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Viral propagation of information and ”information
cascades”
Propagation on underlying graph (e.g. facebook’s ”friendship graph”, or
Twitter’s ”follower-followee” directed graph)

→ Epidemic models to understand viral propagation (and guide viral
marketing strategies)

4 large Twitter 
cascades
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The Independent Cascade, or
Susceptible-Infective-Removed (SIR) epidemics model

p=0.05

q=0.1

r=0.01

p=0.05

Assigns to each oriented edge (i , j) a
probability pij

i infected in slot t ⇒ infects each neighbor j with probability pij in slot
t + 1 independently of everything else and is then Removed

Questions of interest: Number of eventually infected nodes? As a function
of set initially infected? Optimal choice of initial set of given size?
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SIR epidemics: the Reed-Frost model

Special case: complete graph on i ∈ [n] and homogeneous infection
probabilities pij ≡ p

Associated model: Erdős-Rényi random graph G(n, p): undirected
graph on node set [n]. Edge (i , j) present iff ξij = 1 where {ξij}i<j :
i.i.d., Bernoulli (p)

From random graph to epidemic process: use ξij to determine if when
the first of i and j gets infected, it infects the other

2 2
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1

2

1

⇒ For initial set X0 of infective nodes at time
0, i infected at time t iff dG (X0, i) = t
Set of nodes eventually infected: ∪i∈X0Γ(i) where Γ(i): graph’s connected
component including i
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Outline

Seminal results by Erdős and Rényi (1959-1960)

First phase transition: emergence of giant component

Tools: branching processes & Chernoff’s inequality

Second phase transition: emergence of connectivity

Tools: 1st and 2nd moment methods; Poisson approximation
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Towards Susceptible-Infective-Removed (SIR) epidemics:
Galton-Watson branching process (1873)

Ancestor (generation 0)

Generation 1

Generation 2

Offspring distribution {pk}k∈N
Zk number of individuals per generation:

Z0 = 1,Zk =
∑Zk−1

m=1 Xm,k where {Xm,k}m,k≥0: i.i.d., ∼ {pk}k∈N

Quantities of interest: probability of extinction; in case of extinction, total
population size
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Theorem

Extinction probability pext : smallest root in [0, 1] of z = φ(z) where
φ(z) = E(zX ) =

∑
k≥0 pkz

k

If µ := E(X ) < 1 then pext = 1
If µ = 1 and p0 > 0 then pext = 1
If µ > 1 then pext < 1

Proof: {Zk = 0} ↗ {Extinction}; P(Zk = 0) = φk(0) where
φk(z) = E(zZk )
By induction φk(z) = φ ◦ φk−1(z) hence P(Zk = 0) = φ(P(Zk−1 = 0))
⇒ by monotonicity of φ and P(Z0 = 0) = 0, sequence increases to
(necessarily smallest) fixed point.
µ: slope of φ at 1−. By convexity of φ, only fixed point: 1 if µ < 1
By continuity of φ, ∃ fixed point < 1 if µ > 1
For µ = 1, if p0 > 0 then φ strictly convex hence only fixed point: 1; if
p0 = 0 then pext = 0
Fundamental example of phase transition
Special case X ∼ Poisson(µ): pext = e−µ(1−pext)
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Laurent Massoulié (Inria) Models of information propagation in online social networks: Epidemic processes and random graphsJanuary 20, 2021 7 / 24



Theorem

Extinction probability pext : smallest root in [0, 1] of z = φ(z) where
φ(z) = E(zX ) =

∑
k≥0 pkz

k

If µ := E(X ) < 1 then pext = 1
If µ = 1 and p0 > 0 then pext = 1
If µ > 1 then pext < 1

Proof: {Zk = 0} ↗ {Extinction}; P(Zk = 0) = φk(0) where
φk(z) = E(zZk )
By induction φk(z) = φ ◦ φk−1(z) hence P(Zk = 0) = φ(P(Zk−1 = 0))
⇒ by monotonicity of φ and P(Z0 = 0) = 0, sequence increases to
(necessarily smallest) fixed point.
µ: slope of φ at 1−. By convexity of φ, only fixed point: 1 if µ < 1
By continuity of φ, ∃ fixed point < 1 if µ > 1
For µ = 1, if p0 > 0 then φ strictly convex hence only fixed point: 1; if
p0 = 0 then pext = 0
Fundamental example of phase transition
Special case X ∼ Poisson(µ): pext = e−µ(1−pext)
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been sampled)
De-activate it and add its children to active set
Stop when active set empty (tree exploration complete)

Dynamics of At , number of active nodes at step t:
Random walk At = At−1 − 1 + Xt where Xt independent of past
exploration {As ,Xs , s < t} and distributed according to {pk}k≥0

Time T at which exploration stops, i.e. AT = 0 gives size of tree.
Indeed At = 1− t + X1 + . . .+ Xt and AT = 0 yield
T = 1 + X1 + . . .+ XT .

Random walk can be pursued after time T

⇒ Bound on population size: for continued RW {At}t≥0,
P(T > t) = P(A1, . . . ,At > 0) ≤ P(At > 0) = P(

∑t
s=1(Xs − 1) ≥ 0)
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Control of fluctuations: Chernoff’s inequality

Markov’s inequality: random variable X ≥ 0,
a > 0⇒ P(X ≥ a) ≤ E(X )/a

Bienaymé-Tchebitchev’s inequality: random variable X ∈ R:
P(|X −E(X )| ≥ a) ≤ Var(X )/a2

Exponential version: for θ > 0, P(X ≥ t) ≤ E(eθX )e−θt i.e. finite
exponential moments yield exponentially decaying control of tail
probabilities
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Chernoff’s inequality and bounds on population size

Theorem

For i.i.d. Xs , P(
∑t

s=1 Xs ≥ at) ≤ e−th(a) where
h(a) := supθ>0[θa− ln(E(eθX1))]

Non-trivial exponential bound when a > E(X1) and ∃ε > 0 : EeεX1 < +∞

Application to Galton-Watson process:
P(T > t) ≤ e−th(1) exponentially decaying if E(X1) < 1 and X1 admits
finite exponential moments.
Case of Poisson random variables, parameter µ > 0, a > µ:
hµ(a) = supθ>0[θa− µ(eθ − 1)]
Gives θ = ln(a/µ), hµ(a) = µh1(a/µ)
with h1(x) = x ln(x)− x + 1
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Emergence of giant component

Analysis of graph’s connected components: let C (i): size of i-th largest
connected component (in number of nodes) in G(n, p)

Theorem

Let p = λ/n for fixed λ > 0
Sub-critical case (λ < 1): there exists f (λ) such that

lim
n→∞

P(C (1) ≤ f (λ) ln(n)) = 1

Super-critical case (λ > 1): there exists g(λ) such that for all δ > 0,

lim
n→∞

P(|C (1)

n
− (1− pext)| ≤ δ, C (2) ≤ g(λ) ln(n)) = 1,

where pext : extinction probability of Poisson (λ) branching process, i.e.
smallest root of x = eλ(x−1) in [0, 1]
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Interpretation

Sub-critical regime: Only logarithmically sized components i.e. no global
outbreak

Super-critical regime: with probability 1− pext , epidemics started from
randomly selected node reaches n[1− pext + o(1)] others, i.e. macroscopic
outbreak

Note: only one giant component, others still logarithmic
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Sub-critical regime

Exploration of connected component Γ(i0): initialized with active set
A0 = {i0} and killed set B0 = ∅
At time t pick jt ∈ At−1, kill it and activate its neighbours not yet
activated (set Dt)
⇒ At = At−1 \ {jt} ∪ Dt , Bt = Bt−1 ∪ {jt}

Notation: At = |At |, Dt = |Dt | ⇒ At = 1− t + D1 + · · ·+ Dt

Conditionally on Ft−1 = σ(A1, . . . ,At−1),
Dt ∼ Bin(p, n − 1− D1 − · · · − Dt−1)

Size C of connected component:

C = inf{t > 0 : At = 0}

Laurent Massoulié (Inria) Models of information propagation in online social networks: Epidemic processes and random graphsJanuary 20, 2021 13 / 24



Sub-critical regime

Exploration of connected component Γ(i0): initialized with active set
A0 = {i0} and killed set B0 = ∅
At time t pick jt ∈ At−1, kill it and activate its neighbours not yet
activated (set Dt)
⇒ At = At−1 \ {jt} ∪ Dt , Bt = Bt−1 ∪ {jt}
Notation: At = |At |, Dt = |Dt | ⇒ At = 1− t + D1 + · · ·+ Dt

Conditionally on Ft−1 = σ(A1, . . . ,At−1),
Dt ∼ Bin(p, n − 1− D1 − · · · − Dt−1)

Size C of connected component:

C = inf{t > 0 : At = 0}
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Sub-critical regime, continued

Processes {At}, {Dt} can be extended after end of component’s
exploration

Upper bound:

P(C > k) = P(A1, . . . ,Ak > 0) ≤ P(Ak > 0)

Chernoff’s bounding technique: P(Ak > 0) ≤ e−kh(1)

where h(x) = λh1(x/λ), h1(x) = x ln(x)− x + 1: Chernoff’s
exponent for Poisson (λ) random variable

Union bound allows to conclude
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Super-critical regime λ > 1

Lemma

For any k > 0, d1, . . . , dk ∈ Nk , limn→∞P(Dk
1 = dk

1 ) =
∏k

s=1 e
−λ λds

ds ! ,
hence limn→∞P(C ≤ k) = P(Z ≤ k) ≤ pext
where Z : total population of Poisson (λ) branching process

Additional technical steps involved to characterize sizes of connected
components in super-critical regime, see notes.
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Connectivity

By previous result: for fixed λ > 1, giant component of size ∼ n(1− pext)
For fixed λ, graph disconnected ⇒ Under what regime is graph connected?

Theorem

For fixed c ∈ R, assume np = ln(n) + c .
Then limn→∞P(G(n, p) connected) = e−e

−c

Corollary

If np − ln(n)→ +∞, then limn→∞P(G(n, p) connected) = 1
If np − ln(n)→ −∞, then limn→∞P(G(n, p) connected) = 0
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Proof strategy

Show that number of isolated nodes (i.e. nodes of degree 0) admits
asymptotically Poisson (e−c) distribution [Poisson approximation
method],

hence limn→∞P(A) = e−e
−c

where
A = {no isolated vertices in G(n, p)}

Show that limn→∞P(B) = 0 where
B = {∃ connected component of size k ∈ {2, . . . , n/2}}

Use bounds

P(A)−P(B) ≤ P(G(n, p) connected) = P(A ∩ B) ≤ P(A)
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Basic tools: the first and second moment methods

Let Zu, u ∈ V be indicators of events and X =
∑

u∈V Zu.

First moment method: P(∃u ∈ V : Zu = 1) ≤
∑

u∈V E(Zu) = E(X ),
hence “with high probability” none of these events occurs if
limn→∞E(X ) = 0.

Application: with high probability no isolated node in G(n, p) if
limn→∞[np − ln(n)] = +∞.

Second moment method: P(∀u ∈ V ,Zu = 0) = P(X = 0) ≤ Var(X )
E(X )2 .

Hence if Var(X ) = o(E(X )2), then with high probability some event
occurs.

Application: with high probability there is some isolated node in G(n, p) if
limn→∞[np − ln(n)] = −∞.
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Variation distance

Definition

Variation distance between two probability measures µ, ν on (Ω,F):
dvar (µ, ν) = 2 supA∈F |µ(A)− ν(A)|

Alternative characterization: if µ, ν admit densities dµ
dπ ,

dν
dπ with respect to

measure π (e.g., π = µ+ ν) then

dvar (µ, ν) =
∫

Ω

∣∣∣dµdπ − dν
dπ

∣∣∣ dπ
In particular for Ω = N and π =

∑
n∈N

δn, dvar (µ, ν) =
∑
n∈N
|µn − νn|

Definition

{µ(n)}n∈N converges in variation to µ iff limn→∞ dvar (µ(n), µ) = 0

A strong form of convergence (implies convergence in distribution)
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Poisson approximation: the Stein-Chen method

Theorem

Let Zu ∈ {0, 1}, u ∈ V , X =
∑

u∈V Zu.
Denote πu = E(Zu), λ = E(X ) =

∑
u∈V πu.

Assume ∃{Zuv}u,v∈V ,v 6=u such that

∀u ∈ V , P({Zuv}v 6=u ∈ ·) = P({Zv}v 6=u ∈ ·|Zu = 1).

Then:

dvar (X ,Poisson(λ)) ≤ 2 min(1, 1/λ)
∑
u∈V

πu

πu +
∑
v 6=u

E|Zuv − Zv |
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Applications

Proposition (Binomial approximation)

One has for all n, λ ≤ n:
dvar (Bin(n, λ/n),Poisson(λ)) ≤ 2 min(1, λ)λn

Proposition (Isolated nodes)

In G(n, p) with np = ln(n) + c , noting λ = n(1− p)n−1 ∼ e−c and X :
number of isolated nodes, then

dvar (X ,Poisson(λ)) ≤ 2λ[1/n + p/(1− p)] = O(ln(n)/n)

Hence, limn→∞P(X = 0) = e−e
−c
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Stein-Chen method – proof arguments

Fact: for each λ > 0,A ⊂ N, function f : N→ R defined by

f (0) = 0, λf (j + 1)− j · f (j) = IA(j)− Poiλ(A), j ∈ N

is min(1, λ−1)–Lipschitz

Write
|P(X ∈ A)− Poiλ(A)| = |E[λf (X + 1)− Xf (X )]|

=

∣∣∣∣∣∣
∑
u∈V

πuE

f (X + 1)− f (1 +
∑
v 6=u

Zuv )

∣∣∣∣∣∣
≤
∑
u∈V

πu min(1, λ−1)E

∣∣∣∣∣∣
∑
v∈V

Zv −
∑
v 6=u

Zuv

∣∣∣∣∣∣
≤
∑
u∈V

πu

πu +
∑
v 6=u

E|Zv − Zuv |
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Connectivity – final arguments

Let Ak = {∃ connected component of size k}.
By union bound, for p = Θ(ln(n)/n),
P(A2) ≤

(n
2

)
p(1− p)2(n−2) ≤ O(p) = o(1)

Similarly for k ≤ n/2, P(Ak) ≤
(n
k

)
Tkp

k−1(1− p)k(n−k)

where Tk : number of trees on [k]

Cayley’s theorem: Tk = kk−2. Hence

P(Ak) ≤
(n
k

)
kk−2pk−1(1− p)k(n−k)

≤ nk

k! k
k−2pk−1e−pkn/2

≤ 1
p

1
k2
√
k
ek(1+ln(np)−np/2)

Conclusion P(∪2≤k≤n/2Ak) ≤
∑

2≤k≤n/2

P(Ak)→ 0 as n→∞ follows.
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Takeaway messages

connectivity of Erdős-Rényi graphs informs behaviour of SIR
epidemics on complete graph

Emergence of giant component of size n(1− pext) as average degree
crosses critical value 1

Full connectivity for average degree ln(n) + O(1)

Proof techniques: branching process approximation, Chernoff bounds;
First and second moment methods; Poisson approximation via
Stein-Chen method
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