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Power-law random graphs
Rough definition: graphs such that number Xi of degree i-nodes verifies
Xi ≈ C × i−β for some exponent β > 0 over some wide range of values i

Examples: Web graph, FaceBook graph, Hollywood graph, protein
interaction graph, Internet router-level graph,...
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Also known as scale-free graphs: no natural scale for node degrees.

Contrast with E-R graphs G(n, d/n): for d >> ln(n), with high probability
all node degrees close to d (Exercise!)

Outline

The Barabási-Albert (BA) preferential attachment model

Power-law property of the BA random graph

Azuma-Hoeffding concentration inequality

The small-world phenomenon and Kleinberg’s navigable graphs
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BA preferential attachment model

Iterative construction of graphs Gt = (Vt , Et), t ≥ 0 from initial graph
G0 = (V0, E0)

Step t:

Add new node t to Vt−1, hence Vt = V0 ∪ {1, . . . , t}, and
nt := |Vt | = n0 + t

Connect node t by single edge to anchor node Vt ∈ Vt−1, hence
Et = Et−1 ∪ {(Vt , t)}, and et := |Et | = |E0|+ t

Selection procedure of anchor node Vt :
∀v ∈ Vt−1,P(Vt = v |Ft−1) = α 1

nt−1
+ (1− α)Dt−1(v)

2et−1
,

where Ft−1 = σ(V t−1
1 ) and Dt−1(v): degree of node v in Gt .
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Main result

Theorem

Let Xi (t) = number of degree i-nodes in Gt . Let

c1 =
2

3 + α
, ∀i > 1,

ci
ci−1

= 1− 3− α
2 + 2α + (1− α)i

·

Then for any fixed i ≥ 1, almost surely one has lim
t→∞

1

t
Xi (t) = ci .

Corollary

The Barabási-Albert random graph model for α ∈ [0, 1[ is approximately
power-law with exponent β = 3−α

1−α
in that for some constant C > 0, ci ∼ C × i−β as i →∞
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Comments

Model extensions: new node creates fixed number (not necessarily
one) of edges; edges can be oriented ⇒ possibility to induce distinct
exponents βin, βout for node in-degree and out-degree distributions

Precursors of BA model for explaining power-laws by preferential
attachment dynamics: Yule model of evolution (Yule, 1925) of
number of species in each genera (family of species)

Alternative explanations of power-laws: Mandelbrot’s argument that
power laws optimize some criterion (e.g., power-law distribution of
word frequencies in a language optimizes information content per
symbol)
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The Yule model

Species grouped in genera. Mutation within a species induces creation of a
new species, assumed to belong to same genera with probability 1− α
(mild mutation), or to initiate a new genera with probability α (radical
mutation)

Discrete time model: at each step choose one species uniformly and add
corresponding mutant species. Preferential attachment: bigger genera
increase more than smaller ones.

Theorem

Let Yi (t): number of genera with i species
Let d1 = α

2−α , ∀i > 1, di
di−1

= 1− 2−α
1+i(1−α) , i > 1

Then almost surely ∀i ≥ 1, lim
t→∞

Yi (t)

t
= di

Hence, power-law distribution with exponent β = (2− α)/(1− α)

Laurent Massoulié (Inria) Power-law random graphs and small-world phenomenon February 9, 2021 7 / 20



The Yule model

Species grouped in genera. Mutation within a species induces creation of a
new species, assumed to belong to same genera with probability 1− α
(mild mutation), or to initiate a new genera with probability α (radical
mutation)

Discrete time model: at each step choose one species uniformly and add
corresponding mutant species. Preferential attachment: bigger genera
increase more than smaller ones.

Theorem

Let Yi (t): number of genera with i species
Let d1 = α

2−α , ∀i > 1, di
di−1

= 1− 2−α
1+i(1−α) , i > 1

Then almost surely ∀i ≥ 1, lim
t→∞

Yi (t)

t
= di

Hence, power-law distribution with exponent β = (2− α)/(1− α)
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Proof elements: controlling the mean

Proposition

For fixed i ≥ 1 let xi (t) := EXi (t) and δi (t) := xi (t)− ci t.
Then for all ε > 0, δi (t) = o(tε) as t →∞.

Evolution equations

P(X1(t + 1) = X1(t)|Ft) = P(Dt(Vt+1) = 1|Ft)

= αX1(t)
nt

+ (1− α) 1×X1(t)
2et

,

P(X1(t + 1) = X1(t) + 1|Ft) = 1− αX1(t)
nt
− (1− α)X1(t)

2et

Hence x1(t + 1)− x1(t) = 1−
[
α
nt

+ 1−α
2et

]
x1(t). This yields

δ1(t + 1)− δ1(t) = −c1 + 1−
[
α
nt

+ 1−α
2et

]
(c1t + δ1(t))

= −c1 + 1− (α + 1−α
2 )c1 + O(t−1)

−
[
α
nt

+ 1−α
2et

]
δ1(t),
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Proof elements: controlling the mean 2
Hence δ1(t + 1) = O(t−1) + [1− α

nt
− 1−α

2et
]δ1(t) =

∑t
s=1 O(s−1) = o(tε)

Case i > 1: evolution equations

P(Xi (t + 1) = Xi (t) + 1|Ft) = P(Dt(Vt+1) = i − 1|Ft)

= α
Xi−1(t)

nt
+ (1− α)

(i−1)Xi−1(t)
2et

,

P(Xi (t + 1) = Xi (t)− 1|Ft) = P(Dt(Vt+1) = i |Ft)

= αXi (t)
nt

+ (1− α) i×Xi (t)
2et

,

hence difference xi (t + 1)− xi (t) equals[
α

nt
+

(1− α)(i − 1)

2et

]
xi−1(t)−

[
α

nt
+

i(1− α)

2et

]
xi (t)

Writing xj(t) = cj t + δj(t), and using induction hypothesis
δi−1(t) = o(tε) yields

|δi (t + 1)| ≤ |δi (t)|+ O(tε−1).
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Azuma-Hoeffding inequality

Definition

A sequence {Ms}0≤s≤t is a martingale with respect to an increasing
sequence {Fs}0≤s≤t of σ-fields if for all s, Ms is Fs -measurable, and
E(Ms |Fs−1) = Ms−1 .

Theorem

Let {Ms}0≤s≤t be a martingale with bounded increments: there exist
constants cs such that almost surely, ∀s > 0, |Ms −Ms−1| ≤ cs .

Then for all x > 0, P(Mt −M0 ≥ x) ≤ exp
(
− x2

2
∑t

s=1 c
2
s

)
.

Corollary

Under the same assumptions, P(|Mt −M0| ≥ x) ≤ 2 exp
(
− x2

2
∑t

s=1 c
2
s

)
.
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Azuma-Hoeffding inequality – Proof

Write Mt −Mt−1 = Z · ct + (1− Z )(−ct) for some random Z .
Necessarily Z ∈ [0, 1] and E(Z |Ft−1) = 1/2.

For θ > 0 write

E[exp(θ(Mt −Mt−1))|Ft−1] ≤ E[Zeθct + (1− Z )e−θct |Ft−1]

= eθct +e−θct

2

≤ exp
(

(θct)2

2

)
.

This yields after iterating E[eθ(Mt−M0)] ≤ exp
(
θ2

2

∑t
s=1 c

2
s

)
Result follows by Chernoff’s argument:

P(Mt −M0 ≥ x) ≤ exp

(
− sup
θ>0

[θx − lnEeθ(Mt−M0)]

)
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Azuma-Hoeffding inequality – Remarks

A Gaussian-like bound on tail probabilities P(Mt −M0 ≥ x)

Corollary

Let f : Ω1 × · · · × Ωt → R: measurable function. Assume there exist
constants c1, . . . , ct such that for all xT1 ∈ Ω1 × · · · × Ωt , all
s ∈ [t], ys ∈ Ωs ,

|f (x t1)− f (x s−1
1 , ys , x

t
s+1)| ≤ ct .

Then given independent random variables X1, . . . ,Xt ∈ Ω1 × · · · × Ωt ,
random variable Y := f (X t

1 ) satisfies for all x > 0:

P(Y −E(Y ) ≥ x) ≤ exp

(
− x2

2
∑t

s=1 c
2
s

)
Proof: Apply Azuma-Hoeffding to Ms := E[Y |X s

1 ]
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Key Lemma (see lecture notes for proof)

Lemma

For fixed i , t ∈ N construct from variable Xi (t) in the BA graph model the
martingale Ms := E[Xi (t)|Fs ] where Fs = σ(V s

1 ).
Then this martingale has increments bounded by 2.

Corollary

For all i , t ∈ N, x ∈ R+, P(|Xi (t)− xi (t)| ≥ x) ≤ 2 exp
(
− x2

8t

)
.

⇒ P

(
|Xi (t)− xi (t)| ≥ 4

√
t ln(t)

)
≤ 1

t2
.

By Borel-Cantelli lemma almost surely only finitely many events
At := {|Xi (t)− xi (t)| ≥ 4

√
t ln(t)} occur. Thus for all ε > 0, large

enough t:

|Xi (t)− ci t| ≤ |δi (t)|+ 4
√

t ln(t) = O(tε) + 4
√
t ln(t).

Hence limt→∞
Xi (t)
t = ci almost surely.

Laurent Massoulié (Inria) Power-law random graphs and small-world phenomenon February 9, 2021 13 / 20



Key Lemma (see lecture notes for proof)

Lemma

For fixed i , t ∈ N construct from variable Xi (t) in the BA graph model the
martingale Ms := E[Xi (t)|Fs ] where Fs = σ(V s

1 ).
Then this martingale has increments bounded by 2.

Corollary

For all i , t ∈ N, x ∈ R+, P(|Xi (t)− xi (t)| ≥ x) ≤ 2 exp
(
− x2

8t

)
.

⇒ P

(
|Xi (t)− xi (t)| ≥ 4

√
t ln(t)

)
≤ 1

t2
.

By Borel-Cantelli lemma almost surely only finitely many events
At := {|Xi (t)− xi (t)| ≥ 4

√
t ln(t)} occur. Thus for all ε > 0, large

enough t:

|Xi (t)− ci t| ≤ |δi (t)|+ 4
√
t ln(t) = O(tε) + 4

√
t ln(t).

Hence limt→∞
Xi (t)
t = ci almost surely.
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Corollary

For all i , t ∈ N, x ∈ R+, P(|Xi (t)− xi (t)| ≥ x) ≤ 2 exp
(
− x2

8t

)
.

⇒ P

(
|Xi (t)− xi (t)| ≥ 4

√
t ln(t)

)
≤ 1

t2
.

By Borel-Cantelli lemma almost surely only finitely many events
At := {|Xi (t)− xi (t)| ≥ 4

√
t ln(t)} occur. Thus for all ε > 0, large

enough t:

|Xi (t)− ci t| ≤ |δi (t)|+ 4
√

t ln(t) = O(tε) + 4
√
t ln(t).

Hence limt→∞
Xi (t)
t = ci almost surely.
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Power laws as optimal design

Mandelbrot’s argument for power-law distribution of word occurrences

Words w1, . . . ,wi , ... over alphabet of a letters,
pi : frequency of i-th word (in lexicographic order)

Per-word information content: Shannon’s entropy
H({pi}) :=

∑
i pi ln(1/pi )

Let |wi |: length of word wi .

Average information per character: H({pi})
L({pi}) where L({pi}) :=

∑
i pi |wi |
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Power laws as optimal design 2

Result:
Average information per character H({pi})

L({pi}) maximized by frequencies

pi ∝ e−C |wi |.

Using a a|wi |−1
a−1 ≥ i > a a|wi |−1−1

a−1 , this yields
ln(pi ) ∼ −C |wi | ∼ −C ln(i)/ ln(a),

i.e. a power-law shape for the optimal distribution {pi}
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Small-world graphs–Milgram’s experiment (67)

S. Milgram asked people to transmit letter (based on destination name,
city and profession) to some friend, recursively, until letter reaches
destination

Most letters reached destination in ≤ 6 hops

Now known as the “small-world”, or “six degrees of separation”
phenomenon: everyone connected to everyone in at most 6 hops

Consequence: the “social graph” has diameter at most 6
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Small-world graphs–models

First modeling attempt:
view social links as Erdős-Rényi G(n, d/n) graph.
→ For d � ln(n), diameter of G(n, d/n): O(ln(n)/ ln(d)), hence small

Criticism: E-R graphs have no structure, contrarily to social graphs
(affected by geographic, professional, religious, etc proximities)

Second modeling attempt (Watts and Strogatz, 90’s):
Augment structured graph (eg “path” graph: nodes=[n]; edge (i , j) if and
only if |i − j | = 1)
with random edges, e.g. each i ∈ [n] creates with probability ε > 0 edge
towards short-cut destination Zi .

Then for any ε > 0, and Zi i.i.d. on [n], diameter is w.h.p. O(log(n)),
hence small
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Kleinberg’s navigable graphs

Strogatz-Watts model: explains small diameter as result of structured
(large diameter) graph augmented with random edges

Does not explain how people found short paths in Milgram’s experiment

Kleinberg’s model: similar to Strogatz-Watts, with P(Zi = j) ∝ |i − j |−α,
for exponent α ≥ 0

For neighbor selection (or routing) algorithm Alg, let TAlg (s, d): number
of steps for letter started at s ∈ [n] to reach destination d ∈ [n]

Simplest distributed routing algorithm: greedy, i.e. letter for d ∈ [n]
forwarded by i ∈ [n] to Argminj∼i |d − j |
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Kleinberg’s navigable graphs

For α = 1 (so-called Harmonic distribution of shortcuts Zi ),
∀s, d ∈ [n], ETgreedy (s, d) = O(ln(n)2)

For α 6= 1, and any distributed algorithm Alg (relying only on information
d , {j : j ∼ i} to choose next hop when at node i), one has
ETalg (s, d) = Ω(nβ)
for fraction Ω(1) of pairs s, d ∈ [n], and positive exponent β

→ Graph is navigable (i.e. there is a fast distributed routing algorithm)
only for harmonic distribution of short-cuts.

For D-dimensional initial structured graph (V = [n]D ,
i ∼ j ⇔ ‖i − j‖1 = 1), same result holds where now harmonic distribution

defined as P(Zi = j) ∝ ‖j − i‖−D
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Takeaway messages

Preferential attachment dynamics induce scale-free, power-law
distributions

Examples: Barabási-Albert random graph model, Yule model of
number of species per genera

Azuma-Hoeffding inequality: Chernoff-like bound for martingales with
bounded increments, an example of a concentration inequality

Navigable graphs: obtained from harmonic distribution of shortcuts,
provide fast routing based on greedy algorithm

A potential model of information location in social networks (as in
Milgram’s experiment), but also a potential design for engineered
(computer) networks
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