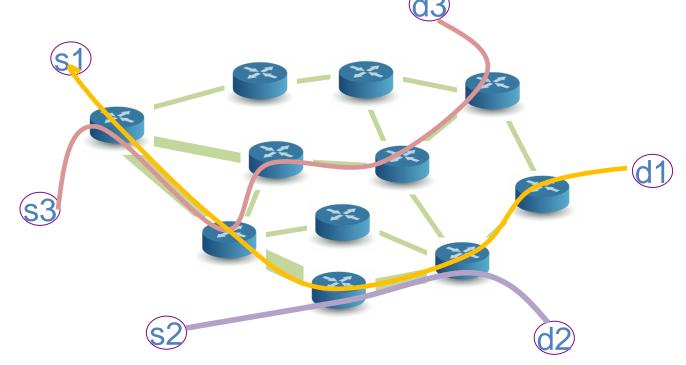
Network resource allocation: principles and algorithms

Mathematical framework: Convex optimization, dynamical systems (ordinary differential equations)

Motivating example: Distributed control of data transport in the Internet



□ How to assign bandwidth in networks

- Understanding TCP, the protocol regulating most Internet traffic
- Still an active research topic, in the context of datacenter networks (see « DC-TCP »)

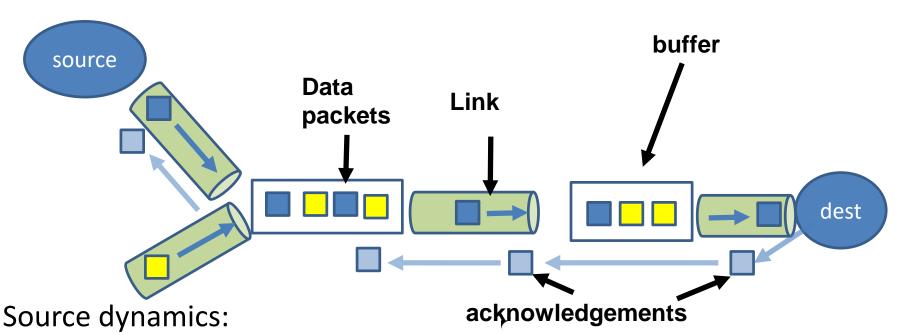
Other application scenarios of current interest

• Allocation of {storage,bandwidth,CPU} resources in cloud computing

A Google datacenter

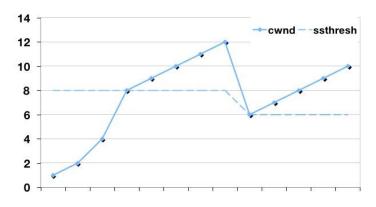
 Allocation of energy to consumers in the smart grid, under demand-response scenarios

TCP in one slide



- Maintain Nb of (sent¬ acked pkts)=:cwnd (congestion window)
- Update cwnd
- \leftarrow cwnd+1/cwnd upon receipt of pkt ack
- \leftarrow cwnd/2 upon detection of pkt loss

"Congestion avoidance" alg introduced in 1993 After Internet congestion collapse



Outline

□ Resource allocation principles

- Fairness criteria
- Utility optimization models inspired by micro-economics
- □ A "primal" algorithm
- □ Reverse-engineering TCP
- □ Lagrangian, duality and Lagrange multipliers
- □ A "dual" algorithm

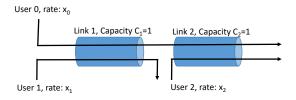
Outline

- Resource allocation principles
- A "primal" algorithm
- Reverse-engineering TCP
- Lagrangian, duality and multipliers
- A "dual" algorithm

-47 ▶

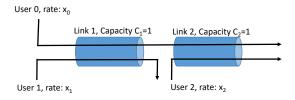
э

Network model



- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_{\ell} > 0$
- Users, or transmissions, or flows, $s \in S$
- User s uses same rate at all $\ell \in s$ (s \leftrightarrow subset of \mathcal{L})

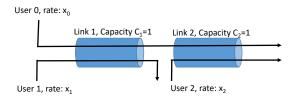
Network model



- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_{\ell} > 0$
- Users, or transmissions, or flows, $s \in S$
- User s uses same rate at all $\ell \in s$ (s \leftrightarrow subset of \mathcal{L})

FEASIBLE RATES: variables $x_s \ge 0$, $s \in S$ such that $\forall \ell \in \mathcal{L}$, $\sum_{s \ni \ell} x_s \le C_{\ell}$

Network model



- Resources, or links, $\ell \in \mathcal{L}$, each with capacity $C_{\ell} > 0$
- Users, or transmissions, or flows, $s \in S$

• User s uses same rate at all $\ell \in s$ ($s \leftrightarrow$ subset of \mathcal{L})

FEASIBLE RATES: variables $x_s \ge 0$, $s \in S$ such that $\forall \ell \in \mathcal{L}$, $\sum_{s \ni \ell} x_s \le C_{\ell}$ POTENTIAL APPLICATIONS

- Links on single path from source to destination
- Links on tree of transmission from source to set of receivers

Laurent Massoulié (Inria)

Network resource allocation

• max-min fairness: feasible x^{mm} such that $\forall s \in S, \exists \ell \in s \text{ with } \sum_{t \ni \ell} x_t^{mm} = C_{\ell} \text{ and } x_s^{mm} = \max_{t \ni \ell} x_t^{mm}$ ("no envy": each s can find competing t at least as poor as s)

- max-min fairness: feasible x^{mm} such that $\forall s \in S, \exists \ell \in s \text{ with } \sum_{t \ni \ell} x_t^{mm} = C_{\ell} \text{ and } x_s^{mm} = \max_{t \ni \ell} x_t^{mm}$ ("no envy": each s can find competing t at least as poor as s)
- **Proportional fairness**: feasible x^{pf} such that

for all feasible y, $\sum_{s} \frac{y_s - x_s^{pf}}{x_s^{pf}} \leq 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

- max-min fairness: feasible x^{mm} such that
 ∀s ∈ S, ∃ℓ ∈ s with ∑_{t∋ℓ} x^{mm}_t = C_ℓ and x^{mm}_s = max_{t∋ℓ} x^{mm}_t
 ("no envy": each s can find competing t at least as poor as s)
- Proportional fairness: feasible x^{pf} such that

for all feasible y, $\sum_{s} \frac{y_s - x_s^{pf}}{x_s^{pf}} \le 0$

Alternative characterization:

Unique maximizer of $\sum_{s} \ln(x_s)$ among feasible x

- max-min fairness: feasible x^{mm} such that
 ∀s ∈ S, ∃ℓ ∈ s with ∑_{t∋ℓ} x^{mm}_t = C_ℓ and x^{mm}_s = max_{t∋ℓ} x^{mm}_t
 ("no envy": each s can find competing t at least as poor as s)
- Proportional fairness: feasible x^{pf} such that

for all feasible y, $\sum_{s} \frac{y_s - x_s^{pf}}{x_s^{pf}} \le 0$

Alternative characterization:

Unique maximizer of $\sum_{s} \ln(x_s)$ among feasible x

Notion introduced by F. Kelly (Cambridge University) in 1997

Alternative characterization: Nash's bargaining solution (1950)

- i.e. unique vector $\phi(\mathcal{C})$ in feasible convex set $\mathcal{C} \subset \mathbb{R}^{\mathcal{S}}_+$ s.t.
 - Pareto efficiency: $\phi(\mathcal{C}) \leq x \in \mathcal{C} \Rightarrow x = \phi(\mathcal{C})$
 - independence of irrelevant alternatives: $\phi(\mathcal{C}) \in \mathcal{C}' \subset \mathcal{C} \Rightarrow \phi(\mathcal{C}) = \phi(\mathcal{C}')$
 - symmetry: C symmetric $\Rightarrow \phi(C)_i \equiv \phi(C)_1$
 - scale invariance: for diagonal D with $D_{ii} > 0$, $\phi(DC) = D\phi(C)$

Network Utility Maximization x*: solution of

 $\begin{array}{ll} {\rm Max} & \sum_{s} U_{s}(x_{s}) \\ {\rm Over} & x_{s} \geq 0 & (P) \end{array}$ Such that $\forall \ell, \sum_{s \geq \ell} x_{s} \leq C_{\ell}$

for **concave**, **increasing** utility functions $U_s : \mathbb{R}_+ \to \mathbb{R}$

イロト 不得 トイヨト イヨト 二日

Network Utility Maximization x*: solution of

 $\begin{array}{ll} \mathsf{Max} & \sum_{s} U_{s}(x_{s}) \\ \mathsf{Over} & x_{s} \geq 0 & (P) \end{array}$ Such that $\forall \ell, \sum_{s \geq \ell} x_{s} \leq C_{\ell}$

for concave, increasing utility functions $U_s: \mathbb{R}_+ \to \mathbb{R}$

 \rightarrow A concave optimization program

イロト 不得 トイヨト イヨト 二日

Network Utility Maximization x*: solution of

 $\begin{array}{ll} \mathsf{Max} & \sum_{s} U_{s}(x_{s}) \\ \mathsf{Over} & x_{s} \geq 0 & (P) \\ \mathsf{Such that} & \forall \ell, \sum_{s \geq \ell} x_{s} \leq C_{\ell} \end{array}$

for **concave**, **increasing** utility functions $U_s : \mathbb{R}_+ \to \mathbb{R}$

 \rightarrow A concave optimization program

EXAMPLES Proportional fair x^{pf} : $U_s = \ln$

イロト 不得 トイヨト イヨト 二日

Network Utility Maximization x*: solution of

 $\begin{array}{ll} \mathsf{Max} & \sum_{s} U_{s}(x_{s}) \\ \mathsf{Over} & x_{s} \geq 0 & (P) \\ \mathsf{Such that} & \forall \ell, \sum_{s \geq \ell} x_{s} \leq C_{\ell} \end{array}$

for **concave**, **increasing** utility functions $U_s : \mathbb{R}_+ \to \mathbb{R}$

 \rightarrow A concave optimization program

EXAMPLES Proportional fair x^{pf} : $U_s = \ln$ For $w, \alpha > 0$, (w, α) -fair $x = x(w, \alpha)$: $U_s(x_s) = w_s \frac{x_s^{1-\alpha}}{1-\alpha}$

イロト イボト イヨト イヨト 一日

Network Utility Maximization x*: solution of

 $\begin{array}{ll} \mathsf{Max} & \sum_{s} U_{s}(x_{s}) \\ \mathsf{Over} & x_{s} \geq 0 & (P) \\ \mathsf{Such that} & \forall \ell, \sum_{s \geq \ell} x_{s} \leq C_{\ell} \end{array}$

for **concave**, **increasing** utility functions $U_s : \mathbb{R}_+ \to \mathbb{R}$

 \rightarrow A concave optimization program

EXAMPLES Proportional fair x^{pf} : $U_s = \ln$ For $w, \alpha > 0$, (w, α) -fair $x = x(w, \alpha)$: $U_s(x_s) = w_s \frac{x_s^{1-\alpha}}{1-\alpha}$

[Exercise: $\lim_{\alpha \to 1} x(1, \alpha) = x^{pf}$ and $\lim_{\alpha \to +\infty} x(1, \alpha) = x^{mm}$]

イロン 不良 とくほう くほう 二日

Relaxed constraints and a "primal" algorithm

Relaxed problem: Max
$$\sum_{s} U_{s}(x_{s}) - \sum_{\ell} C_{\ell}(y_{\ell})$$

Over $x_{s} \ge 0$ (RP)
with $y_{\ell} = \sum_{s \ni \ell} x_{s}$

for concave increasing utility functions U_s and convex increasing cost functions C_ℓ

Relaxed constraints and a "primal" algorithm

Relaxed problem: Max
$$\sum_{s} U_{s}(x_{s}) - \sum_{\ell} C_{\ell}(y_{\ell})$$

Over $x_{s} \ge 0$ (RP)
with $y_{\ell} = \sum_{s \ge \ell} x_{s}$

for concave increasing utility functions U_s and convex increasing cost functions C_ℓ

primal algorithm: for U_s and C_ℓ differentiable, and positive gain function $\kappa_s : \mathbb{R}_+ \to \mathbb{R}_+$, let

$$rac{d}{dt} x_s = \kappa_s(x_s) \left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell)
ight)$$
 "gradient ascent"

Relaxed constraints and a "primal" algorithm

Relaxed problem: Max
$$\sum_{s} U_{s}(x_{s}) - \sum_{\ell} C_{\ell}(y_{\ell})$$

Over $x_{s} \ge 0$ (RP)
with $y_{\ell} = \sum_{s \ni \ell} x_{s}$

for concave increasing utility functions U_s and convex increasing cost functions C_ℓ

primal algorithm: for U_s and C_ℓ differentiable, and positive gain function $\kappa_s : \mathbb{R}_+ \to \mathbb{R}_+$, let

$$\frac{d}{dt}x_s = \kappa_s(x_s) \left(U_s'(x_s) - \sum_{\ell \in s} C_\ell'(y_\ell) \right) \quad \text{``gradient ascent''}$$

 \rightarrow Implementable in a distributed fashion

Stability via Lyapunov functions

Criterion for convergence of ODE $\dot{x} = F(x)$ with trajectories in $O \subset \mathbb{R}^n$

Theorem

Assume F continuous on O, and $\exists V : O \rightarrow \mathbb{R}$ such that:

(i) V continuously differentiable

(ii) $\forall a \leq A$, $\{x \in O : V(x) \leq A\}$ and $\{x \in O : V(x) \in [a, A]\}$ either compact or empty

(iii) $\forall x \in O \setminus B$, $\langle \nabla V(x), F(x) \rangle < 0$, where $B = \operatorname{argmin}_{x \in O} \{V(x)\}$

Then $\lim_{t\to\infty} V(x(t)) = \inf_{x\in O} V(x)$, $\lim_{t\to\infty} d(x(t), B) = 0$.

If $B = \{x^*\}$ then $\lim_{t\to\infty} x(t) = x^*$.

イロト 不得下 イヨト イヨト 二日

Application to gradient ascent / descent dynamics

$$\frac{d}{dt}x_s = \kappa_s(x_s)\left(U'_s(x_s) - \sum_{\ell \in s} C'_\ell(y_\ell)\right)$$

Let $W(x) = \sum_{s} U_{s}(x_{s}) - \sum_{\ell} C_{\ell}(y_{\ell})$ (system welfare) and V(x) = -W(x)

イロト 不得下 イヨト イヨト 二日

Application to gradient ascent / descent dynamics

$$\frac{d}{dt}x_s = \kappa_s(x_s)\left(U'_s(x_s) - \sum_{\ell \in s} C'_\ell(y_\ell)\right)$$

Let $W(x) = \sum_{s} U_{s}(x_{s}) - \sum_{\ell} C_{\ell}(y_{\ell})$ (system welfare) and V(x) = -W(x)

Then: $\langle \nabla V(x), F(x) \rangle = -\sum_{s} \kappa_{s}(x_{s}) \left[\frac{\partial}{\partial x_{s}} W(x) \right]^{2}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Application to gradient ascent / descent dynamics

$$\frac{d}{dt}x_s = \kappa_s(x_s)\left(U'_s(x_s) - \sum_{\ell \in s} C'_\ell(y_\ell)\right)$$

Let $W(x) = \sum_{s} U_{s}(x_{s}) - \sum_{\ell} C_{\ell}(y_{\ell})$ (system welfare) and V(x) = -W(x)

Then:
$$\langle
abla V(x), F(x)
angle = -\sum_{s} \kappa_{s}(x_{s}) \left[\frac{\partial}{\partial x_{s}} W(x) \right]^{2}$$

Theorem

For U_s strictly concave, differentiable with $U'_s(0^+) = +\infty$, C_ℓ convex, continuously differentiable, $[\Rightarrow$ strict concavity and continuous differentiability of W] $\kappa_s > 0$, continuous $[\Rightarrow$ continuity of F] $\exists x_s > 0 \ s.t. \ U'_s(x_s) < \sum_{\ell \in s} C'_\ell(x_s)$ $[\Rightarrow Max of W achieved at single point <math>x^* \in O := (0, \infty)^S$] Then "primal" dynamics converge to unique maximizer x^* of W

イロト イポト イヨト イヨト

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

(日) (四) (日) (日) (日)

3

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt}cwnd_s \approx x_s(1/cwnd_s) - x_sp(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

イロト イポト イヨト イヨト

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt}cwnd_s \approx x_s(1/cwnd_s) - x_sp(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt}cwnd_s \approx x_s(1/cwnd_s) - x_sp(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2}\right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell)\right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt}cwnd_s \approx x_s(1/cwnd_s) - x_sp(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_s = \left(\frac{x_s^2}{2}\right) \left[\frac{2}{(x_s T_s)^2} - \sum_{\ell \in s} p_\ell(y_\ell)\right]$$

TCP implicitly runs primal alg. with utility function: $U_s(x) = w_s x^{1-\alpha}/(1-\alpha)$ with $\alpha = 2$, $w_s = 2/T_s^2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt}cwnd_s \approx x_s(1/cwnd_s) - x_sp(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_{s} = \left(\frac{x_{s}^{2}}{2}\right) \left[\frac{2}{(x_{s}T_{s})^{2}} - \sum_{\ell \in s} p_{\ell}(y_{\ell})\right]$$

TCP implicitly runs primal alg. with utility function: $U_s(x) = w_s x^{1-\alpha}/(1-\alpha)$ with $\alpha = 2$, $w_s = 2/T_s^2$ \rightarrow Leads to (w, α) -fairness with suitable parameters

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Approx. $x_s \approx cwnd_s/T_s$ where T_s : packet round-trip time

Approx. $\frac{d}{dt}cwnd_s \approx x_s(1/cwnd_s) - x_sp(s)[cwnd_s/2]$ where p(s): packet loss probability along path of s

Approx. $p(s) \approx \sum_{\ell \in s} p_{\ell}(y_{\ell})$ for link packet loss prob. $p_{\ell}(y)$ [e.g. $p_{\ell}(y) = \max(0, 1 - C_{\ell}/y)$]

$$\Rightarrow \dot{x}_{s} = \left(\frac{x_{s}^{2}}{2}\right) \left[\frac{2}{(x_{s}T_{s})^{2}} - \sum_{\ell \in s} p_{\ell}(y_{\ell})\right]$$

TCP implicitly runs primal alg. with utility function: $U_s(x) = w_s x^{1-\alpha}/(1-\alpha)$ with $\alpha = 2$, $w_s = 2/T_s^2$ \rightarrow Leads to (w, α) -fairness with suitable parameters Can tweak congestion avoidance alg. if want e.g. proportional fairness $(\alpha = 1)$ instead

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program For convex set C^0 , convex functions J, $f_{\ell} : C^0 \to \mathbb{R}$,

 $\begin{array}{ll} {\rm Min} & J(x)\\ {\rm Over} & x\in \mathcal{C}^0 & (P)\\ {\rm Such \ that} & \forall \ell\in\mathcal{L}, f_\ell(x)\leq 0 \end{array}$

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program For convex set C^0 , convex functions J, $f_{\ell} : C^0 \to \mathbb{R}$,

> $\begin{array}{ccc} \text{Min} & J(x) \\ \text{Over} & x \in \mathcal{C}^0 & (P) \end{array}$ Such that $\forall \ell \in \mathcal{L}, f_\ell(x) \leq 0 \end{array}$

Associated Lagrangian $L(x, \lambda) := J(x) + \sum_{\ell} \lambda_{\ell} f_{\ell}(x),$ $x \in C^{0}, \ \lambda \ge 0$

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program For convex set C^0 , convex functions J, $f_{\ell} : C^0 \to \mathbb{R}$,

 $\begin{array}{ccc} \text{Min} & J(x) \\ \text{Over} & x \in \mathcal{C}^0 & (P) \\ \text{Such that} & \forall \ell \in \mathcal{L}, f_\ell(x) \leq 0 \end{array}$

Associated Lagrangian $L(x, \lambda) := J(x) + \sum_{\ell} \lambda_{\ell} f_{\ell}(x),$ $x \in C^{0}, \ \lambda \ge 0$

 λ : Lagrange multipliers of (P)'s constraints

Convex optimization: Lagrangian, duality, multipliers

Generic convex optimization program For convex set C^0 , convex functions J, $f_{\ell} : C^0 \to \mathbb{R}$,

> $\begin{array}{ccc} \text{Min} & J(x) \\ \text{Over} & x \in \mathcal{C}^0 & (P) \end{array}$ Such that $\forall \ell \in \mathcal{L}, f_\ell(x) \leq 0 \end{array}$

Associated Lagrangian $L(x, \lambda) := J(x) + \sum_{\ell} \lambda_{\ell} f_{\ell}(x),$ $x \in C^{0}, \ \lambda \ge 0$

 λ : Lagrange multipliers of (P)'s constraints

Dual problem (D): Max $D(\lambda)$ Over $\lambda \ge 0$ where $D(\lambda) := \inf_{x \in C^0} L(x, \lambda)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Kuhn-Tucker theorem and strong duality

Def: $\lambda^* \ge 0$ a Kuhn-Tucker vector iff $\forall x \in C^0, L(x, \lambda^*) \ge J^*$ where J^* : optimal value of (P).

3

< □ > < □ > < □ > < □ > < □ > < □ >

Kuhn-Tucker theorem and strong duality

Def: $\lambda^* \ge 0$ a Kuhn-Tucker vector iff $\forall x \in C^0, L(x, \lambda^*) \ge J^*$ where J^* : optimal value of (P).

Remark: $J^* \ge D^*$ where D^* optimal value of (D)

3

< □ > < 同 > < 三 > < 三 >

Kuhn-Tucker theorem and strong duality

Def: $\lambda^* \ge 0$ a Kuhn-Tucker vector iff $\forall x \in C^0, L(x, \lambda^*) \ge J^*$ where J^* : optimal value of (P). **Remark:** $J^* \ge D^*$ where D^* optimal value of (D)

Theorem

Assume there exists λ^* a Kuhn-Tucker vector. Then (i) λ^* solves (D), and $J^* = D^*$ (a.k.a. **strong duality**) (ii) $x^* \in C^0$ if optimal for (P) then achieves $\min_{x \in C^0} L(x, \lambda^*)$ (iii) For $x^* \in int(C^0)$ an optimum of (P) at which $\exists \nabla J, \nabla f_\ell$, then

 $\begin{aligned} &\forall \ell, \lambda_{\ell}^* f_{\ell}(x^*) = 0 \qquad (\text{complementarity}) \\ &\nabla J(x^*) + \sum_{\ell} \lambda_{\ell}^* \nabla f_{\ell}(x^*) = 0 \quad (\text{stationarity}) \end{aligned}$

Reciprocally assume stationarity + complementarity for some $\lambda^* \ge 0$ and some x^* feasible for (P), Then λ^* : Kuhn-Tucker and x^* optimal for (P)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Sufficient conditions for applying Kuhn-Tucker

Lemma

Assume $J^* > -\infty$ and $\exists \hat{x} \in C^0$ such that $\forall \ell$, $f_{\ell}(\hat{x}) < 0$. Then a Kuhn-Tucker vector λ^* exists.

In practice: verify Lemma's conditions + existence of optimum $x^* \in int(\mathcal{C}^0)$ at which $\exists \nabla J$, ∇f_{ℓ} . Then characterize x^* that verifies complementarity + stationarity (now guaranteed to exist)

Lagrangian: $L(x, \lambda) = \sum_{s} U_s(x_s) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \ni \ell} x_s]$

イロト 不得下 イヨト イヨト 二日

Lagrangian: $L(x, \lambda) = \sum_{s} U_{s}(x_{s}) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \ni \ell} x_{s}]$ Dual: $D(\lambda) = \sum_{s} U_{s}(g_{s}(\lambda^{s})) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \ni \ell} g_{s}(\lambda^{s})]$

where $\lambda^s := \sum_{\ell \in s} \lambda_\ell$ and $g_s := (U'_s)^{-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Lagrangian: $L(x, \lambda) = \sum_{s} U_s(x_s) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \ge \ell} x_s]$

Dual: $D(\lambda) = \sum_{s} U_{s}(g_{s}(\lambda^{s})) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \ni \ell} g_{s}(\lambda^{s})]$

where $\lambda^s := \sum_{\ell \in s} \lambda_\ell$ and $g_s := (U'_s)^{-1}$

 $\Rightarrow \frac{\partial}{\partial \lambda_{\ell}} D(\lambda) = C_{\ell} - \sum_{s \ni \ell} g_s(\lambda^s)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Lagrangian: $L(x, \lambda) = \sum_{s} U_{s}(x_{s}) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \ge \ell} x_{s}]$ Dual: $D(\lambda) = \sum_{s} U_{s}(g_{s}(\lambda^{s})) + \sum_{\ell} \lambda_{\ell} [C_{\ell} - \sum_{s \geq \ell} g_{s}(\lambda^{s})]$ where $\lambda^s := \sum_{\ell \in s} \lambda_\ell$ and $g_s := (U'_s)^{-1}$ $\Rightarrow \frac{\partial}{\partial \lambda_s} D(\lambda) = C_{\ell} - \sum_{s \ni \ell} g_s(\lambda^s)$ Dual algorithm: $x_s \equiv g_s(\lambda^s)$, $\dot{\lambda}_{\ell} = \kappa_{\ell} \left[\sum_{s \supset \ell} x_s - C_{\ell} \right]_{\lambda}^+$

where $[a]_b^+ = a$ if b > 0, max(a, 0) if $b \le 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem

Under suitable conditions $(U_s \text{ strictly concave, twice differentiable, } U'_s(0^+) = +\infty, U'_s(+\infty) = 0)$ Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

Theorem

Under suitable conditions $(U_s \text{ strictly concave, twice differentiable, } U'_s(0^+) = +\infty, U'_s(+\infty) = 0)$ Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's solution. Dual objective function used as Lyapunov function]

Theorem

Under suitable conditions $(U_s \text{ strictly concave, twice differentiable, } U'_s(0^+) = +\infty, U'_s(+\infty) = 0)$ Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's solution. Dual objective function used as Lyapunov function]

Potential implementation: multiplier dynamics \equiv queue dynamics

Theorem

Under suitable conditions $(U_s \text{ strictly concave, twice differentiable, } U'_s(0^+) = +\infty, U'_s(+\infty) = 0)$ Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's solution. Dual objective function used as Lyapunov function]

Potential implementation: multiplier dynamics \equiv queue dynamics \Rightarrow Let λ^{ℓ} = queueing delay of packets and instantaneously let x_s to $g_s(\lambda^s)$

- 4 回 ト 4 三 ト 4 三 ト

Theorem

Under suitable conditions $(U_s \text{ strictly concave, twice differentiable, } U'_s(0^+) = +\infty, U'_s(+\infty) = 0)$ Trajectories x_s of dual algorithm converge to unique maximizer x^* of primal problem.

[Proof involved, in particular to show existence and uniqueness of ODE's solution. Dual objective function used as Lyapunov function]

Potential implementation: multiplier dynamics \equiv queue dynamics \Rightarrow Let λ^{ℓ} = queueing delay of packets and instantaneously let x_s to $g_s(\lambda^s)$ \Rightarrow Principle underlying TCP-Vegas, an alternative to default TCP (TCP Reno)

Takeaway messages

- For unconstrained convex minimization, gradient descent converges to optimizer [Lyapunov stability]
- Admits distributed implementation in network optimization setting
- TCP implicitly achieves (w, α) -fair allocation by running gradient descent
- Kuhn-Tucker Theorem: Complementarity + Stationarity characterization of (P)'s optima
- Queue dynamics implicitly perform gradient descent for multipliers of constrained program

Takeaway messages

- For unconstrained convex minimization, gradient descent converges to optimizer [Lyapunov stability]
- Admits distributed implementation in network optimization setting
- TCP implicitly achieves (w, α) -fair allocation by running gradient descent
- Kuhn-Tucker Theorem: Complementarity + Stationarity characterization of (P)'s optima
- Queue dynamics implicitly perform gradient descent for multipliers of constrained program

Pending question: How to discriminate between allocation objectives?

< ロ > < 同 > < 回 > < 回 > < 回 > <