_+}$

Process is called **explosive** if instead $T_{\infty} < +\infty$ with positive probability. Then process not completely characterized by generator

Sufficient conditions for non-explosiveness:

- $\sup_{x\in E} q_x < +\infty$
- Recurrence of induced chain $\{Y_n\}_{n \in \mathbb{N}}$
- For **Birth and Death** processes (i.e. $E = \mathbb{N}$, only non-zero rates: $\beta_n = q_{n,n+1}$, birth rate; $\delta_n = q_{n,n-1}$, death rate), non-explosiveness holds if

$$\sum_{n>0} \frac{1}{\beta_n + \delta_n} = +\infty$$

- Poisson process a fundamental continuous-time process, adequate model for aggregate of infrequent independent events
- Markov jump processes: generator *Q* characterizes distribution if not explosive