
Network resource allocation: 
principles and algorithms

Mathematical framework:
Convex optimization, 

dynamical systems (ordinary
differential equations) 



❑ How to assign bandwidth in networks 
❑Understanding TCP, the protocol regulating most Internet traffic
❑Still an active research topic, in the context of datacenter

networks (see « DC-TCP »)

Motivating example: Distributed control of 
data transport in the Internet
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Other application scenarios of current
interest

• Allocation of {storage,bandwidth,CPU} resources in cloud computing

• Allocation of energy to consumers

in the smart grid, under

demand-response scenarios

A Google datacenter



TCP in one slide

Source dynamics:
▪ Maintain Nb of (sent&not acked pkts)=:cwnd (congestion window)
▪ Update cwnd
 cwnd+1/cwnd upon receipt of pkt ack
 cwnd/2 upon detection of pkt loss
“Congestion avoidance” alg introduced in 1993
After Internet congestion collapse
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Outline

❑ Resource allocation principles
❑Fairness criteria
❑Utility optimization models inspired by micro-economics

❑ A “primal” algorithm

❑ Reverse-engineering TCP

❑ Lagrangian, duality and Lagrange multipliers

❑ A “dual” algorithm



Outline

Resource allocation principles

A ”primal” algorithm

Reverse-engineering TCP

Lagrangian, duality and multipliers

A ”dual” algorithm
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Network model

Link 1, Capacity C1=1 Link 2, Capacity C2=1

User 0, rate: x0

User 1, rate: x1
User 2, rate: x2

Resources, or links, ` ∈ L, each with capacity C` > 0

Users, or transmissions, or flows, s ∈ S
User s uses same rate at all ` ∈ s (s ↔ subset of L)

Feasible rates: variables xs ≥ 0, s ∈ S such that ∀` ∈ L,
∑

s3` xs ≤ C`
Potential applications

Links on single path from source to destination

Links on tree of transmission from source to set of receivers
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Allocation principles 1

max-min fairness: feasible xmm such that
∀s ∈ S,∃` ∈ s with

∑
t3` x

mm
t = C` and xmm

s = maxt3` x
mm
t

(“no envy”: each s can find competing t at least as poor as s)

Proportional fairness: feasible xpf such that

for all feasible y ,
∑

s
ys−xpfs
xpfs

≤ 0

Alternative characterization:
Unique maximizer of

∑
s ln(xs) among feasible x

Notion introduced by F. Kelly (Cambridge University) in 1997
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Allocation principles 1

Alternative characterization: Nash’s bargaining solution
(1950)

i.e. unique vector φ(C) in feasible convex set C ⊂ RS+ s.t.

Pareto efficiency: φ(C) ≤ x ∈ C ⇒ x = φ(C)

independence of irrelevant alternatives:
φ(C) ∈ C′ ⊂ C ⇒ φ(C) = φ(C′)
symmetry: C symmetric ⇒ φ(C)i ≡ φ(C)1

scale invariance: for diagonal D with Dii > 0,
φ(DC) = Dφ(C)
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Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

→ A concave optimization program

Examples
Proportional fair xpf : Us = ln

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]
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Laurent Massoulié (Inria) Network resource allocation January 18, 2021 5 / 15



Allocation principles 2

Network Utility Maximization x∗: solution of

Max
∑

s Us(xs)

Over xs ≥ 0 (P)

Such that ∀`,
∑

s3` xs ≤ C`

for concave, increasing utility functions Us : R+ → R

→ A concave optimization program

Examples
Proportional fair xpf : Us = ln

For w , α > 0, (w , α)-fair x = x(w , α): Us(xs) = ws
x1−α
s

1−α

[Exercise: limα→1 x(1, α) = xpf and limα→+∞ x(1, α) = xmm]
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max
∑
s

Us(xs)−
∑
`

C`(y`)

Over xs ≥ 0 (RP)

with y` =
∑
s3`

xs

for concave increasing utility functions Us and convex increasing cost
functions C`

primal algorithm: for Us and C` differentiable, and positive gain function
κs : R+ → R+, let

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
“gradient ascent”

→ Implementable in a distributed fashion
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Stability via Lyapunov functions

Criterion for convergence of ODE ẋ = F (x) with trajectories in O ⊂ Rn

Theorem

Assume F continuous on O, and ∃V : O → R such that:

(i) V continuously differentiable

(ii) ∀a ≤ A, {x ∈ O : V (x) ≤ A} and {x ∈ O : V (x) ∈ [a,A]} either
compact or empty

(iii) ∀x ∈ O \ B, 〈∇V (x),F (x)〉 < 0, where B = argminx∈O{V (x)}

Then limt→∞ V (x(t)) = infx∈O V (x), limt→∞ d(x(t),B) = 0.

If B = {x∗} then limt→∞ x(t) = x∗.
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Application to gradient ascent / descent dynamics

d

dt
xs = κs(xs)

(
U ′s(xs)−

∑
`∈s

C ′`(y`)

)
Let W (x) =

∑
s Us(xs)−

∑
` C`(y`) (system welfare)

and V (x) = −W (x)

Then: 〈∇V (x),F (x)〉 = −
∑

s κs(xs)
[
∂
∂xs

W (x)
]2

Theorem

For Us strictly concave, differentiable with U ′s(0+) = +∞,
C` convex, continuously differentiable,
[ ⇒ strict concavity and continuous differentiability of W ]
κs > 0, continuous [ ⇒continuity of F ]
∃xs > 0 s.t. U ′s(xs) <

∑
`∈s C

′
`(xs)

[ ⇒ Max of W achieved at single point x∗ ∈ O := (0,∞)S ]
Then “primal” dynamics converge to unique maximizer x∗ of W
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Reverse engineering TCP

Approx. xs ≈ cwnds/Ts where Ts : packet round-trip time

Approx. d
dt cwnds ≈ xs(1/cwnds)− xsp(s)[cwnds/2]

where p(s): packet loss probability along path of s

Approx. p(s) ≈
∑

`∈s p`(y`) for link packet loss prob. p`(y)
[e.g. p`(y) = max(0, 1− C`/y)]

⇒ ẋs =

(
x2
s

2

)[
2

(xsTs)2
−
∑
`∈s

p`(y`)

]

TCP implicitly runs primal alg. with utility function:
Us(x) = wsx

1−α/(1− α) with α = 2, ws = 2/T 2
s

→ Leads to (w , α)-fairness with suitable parameters
Can tweak congestion avoidance alg. if want e.g. proportional fairness
(α = 1) instead
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C0, convex functions J, f` : C0 → R,

Min J(x)

Over x ∈ C0 (P)

Such that ∀` ∈ L, f`(x) ≤ 0

Associated Lagrangian L(x , λ) := J(x) +
∑

` λ`f`(x),

x ∈ C0, λ ≥ 0

λ: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(λ) Over λ ≥ 0
where D(λ) := infx∈C0 L(x , λ)
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Kuhn-Tucker theorem and strong duality

Def: λ∗ ≥ 0 a Kuhn-Tucker vector iff ∀x ∈ C0, L(x , λ∗) ≥ J∗

where J∗: optimal value of (P).

Remark: J∗ ≥ D∗ where D∗ optimal value of (D)

Theorem

Assume there exists λ∗ a Kuhn-Tucker vector. Then
(i) λ∗ solves (D), and J∗ = D∗ (a.k.a. strong duality)
(ii) x∗ ∈ C0 if optimal for (P) then achieves minx∈C0 L(x , λ∗)
(iii) For x∗ ∈ int(C0) an optimum of (P) at which ∃∇J,∇f`, then

∀`, λ∗` f`(x∗) = 0 (complementarity)
∇J(x∗) +

∑
` λ
∗
`∇f`(x∗) = 0 (stationarity)

Reciprocally assume stationarity + complementarity
for some λ∗ ≥ 0 and some x∗ feasible for (P),
Then λ∗: Kuhn-Tucker and x∗ optimal for (P)
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Sufficient conditions for applying Kuhn-Tucker

Lemma

Assume J∗ > −∞ and ∃x̂ ∈ C0 such that ∀`, f`(x̂) < 0.
Then a Kuhn-Tucker vector λ∗ exists.

In practice: verify Lemma’s conditions + existence of optimum
x∗ ∈ int(C0) at which ∃∇J, ∇f`.
Then characterize x∗ that verifies complementarity + stationarity (now
guaranteed to exist)
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Solving original problem: dual algorithm

Lagrangian: L(x , λ) =
∑

s Us(xs) +
∑

` λ`[C` −
∑

s3` xs ]

Dual: D(λ) =
∑

s Us(gs(λs)) +
∑

` λ`[C` −
∑

s3` gs(λs)]

where λs :=
∑

`∈s λ` and gs := (U ′s)−1

⇒ ∂
∂λ`

D(λ) = C` −
∑

s3` gs(λs)

Dual algorithm: xs ≡ gs(λs),

λ̇` = κ`
[∑

s3` xs − C`
]+
λ`

where [a]+b = a if b > 0, max(a, 0) if b ≤ 0
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Solving original problem: dual algorithm

Theorem

Under suitable conditions
(Us strictly concave, twice differentiable, U ′s(0+) = +∞, U ′s(+∞) = 0)
Trajectories xs of dual algorithm converge to unique maximizer x∗ of
primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE’s
solution. Dual objective function used as Lyapunov function]

Potential implementation: multiplier dynamics ≡ queue dynamics
⇒ Let λ` = queueing delay of packets and instantaneously let xs to gs(λs)
⇒ Principle underlying TCP-Vegas, an alternative to default TCP ( TCP
Reno)
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Takeaway messages

For unconstrained convex minimization, gradient descent converges to
optimizer [Lyapunov stability]

Admits distributed implementation in network optimization setting

TCP implicitly achieves (w , α)-fair allocation by running gradient
descent

Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)’s optima

Queue dynamics implicitly perform gradient descent for multipliers of
constrained program

Pending question: How to discriminate between allocation objectives?
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