Network resource allocation:
principles and algorithms

Mathematical framework:
Convex optimization,

dynamical systems (ordinary
differential equations)



Motivating example: Distributed control of
data transport in the Internet
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1 How to assign bandwidth in networks
1 Understanding TCP, the protocol regulating most Internet traffic

[ Still an active research topic, in the context of datacenter
networks (see « DC-TCP »)



Other application scenarios of current
Interest

* Allocation of {storage,bandwidth,CPU} resources in cloud computing
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TCP in one slide

@ buffer
Data

\ packets Link
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Source dynamics: acknowledgements

= Maintain Nb of (sent&not acked pkts)=:cwnd (congestion window)
= Update cwnd 14

< cwnd+1/cwnd upon receipt of pkt ack 12 1

& cwnd/2 upon detection of pkt loss ™

“Congestion avoidance” alg introduced in 1993
After Internet congestion collapse
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Outline

J Resource allocation principles
 Fairness criteria
 Utility optimization models inspired by micro-economics

d A “primal” algorithm
J Reverse-engineering TCP
 Lagrangian, duality and Lagrange multipliers

d A “dual” algorithm



Outline

Resource allocation principles
A "primal” algorithm
Reverse-engineering TCP

Lagrangian, duality and multipliers

A "dual” algorithm
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Network model

User 0, rate: x,

Link 1, Capacity C,=1 Link 2, Capacity C,=1

User 1, rate: x; User 2, rate: x,

@ Resources, or links, ¢ € L, each with capacity C; > 0
@ Users, or transmissions, or flows, s € S
@ User s uses same rate at all £ € s (s <> subset of £)
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Network model

User 0, rate: x,

Link 1, Capacity C,=1 Link 2, Capacity C,=1

User 1, rate: x; User 2, rate: x,

@ Resources, or links, ¢ € L, each with capacity C; > 0
@ Users, or transmissions, or flows, s € S
@ User s uses same rate at all £ € s (s <> subset of £)

FEASIBLE RATES: variables x; > 0, s € S such that V/ € L,
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Network model

User 0, rate: x,

Link 1, Capacity C,=1 Link 2, Capacity C,=1

User 1, rate: x; User 2, rate: x,

@ Resources, or links, ¢ € L, each with capacity ¢, >0

@ Users, or transmissions, or flows, s € S

@ User s uses same rate at all £ € s (s <> subset of £)
FEASIBLE RATES: variables xs > 0, s € S such that V/ € L, >
POTENTIAL APPLICATIONS

@ Links on single path from source to destination

@ Links on tree of transmission from source to set of receivers

Laurent Massoulié (Inria) Network resource allocation January 18, 2021 2/15

s30%s < CZ



Allocation principles 1

@ max-min fairness: feasible x™" such that
Vs€ S,30 e swith ) .-, x" = C; and x"™ = max;5¢ x{""
(“no envy": each s can find competing t at least as poor as s)
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. —xPf
for all feasible y, >~ 2= <0
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Alternative characterization:
Unique maximizer of ) _In(xs) among feasible x
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Allocation principles 1

@ max-min fairness: feasible x” such that
Vs€ S,30 e swith ) .-, x" = C; and x"™ = max;5¢ x{""
(“no envy": each s can find competing t at least as poor as s)
o Proportional fairness: feasible xPf such that
for all feasible y, 3, 2 <0

Alternative characterization:
Unique maximizer of ) _In(xs) among feasible x

Notion introduced by F. Kelly (Cambridge University) in 1997
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Allocation principles 1

Alternative characterization: Nash's bargaining solution
(1950)
i.e. unique vector ¢(C) in feasible convex set C C RS s.t.

e Pareto efficiency: ¢(C) < x € C = x = ¢(C)

@ independence of irrelevant alternatives:

p(C) e C' CC= ¢(C) = (C')
e symmetry: C symmetric = ¢(C); = ¢(C)1
@ scale invariance: for diagonal D with D;; > 0,

¢(DC) = D¢(C)
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > Us(xs)
Over xs >0 (P)
Such that V/,5° ,x < C

for concave, increasing utility functions Us : Ry — R
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > Us(xs)
Over xs >0 (P)
Such that V/,5° ,x < C

for concave, increasing utility functions Us : Ry — R

— A concave optimization program

EXAMPLES
Proportional fair xP': Us = In
l1—a
. o i o X
For w,a >0, (w, a)-fair x = x(w, a): Us(xs) = ws T
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Allocation principles 2

Network Utility Maximization x*: solution of

Max > Us(xs)
Over xs >0 (P)
Such that V/,5° ,x < C

for concave, increasing utility functions Us : Ry — R
— A concave optimization program

EXAMPLES
Proportional fair xP': Us = In

l1—a

For w,a >0, (w, a)-fair x = x(w, a): Us(xs) = ws T

[Exercise: lim, 1 x(1,a) = xP and limg_s 400 x(1, ) = x™™]
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max Z Us(xs) — Z Ce(ye)
s 4

Over xs>0 (RP)
with y, = sz
EEY

for concave increasing utility functions Us and convex increasing cost
functions C;
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max Z Us(xs) — Z Ce(ye)
s 4

Over xs>0 (RP)
with y, = sz
so¢

for concave increasing utility functions Us and convex increasing cost
functions C;

primal algorithm: for Us and C, differentiable, and positive gain function
Rs . IR,+ — IR,+, let

d “ . "
e rs(Xs) (U;(xs) — Z Cé(yg)) gradient ascent

les
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Relaxed constraints and a “primal” algorithm

Relaxed problem: Max Z Us(xs) — Z Ce(ye)
s 4

Over xs>0 (RP)
with y, = sz
so¢

for concave increasing utility functions Us and convex increasing cost
functions C;

primal algorithm: for Us and C, differentiable, and positive gain function
Rs . IR,+ — IR,+, let

d “ . "
e rs(Xs) (U;(xs) — Z Cé(yg)) gradient ascent

les

— Implementable in a distributed fashion
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Stability via Lyapunov functions

Criterion for convergence of ODE x = F(x) with trajectories in O C R"

Theorem
Assume F continuous on O, and 3V : O — R such that:

(i) V continuously differentiable

(i)Va< A {xe0:V(x)<A}and {x € O: V(x) € [a, A]} either
compact or empty

(iii) Vx € O\ B, (VV(x), F(x)) < 0, where B = argmin,co{V(x)}

Then lim¢_o V(x(t)) = infxco V(x), lims oo d(x(t), B) = 0.

If B={x*} then lim;_, x(t) = x*.
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Application to gradient ascent / descent dynamics

d
ths = Rs Xs) ( Z CZ Ye )

les
Us(xs) — >0 Celye) (system welfare)

Laurent Massoulié (Inria) Network resource allocation January 18, 2021 8/15



Application to gradient ascent / descent dynamics

d
;;E)% = ks Xé) ( ji: C% Ye )

les

Let W(x) =" Us(xs) — >y Ce(ye) (system welfare)
and V(x) = —W(x)

Then: (VV(x), F(x)) = =, ks(xs) [a% W(X)} i
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Application to gradient ascent / descent dynamics

%xs = fis(xs) (U;(xs) - ; Cé(m)

Let W(x) =" Us(xs) — >y Ce(ye) (system welfare)
and V(x) = —W(x)

Then: (VV(x), F(x)) = =, ks(xs) [a% W(X)} i

Theorem

For U strictly concave, differentiable with UL(0") = +oo,

Cy convex, continuously differentiable,

[ = strict concavity and continuous differentiability of W]

ks > 0, continuous [ = continuity of F]

Ixs > 0 s.t. Ui(xs) <D pes Colxs)

[ = Max of W achieved at single point x* € O := (0, 00)°]
Then “primal” dynamics converge to unique maximizer x* of W
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Tg: packet round-trip time
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Tg: packet round-trip time

Approx. % cwnds ~ xs(1/cwnds) — xsp(s)[cwnds /2]
where p(s): packet loss probability along path of s
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Approx. % cwnds ~ xs(1/cwnds) — xsp(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > ,cs pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1— Cp/y)]

Laurent Massoulié (Inria) Network resource allocation January 18, 2021

9/15



Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Tg: packet round-trip time

Approx. % cwnds ~ xs(1/cwnds) — xsp(s)[cwnds /2]
where p(s): packet loss probability along path of s

Approx. p(s) ~ > ,cs pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1— Cp/y)]

= X = <X2$2> [(xj’s)? - ZPE(YZ)]

les
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Reverse engineering TCP

Approx. xs =~ cwnds/ Ts where Tg: packet round-trip time

Approx. % cwnds ~ xs(1/cwnds) — xsp(s)[cwnds /2]

where p(s): packet loss probability along path of s

Approx. p(s) ~ > ,cs pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1— Cp/y)]

= X = <X252> [(&3'5)2 - ZPE(YZ)]

les

TCP implicitly runs primal alg. with utility function:
Us(x) = wex!=9/(1 — o) with o = 2, wg = 2/ T2
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Approx. p(s) ~ > ,cs pe(ye) for link packet loss prob. py(y)
[e.g. pe(y) = max(0,1— Cp/y)]
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les

TCP implicitly runs primal alg. with utility function:
Us(x) = wex!=9/(1 — o) with o = 2, wg = 2/ T2
— Leads to (w, «)-fairness with suitable parameters
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Reverse engineering TCP
Approx. xs =~ cwnds/ Ts where Tg: packet round-trip time

Approx. % cwnds ~ xs(1/cwnds) — xsp(s)[cwnds /2]

where p(s): packet loss probability along path of s

Approx. p(s) ~ > ,cs pe(ye) for link packet loss prob. py(y)
[e-g. pe(y) = max(0,1 - Cr/y)]

2

= X = <X25> [(&3'5)2 - ZPE(YZ)]

les

TCP implicitly runs primal alg. with utility function:

Us(x) = wex!=9/(1 — o) with o = 2, wg = 2/ T2

— Leads to (w, «)-fairness with suitable parameters

Can tweak congestion avoidance alg. if want e.g. proportional fairness
(o =1) instead
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €O (P)
Such that V¢ e L, f(x) <0
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €O (P)
Such that V¢ e L, f(x) <0

Associated Lagrangian L(x,\) = J(x) + >, Aefe(x),
xeC’ A>0
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €0 (P)
Such that V¢ e L, f(x) <0

Associated Lagrangian L(x,\) := J(x) + >, Mefy(x),
xeC’ A>0

A: Lagrange multipliers of (P)’s constraints
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Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program
For convex set C°, convex functions J, f; : C° — R,

Min J(x)
Over x €0 (P)
Such that V¢ e L, f(x) <0

Associated Lagrangian L(x,\) := J(x) + >, Mefy(x),
xeC’ A>0

A: Lagrange multipliers of (P)’s constraints

Dual problem (D): Max D(X) Over A >0
where D(A) :=inf cco L(x, A)
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Kuhn-Tucker theorem and strong duality

Def: \* > 0 a Kuhn-Tucker vector iff ¥x € C°, L(x, \*) > J*
where J*: optimal value of (P).
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Kuhn-Tucker theorem and strong duality

Def: \* > 0 a Kuhn-Tucker vector iff ¥x € C°, L(x, \*) > J*
where J*: optimal value of (P).

Remark: J* > D* where D* optimal value of (D)
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Kuhn-Tucker theorem and strong duality

Def: \* > 0 a Kuhn-Tucker vector iff ¥x € C%, L(x, \*) > J*
where J*: optimal value of (P).
Remark: J* > D* where D* optimal value of (D)

Theorem

Assume there exists \* a Kuhn-Tucker vector. Then

(i) \* solves (D), and J* = D* (a.k.a. strong duality)

(ii) x* € CO if optimal for (P) then achieves min,cco L(x, \*)

(iii) For x* € int(C°) an optimum of (P) at which 3V J, V', then

Ve N f(x*) =0 (complementarity)
VI(x*)+ >, A\ Vi(x*) =0 (stationarity)

Reciprocally assume stationarity + complementarity
for some \* > 0 and some x* feasible for (P),
Then \*: Kuhn-Tucker and x* optimal for (P)
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Sufficient conditions for applying Kuhn-Tucker

Lemma

Assume J* > —oo and 3% € C° such that V¢, f,(X) < 0.
Then a Kuhn-Tucker vector \* exists.

In practice: verify Lemma’s conditions + existence of optimum

x* € int(C°) at which 3V J, V.

Then characterize x* that verifies complementarity + stationarity (now
guaranteed to exist)
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Solving original problem: dual algorithm

Lagrangian: L(x,A) = > Us(xs) + 2, Me[Co — D50 Xs]
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Solving original problem: dual algorithm

Lagrangian: L(x,\) = >, Us(xs) + >, Ae[Co — D50 %]
Dual: D(A) = >_ Us(8s(A°)) + 20 el Cr = D250 85(X°)]

where A* := 3", \¢ and g5 := (U.)7!
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Solving original problem: dual algorithm

Lagrangian: L(x,A) = > . Us(xs) + >y Me[Co — D50 Xs]
Dual: D(A) = >, Us(gs(A°)) + 22 Me[Co — Do g5 85(X°)]
where A* := 3", \¢ and g5 := (U.)7!

= 53, D) = G = Yo 85(N)
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Solving original problem: dual algorithm

Lagrangian: L(x,A) = > . Us(xs) + >y Me[Co — D50 Xs]
Dual: D()\) = ZS Us(gs(AS)) + Zé )‘Z[Cf - ZSBZ gs(AS)]
where A* := 3", \¢ and g5 := (U.)7!
= a>\ D(\) = G — > 50 85(X°)

Dual algorithm:  xs = gs()\°),

A[ = K [ZSEZ Xs — CZ] :\:

where [a]} = a if b > 0, max(a,0) if b<0
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Solving original problem: dual algorithm

Theorem
Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +o00, UL(+o) =0)

Trajectories xs of dual algorithm converge to unique maximizer x* of
primal problem.
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Solving original problem: dual algorithm

Theorem

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +o00, UL(+o) =0)
Trajectories xs of dual algorithm converge to unique maximizer x* of
primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's
solution. Dual objective function used as Lyapunov function]
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primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's
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Potential implementation: multiplier dynamics = queue dynamics
= Let \’ = queueing delay of packets and instantaneously let x; to gs(\°)
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Solving original problem: dual algorithm

Theorem

Under suitable conditions

(Us strictly concave, twice differentiable, UL(0") = +o00, UL(+o) =0)
Trajectories xs of dual algorithm converge to unique maximizer x* of
primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's
solution. Dual objective function used as Lyapunov function]

Potential implementation: multiplier dynamics = queue dynamics

= Let \’ = queueing delay of packets and instantaneously let x; to gs(\°)
= Principle underlying TCP-Vegas, an alternative to default TCP ( TCP
Reno)
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Takeaway messages

@ For unconstrained convex minimization, gradient descent converges to
optimizer [Lyapunov stability]

@ Admits distributed implementation in network optimization setting

e TCP implicitly achieves (w, a)-fair allocation by running gradient
descent

@ Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)'s optima

@ Queue dynamics implicitly perform gradient descent for multipliers of
constrained program
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Takeaway messages

@ For unconstrained convex minimization, gradient descent converges to
optimizer [Lyapunov stability]
@ Admits distributed implementation in network optimization setting

e TCP implicitly achieves (w, a)-fair allocation by running gradient
descent

@ Kuhn-Tucker Theorem: Complementarity + Stationarity
characterization of (P)'s optima

@ Queue dynamics implicitly perform gradient descent for multipliers of
constrained program

Pending question: How to discriminate between allocation objectives?
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