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Viral propagation of information and "information
cascades”

Propagation on underlying graph (e.g. facebook’s " friendship graph”, or
Twitter's " follower-followee" directed graph)

— Epidemic models to understand viral propagation (and guide viral
marketing strategies)
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The Independent Cascade, or
Susceptible-Infective-Removed (SIR) epidemics model

2 Assigns to each oriented edge (/,/) a
N probability pj;
o
o q‘a “w
° r=0.01
< jiBs
B8

i infected in slot t = infects each neighbor j with probability p;; in slot
t + 1 independently of everything else and is then Removed

Questions of interest: Number of eventually infected nodes? As a function
of set initially infected? Optimal choice of initial set of given size?
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SIR epidemics: the Reed-Frost model

@ Special case: complete graph on i € [n] and homogeneous infection
probabilities p;; = p
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SIR epidemics: the Reed-Frost model

@ Special case: complete graph on i € [n] and homogeneous infection
probabilities p;; = p

@ Associated model: Erdés-Rényi random graph G(n, p): undirected
graph on node set [n]. Edge (/, /) present iff {; = 1 where {{;;}i<;:
i.i.d., Bernoulli (p)
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SIR epidemics: the Reed-Frost model

@ Special case: complete graph on i € [n] and homogeneous infection
probabilities p;; = p

@ Associated model: Erdés-Rényi random graph G(n, p): undirected
graph on node set [n]. Edge (/, /) present iff {; = 1 where {{;;}i<;:
i.i.d., Bernoulli (p)

@ From random graph to epidemic process: use {j; to determine if when
the first of / and j gets infected, it infects the other
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SIR epidemics: the Reed-Frost model

@ Special case: complete graph on i € [n] and homogeneous infection
probabilities p;; = p

@ Associated model: Erdés-Rényi random graph G(n, p): undirected
graph on node set [n]. Edge (/, /) present iff {; = 1 where {{;;}i<;:
i.i.d., Bernoulli (p)

@ From random graph to epidemic process: use {j; to determine if when
the first of / and j gets infected, it infects the other

i
= For initial set Xy of infective nodes at time

0, / infected at time t iff dg(Xo,i) =t
Set of nodes eventually infected: Ujex, (/) where I'(i): graph’s connected
component including i
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Outline

Seminal results by Erdés and Rényi (1959-1960)

@ First phase transition: emergence of giant component
Tools: branching processes & Chernoff's inequality
@ Second phase transition: emergence of connectivity
Tools: 1st and 2nd moment methods; Poisson approximation
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Towards Susceptible-Infective-Removed (SIR) epidemics:

Galton-Watson branching process (1873)

Ancestor (generation 0)

Generation 1

Generation 2

Offspring distribution {px}ken
Z number of individuals per generation:

Zy_ ..
Zo = ].,Zk = ka:11 Xm,k where {Xm,k}m,kzo: I.I.d., ~ {Pk}kelN

Quantities of interest: probability of extinction; in case of extinction, total

population size
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Theorem

Extinction probability pext: smallest root in [0,1] of z = ¢(z) where
#(z) = BE(z¥) = k>0 prz®

If p:=1E(X) <1 then per =1

If w =1 and py > 0 then pexr =1

If i > 1 then pe < 1
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Theorem

Extinction probability pext: smallest root in [0,1] of z = ¢(z) where
#(z) = BE(z¥) = k>0 prz*

If p:=1E(X) <1 then per =1

If w =1 and py > 0 then pexr =1

If > 1 then pex: < 1

Proof: {Z, =0}  {Extinction}; P(Zx = 0) = ¢«(0) where

ok(z) = B(z%)

By induction ¢x(z) = ¢ o ¢x_1(2) hence P(Zx = 0) = ¢(IP(Zk_1 = 0))
= by monotonicity of ¢ and P(Zy = 0) = 0, sequence increases to
(necessarily smallest) fixed point.
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Theorem

Extinction probability pext: smallest root in [0, 1] of z = ¢(z) where
#(z) = BE(z¥) = k>0 prz*

If p:=E(X) <1 then pex =1

If w =1 and py > 0 then pexr =1

If > 1 then pex: < 1

Proof: {Z, =0}  {Extinction}; P(Zx = 0) = ¢«(0) where

ok(z) = B(z%)

By induction ¢x(z) = ¢ o ¢x_1(z) hence P(Zy = 0) = ¢p(P(Zk—1 = 0))
= by monotonicity of ¢ and P(Zy = 0) = 0, sequence increases to
(necessarily smallest) fixed point.

: slope of ¢ at 1~. By convexity of ¢, only fixed point: 1if p <1

By continuity of ¢, 3 fixed point < 1 if u > 1

For u =1, if pgp > 0 then ¢ strictly convex hence only fixed point: 1; if
po = 0 then pe,: =0
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Theorem

Extinction probability pext: smallest root in [0, 1] of z = ¢(z) where
#(z) = BE(z¥) = k>0 prz*

If p:=E(X) <1 then pex =1

If w =1 and py > 0 then pexr =1

If > 1 then pex: < 1

Proof: {Z, =0}  {Extinction}; P(Zx = 0) = ¢«(0) where

ok(z) = B(z%)

By induction ¢x(z) = ¢ o ¢x_1(z) hence P(Zy = 0) = ¢p(P(Zk—1 = 0))
= by monotonicity of ¢ and P(Zy = 0) = 0, sequence increases to
(necessarily smallest) fixed point.

: slope of ¢ at 1~. By convexity of ¢, only fixed point: 1if p <1

By continuity of ¢, 3 fixed point < 1 if u > 1

For u =1, if pgp > 0 then ¢ strictly convex hence only fixed point: 1; if
po = 0 then pe,: =0

Fundamental example of phase transition

Special case X ~ Poisson(j): pext = e #(1=Pext)
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been sampled)
De-activate it and add its children to active set

Stop when active set empty (tree exploration complete)
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been sampled)
De-activate it and add its children to active set
Stop when active set empty (tree exploration complete)

@ Dynamics of A;, number of active nodes at step t:
Random walk A; = A;_1 — 1 + X; where X; independent of past
exploration {As, Xs,s < t} and distributed according to {px }x>0
@ Time T at which exploration stops, i.e. A7 = 0 gives size of tree.
Indeed Ay =1—-t+X;+...+ Xt and A+ = 0 yield
T=1+X14+...+ X7.

@ Random walk can be pursued after time T
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Random walk exploration of Galton-Watson tree

Sequentially pick active node (whose children have not yet been sampled)

De-activate it and add its children to active set
Stop when active set empty (tree exploration complete)

@ Dynamics of A;, number of active nodes at step t:
Random walk A; = A;_1 — 1 + X; where X; independent of past
exploration {As, Xs,s < t} and distributed according to {px }x>0

@ Time T at which exploration stops, i.e. A7 = 0 gives size of tree.
Indeed Ay =1—-t+X;+...+ Xt and A+ = 0 yield
T:1+X1—|-—|-XT

@ Random walk can be pursued after time T
= Bound on population size: for continued RW {A;}+>o0,
P(T >t)=P(A,...,A: >0) <P(A; > 0) =P(> L, (Xs — 1) > 0)

s=1
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Control of fluctuations: Chernoff's inequality

@ Markov’s inequality: random variable X > 0,
a>0=P(X>a) <E(X)/a
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Control of fluctuations: Chernoff's inequality

@ Markov’s inequality: random variable X > 0,
a>0=P(X>a) <E(X)/a

o Bienaymé-Tchebitchev’s inequality: random variable X € R:
P(|X — E(X)| > a) < Var(X)/a?
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Control of fluctuations: Chernoff's inequality

@ Markov’s inequality: random variable X > 0,
a>0=P(X>a) <E(X)/a

o Bienaymé-Tchebitchev’s inequality: random variable X € R:
P(|X — E(X)| > a) < Var(X)/a?

o Exponential version: for § > 0, P(X > t) < E(e?X)e % i.e. finite
exponential moments yield exponentially decaying control of tail
probabilities
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Chernoff’s inequality and bounds on population size
Theorem

Foriid. Xs, P(3f_, Xs > at)
h(a) —Supe>o[9a—|n( ()

< e~ th(a) where
)]
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Chernoff’s inequality and bounds on population size

Theorem

For iid. Xs, P(30f_; Xs > )g th(2) where
h(a) —SUPe>o[9a—|n( ()]

Non-trivial exponential bound when a > IE(X1) and Je > 0 : Ee < 400

Laurent Massoulié (Inria) Models of information propagation in online s January 20, 2021 10/24



Chernoff’s inequality and bounds on population size

Theorem
For i.id. Xs, P(33f_; X5 > t) < e~ t(3) where
h(a) —SUPe>o[9a—|n( ()]

Non-trivial exponential bound when a > IE(X1) and Je > 0 : Ee < 400

Application to Galton-Watson process:
P(T > t) < e~ (1) exponentially decaying if E(X;) < 1 and X; admits
finite exponential moments.
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Chernoff’s inequality and bounds on population size

Theorem

For i.id. Xs, P(32L_, Xs > at) < e (3 where
h(a) := supgol0a — In(E(e”))]

Non-trivial exponential bound when a > IE(X1) and Je > 0 : Ee < 400

Application to Galton-Watson process:

P(T > t) < e~ (1) exponentially decaying if E(X;) < 1 and X; admits
finite exponential moments.

Case of Poisson random variables, parameter x> 0, a > pu:

hu(a) = supgsolfa — p(e’ —1)]

Gives 0 = In(a/u), h.(a) = phi(a/p)

with h1(x) = xIn(x) —x +1
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Emergence of giant component

Analysis of graph's connected components: let C(i): size of i-th largest
connected component (in number of nodes) in G(n, p)

Theorem
Let p = \/n for fixed A > 0

Sub-critical case (\ < 1): there exists f(\) such that
lim P(C(1) < f(N\)In(n)) =1

n—o0
Super-critical case (\ > 1): there exists g(\) such that for all § > 0,

lim IP( C(l)

n—00

— (L= pext)| <6, C(2) < g(A)In(n)) =1,

where pex:: extinction probability of Poisson (\) branching process, i.e.
smallest root of x = e**~1) jn [0, 1]
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Interpretation

Sub-critical regime: Only logarithmically sized components i.e. no global
outbreak

Super-critical regime: with probability 1 — pey:, epidemics started from

randomly selected node reaches n[1 — pex + 0(1)] others, i.e. macroscopic
outbreak

Note: only one giant component, others still logarithmic
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Sub-critical regime

e Exploration of connected component I'(ip): initialized with active set
Ao = {ip} and killed set By = ()
o At time t pick j; € A;_1, kill it and activate its neighbours not yet

activated (set D;)
= At = A1\ {e} UDy, B = Be—1 U {jt}
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Sub-critical regime

e Exploration of connected component I'(ip): initialized with active set
Ao = {ip} and killed set By = ()

o At time t pick j; € A;_1, kill it and activate its neighbours not yet
activated (set D;)
= At = Ae 1 \ et} UDs, Br = Bt—1 U {Ji}

o Notation: Ay = |A¢|, D: = |D¢| = Ar=1—t+D1+---+ D
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Sub-critical regime

e Exploration of connected component I'(ip): initialized with active set
Ao = {io} and killed set By = ()

o At time t pick j; € A;_1, kill it and activate its neighbours not yet
activated (set D;)
= Ay = A1\ {t} UDy, B = Bi—1 U i}

o Notation: At = |./41_—|7 Dt: ‘Dt| :>At =1- t+D]_++Dt

e Conditionally on F;—1 = o(A1,...,Ai_1),
D: ~Bin(p,n—1—D; —--- — Dy_1)
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Sub-critical regime

e Exploration of connected component I'(ip): initialized with active set
Ao = {io} and killed set By = ()

At time t pick j: € A;_1, kill it and activate its neighbours not yet
activated (set D;)

= At = Ae 1 \ et} UDs, Br = Bt—1 U {Ji}

Notation: A; = |A¢|, Dy =|D¢| = Ar=1—t+Dy+---+ D;
Conditionally on Fi—1 = o(A1,..., A1),

D: ~Bin(p,n—1—D; —--- — Dy_1)

@ Size C of connected component:

C=inf{t>0:A =0}

Laurent Massoulié (Inria) Models of information propagation in online s January 20, 2021 13 /24



Sub-critical regime, continued

@ Processes {A:},{D;} can be extended after end of component's
exploration

@ Upper bound:

P(C > k) =P(A1,...,Ax > 0) <P(A( > 0)
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Sub-critical regime, continued

@ Processes {A:},{D;} can be extended after end of component's
exploration

@ Upper bound:

P(C > k) =P(A1,...,Ax > 0) <P(A( > 0)
o Chernoff’s bounding technique: P(A, > 0) < e~ kh(1)

where h(x) = Ah1(x/)\), hi(x) = xIn(x) — x + 1. Chernoff's
exponent for Poisson (\) random variable
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Sub-critical regime, continued

@ Processes {A:},{D;} can be extended after end of component's
exploration

@ Upper bound:

P(C > k) =P(A1,...,Ax > 0) <P(A( > 0)

o Chernoff’s bounding technique: P(A, > 0) < e~ kh(1)

where h(x) = Ah1(x/)\), hi(x) = xIn(x) — x + 1. Chernoff's
exponent for Poisson (\) random variable

@ Union bound allows to conclude

Laurent Massoulié (Inria) Models of information propagation in online s January 20, 2021

14 /24



Super-critical regime A > 1

Lemma

For any k > 0,d1,...,dx € N¥, lim, o P(DF = df) = Hle e_Ag—jT,

hence lim,_,oc P(C < k) = P(Z < k) < Pext
where Z: total population of Poisson (\) branching process

Additional technical steps involved to characterize sizes of connected
components in super-critical regime, see notes.
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Connectivity

By previous result: for fixed A > 1, giant component of size ~ n(1 — pext)
For fixed A, graph disconnected = Under what regime is graph connected?
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Connectivity

By previous result: for fixed A > 1, giant component of size ~ n(1 — pext)
For fixed A, graph disconnected = Under what regime is graph connected?

Theorem

For fixed ¢ € R, assume np = In(n) + c.
Then lim,,_,oo P(G(n, p) connected) = e=¢ *
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Connectivity

By previous result: for fixed A > 1, giant component of size ~ n(1 — pext)
For fixed A, graph disconnected = Under what regime is graph connected?
Theorem

For fixed ¢ € R, assume np = In(n) + c.
Then lim,,_,oo P(G(n, p) connected) = e=¢ *

Corollary

If np —In(n) — +o00, then lim,_ P(G(n, p) connected) =1
If np — In(n) — —oo, then lim,_,o P(G(n, p) connected) = 0
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Proof strategy

@ Show that number of isolated nodes (i.e. nodes of degree 0) admits

asymptotically Poisson (e™¢) distribution [Poisson approximation
method],

hence lim,_ P(A) = e * where
A = {no isolated vertices in G(n, p)}
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Proof strategy

@ Show that number of isolated nodes (i.e. nodes of degree 0) admits

asymptotically Poisson (e™¢) distribution [Poisson approximation
method],

hence lim,_ P(A) = e * where
A = {no isolated vertices in G(n, p)}

@ Show that lim,_,., P(B) = 0 where
B = {3 connected component of size k € {2,...,n/2}}
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Proof strategy

@ Show that number of isolated nodes (i.e. nodes of degree 0) admits
asymptotically Poisson (e™¢) distribution [Poisson approximation
method],

hence lim,_ P(A) = e * where
A = {no isolated vertices in G(n, p)}

@ Show that lim,_,., P(B) = 0 where
B = {3 connected component of size k € {2,...,n/2}}

@ Use bounds

P(A) — P(B) < P(G(n, p) connected) = P(ANB) < P(A)

Laurent Massoulié (Inria) Models of information propagation in online s January 20, 2021 17 /24



Basic tools: the first and second moment methods

Let Z,, u € V be indicators of events and X =} -\, Z,.
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Basic tools: the first and second moment methods

Let Z,, u € V be indicators of events and X =} -\, Z,.

First moment method: P(3uc V:Z,=1) <}’ ., E(Z,) = E(X),
hence “with high probability” none of these events occurs if
lim,_ 00 E(X) = 0.
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Basic tools: the first and second moment methods
Let Z,, u € V be indicators of events and X =} -\, Z,.
First moment method: P(3uc V:Z,=1) <}’ ., E(Z,) = E(X),

hence “with high probability” none of these events occurs if
lim,_ 00 E(X) = 0.

Application: with high probability no isolated node in G(n, p) if
limp—oo[np — In(n)] = +o0.
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Basic tools: the first and second moment methods
Let Z,, u € V be indicators of events and X =} -\, Z,.

First moment method: P(3uc V:Z,=1) <}’ ., E(Z,) = E(X),
hence “with high probability” none of these events occurs if
lim,_ 00 E(X) = 0.

Application: with high probability no isolated node in G(n, p) if
limp—oo[np — In(n)] = +o0.

Var(x)

Second moment method: P(Vu e V,Z,=0)=P(X =0) < RO

Hence if Var(X) = o(IE(X)?), then with high probability some event
occurs.
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Basic tools: the first and second moment methods

Let Z,, u € V be indicators of events and X =} -\, Z,.

First moment method: P(3uc V:Z,=1) <}’ ., E(Z,) = E(X),
hence “with high probability” none of these events occurs if

lim oo B(X) = 0.

Application: with high probability no isolated node in G(n, p) if
limp—oo[np — In(n)] = +o0.

Second moment method: P(Vu e V,Z,=0)=P(X =0) < Var(x)

Hence if Var(X) = o(IE(X)?), then with high probability some event
occurs.

S /XRE

Application: with high probability there is some isolated node in G(n, p) if

lim,—oo[np — In(n)] = —oc0
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Variation distance

Definition

Variation distance between two probability measures i, v on (Q, F):
dvar (1, V) = 25up 4e 7 [(A) — v(A)|
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Variation distance

Definition
Variation distance between two probability measures i, v on (Q, F):
dvar(ﬂa V) = 2SUpAE}' ’M(-A) - V(-A)|

Alternative characterization: if u, v admit densities d“, f,’” with respect to
measure 7 (e.g., T = u + 1/) then

dvar(,Uq V) fQ
In particular for Q Nand 7 = Z Ony dyar(p, v Z |ten — vn|

nelN nelN
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Variation distance

Definition
Variation distance between two probability measures i, v on (Q, F):
dvar(ﬂa V) = ZSUPAE}' ’M(A) - V(-A)|

Alternative characterization: if u, v admit densities d“, g” with respect to
measure 7 (e.g., T = ,u + I/) then
dvar(,Un fQ
In particular for Q Nand 7 = Z Ony dyar(p, v Z |ten — vn|
nelN nelN
Definition

{u(”)}n@N converges in variation to g iff lim,_ o dvar(,u(”),,u) =0

A strong form of convergence (implies convergence in distribution)
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Poisson approximation: the Stein-Chen method

Theorem

Let Z, € {0,1}, ue V, X =3 cv Zu.
Denote 7, = E(Z,), A = E(X) = _ cy Tu-
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Poisson approximation: the Stein-Chen method

Theorem

Let Z, € {0,1}, ue V, X = ey Zu-
Denote 7, = E(Z,), A = E(X) = _ cy Tu-
Assume 3{Z,y }u,vev,v2u Such that

W & W, TP Zyy Jretn € o)) = WP &)t € 74y = L)
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Poisson approximation: the Stein-Chen method

Theorem
Let Z, € {0,1}, ue V, X =3 cv Zu.
Denote 7, = E(Z,), A = E(X) = _ cy Tu-
Assume 3{Z,y }u,vev,v2u Such that
VU G V, ]:P({Zuv}v;éu e ) = IP({ZV}V;éU E ’ZU = 1)
Then:

dvar(X, Poisson(\)) < 2min(1,1/A) Y " my |mu+ > E[Zw — Z,|
ueV v#u
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Applications

Proposition (Binomial approximation)
One has for all n, A < n:

dvar(Bin(n, A/n), Poisson(\)) < 2min(1, A)2
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Applications

Proposition (Binomial approximation)

One has for all n, A < n:
dvar(Bin(n, A/n), Poisson(\)) < 2min(1, A)2

Proposition (Isolated nodes)
In G(n, p) with np = In(n) + ¢, noting A = n(1 — p)"~ ! ~ e~ and X:
number of isolated nodes, then

dvar(X, Poisson(X)) < 2\[1/n+ p/(1 — p)] = O(In(n)/n)

—C

Hence, lim, oo P(X =0) = e €
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Stein-Chen method — proof arguments
Fact: for each A > 0, A C N, function f : N — R defined by

f(0) =0, Mf(j+1)—j-f(j) =La() — Poir(A), jeN

is min(1, A\~1)-Lipschitz
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Stein-Chen method — proof arguments
Fact: for each A > 0, A C N, function f : N — R defined by

f(0) =0, Mf(j+1)—j-f(j) =La() — Poir(A), jeN
is min(1, A\~1)-Lipschitz

Write
IP(X € A) — Poiy(A)| = |E[M(X + 1) — Xf(X)]|
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Stein-Chen method — proof arguments
Fact: for each A > 0, A C N, function f : N — R defined by

f(0) =0, Mf(j+1)—j-f(j) =La() — Poir(A), jeN
is min(1, A\~1)-Lipschitz

Write
IP(X € A) — Poiy(A)| = |E[M(X + 1) — Xf(X)]|

=N mB (X +1)—FL+ D Zuw)

ueV vH#uU
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Stein-Chen method — proof arguments
Fact: for each A > 0, A C N, function f : N — R defined by

f(0) =0, Mf(j+1)—j-f(j) =La() — Poir(A), jeN
is min(1, A\~1)-Lipschitz

Write
IP(X € A) — Poiy(A)| = |E[M(X + 1) — Xf(X)]|

Y omB X +1) = F1+ " Zw)

ueV vH#uU

< Z 7, min(1, \"HE Z Z, — Z Zuy
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Stein-Chen method — proof arguments
Fact: for each A > 0, A C N, function f : N — R defined by

f(0) =0, Mf(j+1)—j-f(j) =La() — Poir(A), jeN

is min(1, A\~1)-Lipschitz

Write
IP(X € A) — Poiy(A)| = |E[M(X + 1) — Xf(X)]|
=D mB (X +1) = F(1+> Zw)
ueV vH#uU
<> mmin(LANE ) 2 - Zu
ueV veV v#£u
< Zﬂ-u 7Tu+ZE’Zv_Zuv‘
ueVv vZ£u
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Connectivity — final arguments
Let Ay = {3 connected component of size k}.

By union bound, for p = ©(In(n)/n),
P(A2) < (3)p(L — )72 < O(p) = o(1)
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Connectivity — final arguments

Let Ay = {3 connected component of size k}.
By union bound, for p = ©(In(n)/n),
P(A2) < (3)p(1 — p)*""2) < O(p) = o(1)

Similarly for k < n/2, P(Ax) < () Tep (1 — p)k(n=H)
where Tj: number of trees on [K]
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Connectivity — final arguments

Let Ay = {3 connected component of size k}.
By union bound, for p = ©(In(n)/n),

P(Az) < (5)p(1 — p)*"2) < O(p) = o(1)

Similarly for k < n/2, P(Ax) < () Tep (1 — p)k(n=H)
where Tj: number of trees on [K]

Cayley’s theorem: T = kk~2,
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Connectivity — final arguments

Let Ay = {3 connected component of size k}.
By union bound, for p = ©(In(n)/n),
P(Az) < (5)p(1 — p)*"2) < O(p) = o(1)

Similarly for k < n/2, P(Ax) < () Tep (1 — p)k(n=H)
where Tj: number of trees on [K]

Cayley’s theorem: T, = k=2, Hence

n\ k=2 k—1 k(n—k
P(Ax) < (kA 2pF 21— p)kin b
< %kk—Zpk—le—pkn/Z
< 1_1_  k(1+In(np)—np/2)
= Pk2Vk
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Connectivity — final arguments

Let Ay = {3 connected component of size k}.
By union bound, for p = ©(In(n)/n),
P(Az) < (5)p(1 — p)*"2) < O(p) = o(1)

Similarly for k < n/2, P(Ax) < () Tep (1 — p)k(n=H)
where Tj: number of trees on [K]

Cayley’s theorem: T, = k=2, Hence

]P(.Ak) < (Z) kk—2pk—1(1 . p)k(n—k)
< %’;kk—Zpk—le—pknﬁ
< % 1_ ok(1+In(np)—np/2)

37 €
Conclusion P(Up<y<p/pAk) < Z P(Ax) — 0 as n — oo follows.
2<k<n/
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Takeaway messages
@ connectivity of Erdés-Rényi graphs informs behaviour of SIR
epidemics on complete graph

@ Emergence of giant component of size n(1 — pext) as average degree
crosses critical value 1

@ Full connectivity for average degree In(n) + O(1)

@ Proof techniques: branching process approximation, Chernoff bounds;
First and second moment methods; Poisson approximation via
Stein-Chen method
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